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(57) ABSTRACT 

Systems and methods for discovery and classification of 
denial of service attacks in a distributed computing system 
may employ local agents on nodes thereof to detect resource 
related events. An information later agent may determine if 
events indicate attacks, perform clustering analysis to deter 
mine if they represent known or unknown attack patterns, 
classify the attacks, and initiate appropriate responses to pre 
vent and/or mitigate the attack, including sending warnings 
and/or modifying resource pool(s). The information layer 
agent may consult a knowledge base comprising information 
associated with known attack patterns, including state-action 
mappings. An attack tree model and an overlay network (over 
which detection and/or response messages may be sent) may 
be constructed for the distributed system. They may be 
dynamically modified in response to changes in System con 
figuration, State, and/or workload. Reinforcement learning 
may be applied to the tuning of attack detection and classifi 
cation techniques and to the identification of appropriate 
responses. 
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SYSTEMAND METHOD FOR DISTRIBUTED 
DENIAL OF SERVICE DENTIFICATION AND 

PREVENTION 

BACKGROUND OF THE INVENTION 

0001 1. Field of the Invention 
0002 This invention relates generally to distributed com 
puting resources, and more particularly to systems and meth 
ods for distributed denial of service attack tree discovery and 
flood control. 
0003 2. Description of the Related Art 
0004 Distributed Denial of Service (DDoS) attacks are a 
critical issue for dynamic and stochastic task environments. 
The result of these attacks is often removal or degradation of 
one or a set of computation nodes within a dynamic task 
environment, and/or removal or degradation of one or a set of 
storage nodes within a distributed storage environment. A 
typical class of attacks could be initiated from a leaf process 
ing node against a pervasive computing graph along the edges 
of the vertices. For example, a DDoS attack may apply a 
scanning operation throughout an entire grid environment 
(e.g., on all nodes) or may deploy a malicious agent on those 
nodes to consume memory and/or CPU resources. 
0005 Intrusion detection is a method of identifying 
attempts to compromise CIAA (confidentiality, integrity, 
availability and authenticity) of computational resources. 
Various data center operations may perform intrusion detec 
tion manually or automatically. Manual intrusion detection 
typically examines evidence from system calls, log files, audit 
trails or network packet flows. Systems that perform auto 
mated intrusion detection are sometimes referred to as intru 
sion detection systems (IDSs). Modern IDSs typically 
employ a combination of the above two classes oftechniques. 
As probable attacks are discovered by IDSs, relevant infor 
mation is typically logged to files or databases and alerts are 
generated. In addition, automatic responsive actions and/or 
even preventive rule-based controls may be implemented 
through access control systems. 
0006 Due to advances in information security techniques, 
intrusion preventive systems (IPSs) described in the literature 
may provide a practical mechanism to defend against intru 
sion attacks on computational graphs or prevent abuse of 
computational resources. These IPSs can be divided into two 
categories: misuse-prevention techniques and anomaly-pre 
vention methods. Misuse-prevention tools are typically based 
on a set of signatures that describe known attack States and 
that are used to match a current state against a known attack 
state. If a current state corresponding to an actual attack 
matches one of attack classes listed in the database, then it is 
Successfully identified. A disadvantage of this approach is 
that it cannot prevent previously unknown attacks (also called 
Zero-day attacks). Anomaly prevention uses profiles about 
normal states to prevent intrusions by noting significant 
deviations between the parameters of the observed traffic of 
networks and those of normal states. Prevention against 
anomaly attacks has been an active research topic. However, 
it suffers from high false-positive error rates because unseen 
normal behaviors are often misclassified as attacks. Current 
methods for intrusion detection and prevention (including 
Some that use reinforcement learning) are builton static archi 
tectures and/or parameters (e.g., a fixed number of nodes, 
layers of computations, and number and type of parameters). 
These methods typically depend on Supervised training with 
known attack types. However, in dynamic programming set 
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tings, there may be no available training set. Current methods 
for intrusion detection using machine learning typically 
require human interaction to improve rule-based binary clas 
sifications, and tuning is limited within a fixed architecture 
having fixed optimized weights and biased nodes that impact 
classification results. In addition, current methods typically 
return results as a classification (typically, a binary classifi 
cation: attack yes or attack no). Evolution computing has 
been proposed improve learning networks. However, it inher 
its the memory bound problem in traditional artificial intelli 
gence techniques. 

SUMMARY 

0007 Systems and methods for discovery and prevention 
of denial of service attacks in a distributed computing system 
are disclosed. In some embodiments, the system may employ 
local data collection agents on each of a plurality of nodes to 
detect resource-related events on those nodes. For example, a 
data collection agent may be configured to detect a parameter 
value crossing a threshold value, a parameter value change 
rate exceeding a change rate threshold, a parameter value 
becoming out of range, a parameter value becoming in range, 
or a change in a parameter value trend. In various embodi 
ments, data collection agents may be implemented using 
Software, hardware (e.g., sensors), or a combination of Soft 
ware and/or hardware elements configured to detect resource 
related events. 

0008 An information layer agent on one or more nodes 
(e.g., on each node or on one or more central nodes) may 
determine if an event is indicative of an imminent or current 
attack, may determine if the event represents a known attack 
pattern or a previously unknown attack pattern, and may 
classify the attack. The information layer agent may consult a 
knowledge base comprising information associated with 
known attack patterns, including state-action mappings. 
0009. The information layer agent may initiate appropri 
ate responses to prevent and/or mitigate the attack, including 
sending warnings and/or modifying resource pool(s) on a 
current victim node (e.g., the node on which a resource 
related event was detected) and/or on potential victim nodes 
(e.g., the neighbors of a current victim node). In some 
embodiments, if it is determined that an event represents a 
previously unknown attack pattern, the information layer 
agent may perform clustering analysis to identify a known 
attack pattern sharing at least Some characteristics with the 
unknown attack pattern, and may initiate a response action 
dependent on the identified known attack pattern. In other 
embodiments, the information layer agent may randomly 
select a response action for a previously unknown attack 
pattern, or may initiate simulation of the unknown attack 
pattern. 
0010. In some embodiments, an attack tree model and/or 
an overlay network (over which detection and/or response 
messages may be sent) may be constructed for the distributed 
system. For example, an attack detection and classification 
technique may be applied in response to the event detection, 
which may probe the nodes of distributed computing system 
using multicast inquires to construct a model of the progres 
sion (or likely progression) of an attack from one node to 
another in the distributed system. The attack tree model and/ 
or overlay network may in some embodiments be dynami 
cally modified in response to changes in System configura 
tion, state, and/or workload. 
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0011 Reinforcement learning techniques may be applied 
to the tuning of attack detection and classification techniques, 
to construction and/or modification of the attack tree model 
and/or overlay network, and to the identification of appropri 
ate responses. For example, tuning the attack detection and 
classification techniques may in various embodiments 
include modifying a number of input nodes, output nodes or 
hidden nodes of a model of the distributed computing system, 
selecting a different attack detection and classification tech 
nique, adding, removing or modifying a state-action value 
pair used by the attack detection and classification technique, 
or modifying a number of layers of an overlay network for the 
system. 
0012. The methods described herein may be implemented, 
at least in part, by program instructions stored in a memory 
coupled to one or more processors on various nodes in a 
distributed computing system, (e.g., by program instructions 
stored on a computer-readable storage medium and execut 
able by the one or more processors in the computing system). 
The program instructions may be included in the same 
memory as one in which a knowledge based of known attack 
pattern information in stored, or in a different memory, in 
different embodiments. In some embodiments, the knowl 
edge base may be partitioned according to attack type, 
resource domain, or other parameters, and may be distributed 
on multiple nodes in the computing system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 FIG. 1 is a flow chart illustrating a method for iden 
tifying and responding to a DDOS attack, according to one 
embodiment. 
0014 FIG. 2 is a block diagram illustrating a distributed 
system on which identification and/or prevention of DDOS 
attacks are implemented, according to one embodiment. 
0015 FIG.3 is a flowchart illustrating a method for updat 
ing a knowledge base using RL techniques, according to one 
embodiment. 
0016 FIG. 4 is a flowchart illustrating the use of event 
driven messages, according to one embodiment. 
0017 FIG. 5A illustrates a state diagram for a state 
machine used in attack detection and prevention, according to 
one embodiment. 
0018 FIG. 5B illustrates an object representing a resource 
pool, according to one embodiment. 
0019 FIG. 6 is a data flow diagram illustrating attack tree 
discovery, according to one embodiment. 
0020 FIG. 7 illustrates an overlay network of a distributed 
computing system, according to one embodiment. 
0021 FIG. 8 is a flow chart illustrating a method for updat 
ing an attack tree or overlay network using RL techniques, 
according to one embodiment. 
0022 FIG. 9 is a diagram illustrating the results of a 
machine learning tuning operation, according to one embodi 
ment. 

0023 FIG. 10 is a block diagram illustrating a multi-grid 
network, according to one embodiment. 
0024 FIG. 11 illustrates the passing of messages between 
mobile devices and other nodes in a distributed computing 
environment, according to one embodiment. 
0025 FIG. 12 is a block diagram illustrating an exemplary 
computer system configured to implement attack discovery 
and/or prevention, according to one embodiment. 
0026. While the invention is described herein by way of 
example for several embodiments and illustrative drawings, 
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those skilled in the art will recognize that the invention is not 
limited to the embodiments or drawings described. It should 
be understood, that the drawings and detailed description 
thereto are not intended to limit the invention to the particular 
form disclosed, but on the contrary, the intention is to coverall 
modifications, equivalents and alternatives falling within the 
spirit and scope of the present invention as defined by the 
appended claims. Any headings used herein are for organiza 
tional purposes only and are not meant to limit the scope of 
the description or the claims. As used herein, the word “may 
is used in a permissive sense (i.e., meaning having the poten 
tial to), rather than the mandatory sense (i.e., meaning must). 
Similarly, the words “include”, “including', and “includes’ 
mean including, but not limited to. 

DETAILED DESCRIPTION OF EMBODIMENTS 

0027 Systems and methods for providing autonomous 
denial of service (DOS) attack prevention, attack detection/ 
identification, and/or rule making in dynamic distributed net 
works are disclosed. The systems and methods described 
herein may in Some embodiments be Suitable for application 
to distributed denial of service (DDoS) attacks in peer-to-peer 
(P2P) environments, mobile networks, grid computing envi 
ronments, and/or other diverse task environments. As 
described herein, in Some embodiments, a learning approach 
(e.g., Q function or other reinforcement learning approach) 
may facilitate preventative detection through methods for 
refining detection of and responses to known attack patterns, 
discovering new attack patterns and/or building attack tree 
models (e.g., models of the expected or actual progression of 
an attack from one node to the next in a distributed environ 
ment) for use in near-future predictions and adaptive flood 
control. For example, an attack may begin at a leaf node and 
move to others (e.g., neighboring nodes). In some embodi 
ments, the attack discovery algorithm may probe the distrib 
uted environment beginning at the initial victim mode and 
moving up to the tree to the root node, sending notifications 
and/or taking other actions in order to block the attack. The 
system and methods described herein may be generally appli 
cable to attacks of various types and on various resources in a 
distributed system, including memory, input/output (I/O) 
resources, storage resources, and compute (e.g., CPU) 
resources, in different embodiments. 
0028 Previous attempts at machine learning-based pre 
vention networks relied heavily on static architectures and/or 
parameters (e.g., a fixed number of nodes, layers of compu 
tations, and number and/or type of parameters monitored). In 
contrast, the methods described herein may in Some embodi 
ments include dynamically modifying attacktree models and/ 
or membership functions based on in-bound pattern fluctua 
tions and/or changes to system configurations, workloads, 
etc. (e.g., incrementally refining initial, arbitrary models 
using machine learning techniques). These methods may in 
Some embodiments be transport-level independent (i.e., they 
may be applied at or above level 7, rather than at level 3 or 4). 
0029. The system and methods described herein may pro 
vide learning based searches for DDoS detection and corre 
sponding scheduling to control attack traffic. They may 
include event driven messaging in a reprogrammable, Scal 
able response/resolution environment (e.g., a virtual overlay 
network), as described in more detail herein. In some embodi 
ments, the methods may include dynamic promotion and/or 
demotion of membership functions (or rules thereof), and 
may report a probability of an attack, rather than an event 
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classification. These methods may in some embodiments 
facilitate self-managed defense systems that are automati 
cally adaptable to environmental changes during normal 
usage, to variations in known or previously unknown attack 
patterns, and to corresponding changes in responses to attacks 
over time. 

0030 The autonomous machine learning methods 
described herein may differ from those of traditional learning 
based IDSs and even traditional artificial intelligence (AI) 
machine learning techniques in several areas, as described 
below. In some embodiments, detection may be initialized 
using an arbitrary network with a programmable architecture, 
and may be autonomously tuned by a reinforcement learning 
(RL) based utility framework. In previous systems, in order to 
train learning networks (e.g., neural networks), the numbers 
and types of input nodes, layers, the nodes at which to present 
non-linearity, and output nodes are predefined based on prob 
lem specifications. However, these specifications may not be 
known ahead of time or may not be feasible to apply to online 
detection, limiting performance and convergence of detec 
tion. Therefore, rather than using this type of static detection 
architecture, in some embodiments the methods described 
herein may include the use of a programmable architecture 
without fixed input nodes, hidden layers, and/or output nodes. 
The reinforcement learning based utility framework may be 
configured to autonomously tune the input nodes, hidden 
layers and output nodes. Therefore, the architecture of the 
neurons may become the parameters of the RL based tuning 
framework. In addition, the approximating architecture may 
not be restricted to a multilayered perceptron structure with 
sigmoidal nonlinear functions. Instead, any arbitrary struc 
tures, such as Bayes Networks, may be autonomously con 
structed and tuned, in various embodiments. 
0031 Previous learning-based IDSs typically required 
Supervised training with known attack types to map inputs 
and outputs, where matching involves unknown non-linear 
ity. However, in dynamic programming (DP) settings, there 
may be no available training set that could be used for 
approximation. In some embodiments, evaluations may be 
performed by simulation, with the decisions being improved 
using simulation results. In some embodiments, with simula 
tions involving autonomous (i.e., self-managed) tuning using 
the RL based utilities described herein, effective online detec 
tion may be facilitated without training. For simulations of 
unknown attacks, those having the most frequently occurring 
states may be better approximated than those of average fre 
quency. 
0032. Furthermore, because existing machine learning 
methods are typically computationally intensive, and exhibit 
a considerable percentage of training errors for large state 
spaces, off-line training is commonly used for approximation 
mapping. By contrast, the system and methods described 
herein may in some embodiments use an RL based tuning 
utility framework to ensure online learning to improve detec 
tion in real time. This may allow the methods the flexibility to 
better control intrusion detection. 
0033. In addition, in complex systems with large state 
spaces, large amounts of training data may be required for 
approximation if traditional machine learning networks are 
used for detection. However, a sufficient volume of data may 
not be available in real time. Therefore, the system and meth 
ods described herein may employ autonomous tuning with 
training and online learning (e.g., a combination of DP tech 
niques, RL techniques, and neural networks, in which RL is 
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used fortuning). In contrast to traditional learning networks, 
the methods described herein may comprise self-managed 
learning methods. Such that biased datasets may impact con 
Vergence but not detection results. 
0034 Previous tuning-based intrusion detection systems 
have been proposed for fixed detection models. However, 
unlike the autonomous methods described herein, those 
methods typically rely on human interactions to continually 
improve rule-based binary classifiers. Furthermore, in tradi 
tional learning networks, tuning is limited within a fixed 
architecture with fixed weightings and biased nodes. By con 
trast, the system and methods described herein may in some 
embodiments employ an interactive utility framework to tune 
the entire architecture using least squared error fitting. In 
addition, rather than including specified parameters in the 
feature vectors, the methods described herein may start with 
any arbitrary number of parameters as input to prevention 
networks. Traditionally, feature vectors were summarized in 
aheuristic sense to be critical characteristics of each state, and 
analysis and intuition need to be applied to derive the feature 
parameters. In the systems described herein however, there 
may be no static architecture, and the RL based utility frame 
work may tune the number and/or selection of parameters 
used. 

0035) To serve large continuous system spaces, the RL 
based methods described herein may provide state-action and 
reward/cost factor mapping. In some embodiments, semi 
Markov Decision Problem (SMDP) theory may be applied. 
Specifically, RL search approximation and learning factor 
multi-layer perceptron may be employed to simplify search 
decision organization and prediction. In addition, a set of RL 
interactive algorithmic operations and augmented learning 
network operations may be included, as described herein. 
0036. The methods described herein may provide autono 
mous tuning of prevention networks without fixed input 
parameters and/or layer architectures. The tuning may in 
Some embodiments be performed using an incremental algo 
rithm grounded in reinforcement learning techniques. In con 
trast to traditional optimization techniques requiring static 
state specification, these methods may use arbitrary state 
parameters for intrusion prevention optimization. For 
machine learning in large state space, sample reduction meth 
ods may be used. Specifically, both attribute selection and 
random instance selection may be applied to Q learning for 
the prevention networks. 
0037. In some embodiments, the system and methods 
described herein may be implemented by components mod 
eled as being on several abstraction layers of a distributed 
system hierarchy: a data collection layer, an information 
layer, and a knowledge layer. One or more agents may be 
deployed on each node to implement these layers. For 
example, a data collection layer may be implemented by one 
or more agents (e.g., sensors) distributed on each node in the 
distributed system. These agents may be responsible for col 
lecting relevant data at each node (e.g., resource usage, per 
formance, workload, etc.) The data collection agents may in 
Some embodiments also be configured to transform or clas 
Sify collected data (e.g., time series data, or frequency series 
data) as discrete values (e.g., CPU usage equals “high. 
“medium, or “low”), according to programmable bound 
aries. In such embodiments, the data collection agents may 
report an event in response to a transition from one discrete 
value to another, e.g., rather than reporting periodic samples 
or averages of collected data. In other embodiments, data 
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collection agents may report an event in response to detecting 
a threshold value or a threshold rate of change (e.g., a Sudden 
change, rather than an incremental one). Data collection 
agents may report these and other events by sending messages 
to an information layer, in Some embodiments. 
0038. In some embodiments, an information layer may be 
implemented by agents distributed among two or more nodes, 
while in others it may be implemented by an agent on a central 
node. Information layer agents may be responsible for aggre 
gating data received from one or more data collection layer 
agents (e.g., data received from one or more nodes and con 
tained in event driven messages) and/or for performing clus 
tering or trend analysis as part of determining the probability 
that a DDoS attack is underway or is imminent. In some 
embodiments, information layer agents may apply a rules 
based analysis (e.g., using membership functions based on 
known rules) and/or may apply reinforcement learning tech 
niques (e.g., fuZZy rules) to collected data, and may return a 
probability that the corresponding event(s) indicate an attack. 
For example, an information layer agent may be configured to 
determine if a workload trend (e.g., its rate of change) is 
outside the expected range for the given workload or work 
load type. 
0039. The information layer agent may consult a knowl 
edge base to determine if observed behavior matches a known 
attack pattern and therefore indicates that a current or near 
term attack is likely. For example, the information layer agent 
may access a repository of known attack patterns, which may 
be stored as a portion of a collection of program instructions 
executable to implement membership functions correspond 
ing to the known attack patterns, or stored as data representing 
known attack patterns that may be accessed by program 
instructions executable to implement membership functions, 
in different embodiments. This knowledge layer may in vari 
ous embodiments be located on the same node or nodes as the 
information layer, or on one or more other nodes (e.g., it may 
be distributed, or may be located on a different central node 
than the information layer). For example, the knowledge base 
may include attack patterns and/or membership functions 
based on 20-40 kernel parameters (e.g., CPU utilization, disk 
utilization, memory utilization, I/O resource utilization, I/O 
ratio, network packet ratio, state packet ratio, or another 
parameterusable in a mathematical model of the system). The 
knowledge base may associate appropriate responses to 
known attack patterns and the information layer may invoke 
these responses if a known attack pattern is detected. For 
example, in various embodiments and in response to different 
attack patterns, memory or other resources may be re-allo 
cated in the distributed system, a resource usage quota may be 
changed, attack notification messages (e.g., warnings, 
alarms, or alerts) may be sent to one or more nodes (e.g., 
neighboring nodes), inquiry messages may be sent to one or 
more nodes (e.g., to probe an attack tree, according to a 
particular attack discovery and classification algorithm 
selected for the attack), a resource or node may be shut down 
or disconnected from the network, etc. 
0040. When observed behavior does not match a known 
attack pattern, the information layer may also be configured 
to select (e.g., arbitrarily or according to clustering analysis 
that identifies a known attack pattern having at least some of 
the same characteristics as the unknown attack pattern) an 
attack discovery and classification technique, and/or one or 
more attack responses (e.g., attack notification messages to be 
sent or modifications to resource pool in order to prevent or 
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mitigate an attack). The information layer may also be con 
figured to dynamically tune the knowledge base based on the 
results or effect of the response(s) to reflect a previously 
unknown attack pattern (e.g., by adding or modifying mem 
bership functions) using RL techniques. For example, rein 
forcement learning techniques may be applied to membership 
functions based on feedback indicating the accuracy of attack 
predictions made by existing membership functions. In other 
words, reinforcement learning techniques and/or dynamic 
programming may be used by information layer agents to 
recognize new attack patterns, and then to add them (along 
with appropriate responses) to the knowledge base. 
0041. In some embodiments, the information layer may 
also be configured to update the knowledge base (e.g., to tune 
membership functions and/or attack responses) based on 
changes in the system environment and/or workload, in some 
embodiments. This is described in more detail below. In such 
embodiments, fuzzy rules, neural nets, or reinforcement 
learning techniques may be applied to membership functions 
based on Such changes. Note that in Some embodiments, 
additional parameters may be added to attack patterns and/or 
membership functions maintained by the knowledge layer, if 
it is determined that they may contribute to more accurate 
predictions of attack behavior. 
0042. In addition to the data layer agents, information 
layer agents, and/or knowledge base deployed on various 
nodes of a distributed system, each defensive node may 
include a mechanism to construct an attack tree and an adap 
tive packet delivery mechanism for flood control (e.g., an 
overlay network), as described in more detail herein. 
0043. A method for performing DDoS identification and 
prevention is illustrated by the flow chart in FIG. 1, according 
to one embodiment. In this example, attack tree(s) and/or an 
overlay network may be initialized for a distributed system, as 
in 100. The initial attack trees and/or overlay network may be 
generated dependent on a predicted, current, or historical 
system configuration, on simulation data, on training data, or 
arbitrarily (e.g., based on heuristics or a default configura 
tion), in various embodiments. Note that in other embodi 
ments, an attack tree and/or overlay network may not be 
constructed or initialized until an attack (or probable attack) 
is detected). 
0044. In the example illustrated in FIG. 1, data collection 
agents are deployed on two or more nodes in the distributed 
environment, as in 110. When one of these data collection 
agents detects an event, as in 120, it sends a message to an 
information layer agent. For example, the data collection 
agent may send a message indicating that CPU or I/O 
resource usage on the corresponding node has changed from 
a “medium level to a “high level. Messages sent between 
the nodes of the distributed system may be sent via the overlay 
network, as described in more detail below. 
0045. In this example, the information layer agent consults 
a knowledge base, as shown in 130 and described above, to 
determine if the event (i.e., the observed behavior) matches a 
known attack pattern (e.g., as stored in the knowledge base). 
This is shown as decision block 140. Membership functions 
based on fuzzy rules and/or trend analysis may be used to 
determine the probability that a DDoS attack is underway, 
according to known attack patterns. The probability determi 
nation may in Some embodiments include weighted compu 
tations, in which data values of different parameters have 
different weightings. For example, if memory usage is "high 
and CPU usage is “medium high”, the information layer agent 
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may determine that the probability that this indicates a CPU 
attack is 60%, while if CPU usage is “high” and memory 
usage is “medium high”, the information layer may determine 
that the probability that this indicates a CPU attack is 75%. In 
Some embodiments, the information layer agent may com 
bine the information contained in the newly received message 
with other information received from the same or other nodes, 
and/or with other known parameter values, and the aggre 
gated information may match a known attack pattern. For 
example, the data collection layer may send a new message to 
the information layer indicating that CPU usage has transi 
tioned to “high, and that I/O operations have transitioned to 
“high”. The information layer may have received a previous 
message indicating that memory usage was “medium', and 
an indication that the workload is characterized as an online 
transaction load (for which a standard or expected profile 
exists). In this example, a membership function applied at the 
information layer may determine that the probability that this 
behavior indicates a CPU attack is 85%, and may return a 
value of 85%. 

0046. If it is determined that the observed behavior is 
representative of a known attack pattern, shown as the posi 
tive exit from 140, the information layer may select an appro 
priate response to the known attack pattern, as described 
herein. This is shown as 145. As illustrated in FIG. 1, action 
may be taken with respect to the current victim resources 
(e.g., the resource(s) of the node on which the event was 
detected). This is shown as 150 in FIG. 1. For example, the 
information layer agent may alert the corresponding node or 
may initiate action on the node (e.g., by sending a message 
indicating that node's resources should be throttled back, 
removed from the distributed resource pool, or otherwise 
protected from the predicted attack). In addition, in this 
example, action may be taken with respect to potential victim 
resources, as in 160. For example, an adaptive flood control 
mechanism may be invoked (e.g., by sending messages other 
nodes) in order to prevent an attack from propagating to 
neighboring nodes, according to an attack tree for the distrib 
uted system and/or individual nodes thereof. This is described 
in more detail below. 

0047. If it is determined that the observed behavior does 
not match a known attack pattern, shown as the negative exit 
from 140, the information layer agent may determine the 
probability that the observed behavior represents a previously 
unknown attack pattern, as in 155. For example, in some 
embodiments, the information layer agent may be configured 
to determine if resource usage or trends therein are a likely 
indicator of a previously unknown attack pattern (e.g., 
according to fuZZy rules; Quality of Service policies, autho 
rization/security policies, or other policies; and/or a cluster 
ing analysis to determine similarities with known attack pat 
terns). If it is determined that the probability that the observed 
behavior indicates an attack is high, shown as the positive exit 
from 180, the method may continue as above, with the infor 
mation layer selecting an appropriate response, taking action 
on the current victim node and, in some embodiments, on 
potential victim nodes, as in 145,150, and 160 of FIG. 1. For 
example, the information layer may select an attack discovery 
algorithm arbitrarily or in accordance with a response Suit 
able for a similar known attack pattern, etc. If it is determined 
that the probability that the observed behavior indicates an 
attack is low (e.g., that it is likely that the observed behavior 
indicates normal operation for the given workload), shown as 
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the negative exit from 180, operation may continue, shown in 
this example as 185 and the feedback to 120. 
0048. As described above, the methods for identification 
and prevention/mitigation of DDoS attacks may in some 
embodiments be implemented in a distributed environment 
by agents at a data collection layer, an information layer, and 
a knowledge layer. FIG. 2 illustrates one such distributed 
system, according to one embodiment. In this example, the 
distributed system includes a central node 210, two master 
nodes 240, and four compute nodes 260, although the archi 
tecture may be arbitrarily scaled and/or partitioned differ 
ently, in different embodiments. In this example, each com 
pute node 260 includes a data collection agent 275, 
implemented as program instructions stored in a memory 270 
and executable on the respective compute node 260 to collect 
and, in some embodiments, discretize data relevant to that 
node. In other embodiments, a data collection agent 275 may 
include one or more sensors (e.g., hardware elements config 
ured to collect data) in addition to, or instead of. Such program 
instructions. 

0049. In the example illustrated in FIG. 2, data collection 
agents 275 of each compute node 260 may send event driven 
messages to one of the master nodes 240 using peer-to-peer 
platform protocols, although other communication protocols 
may be employed in other embodiments. In this example, 
each of the master nodes 240 includes an information layer 
agent 245, which may be implemented as program instruc 
tions stored in a memory 250 and executable on the respective 
master node 240 to apply rule-based methods to determine 
the probability that a detected event indicates a current or 
imminent attack, to classify the attack (e.g., according to 
information stored in knowledge base 230), and/or to apply 
reinforcement learning methods to update the membership 
functions, attack trees, overlay networks, attack discovery 
and classification techniques, and/or attack responses stored 
in knowledge base 230. In this example, knowledge base 230 
is included in memory 220 of central node 210, and is 
accessed using messages exchanged with information layer 
agents 245 on master nodes 240, according to peer-to-peer 
platform protocols. For example, information layer agent 
245a may access knowledge base 230 to determine if 
observed behavior reported by data collection agent 275b 
matches a known attack pattern or if it indicates a previously 
unknown attack pattern. The information layer agent 245a 
may return an indication of the probability of an attack (e.g., 
in messages, according to the peer-to-peer platform proto 
cols) to the compute node 260 and/or to a central node (e.g., 
central node 210), in various embodiments. Information layer 
agent 245a may also send messages to one or more of com 
pute nodes 260 in response to determining that an attack is 
underway (e.g., to send an alarm, warning or other notifica 
tion message, or to initiate the taking of an action on the node 
to prevent and/or mitigate the effects of the attack), and/or 
may send messages to central node 210 (e.g., to update 
knowledge base 230 in response to feedback, system configu 
ration or workload changes, or observed results of an action 
taken). Messages may also be exchanged in order to build 
and/or update the attack tree in response to attack detection 
(e.g., using multi-cast inquiries). In this example, memory 
220 of central node 210 also includes programs instructions 
225, executable on central node 210 to maintain and/or 
update knowledge base 230, or to perform other functionality, 
in different embodiments. 
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0050. Note that while the example illustrated in FIG. 2 
includes data collection agents 275 and information layer 
agents 245 implemented as computer-executable program 
instructions stored in a memory, in other embodiments, data 
collection agents 275 and/or information layer agents 245 
may be implemented in hardware (e.g., in one or more field 
programmable gate array components, or FPGAs), or in a 
combination of hardware and Software elements configured 
to provide the functionality described herein. 
0051. A method for applying reinforcement learning tech 
niques to DDoS identification (e.g., attack class determina 
tion) is illustrated in FIG.3, according to one embodiment. In 
this example, an attack class determination is initiated, as in 
300. For example, an attack probability determination (e.g., 
execution of a membership function implemented in Soft 
ware, hardware, or a combination thereof) may be initiated in 
response to an information layer agent receiving one or more 
event messages from a data collection agent in a distributed 
system. As described above, the information layer agent may 
access a knowledge base and may apply applicable rules and 
policies to determine if the event indicates a known attack 
pattern or a previously unknown attack pattern, as in 310. 
0052. In the example illustrated in FIG. 3, the information 
layer agent returns a result of the determination, as in 320, and 
initiates the taking of appropriate action(s). Note that, unlike 
traditional attack identification techniques, the methods 
described herein may not return a binary classification of the 
observed behavior (e.g., a binary indication that the observed 
behavior is or is not representative of an attack), but may 
return an indication of the probability that an attack is in 
progress and/or is imminent in the distributed system. As 
described herein, this probability may be determined depen 
dent on computations involving weighted parameter values 
(e.g., CPU usage, I/O usage, memory usage, resource trends), 
on workload profiles (e.g., this behavior is normal for this 
application, but not for that one), or other variables, and may 
involve identification of known attack patterns or a prediction 
that observed behavior is indicative of a previously unknown 
attack pattern, in Some embodiments. For previously 
unknown attack patterns, the information layer may apply a 
clustering analysis in an attempt to classify the new attack 
pattern, as described in more detail below. The information 
layer may selectaresponse to the new attack pattern based on 
this classification attempt (which may be refined later using 
RL techniques). 
0053. In the example illustrated in FIG. 3, feedback may 
be received regarding the accuracy of the attack class deter 
mination, as in 330. In some embodiments, agents on one or 
more nodes may continue to collect data after receiving an 
indication of a probable attack, and this data may be used to 
determine that an attack did or did not take place. For 
example, trend data collected on a suspected victim node may 
show that a sudden increase in resource usage did not consti 
tute the beginning of a DDoS attack, but was merely a tem 
porary spike in resource usage by an authorized application. 
In another example, data collected following an indication of 
a probable attack may show that an attack was, in deed, in 
progress, but that it was mitigated or otherwise contained 
through actions initiated in response to the attack prediction 
(e.g., by throttling back the available resources on victim 
nodes and/or potential victim nodes). In some embodiments, 
it may be possible for an information layer agent to autono 
mously determine whether an attack classification or predic 
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tion was accurate in 90% of cases or more, while any remain 
ing predictions may be validated or invalidated through 
human interaction. 

0054. In this example, in response to feedback on the 
accuracy of the attack classification, the information layer 
agent may update the knowledge base, as in 340. In some 
embodiments, the information layer agent may apply rein 
forcement learning techniques, dependent on the received 
feedback, to tune the membership functions and/or other con 
tents of the knowledge base relative to a known attack pattern, 
e.g., to modify parameter values (e.g., boundary values) 
reported to a membership function, to modify the number 
and/or type of parameters used in a membership function 
computation, to promote rules found to correlate well with 
actual attacks, or to demote rules found to correlate poorly 
with actual attacks, in different embodiments. 
0055 For example, RL techniques may be used to deter 
mine that one or more other parameters may be needed to 
better distinguish between “normal' behavior and an attack 
pattern, or distinguish between various attack patterns. In 
another example, RL techniques may be used to tune a mem 
bership function so that it maps a higher or lower attack 
probability value to a given state value. In various embodi 
ments, the information layer agent may use reinforcement 
learning techniques to add information to the knowledge base 
relative to known attack patterns or to previously unknown 
attack patterns, as described herein. In some embodiments, 
received feedback may be used to update a confidence level 
associated with a membership function, to change the relative 
weighting of parameters used in a membership function com 
putation, or to modify action(s) to be taken in response to 
known and/or unknown attack patterns to better mitigate or 
contain them. In some embodiments, received feedback may 
be used to modify the attack discovery/classification algo 
rithm to be applied to the particular attack pattern, as 
described in more detail below. Note also that in response to 
receiving feedback about a state change due to actions taken 
at 320, the method may include taking additional action(s) at 
340, according to current or modified policies and/or state 
action value mappings. 
0056. As previously noted, data collection agents (e.g., 
sensors) may in Some embodiments be deployed on the nodes 
of a distributed computing system, and may send messages to 
an information layer agent on the same or another node 
including an indication of an event relevant to the data they 
collect. FIG. 4 illustrates a method for this event-driven mes 
saging, according to one embodiment. In this example, a data 
collection agent is deployed on a distributed node, as in 400. 
In some embodiments, a data collection agent may include a 
sensor or other hardware element, such as an FPGA, instead 
or, or in addition to various Software elements. In some 
embodiments, a data collection agent may be deployed auto 
matically on a node (e.g., a remote or mobile node) in 
response to the node being registered in the distributed com 
puting environment. 
0057. In this example, the data collection agent monitors 
one or more of a state of the node or of a process/thread 
executing thereon, resource usage and/or trends, a workload 
or throughput, or the values of other parameters, as in 410. For 
example, a data collection agent may collect data using one or 
more of an impStat command, aniostat command, or a Vmstat 
command of the node's operating system, in one embodi 
ment. As described above, the data collection agent may be 
configured to transform time series data (e.g., values returned 
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by these commands over time) into discretely classified data, 
according to programmable (or otherwise dynamically con 
figurable) boundaries. For example, in one embodiment, 
resource usage may be classified as “low” if it is between 
0-30%, “medium-low if between 30-50%, “medium' if 
between 50-70%, “medium-high” if between 70-85%, and 
“high” if between 85-100%. 
0058 As illustrated in FIG. 4, if the data collection agent 
detects a change of state (e.g., a transition from “medium 
high CPU usage to “high CPU usage), a threshold value that 
is reached, or a threshold rate of change that is reached (e.g., 
in the case of a Sudden, rather than an incremental change in 
resource usage is detected), it may send a message to the 
information layer agent indicating this even, as in 430. In 
other words, rather than collecting periodic samples and 
sending them in messages to the information layer, or sending 
periodic messages containing average values to the informa 
tion layer, in some embodiments, only event-driven messages 
(e.g., on State transitions, or Sudden changes) may be sent to 
the information layer for analysis. When no such threshold or 
state transition is detected, shown as the negative exit from 
420, the data collection agent may continue to collect data 
until such an event is detected. This is shown in FIG. 4 as the 
feedback loop to 410. 
0059. In various embodiments, multiple categories of 
rules may be applied by data collection agents to determine if 
an event has occurred for which a message should be sent to 
an information layer agent. For example, in one embodiment, 
rules may be directed to CPU resource usage, I/O resource 
usage, memory usage, combinations of CPU resource usage, 
I/O resource usage and/or memory usage, or to trends in Such 
usage. In some embodiments, events may be triggered depen 
dent on an expected workload for a particular application. For 
example, the dynamic workload of a banking application may 
exhibit a standard profile appropriate for an online transaction 
load (e.g., with arrival times on the order of 1000/second) 
when operating normally, and the information layer agent 
may be configured to detect if the workload is very different 
from the expected profile and/or if the workload suddenly 
changes (e.g., if it suddenly increases to 5000/second). For 
example, if the expected workload for the corresponding 
nodes typically exhibits CPU usage="medium' when I/O 
usage="medium', but the observed parameter values indicate 
CPU usage="high' when I/O usage="medium, the informa 
tion layer may apply a membership function to the observed 
parameter values and may determine that the probability of a 
CPU attack is 60%, in one embodiment. In some embodi 
ments, the membership functions may be integrated with 
intelligence data (e.g., token based identity or other security 
mechanisms), and the intelligence data may be included as 
additional parameters in determining the probability of an 
attack. 

0060 FIG. 5A illustrates a state diagram 550 for a state 
machine that may be used by a data collection agent and/or 
information layer agent in a storage area network to deter 
mine if an event indicates a possible attack and/or to deter 
mine an appropriate response to the event, according to one 
embodiment. In this example, three bits may be used to 
encode the State of a node. In this example, the use of a state 
machine (e.g., observation of state transitions) may eliminate 
the need to store previous utilization information. In this 
example, the state machine may also be used to ingest stop 
attributes for a resource pool and may be used to resolve 
policy conflicts. 
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0061. In the example illustrated in FIG. 5A, the state 
encodings may be as follows: 

OOO GOOD 
OO1 RESUME 
O10 WARN 
O11 ALARM 
100 CRITICAL 
101 INIT 

0062. In this example, state transitions for an agent moni 
toring storage resources may be defined by the following 
pseudo-code: 

if previous resource usage 2 70% and current usage < 70% 
Ingest Stopped 
Resume(X, Ingest) 
Emit(X, RESUME, logger) 

if previous resource usage 2 70 and current usage < 70% 
Ingest Not Stopped 
Emit(x, GOOD) 

if previous resource usage < 70% and current usage < 70% 
State(x, GOOD) 
No Rule for Overhead 

if previous usage < 70% and current usage 2 70% 
Emit(X, WARN, logger) 
Remove(X, VTVs) 

if previous usage 2 90% and 70% is current usage <90% 
Emit(X, ALARM, logger) 
Remove(X, VTVs) 

if current usage 2 90% 
Emit(x, CRITICAL, logger) 
Stop(X, Ingest) 
Remove(X, VTVs) 

0063. In the example illustrated in FIG.5A and described 
above, various notifications indicating the state of the moni 
tored resource(s) (e.g., GOOD, RESUME, WARN, ALARM, 
or CRITICAL) may be sent in response to a state transition, as 
indicated in the “Emit’ statements above. Other actions that 
may be taken in response to such state transitions include 
stopping ingest, resuming ingest, and removing a node (e.g., 
a virtual tape Volume, as above, or another storage device or 
other instance of a distributed resource) from the allocation 
pool. 
0064 FIG. 5B illustrates the design of an object that in one 
embodiment may be used to represent Such a resource pool, 
shown as 520. In this example, the object may include 
attributes 525 of the pool, including state and utilization. In 
this example, the object may include corresponding opera 
tions (e.g., methods) usable to observe ('get') and/or modify 
(“set') the state and utilization of the resource pool. State 
transition rules for the state diagram illustrated in FIG. 5A 
may be order sensitive, in some embodiments. For example, 
pseudo-code corresponding to the rules for this state machine 
may include: 

Rule 1.1 Leave State 001, O10, 101, Enter State OOO, Good Rule 
Pool (x) m (State (INIT) v State (WARN) v State (RESUME)) a 

(Utilization (x) < 0.7 ) -> State (GOOD) 
1.2 Leave State OOO, Enter State 010, Warn Rule 
Pool (x) M State (GOOD) m (Utilization (x) > 0.7) -> State 
(WARN)m 
Emit (X, WARN, logger) a Remove(X, VTVs) 
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-continued 

1.3 Enter State 100, Critical Rule 
Pool (x) m (State (CRITICAL)) m (Utilization (x) 20.9) -> 
State (CRITICAL) 
a Emit(x, CRITICAL, logger) A Stop(X, Ingest) a 
Remove(x VTVs) 

1.4 Leave State 100, Enter State 011, Alarm Rule 
Pool (x) M State (CRITICAL) m (0.7 a Utilization (x) < 0.) --> 
State(ALARM) m 
Emit (X, ALARM, logger) a Remove(X, VTVs) 

1.5 Leave State 011, Enter State 001, Resume Rule 
Pool (x) M State(ALARM) m (Utilization (x) < 0.7) -> 
Resume(X, Ingest)^ 

State (RESUME) m Emit (x, RESUME, logger) 

0065. As previously noted, in some embodiments, a vir 
tual overlay network (e.g., a mobile aware overlay detection 
network) may be constructed and used in attack tree discov 
ery and flood control. Use of a virtual overlay network may in 
Some embodiments minimize data transmissions between 
layers and/or across domains. The overlay network may 
include lightweight agents (e.g., for remote, Small, and/or 
mobile devices), a distributed data structure for associating 
neighbor Vertices, and an attack policy of flood control action 
mapping within an attack state space. A generic event drive 
model may be employed in the attack tree discovery and may 
be independent of layer3 and 4 protocols. Workload learning, 
(e.g., based on Q learning), and fair share scheduling algo 
rithms may be employed in attack tree discovery and/or flood 
control. 

0.066. As noted above, in some embodiments, an event 
driven model may be established in order to probe the routes 
of the attack path discovery. In order to efficiently identify 
attack paths for launching attacks towards the targeted victim 
nodes, an asynchronous event driven model may be used, as 
described herein. In some embodiments, attack discovery 
packets may be asynchronous and reliable, and events may be 
eventually published or consumed within an expected time 
delay at a discrete time t. This discrete time may in some 
embodiments represent real time rather than virtual time. In 
other words, if an event occurs at time t, the probability of the 
same event occurring at t+Ö goes to Zero, where Ö->OO. In 
Some embodiments nodes may always begin asynchronously 
and may wake up their closest neighbors. 
0067. In one embodiment, a distributed environment may 
be represented as a set of computing resources located at the 
nodes of a network graph, G=(V, E). In this example, a vertex 
is a virtual environment identified within an attack tree that 
may be used as a bookkeeping data structure, and an edge is 
the attack path or knowledge to another attacked vertex. The 
edge between an attacked vertex u and another vertex v, where 
u,veV, may be represented as {u, V}. In this example, W may 
denote the attack, and may represent a finite set of processes 
for targeted resources (pl. p. ps. ... pa). 
0068. The weight, weight (i,j), of an attacked path may be 
computed as a function of the number of edges that a node has 
and the load of the node. The load may be represented as li, 
j), which may denote the shortest path between a vertex i and 
a vertex j in G, where i,jeV. The load may also be quantified 
by the system characteristics via a neutral network. In this 
example, BAD may represent a finite set of virtual attacked 
nodes. A specific attacked environment may be utilized as a 
resource pool as it is assigned to the environment. An attacked 
environment may be created on a vertex. 
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0069 {b,b,b,...b.; for every i, 1sisn, a set bePBAD. 
0070 FIG. 6 illustrates an event driven model for attack 
tree discovery, according to one embodiment. In other words, 
FIG. 6 illustrates an overlay of a network graph, in which 
virtual environments Z, Z, Z, Z, and Z, are neighbors. In 
this example, a set of attack discovery LINK channels are 
used to process transmissions for set II. In this example, an 
attack tree discovery process dip, may be associated with each 
nodei, ieV. In this example, a set of attack propagation events 
II, may denote a policy mapping of flood control actions and 
state from victim nodes to the neighbors that have shared 
edges with the vertex i representing the victims. For every i, 
lsism, a set LeTI. Conceptually, an event may be thought of 
as a set of these actions. In this example, for an attack discov 
ery action TL, the output of the discovery action is formed as a 
non-blocking call publish (II), (shown in FIG. 6 as a path 
from 602 to 608), and the input of a discovery action may be 
formed as a non-blocking call consume (II), (not shown). 
(0071. In the example illustrated in FIG. 6, a msg, (e.g., 
publish (II)) may represent a discovery control packet over 
a LINK channel as an event at of the attack tree occurring over 
an edge i,j for triggering a state transition. Both a victim alert 
and an attack tree discovery message may initiate a state 
transition. Hence, as an event at occurs, a msg, may be 
denoted by an augmented BNF generic messaging set and the 
attack discovery protocol MADP 
0072 An attack path discovery and classification algo 
rithm may be configured to discover a set of virtual environ 
ments, referred to as BAD, in which a set of resources is 
attacked. The event driven model may represent event based 
control flow in parallel and/or distributed computing systems. 
In some embodiments, traditional communication packets 
may be modeled as events of flow control, and events may be 
triggered by messages passing between two processes or 
between threads within processes. Event based messaging 
may in some embodiments be based on a platform indepen 
dent data exchange protocol, and established on platform 
neutral channels, such as a socket, pipe, named pipe, etc. In 
various embodiments, messages may be encapsulated within 
an event based data exchange in a synchronous or asynchro 
nous mode. An asynchronous event messaging mode may 
facilitate a priority queue and scheduling that is scalable and 
allows good throughput in the case of a large-scale resource 
discovery, while decoupling message payloads with layer3 
and layer 4 protocols. 
0073. In some embodiments, a state transition may be 
triggered by a messaging exchange and/or by an intrusion 
alert, and attack discovery routing may be modeled to con 
struct an event driven model for event publishing and con 
Sumption. The publication and consumption pattern may rep 
resent the life cycle of an event, as it is processed. To support 
mobility awareness of the messaging model, asymmetric 
communication links may be used in the event model, rather 
than traditional infrastructure based handshaking (e.g., bidi 
rectional three-way handshaking using REQ, SYNC, and 
ACK). Within the overlay network, power nodes may act as 
routing nodes, even without dedicated mobile routers, in 
Some embodiments. In Such embodiments, overlay elements 
may deliver packets via a mobile Internet Protocol (IP) or 
dynamic host configuration protocol (DHCP) managed fixed 
infrastructure. 

0074. In one embodiment, a workload learning and fair 
scheduling algorithm operation may be defined over a parent 
node to generate an event (II) as follows: 

NetNut's Exhibit 1209 
NetNut Ltd. v. Bright Data Ltd. 

IPR2021-00465 
Page Page 21 of 36



US 2010/0082513 A1 

node - parent (node), where node re, e neighbors 
II node - usage *C.; where C. - share share, 

0075. In this example, the step size, m, is the learning ratio 
used in adjusting an estimated weight of a node i from a 
previously estimated weight and the expected load of the 
node. 
0.076 A policy action of the scheduling and planning algo 
rithm may in some embodiments distribute the load of packet 
deliveries among the vertices along an attack path. The tar 
geted nodes may be simultaneously and asynchronously 
requested to ensure fairness amongst the parties utilizing the 
resources. In some embodiments, two levels of sharing may 
be supported. On the top level, each virtual execution envi 
ronment may compete for resource shares based on the ratio 
of the number of shares per execution environment and the 
total number of shares per node. In some embodiments, the 
ratio may be a deterministic factor for load allocation. In the 
example described above, the value of a flood control action 
a in an attack states may be defined by a policy J, as follows: 

0077. In order to support a large population attack state 
space of unknown depth, a pervasive data structure may in 
Some embodiments be used for computation procedure analy 
sis and design. In such embodiments, as a victim node is 
alarmed, the attacked virtual environment b, where bePAD 
is sufficed with an efficient graph and tree algorithm via a 
discovery process dp, hosted on a victim vertex i whereieV in 
G. In addition, the discovery process may communicate over 
the directed edges and have no foreknowledge about the size, 
diameter, and input distribution of the attack tree of a mobile 
ad-hoc peer-to-peer network. 
0078. In G, for a set of V, for which the size is VI, a 
strategy may be applied in order to select a next node (repre 
sented using a bookkeeping data structure) to expand from a 
fringe (a set of explored nodes). The data structure may 
present a node including a state, parent node, action, path, 
cost, and/or depth. 
0079 Extending a graph tree, a formulated attack path 
discovery algorithm may be used to locate a set of paths to a 
victim node from which an attacker launches DoS attacks to 
overwhelm victim resources. In some embodiments, an 
attack tree discovery algorithm operation may perform a 
lookup of all vertices and some edges of a networking range, 
which may include a set of selected edges forming a tree 
spanning attacked vertices and paths. Each discovery process 
may ultimately return the parent routing nodes in an attack 
tree. Simultaneously, a Q learning plan may perform sched 
uling of a workload to Suboptimal paths in order to implement 
a flood control mechanism. A distributed computing proce 
dure may be further described (in pseudo-code) using the 
example task below: 

DISCOVER-ATTACK (node) return done, cutoff 
if first-call then INIT-STATE (node.) 
if node type is mode (node) then 

C8Se. 

victim node: result - PUBLISH(II) 
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-continued 

C8Se. 

edge node: result - CONTROL(node.) 
C8Se. 

both: result - PUBLISH(II) A CONTROL(node.) 
if done A cutoff return failure 
return done 

PUBLISH(II) return done, failure 
m - construct(II) 
result - publish (m) 
return result 

CONTROL(nodei) return done, failure | cutoff 
for depth - 0, goes -> co do 
if DEPTH(node.) = depth then return cutoff 
else for each neighbors do 
result - LEARN-SHARE(node) 
return result 

0080. In some embodiments, a unique host identifier may 
be used in a naming scheme without knowledge of node 
indices within a neighborhood. To formulate parallelism, a 
state space may in some embodiments be distributed among 
processes. Using an unstructured graph, static partitioning 
may result in an unbalanced workload. This may be due to the 
variation of the partitions of a discovery space, and/or to 
overhead associated with assigning each process to each ver 
tex. In one embodiment, the distribution may include parti 
tioning a search space to each process with each disjoint 
Vertex. In this example, as a goal node is identified, all pro 
cesses may terminate the discovery. 
I0081. An overlay network for attack discovery and flood 
control may in Some embodiments sit on top of a physical 
network, and may cross VLANs, Subnets, domains, etc., each 
of which may have their own policies. As noted above, such 
an overlay network may be applied at or above application 
layer 7, rather than attransport layer 2 or 3, in various embodi 
mentS. 

I0082 Heterogeneous computing is one of the common 
characteristics typically found within mobile ad-hoc peer-to 
peer task environments. Therefore, such environments 
require an attack discovery system that is adaptive to different 
hardware architecture platforms, operating systems, and 
mobile devices. In addition to the traditional end-to-end con 
siderations in System design space, the fundamental issues of 
mobile ad-hoc peer-to-peer networks suggest design consid 
erations that are applicable to a mobile attack discovery pro 
tocol (MADP). Traditional operating system-specific kernel 
space module analysis and design on Vendor-specific plat 
forms are challenged by the above requirements. Hence, a 
layer 7 distributed attack discovery methodology and flood 
control analysis, as described herein, may be well suited for 
attack identification and prevention in Such environments. In 
Some embodiments, bit operations may be applied in the 
system design. By aligning these system designs with the 
algorithmic operations design, a variety of programming lan 
guages (e.g., from advanced languages to firmware) may be 
adopted for implementation. For example, in some embodi 
ments, the JavaTM programming language may be adopted. In 
some embodiments (e.g., those in which the variability of 
infrastructure security policies may be a concern), an attack 
tree discovery protocol design may be implemented using an 
extension of HTTP 1.1 for event communications and 
exchanges via firewall policies, and normal UDP tunneling 
along core, edge or source routing and processing nodes. 
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0083) To enable a mobile attack discovery agent (MADA) 
on a mobile node, a carrier may send short messages to mobile 
subscribers. In this way, a MADA may be deployed to a 
mobile device. In some embodiments, a MADA may be a 
MIDP 2.0 compliant application. In such embodiments, upon 
completion of a download, a content delivery service may be 
used to notify a routing node within an overlay network. As 
the MADA is enabled on a mobile device, the node receiving 
a notification may advertise its presence to a MADA via a 
mobile attack discovery protocol (MADP). As previously 
noted, MADP may be implemented as an extension of HTTP 
1.1, support of which is mandatory for any MIDP compliant 
application. A MADP event message inherits the HTTP 1.1 
message headers within a message body. Thus, a mobile node 
hosting a MADA may be invited to participate in an overlay 
network for a mobile attack discovery. In some embodiments 
a mobile node may manage the life cycle of a MADA. In such 
embodiments, as a specific victim event is alarmed, a MADP 
event message may be initiated for an attack tree discovery. 
For a large population attack discovery, both a synchronous 
protocol (e.g., according to the synchronous nature of HTTP) 
and asynchronous attack identification and flood control may 
be designed and implemented. Specifically, an asynchronous 
attack tree discovery may be performed through a push of 
notifications upon a path discovery of a result set, or by 
polling of an identification message of a resource resolution, 
in different embodiments. As a path expansion, a Q learning 
and a fair share scheduling based policy action may control a 
flood attack in order to ensure the resilience of the system in 
response to a DoS attack. 
0084. In some embodiments, if a MADA accepts an invi 
tation from a node within an overlay network, it may join the 
overlay network. When a MADA joins the overlay network, a 
virtual node (VNode) may be created on the node that origi 
nated the invitation (e.g., a more powerful node than the 
mobile devices on the network). Conversely, a mobile node 
may in some embodiments leave the overlay network by 
powering off or by disabling the MADA service, in different 
embodiments. A mobile node may in Some embodiments 
understand its current location within an overlay network 
according to the node hosting the associated VNode. In some 
embodiments, a VNode on the overlay network may be used 
for learning and planning of packet scheduling. 
0085. In general, a dynamic attack detection overlay envi 
ronment may be formed for a large-scale distributed attack 
discovery in an environment with distributed processor, 
memory, disk and/or I/O allocations. However, the proposed 
MADA differs from traditional DDoS systems in part in that 
it may serve as a truly distributed attack discovery mecha 
nism, rather than as a central defensive approach. In some 
embodiments, a MADA may virtualize mobile nodes within 
an overlay networkin order to reduce the cost of an attack tree 
search and to ensure Survivability during the disconnections 
from learning for scheduling. 
I0086 FIG. 7 illustrates the logical architecture of a detec 
tion overlay network, according to one embodiment. In this 
example, mobile nodes 702 and 704 have joined an overlay 
network 706, and are represented therein by virtual nodes 721 
and 722, respectively. In this example, data structure 708 may 
represents a mapping of the nodes of the overlay network and 
their neighbors. In this example, mobile nodes 702 and 704 
include mobile discovery processes mdp, and mdp, respec 
tively, while Node2 includes a discovery process dpa. 
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I0087. Unlike with previous machine learning approaches 
to intrusion detection, the system and methods described 
herein may not assume a static architecture (e.g., one having 
a fixed topology with a fixed number of input nodes, output 
node, and hidden nodes). FIG. 8 illustrates a method for 
modifying attack trees and/or overlay networks, according to 
one such embodiment. In this example, an attack tree and/or 
overlay network may be constructed for a given distributed 
system (e.g., a grid computing environment, mobile ad-hoc 
network, etc.), as in 800. For example, an initial attack tree 
and/or overlay network may be constructed based on a 
known, expected, or assumed system configuration, a known 
or assumed workload, on simulation or training data, or arbi 
trarily, in different embodiments. At some point, the system 
may receive feedback indicating a change in the system con 
figuration, the workload, and/or the State of one or more nodes 
in the system, as in 810. For example, event driven messages 
received from data collection agents, or messages received in 
response to an attack class discovery probe may indicate that 
a node has been attacked, added, or shut down, or that the 
workload has increased or decreased, or otherwise exhibits a 
change in its characteristics. In response to this feedback, the 
system may be configured to automatically modify the attack 
tree and/or overlay network for the system, dependent on the 
change, as in 820. In some embodiments, reinforcement 
learning techniques may be applied to the building and updat 
ing of attack trees and/or the overlay networks used in attack 
discovery and/or flood control. For example, when the value 
of a state of one of the nodes of the system changes, a state 
action value mapping for the system may indicate that a 
change should be made to the attack tree and/or overlay 
network 

0088. With common infrastructure constraints, a fixed 
infrastructure based on layer 3, 4, and multi-cast protocols 
may not be suitable for use in mobile ad-hoc networks due to 
firewall policies and other security restrictions. In addition, 
even within a fixed infrastructure network, a multi-cast pro 
tocol may not be scalable to a large space attacktree discovery 
due, e.g., to the overhead of event messaging and limited 
bandwidth. On the other hand, HTTP is an infrastructure 
friendly protocol and a universal protocol Supported by a 
majority of mobile devices and data center computation 
resources from high-end servers to low-end desktop comput 
ers, laptop computers, routing devices, and PDAs. Therefore, 
in some embodiments, MADP (a distributed attack tree dis 
covery protocol) may be implemented as an extension of 
HTTP 1.1, using an attack discovery specific defined message 
header and body that are embedded within an HTTP message 
body. In some embodiments, HTTP POST methods may be 
used to transmit packets over mobile networks. In some 
embodiments, MRDP 1.0 may be used as a synchronous and 
an asynchronous event messaging protocol in order to serve a 
large population of attack discovery network. An event mes 
sage exchange for an attack tree discovery life cycle may 
include the following: agent invitation, node registration, re 
registration, attack alert, and discovery. 
I0089. In some embodiments, the MADP may use a 
“<majord.<minors' numbering scheme to indicate protocol 
version control. In Such embodiments, adding event compo 
nents without the impact of communication behavior may not 
cause a version update. In one embodiment, the <major 
number may be incremented in the case of format change of 
an event within the protocol, and the <minor> number may be 
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incremented when a change may add to the event semantics 
and/or when it indicates additional capabilities of a sender. 
0090. In some embodiments, MADPevents consist of two 
preliminary event types, which represent the requests from 
publishers to consumers and responses from consumers to 
publishers. These events may be specified using an aug 
mented BNF format, as shown below: 

(0091 MADP-event request; MADP/1.0 events 
0092. Both publisher and consumer messages may use a 
generic event model to transmit the payload of a message. An 
event may be composed of a header and an event body. Since 
in some embodiments a MADP is decoupled with the trans 
port layer, a BNF event definition may be applicable to HTTP, 
UDP, etc. A MADP 1.0 event may be embedded within an 
event body of a generic event format. A robust MADP event 
publishing may ignore any empty line received as it being 
processed (i.e., as it is reading a protocol stream). A sequence 
ID may be utilized for an event tracking. A checksum may be 
used for an integrity check over energy saving nodes. A 
MADP/S may be built upon a secure socket based transport 
layer security. A sample attack alert event is shown using the 
pseudo-code below: 

event-body = (victim-address, event-lifetime, seq., reserved) 
victim-address = *OCTET 
event-lifetime = *OCTET 
seq = *OCTET 
reserved = *OCTET 
OCTET = <any 8 bit sequence of data 

0093. Anomaly attacks are stochastic processes, which 
may generate random state transitions of information struc 
ture. Attack prevention may involve observation of relative 
abrupt changes, which are stochastic within an infinite time 
horizon. In the setting of dynamic task environments, attack 
prevention is a dynamic problem, which may be further for 
mulated as either an objective function parametric optimiza 
tion problem or a dynamic action state control optimization 
problem. 
0094 Parametric function optimization can be easily 
implemented for function evaluation with fixed parameters. 
However, parametric function optimization may lead to high 
dimensionality, and searching over the entire solution space 
may result in slow convergence. Also, control optimization 
may need to be incorporated in the middle of trajectories. 
Furthermore, each problem may present it own challenges. 
Prevention actions and associated State changes form a sto 
chastic decision process, which is usually probabilistic. With 
Such memory-less properties, intrusion prevention may in 
Some embodiments be modeled as a class of control optimi 
zation problems with a semi-Markov model. Therefore, 
autonomous prevention may be thought of as a state-action 
control optimization problem to dynamically locate an opti 
mal action in each state in the system. Since it is a memory 
less process, each state transition probability may be inde 
pendent of previous states but not of current state. In addition, 
the transition time may not employ a unity time step. 
0095. In real systems, state transition probabilities and 
reward discount factors may be unknown or may be hard to 
compute. Without transition probability matrices (TPM), 
transition reward matrices (TRM), and transition time matri 
ces (TTM) as the cornerstones of a theoretical model, autono 
mous prevention may be difficult to formalize as a traditional 
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Markov Decision Problem (MDP), which can be solved by 
DP algorithms. Objective prevention function may have high 
dimensional random decision variables in a large state space. 
It may be hard to obtain the probability mass or distribution 
function of these parameters. Furthermore, a given a distri 
bution function may not have closed form solutions. With 
distribution of inbound, random system decision variables, 
estimated transition probability and reward matrices may 
generate TPMs and TRMs via simulators. The solution may 
not scale to large State and solution spaces. For large State 
spaces, state-aggregation may be required to approximate the 
model with a manageable number of states. 
0096. The goal of autonomous attack prevention is to 
sense and evaluate abrupt changes with fixed or dynamic 
minimal average delay to minimize the false alarm ratio. As 
rewards are returned as feedback to a SMDP task environ 
ment, the autonomous methods described herein may be used 
to predict resource contention and dependability to ensure 
service Survivability. Hence, achievement of the goal may in 
Some embodiments be dependent on performance metrics: 
the rate of false alarms, the intrusion detection rate, and the 
delay of detection. An augmented receiver operating charac 
teristic (ROC) curve may be used to model the delay of 
detection. For an infinite horizon problem, along run average 
reward may be used as a performance metric. A relaxed 
version of the problem may result in a minimum average 
delay of detection actions for a given fixed false alarm rate. 
0097. In one example, an MDP for a single agent may be 
modeled by a quadruple (S.; A. R. T.) consisting of 

0098. A finite set of states S.; where seS 
0099. A finite set of actions A: where aeA 
01.00. A reward function c: SXAxS->R 
0101. A state transition function: T: SXA->PD(S), 
which maps the agent's current state and action into a set 
of probability distribution over inputs. 

States Q: 
0102 x1: type of machine learning networks 
0.103 X2: input nodes of learning networks 
0.104 X3: output nodes of learning networks 
0105 x4: hidden layer of learning networks 
0106 X5: numeric weight matrix of learning networks 
0107 x6: Q factors of ROC values 

0108. This conservative state-space definition satisfies the 
semi-Markov properties. However, it may result in a state 
space that is too large to approximate in practice. With RL 
optimization, prevention rewards may be treated as State val 
ues learned by interactions. Therefore, with RL methods, 
optimal policies may be reached without an explicit search 
over all possible sequence of states and actions. Hence, 
dynamic prevention problems may be resolved with large and 
even infinite space with function approximation, in some 
embodiments. Consequently, the dynamic prevention prob 
lem may be formulated as an RL and DP based SMDP prob 
lem with model-free prevention function approximation. In 
Some embodiments, the attack classification problem may be 
divided into two Sub-problems (e.g., attack prediction and 
attack class discovery), as described below. 
0109 Attack class prediction may be used to map a dis 
crete attack feature space to labeled attack classes. Specifi 
cally, the attack class prediction problem may involve assign 
ing data samples to a specific class category. In some 
embodiments, this class prediction problem may be formu 
lated as a computation problem to derive class predictors for 
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unknown classes from those of known classes using machine 
learning in the task environment. 
0110. In some embodiments, a task environment may 
exhibit the following properties with respect to attack class 
prediction: 

0111. The class prediction process may include a set of 
training samples. 

0112 Classification may be completely dependent on 
the current feature extraction and attribute values. 
Therefore, the task environment may be deterministic. 

0113. The task environment may be a discrete task envi 
ronment having a set of discrete training and incoming 
datasets. 

0114. The class prediction process may in some embodi 
ments be dependent on the following properties: 

0115 state: A classification state specified by sc/as, spe 
cifically, the classification assignment of a data sample 
into a labeled class type. 

0116 performance: An augmented ROC curve (e.g., 
augmented to include the delay of prediction) may be 
used for machine learning performance measurement. 

0117. In one example, the problem formulation may be 
dependent on the following properties: 

0118 states: A finite set of feature extracted training 
samples with attack attribute values. For a sample 
dataset of size k, there are 42xk possible predictors for 
the learning attack classification state space. Since the 
ratio of dimensionality is k+42, this represents a large 
sample of medium dimension. In some embodiments, 
the class prediction problem may be divided into two 
Sub-problems: an attribute or instance selection prob 
lem, and a predictor learning problem. The attribute 
selection problem may involve discovery of the attack 
features, which may be strongly related to class distinc 
tion. Consequently, the class prediction problem may be 
transformed into an instance or attribution selection 
problem, and a learning prediction upon the selected 
samples. 

0119 initial state: In this example, there are 75 MB 
attack attribute values for 42 attribute samples. In this 
example, 4 labeled classes for the samples are itemized 
within Attribute-Relation File Format (arff) files. 

I0120 goal state: Classification predictors have been 
discovered and a classification model has been to cat 
egorize the samples into the classes. 

I0121 Goal Test( ): The classification should align the 
performance function with the ROC curve. For conve 
nience, AUC, the area under the ROC curve, is selected 
for performance measurement. The AUC should be 
greater than 09. 

0.122 Classification Cost: This may represent the delay 
associated with algorithmic complexities. 

0123. The class prediction problem may in some embodi 
ments be formulated as an attribute selection problem and a 
predictor learning problem upon selected attributes of large 
samples with medium dimensionality. Large samples may be 
used to learn and test the prediction. 
0.124. Attack class discovery by attack attributes may in 
Some embodiments involve the classification of samples into 
different groups. The training datasets may be partitioned into 
Sub-sets so that each cluster shares common traits, which may 
be represented by extracted feature sets. Attack class discov 
ery may involve the grouping of data samples into specific 
class categories that represent not only current data clusters 
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but also unknown classes. In some embodiments, this attack 
class discovery problem may be formulated as a computation 
problem to derive cluster predictors for unknown classes 
from those of known classes. 

0.125. In some embodiments, a task environment formula 
tion may be associated with the following environment prop 
erties: 

0.126 The clustering process has a set of percepts and 
training samples. 

0127. Since clustering is completely dependent on the 
current feature extraction and attack attribute values, it is 
a deterministic task environment. 

0128. The environment is a discrete task environment 
with a set of discrete training and incoming datasets. 

I0129. In some embodiments, goal formulation may be 
associated with the following goal properties: 

0.130 state: A clustering State specified by S. Spe 
cifically, this may represent the cluster classification of 
given data samples into groups. 

0131 performance: The receive operating characteris 
tics (ROC) curve has been proposed in literature for 
machine learning performance measurement. In some 
embodiments, an ROC curve augmented to include the 
delay of prediction may be employed. 

0.132. In one example, the problem formulation may be 
dependent on the following properties: 

0.133 states: A finite set of feature extracted training 
samples with attack attribute values. For a sample 
dataset of size k, there are 42xk possible predictors for 
the learning attack classification state space. Since the 
ratio of dimensionality is k+42, this represents a large 
sample of medium dimension. In some embodiments, 
the class prediction problem may be divided into two 
Sub-problems: an attribute or instance selection prob 
lem, and a predictor learning problem. The attribute 
selection problem may involve discovery of the attack 
features, which may be strongly related to class distinc 
tion. Consequently, the class prediction problem may be 
transformed into an instance or attribution selection 
problem, and a learning prediction upon the selected 
samples. 

0.134 initial state: In this example, there are 42 attribute 
values of samples. The labeled classes for the samples 
may be listed within the arff files. 

0.135 goal state: Classification predictors have been 
discovered and a classification model has been to cat 
egorize the samples into the classes. Possible unknown 
types are identified, along with the proposed algorithms 
and data structures. 

0.136 Goal Test(): The clustering should align the per 
formance function with the ROC curve that is greater 
than 09. 

0.137 Clustering Cost: This may represent the delay 
associated with algorithmic complexities. 

0.138 Class discovery may be formulated as instance or 
attribute selection problem and a cluster learning problem 
upon selected attributes of Small samples with high dimen 
sionality. 
0.139. For prevention action control optimization, MDP 
techniques may yield optimal solutions on a control optimi 
Zation problem, and may be employed along with additional 
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non-linear-programming methods in Stochastic dynamic pro 
gramming (e.g., value and policy iterations). However, for a 
complex system, it may be difficult to construct the theoreti 
cal model required for MDP formulation. In some embodi 
ments, RLtechniques may be employed in choosing a scheme 
for function approximation, as described in more detail 
below. 

0140. As a random variable, the expected immediate 
reward of a state transition with action a from states, to state 
s, may be defined as: 

sieS 

0141. In this example, p(si; a. s.) represents the long run 
transition probability from states, to states, when MDP is 
running with action a selected in States, S denotes a set of 
decision states in the sample space, and r(s, a. s.) represents 
the immediate reward earned from states, to states, 
0142. If a deterministic stationary policy. It is followed. It 

(S, ) is the action that will be selected in states. The average 
reward associated with policy at may be derived as: 

rt(s) = Er(t(s)) = X. p(Si)r(Si, (7 (Si) 
sieS 

0143. In this example. It represents an n-tuple associated 
with n states, p(s) represents the infinitely long run transition 
probability of state i when MDP is running with the policy at 
followed, S denotes a set of decision states in the sample 
space, and under policy L(si), r(s; L (s)) denotes the expected 
immediate reward earned in the states, when action u(s) is 
selected in state i. 

0144. Using the above equation, optimal policies may in 
some embodiments be evaluated with the maximum rewards. 
Therefore, the performance objective function described 
above may provide a conceptual model for control optimiza 
tion. To identify the optimal action value and associated 
policy, the transition probability matrices and transition 
reward matrices associated with each policy may be com 
puted to evaluate the objective performance metrics resulted 
from each policy. This may limit the solution to small state 
spaces due to the exponential computation for mn (i.e., in 
states and m actions in each state) introduced by the concep 
tual model described above. To optimize controls, DP algo 
rithms may be used to solve the MDP problems, in some 
embodiments. For example, by solving Bellman equations, 
the value components of a value function vector may be 
utilized to locate the optimal actions or policies. Various 
forms of Bellman equations may be used to resolve MDP 
problems, in different embodiments. The Bellman equation 
for a given policy in the average reward context may require 
k iterations of evaluation on linear equations in which each 
policy is selected in the iteration to derive the optimal poli 
cies. Value iteration is anotherform of Bellman equations that 
may not require solving any equation. Therefore has evolved 
as a pillar of RL algorithms. 
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(0145 
reward: 

From Bellman optimality equation for average 

V (S) = max 
aeA(s),se S 

0.146 
0147 

s, followed by policy 
0.148 V*(s) denotes the element of value function vec 

-e 

tor V associated with optimal policy for states, 
10149 p(S, a. s.) denotes the transition probability from 

states, to states, under action a. 
(0150 r(s.a. s.) denotes the expected immediate reward 

in states, as action a is taken 
0151 p denotes the average reward associated with 
the optimal policy. 

0152 To resolve the value bound problem, relative value 
interaction may be employed. In the k" interaction: 

In this equation: 
A(s) denotes the finite set of actions taken in State 

r(Si, a) - p + 
W 

W. (S;) = - V., (S; k+1(Si) as Ees X. p(Si, a, Si) Vi (Si) - (Si) 

0153. In the setting of non-unity transition times, relative 
value interaction was proposed. In the k" interaction: 

r(si, a) - p i(Si, a, Si)+ 

V-1 (Si) = max 
aeA(s)...sie S 

- VI (Si) 

I0154) In this equation,t(s.a. s.) denotes the transition time 
-e 

from states, to states, followed by policy J with action a 
taking place. The equation above indicates that the maximum 
value V* selection may runaway from regular value iterations 
with deterministic optimal path location. 
0155 The above interactive conceptual model requires 
intensive computation. In addition, it requires a theoretical 
model. From RL literature, a provable convergent approach 
has been developed for learning optimal policies in continu 
ous state and action spaces under average rewards. This tech 
nique has been applied to research with non-trivial configu 
rations. However, there is no existing discussion on RL and 
optimization within the search State and action space. The 
methods described herein may employ self-organization of 
an index structure for state-action value mapping for search 
function numeric method approximation. 
0156 Optimization of intrusion prevention may in some 
embodiments be used to tune an initial prevention network 
with arbitrary network parameters and architecture. The 
objective of this tuning may be to obtain the approximate 
optimal architecture with a given input vector for a specific 
attack. The number of resulting networks may depend on the 
average reward and long-term cost of the detection optimiza 
tion. In various embodiments, it may be implemented as both 
an online and an off-line incremental learning method to 
optimize the traditional neuron based detection techniques. 

NetNut's Exhibit 1209 
NetNut Ltd. v. Bright Data Ltd. 

IPR2021-00465 
Page Page 26 of 36



US 2010/0082513 A1 

The tuning may be thought of as a reinforcement learning 
problem for optimizing neuron architecture. These methods 
may exhibit the characteristics, “dynamic' and “autono 
mous', as discussed below: 

0157 Dynamic: Since intrusion prevention may formu 
late the detection as a stochastic DP problem, it may 
exhibit dynamic properties. 

0158 Autonomous: To handle large state spaces and 
unknown attack types, the DP problem may be trans 
formed into an RL based autonomous tuning problem 
(i.e., autonomous in terms of interactively tuning the 
networks with programmable architecture, algorithms 
and data structures). 

0159 Data Reduction: To tune large data instances with 
medium to high dimensional attributes, a random Subset 
of sample instances may be selected by tenfold extrac 
tion to avoid biased filtering. In addition, to search the 
space of attribute Subset, greedy hill-climbing may be 
augmented with a backtracking feature utilized for cor 
relation based reduction. This data reduction technique 
may result in a speedup of detection convergence over 
other methods. 

0160 Dynamic programming algorithms may require 
computation of a theoretical model of a system based on 
transition probabilities, transition rewards and transition 
times. These quantities may be unknown or difficult to evalu 
ate. Specifically, to obtain transition probabilities, multiple 
integrals with the probability distribution functions of many 
random variables may be involved in the calculation on a 
complex stochastic system. 
0161. Both DP and RL algorithms may have a dependency 
with 

X P(x), 
Xst 

the distributions of the random variables that govern the sys 
tem behavior for a time interval t. For continuous random 
variables, J. f(x)dt may be applied. However, RL tech 
niques may not require the above theoretical model quantity 
evaluation or estimations, but may simulate the system using 
the distributions of the governing random variables. For 
autonomous search, the technique may require the distribu 
tion of random decision variables. 
0162 RL techniques may provide near optimal solutions 
without evaluation of the above quantities. As with DP tech 
niques, one element of a value function vector may be asso 
ciated with each state variable. An RL search algorithm may 
associate each element of the value mapping vector with a 
given state-action pair (i, a) as Q (i, a) for a search cost or 
reward evaluation in order to derive optimal polices. 
0163 Value iteration algorithms do not compute the sys 
tem of linear equations. However, value iteration for MDP 
may pose difficulties for Bellman optimality equation com 
putations having an unknown value of the average reward 
(p). For SMDP, the average reward context may involve an 
approximation Solution space. However, regular DP value 
iteration may become unbounded for average reward MDP. 
Hence, relative value iteration may keep the operation 
bounded. Due to the discounting factor, which may be hard to 
measure in the real world, average reward tends to be a more 
popular performance measure. 
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0164. In some embodiments, feedback may take the form 
of a discrete environmental signal. In Such embodiments, 
after each action, the learning agent may receive immediate 
feedback from the task environment. In one embodiment, the 
immediate reinforcement reward signals re R may be as fol 
lows: 

0.165 r—a A penalty resulted from a wrong action 
0166 r=b. A reward is granted as a target is learned 
0.167 r=c The goal state is reached 
0168 r=-1 The cost of any action during learning 
0169 r=0.0 The default feedback signal for all non-termi 
nal states 

0170 As shown in the example above, moving toward the 
target may be less costly than the absolute value of moving in 
the wrong direction, since keeping an agent in a valid task 
environment may be more important than getting to the target 
(a|DcDb). Conceptually, the agent needs to learn to achieve 
the goal without rewards. In other words, the absolute value of 
the penalty should be significantly larger than the reward 
from the excepted move. The agent may be required to stay in 
the task environment to move toward the goal state. However, 
the Sooner an action is rewarded, the Sooner the agent may 
learn. In some embodiments, the cost of moving may be 
measured by a negative unit reward from the task environ 
ment. It may be larger than the reward from getting to the 
correct position, so that the steps considered in the search 
evaluation achieve the minimized path (0<b<c-1). 
0171 To further relax the large stages, an infinite horizon 
problem may be used to representanapproximation. For large 
state space, value-mapping vectors may not be stored explic 
itly, but function-approximation may be used to solve the high 
dimensionality problem during RL value iterations. If the 
time spent in a transition is not unity, the average reward per 
unit time over an infinite time horizon may be defined as: 

k 

E 

0172 
reward: 

From the Bellman optimality equation for average 

W 

X. p(si, a, si) r(si, a, Si)+ V (s) V(S) = max 
aeA(s),se S 

where 

(0173 V* (s) denotes the element of value function 
-e 

vector V associated with optimal policy for states, 
(0174 p(s.a. s.) denotes the transition probability from 

states, to states, under action a. 
(0175 r(s.a. s.) denotes the expected immediate reward 

in states, as action a is taken 
0176 From Robbins-Monro algorithm, value and state 
action mapping vectors in the Bellman equation may be 
defined without the dependency of transition probability: 
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Qi, a) - (1 - a)0i, a) + ay(i, a, j) + Ali, Q(j, b) 

0177. To resolve the divergent iteration problem of tradi 
tional Bellman optimality equations and associated DP algo 
rithms, a relative value function proposition may be utilized. 

Qi, a) - (1 - a)0i, a) + ay(i, a, j) + max Q(j, b)- Q(i", a') eA(i) 

0178. In this equation, a state-action pair (i, a) may be 
selected arbitrarily. 
0179 Since the discounting factor is usually unknown in 
real world problems, and taking transition time without unity 
into consideration, it may be difficult to apply the Bellman 
equation to value iterations with unknown average reward of 
the optimal policy p without normalization of SMDP. How 
ever, by estimation of p, the above equation may be given as: 

y(Si, a, Si) - pi(Si, a, Si)+ 
Q(Si, a) = (1 - a)9(Si, a) + a max Q(Si, b) - Q(s, a) 

be A(i) 

0180. In one embodiment, a dynamic machine learning 
detection algorithm, as described herein, may be imple 
mented, at least in part, using program instructions similar to 
those illustrated by the pseudo-code below. 

DYNAMIC-DETECT (s, a, limit) 
Description: Dynamic detection with learning network 
function approximation 
INPUT: state space, action space and maximum iteration jumps 
OUTPUT: solution to the problem 
S., A - SUB-SPACE (S, A) 
INIT-FACTORS (S, A, limit) 
for each kink max do 

LOCATE-ACTION (S, A, Q) 
ris, tiss PROBE (sp. a. s.) 
SIMULATE-ACTION (r.t. t.) 
UPDATE-ACTION (Q (sa), A) 
TUNE-LEARNING (Q (si; limit), A) 
LOCATE-POLICY (Q (sa)) 

return maxQ (l, b) 

0181. The methods called by the dynamic detection 
method above may in one embodiment be implemented, at 
least in part, using program instructions similar to those illus 
trated by the pseudo-code below. 

TUNE-LEARNING (s, limit) 
Description: Tuning learning network function approximation 
INPUT: State space, action space and maximum iteration jumps 
OUTPUT: solution to the problem 
w(i) - RANDOMIZE.( ) 
SSE - 100000000000f 
tolerance - RANDOMIZE.( ) 
for each m in N do 

for each in k do 
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-continued 

C. e-Am 
- - 

if (SSE-SSE < limit)BREAK 
INIT-FACTORS (s, a, limit) 

Description: Initialize values and state-action mapping, 
visiting factors for state 

space S 
NPUT: State space, action space and maximum iteration jumps 
counts max(lengthS, lengthA) 
or each s, in count do 

Q (s.a.) - 0 
Visit (s.a.) <- O 

k s- O 
C. e-O.1 
otal reward - O 
otal time - O 
p - 0 
cp s- O 
k limit 

LOCATE-ACTION (s, a, Q) 
Description: locate action with maximum Q factor value starting from 

states, randomly select action a 
nput: state space, action space and Q factors 
Output: action a that generates maximum Q factor 
s, s- RANDOMIZE(S) 
a s- RANDOMIZE(A) 
or eacha, in Q do 

cp s- O 
return a 

cp s- 1 
return NIL 

SIMULATE-ACTION (r,t) 
Description: Simulate action a 
nput: immediate reward from actiona, transition time from states, 

to states, 
Visit (st, a) - Visit (sa) + 1 
ke-k+ 1 
C - A/V (st, a) 

UPDATE-ACTION (Q (sa), A) 
Description: Update State-Action Value Mapping 
nput: State-Action Value Mapping 
Output: updated State-Action Value Mapping 
Q (s; a) - (1 - C) Q (s; a) + C (r.t-pt(s.a. s.) + max (Q (SA)) 
return Q (s.a.) 

LOCATE-POLICY (Q (sa)) 
Description: Locate a policy with optimal State-Action Value 
Mapping 
nput: state space 
F (p == 0) 

THEN 

total reward - total reward + r(s; a. s.) 
total time - total time + ts, a, s.) 

p - total reward/total time 

0182. In the example pseudo-code above, TUNE 
LEARNING may represent a machine tuning algorithm, as 
described in more detail herein. In this example, INIT-FAC 
TORS may represent a method usable to initialize parameters 
used in dynamic machine learning, while LOCATE-ACTION 
may represent a randomized algorithm used to locate an 
action with the maximum State-Action value mapping. In this 
example, SIMULATE-ACTION may represent a method for 
simulating an action, and UPDATE-ACTION may represent 
a method for updating the State-Action value mapping. 
LOCATE-POLICY may represent a method a locating a 
policy with optimal State-Action value mapping. 
0183. As previously noted, the fundamental property of 
the value function may be employed in machine tuning. This 
may be used to produce an accurate estimation represented in 
a tabular format with a set of tuples, which comprise states or 
state-action pairs. 
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p1 = p + f3, (y(S, at , S: 1) - p.) 

0184 In the equations above, p, and 3, are positive step 
parameters set to 1/t and the discount rate is ye0, 1). The 
above iterative learning approach may converge to the opti 
mal state-action value with discount. However, there may be 
no convergence proof for this approach in cases of average 
reward. In addition, the above equations may not be well 
Suited for large or continuous action and state spaces. 
0185. Let Q(s, a, p) approximate to Q' (s, a) based on a 
linear combination of basis functions with a parameter vector 

0186. 
ber of real valued components, p=(p', p. ... 

(p(S, a)=({p(S, a), p(S, a), ... 

0187 Hence, 69(s, a, p) may represent a smooth differen 
tiable function of p for all seS. The above Bellman equation 
error may be estimated by the mean-squared-error over a 
distribution P of inputs, as shown below. 

In this example, a column vector with a fixed num 
p) and 

, (p's, a)) 

seS 

MSE(p) = X(y – op) 
p=l 

0188 Hence, unless validation is performed, there may be 
no guarantee of the network's performance. A common 
approach may be to split data into two Subsets in order to 
generate neurons and predict the function rewards. 

(0189 
and Vp, Q(p), for any function Q denotes the vector of partial 
derivatives. 

In this equation, C. is a positive step-size parameter, 

-> 0Q(p) 09(p) 09(p) 
Wp, . . . . p.9(p) (i. Öp, (2) 6p, (t) 

0190. In this equation, (p(sa) is a vector of all basis 
functions. Since 

Vp,0(s, a, p.)=p(S, a) 

the above equation may be updated as: 
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0191 Hence, the average reward estimate may be updated 
as follows: 

0.192 As noted earlier, this choice may result in the sample 
average method, which may be guaranteed to converge to the 
true action value by the law of large numbers. A well-known 
result in stochastic approximation theory yields the condi 
tions about the learning rate 

(2. a = co and X. ise) 

which may be required to assure convergence with probabil 
ity 1. 
0193 As discussed earlier, real world systems and real 
time measurement may have large state and action spaces 
resulting in latency and errors to reach a convergent state. 
Hence, autonomous search may depend on the nature of the 
parameterized function approximation to generalize from a 
limited Subset of current state space over a much larger Subset 
of state and action space. In some embodiments, index data 
structure mapping techniques may be used to lookup a state 
action value function, to generalize from them, to construct a 
numeric value approximation of the entire search function. 
0194 The attack class discovery problem described herein 
may be to group data samples in specific individual class 
categories that not only represent current data clusters, but 
may also be used in predicting previously unknown attack 
classes. 
0.195. In some embodiments, Q learning may be used to 
optimize the clustering methods, e.g., by computing and com 
paring various cluster methods. First of all, to reduce the 
dimensionality of learning, only selected training and test 
data sets may be used for class discovery. As described below, 
in one evaluation, several clustering methods were evaluated 
for class discovery with 100% accuracy. 
0196. The k-means algorithm is an algorithm to cluster 
objects based on attributes into k partitions. It attempts to find 
the centers of natural clusters in the data. With the k-means 
algorithm, attributes may hold a vector space. The result of 
one evaluation described herein showed that k-means algo 
rithms may discover attack classes with 100% accuracy, using 
both training and test datasets. In this evaluation, the cluster 
sum of squared errors was 0.563. 
0.197 An RL iterative algorithm runs an arbitrary cluster 
on data that has been passed through an arbitrary filter. Like 
the cluster, the structure of the filter may be based exclusively 
on the training data and test instances that are processed by 
the filter without changing their structure. A filtered cluster 
algorithm was found to report discovery of the attack classes 
with 100% accuracy with both training and test datasets. In 
this evaluation, the cluster sum of squared errors is 0.563. 
0198 Clustering data uses a farthest-first algorithm to 
develop a best possible heuristic to resolve k-center problem. 
In this evaluation, the farthest-first algorithm was found to 
report discovery of attack classes with 100% accuracy with 
both training and test datasets. 
0199 Hence, the evaluation resulted in a proposal to use 
k-means algorithm, filtered cluster algorithm and/or a far 
thest-first algorithm for attack discovery prediction, since 
these algorithms demonstrated both accuracy and perfor 
mance of prediction for the selected training and test datasets. 
0200. A large published data repository hosting intrusion 
dataset was selected to evaluate the proposed approaches for 
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several reasons: (1) it is a Subset of Standard dataset and is a 
revision of the 1998 DARPA intrusion detection evaluation 
dataset originated from MIT Lincon Labs; (2) it is a dataset 
proved by researchers and has been used for the third inter 
national knowledge discovery and data mining tools compe 
tition and the fifth international conference on knowledge 
discovery and data mining; (3) it is an intrusion prediction 
specific dataset the motivation for which was to build a net 
work intrusion predictive model for detect intrusions or 
attacks; (3) it includes broad intrusions simulated in a military 
network environment; and (4) this dataset has been prepro 
cessed. 
0201 In this dataset, features characterizing network traf 

fic behavior have been extracted to compose each record. The 
values in each data record are in two categories. One is a 
symbolic value and another comprises real numbers. The data 
size in this evaluation was 75 MB. The dataset contained 22 
attack types that can be classified in four main intrusion 
classes as shown in Table 1, below. 

TABLE 1. 

KDDCup99 Attack Classes 

Attack Class Attack Category Attack Samples 

normal normal 95278 
u2r buffer overflow, 59 

loadmodule, multihop, 
perl, rootkit 

r21 ftp write, guess passwd, 1119 
imap, phf, spy, warezclient, 
Warezmaster 

dos back, land, neptune, pod, 391.458 
Smurf, teardrop 

prb ipsweep, nmap, portsweep, 4107 
Satan 

0202 There are two prevention datasets published with 
KDDCup99 samples. The first dataset includes distinguished 
distinctions, which may be used for classification training. 
The second dataset, for which appearances are similar, may 
be used to evaluate the correctness of the proposed class 
predictors. These same two datasets were used in the evalu 
ation described herein. 
0203 Specifically, the first training dataset is composed of 
75 MB samples. Within the training dataset, samples are 
labeled as being in one of 4 classes of attacks. The class 
distinction may be used for training of class prediction and 
clustering techniques. The second independent test dataset 
includes 45 MB samples. The test dataset includes the same 
classes of samples as those in the training dataset. The class 
categories in the test dataset may be used to compute the 
learning performance of ROC values. For finer optimization, 
attack types may be used for class labels in the tests. 
0204. Using the above data samples, a data feeder was 
designed and developed to transform the published datasets 
into the Attribute-Relation File Format (arff) for training and 
prediction. Each parameter in the dataset was formulated as a 
data feature, and a value was the corresponding percept of the 
variable. Hence, there were 42 attributes existing in the result 
ing training.arff and test.arff relations. These were used for 
training and testing purposes, respectively. In the evaluation 
described herein, the two arff files may be used for attribute 
selection in order to identify the sub-space of feature extrac 
tion for further classification learning. The specific attribute 
selection may be applied to classifier level so that compatible 
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results may beachieved. The results show that there were only 
ten attributes selected for the classification test. The selected 
attributes, in this example, were protocol type, service, Src 
bytes, dst bytes, wrong fragment, count, diff Srv rate, dst 
host SrV count, dst host same Src port rate, and dst host 
rerror rate. 
0205. In the example evaluation, to conduct sample reduc 
tion, multiple attribute space search and evaluation methods 
are considered for attribute selection. The evaluation may 
search the space of attribute subsets by greedy hill-climbing 
augmented with a backtracking facility. In different embodi 
ments, the method may first start with the empty set of 
attributes and search forward, may start with the full set of 
attributes and search backward, or may start at any point and 
search in both directions. In addition, a correlation-based 
feature Subset selection may be used to generate the Sub 
space of selected training and test datasets. Some Such 
embodiments may evaluate the worth of a subset of attributes 
by the individual predictive ability of each feature along with 
the degree of redundancy between them. In such embodi 
ments, subsets of attributes that are highly correlated with the 
classes, while having low inter-correlation, are preferred. 
0206. In the example evaluation, instance selection was a 
Suitable fit for the sample reduction. Instance-based sample 
reduction may produce a random Subset of a dataset using 
sampling with replacement or without replacement, in differ 
ent embodiments. Since the original dataset fits in memory, 
the number of instances in the generated dataset may be 
specified as 1%, in this example. The filter may be made to 
maintain the class distribution in the sub-sample or to bias the 
class distribution toward a uniform distribution. After 
instance sampling, randomized 1% training and test datasets 
may be created for further classification prediction and clus 
tering prediction. 
0207. In addition to format conversion, there may be sev 
eral modifications to the dataset in this evaluation: 

0208 All string type attributes may be defined as nomi 
nal data types. 

0209 Both relation and attribute definition may be 
inserted into datasets. 

0210. The attack type and attack class labels may be 
included in the arff files to calculate learning perfor 
mance as different test cases. 

0211. After attribute and instance selection is com 
pleted, the above arff files may be filtered with only 
selected attributes or instances inarff format. Hence, the 
final classification computation may import only these 
selected arff files. 

0212. In this example, the selected datasets may only have 
42 attack attribute name and value pairs for 4940 samples in 
the training dataset and 3110 samples in the test dataset. This 
may result in a significant cost reduction for learning of class 
prediction and clustering. 
0213. The detailed value of the sample instance is pre 
sented in Table 2 below. As shown in Table 2, encoding may 
be done for each symbolic data type in Table 1 in order to 
apply them to initialize an arbitrary network for tuning. For 
example, protocol type, Service, flag, land, logged in, 
is host login, is guest login, and back may be required to be 
encoded with the sample instance, which may be utilized for 
classification network tuning. 
0214. Although RL based interactive optimization may be 
used for network tuning, the initial arbitrary learning network 
may be established with heuristics of the problem specifica 
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tion. In this example, with 42 extracted features of network 
communications, 42 input nodes may be selected to initialize 
the input layer. A hidden layer may be initialized with 3 
nodes, whereas output nodes may be initialized as 5 nodes for 
each class of the listed attack types. 
0215 Tuning may be done using RL interactive algo 
rithms for optimizing the initial network architecture. The 
network may be monitored and modified during training time. 
In this example, the nodes in the network may all be sigmoid. 
The properties that may be tuned include: 

0216 
0217 Learning Rate for the back-propagation algo 
rithm 

0218 Momentum Rate for the back-propagation algo 
rithm 

0219) 
0220. The consequential number of errors allowed for 
validation testing before the network terminates. 

0221) Number of nodes on each layer in a multiple layer 
network 

0222. In literature, predictive models may be parametric, 
non-parametric, or semi-parametric. The example evaluation 
described herein may be used to study parametric machine 
learning methods. The experiments described were designed 
to utilize the datasets published with KDDCup99 datasets. 
The experiments are designed with consistent evaluation 
techniques. First, training of prediction models using the 
selected dataset may be evaluated by tenfold cross-validation. 
Then, the trained models may be validated using the selected 
test datasets. The Q learning based classification results are 
described below. Note that Q learning is based on correct 
classification due to large sample classification. ROC Values 
are listed in the detailed test result tables (Table 1 and Table 
2). 
0223) In this example, after each move of machine learn 
ing method at the top level of selection, the learning agent 
may receive a discrete environment signal from the task envi 
ronment comprising one of the following reinforcement 
immediate reward signals reR: 

Type of machine learning network 

Number of epochs to train through 

0224 r—-10 if agent makes a less correct classification 
0225 r–0.1 if agent makes a more correct classification 
0226 r–0.4 if all samples are classified correctly 
0227 r—-1 the cost of making any selection 
0228 r–0.0 otherwise for all non-terminal states 

0229. As in the previous discussion, the move to the cor 
rect classification may be less than the absolute value of 
moving to wrong classification ratios, since keeping the agent 
on grid may be more important than getting to the target. 
Conceptually, the agent needs to learn to achieve goal without 
rewards. The agent may be required to move toward the 
correct classification. However, the Sooner the action is 
rewarded, the Sooner the agent may learn. The cost of moving 
may be measured by a negative unit reward from the task 
environment. It may be larger than the reward from getting to 
the correct positions. This way, the steps in the path may be 
considered in the search evaluation. The results of the evalu 
ation of various learning algorithms and related class predic 
tion results using training and test datasets are shown in Table 
2 below for comparison: 
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TABLE 2 

Classification Prediction Result for Q Learning 

Classifier 
ID Category Algorithm Results (Training/Test) 

(1,1) Tree J48 99.08919.91.0932% 
(1, 2) Tree LMT: 99.7368%.91.2862% 
(1,3) Rule PART: 99.5951%.91.254% 
(1, 4) Function LibSVM 97.4291%. 77.6527% 
(1, 5) Function MultilayerPerceptron* 99.4.13% 90.51.45% 
(1, 6) Function RBFNetwork 99.3725%,80.7074% 
(1,7) Meta Select AttributeClassifier 99.3725%.914791% 
(1, 8) Bayes BayesNet 99.08919.91.0932% 
(1,9) Bayes NaiveBayes 95.6883%. 77.81.35% 

0230. In this example, a significant finding from the net 
work Q learning result is that Select Attribute(Classifier, Bayes 
Network, LMT, PART and Neuro Perceptron Network meth 
ods were found to have the highest values and accuracy. This 
may indicate that these algorithms are better Suited for attack 
class prediction than other methods. Note that tenfold cross 
validation on the full training set may be selected for all 
algorithm training, in Some embodiments. In embodiments 
that use the full training set without cross-validation, the 
results may seem overlay optimistic, with full ROC value and 
100% correct classification during the training cycle. How 
ever, test validation may show the error ratio of classification, 
as in Table 2. As shown in this example, cross-validation may 
be a Suitable technique for comparing the training perfor 
mance of various attack detection and classification tech 
niques. 
0231. In one autonomous tuning example, an action of 
MultilayerPerceptron (MP) with a probability of 1/9 is 
selected. The state is marked as s with r=-0.9 due to high 
correct classification results with additional moving costs. 
This action value mapping may increase the number of visited 
state-action pairs by V (1)=V (1)+1. This state transition may 
also increase the number of interactions by 1. Hence, the 
C=0.1/V=0.1. Therefore, the Q factor may be updated as 
follows. Since all Q(s, A(s)) pairs are initialized as -10, the 
following equation (shown also above): 

Q(s, a)–9(s, a.)+C,ö, 

may be evaluated as: 

0232 Since the current iteration is less than the maximum 
iteration, action BayesNet may be selected as the learning 
network with current states. The state may be updated to S 
with reward of +0.2 and a moving cost of -1 due to the 
expected action to move. Hence, r -0.8 is the total reward of 
this computation. 

0233 Hence, the states with action BayesNet may be 
selected as a significant state as Q(s: a*)=-9.008 for further 
Q factor computation. 
0234. In this example, the current state may be set to s to 
select an action of Select Attribute(Classifier with a probability 
of 1/9. The state may be changed to s with r=-0.7 due to the 
action to be taken by the agent. This action value mapping 
may increase the number of visited state-action pairs by V 
(3)=V (3)+1. This state transition may also increase the num 
ber of interactions by 1. Hence, the C=0.1/V=0.1. Therefore, 
the Q factor may be updated as: 
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0235. In this example, the current state may be set to s to 
select an action of LMT with a probability of 1/9. The state 
may be changed to sa, with r=-0.6 due to the action to be taken 
by the agent. This action value mapping may increase the 
number of visited state-action pairs by V (4)=V (4)+1. This 
state transition may also increase the number of interactions 
by 1. Hence, the CL=0.1/V=0.1. Therefore, the Q factor may be 
updated as: 

(SA)+9.008-9.0602 

0236 Consequently, the states with action listed in Table 
1 may be simulated with 1/9 probability distribution. In this 
example, the simulation may conclude that LMT is the opti 
mal prevention method for the current learning samples. 
0237. In this example, with exploration activities, MP may 
have equal probability for further tuning of the network archi 
tecture. In this example, the current state may be set to S to 
select an action of MP with a probability of 1/9. The state may 
be changed to ss with r=-0.9 due to the action to be taken by 
the agent. This action value mapping may increase the num 
ber of visited state-action pairs by V(5)=V(5)+1. This state 
transition may also increase the number of interactions by 1. 
Hence, the C=0.1/V=0.1. Therefore, the Q factor may be 
updated as: 

A)+9.008)=-9.092 

0238. The subsequent tuning of MP prediction architec 
ture, in this example, is illustrated in Table 3, below. 

TABLE 3 

MP Prediction Result for Q Learning 

ID Architecture Results (Training/Test) 

(2, 1) 42, 1, 4 98.5029/090.O322% 
(2, 2) 42, 3, 4* 98.7854%.90% 
(2, 3) 42, 5, 4* 99.1093%.90.90O3% 
(2, 4) 42, 5, 10* 98.502%.90% 
(2,5) 42, 10,4* 98.7652%.90% 

0239. To avoid greedy local optimum, iterations may con 
tinue until the maximum interaction number is reached, then 
the current state may be set back to S to continue to select an 
action. In this example, MP may have an equal probability for 
further tuning of network architecture (42, 1, 4). The current 
state may be set to sa to select an action of MP with a prob 
ability of 1/9. The state may be changed to ss with r=-0.9 due 
to the action to be taken by the agent. This action value 
mapping may increase the number of visited State-action 
pairs by V(5)=V(5)+1. This state transition may also increase 
the number of interactions by 1. Hence, the C=0.1/V=0.1. 
Therefore, the Q factor may be updated as: 

Q(ssMP)=(1-0.1)*Q(ssMP)+0.1*(-0.9)+max9(ss. 
A)+9.008)=-9.092 

0240. In this example, the current state may be set to ss to 
select an action of MP with a probability of 1/9, to continue to 
tune the networkas (42, 3, 4). The state may remain as ss with 
r=-1 due to the action to be taken by the agent. This action 
value mapping may increase the number of visited State 
action pairs by V(5)=V(5)+1. This state transition may also 
increase the number of interactions by 1. Hence, the CL=0.1/ 
V=0.05. Therefore, the Q factor may be updated as: 
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0241. Now, the current state may be set to ss to select an 
action of MP with a probability of 1/9 to continue to tune 
network as (42, 5, 4). The state may remain as ss with r=-0.9 
due to the action to be taken by the agent. This action value 
mapping may increase the number of visited State-action 
pairs by V(5)=V(5)+1. This state transition may also increase 
the number of interactions by 1. Hence, the C=0.1/V=0.033. 
Therefore, the Q factor may be updated as: 

0242 Hence, in this example, Q(s5, 42-5-4) may be 
shown to be the optimal state action. In other words, this 
evaluation may conclude that a multi-layer perceptron net 
work with 42 input nodes, 5 hidden nodes and 4 output nodes 
may be an optimal prevention method. 
0243 The experimental evaluation of this autonomous 
tuning example is illustrated in FIG. 9. This figure illustrates 
a simplified version of classification goal discovery without 
numerous non-optimal path explorations. In this example, 
algorithms determined to be Suitable for use are shown using 
solid lines from element 905 (state So), and are identified as 
S12, S1,s), Sas). Solo), S7), S(18) and S19). In this 
example, element 903 (representing the Multilayer Percep 
tron (MP) algorithm, identified as Sis, in Table 2 above) was 
selected from among the suitable options. Note that in this 
example, element 901 (representing a J48 algorithm, identi 
fied as S. in Table 2 above) was determined to be less 
suitable, as indicated by the dashed line from element 905 to 
element 901. In this example, the results of the tuning of the 
MP algorithm are illustrated in FIG. 9 by the solid line from 
element 903 to element 904 (representing an architecture of 
42 input nodes, 5 hidden nodes, and 4 output nodes, and 
identified in Table 3 as Sas). Other suitable options include 
states S.2 (representing 42 input nodes, 1 hidden node, and 
4 output nodes), Sea (representing 42 input nodes, 5 hidden 
nodes, and 10 output nodes), and Sas (representing 42 input 
nodes, 10 hidden nodes, and 4 output nodes), as indicated by 
the solidlines from Sls, in FIG.9 and various entries in Table 
3 

0244. The attack prevention problem resolved using the 
system and methods described herein may be thought of as 
the combinational problem of attack classification and attack 
clustering. In some embodiments, to handle learning with 
large samples, sample reduction with attribute and instance 
selection may reduce both time and space complexities. 
0245. From the class prediction results described herein, 
SVMs, SMO and Vote may be tuned off by the proposed 
autonomous classification algorithms for attack class predic 
tion. On the other hand, SelectAttribute(Classifier, BayesNet, 
LMT, PART and Neuro Perceptron Network may be 
exploited algorithms for autonomous attack class prediction. 
Specifically, autonomous Bayes Networks and Neural Net 
works may be exploited optimal prevention networks in terms 
of time and space complexity, in Some embodiments. Using 
the attack clustering results from evaluations described 
herein, a k-means algorithm, filtered cluster algorithm and 
farthest-first algorithm may be recommended attack discov 
ery methods for attack discovery. 
0246 The system and methods described herein may be 
Suitable for application to any of various computing systems, 
including grid computing systems, mobile ad-hoc networks, 
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and other distributed computing environments, in different 
embodiments. For example, FIG. 10 illustrates a multi-grid 
network 1000 configured to implement the attack discovery 
and prevention methods described herein. In this example, 
multi-grid network 1000 includes four grid cells 1020, each 
of which includes a master node 1030, and a plurality of 
compute nodes 1040, although in other embodiments a grid 
computing system may include any number of grid cells, 
master nodes, and/or compute nodes configured similarly or 
differently. Master nodes 1030 may in some embodiments be 
similar to master nodes 240 illustrated in FIG. 2, and each 
may include an information layer agent, such as information 
layer agents 245 of FIG. 2. Similarly, compute nodes 1040 
may in some embodiments be similar to compute nodes 260 
illustrated in FIG. 2, and each may include a data collection 
agent 275. In this example, master node 1030d of grid cell 
1020d comprises a knowledge base 1050, which may be 
accessible by all of the master nodes 1030 in multi-grid net 
work 1000. 

0247. In some embodiments, each of a plurality of subnets 
within a multi-grid network, or within another distributed 
environment, may represent a different attack domain, and 
these attack domains may include different policies, knowl 
edge bases, and/or rules for carrying out the methods 
described herein. In one such embodiment, a knowledge base 
may be partitioned and/or distributed across two or more 
nodes (e.g., master nodes 1030) such that policies and/or rules 
related to storage area network attacks (e.g., device-level. 
storage network, or physical layer rules) are included in one 
partition, while policies and/or rules (e.g., compute resource, 
application-level, or IP network rules) related to internet 
applications or other web-based attacks (such as those of a 
cloud computing environment or other computing services 
environment) are included in one or more other partitions, for 
example. Agents of each Subnet, domain, or partition may 
monitor different parameters or conditions, and may include 
a different mapping of state-action value pairs appropriate for 
the type of attack classification directed to that subnet, 
domain, or partition. In other words, particular actions may be 
mapped to the same conditions or to different conditions on 
different Subnets, domains, or partitions. For example, in a 
system that includes storage devices that are not IP network 
available, a storage area network attack may not be probed 
using the IP network, but only on the local network or parti 
tion. In some embodiments of partitioned systems, one or 
more central nodes may consolidate or aggregate information 
generated by information agents in multiple Sub-domains in 
order to coordinate responses and/or actions to be taken on 
current and/or potential victim nodes, and/or to manage 
updates to one or more knowledge bases in the distributed 
system. For example, an information agent on a central node 
may classify an attack based on a combination of notifications 
received from both a storage-focused information layer agent 
(e.g., one targeted to a first partition) and a compute-resource 
focused information layer agents (e.g., targeted to a second 
partition). 
0248. As previously noted, the system and methods 
described herein may be suitable for implementation in a 
mobile ad-hoc network due to their autonomous nature, and 
the flexibility and adaptability of their attack tree discovery 
and flood control processes. FIG. 11 illustrates one such 
mobile ad-hoc network 1100 that includes multiple mobile 
devices 1140 behind two different firewalls 1160. In this 
example, a very Small (i.e., lightweight) data collection agent, 
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which may be different from or similar to one of data collec 
tion agents 275 illustrated in FIG. 2, may be deployed on each 
of the mobile devices 1140 (not shown). For example, mobile 
devices 1140 may include laptop computers, cell phones, 
personal digital assistants, devices employing SunSPOTTM 
technology, or other mobile devices and program instructions 
on each of these devices may be executable to implement a 
mobile attack discovery agent (MADA), as described above. 
In Some embodiments, data collection agents on mobile 
devices 1140 may communicate to information layer agents 
on one or more of computing nodes 1150 across firewalls 
1160 by sending event driven messages 1141, according to a 
mobile attack discovery protocol (MADP), such as that 
described above. 

0249. The system and methods described herein may be 
provided on any of various computing systems (e.g., systems 
included in a distributed environment, such as those described 
above) configured to implement the functionality described. 
FIG. 12 illustrates a computing system 1200 configured to 
implement the methods described herein, according to vari 
ous embodiments. In one embodiment, a distributed comput 
ing environment may be implemented on one or more nodes 
that include components similar to those of computer system 
1200 (e.g., memory 1210, network interfaces 1265, storage 
devices 1275, processors 1280 and input/output devices 
1285) and that are configured to communicate with each other 
through network interface 1265. For example, computer sys 
tem 1230 may include components similar to those of com 
puter system 1200 and may be configured to communicate 
with computer system 1200 as part of a grid computing envi 
ronment, peer-to-peer environment, or mobile network, in 
different embodiments. In other embodiments, computer sys 
tems 1200 and/or 1230 may comprise more, fewer, or differ 
ent components than those illustrated in FIG. 12. 
0250 Computer system 1200 may be any of various types 
of devices, including, but not limited to, a personal computer 
system, desktop computer, laptop or notebook computer, 
mainframe computer system, handheld computer or other 
mobile device (e.g., a personal digital assistant, application 
enabled phone, or mobile communication device), worksta 
tion, network computer, a consumer device, application 
server, storage device, a peripheral device Such as a Switch, 
modem, router, etc, or in general any type of computing 
device. As described above, a distributed computing environ 
ment may be distributed across two or more nodes, and each 
node may comprise a computer system identical or similar to 
that illustrated in FIG. 12. 

0251. The methods described herein may in some embodi 
ments be provided as a computer program product, or soft 
ware, that may include a computer-readable storage medium 
having Stored thereon program instructions, which may be 
used to program a computer system Such as computer system 
1200 (or another electronic device) to perform a process 
according to the methods described herein. A computer-read 
able storage medium may include any mechanism for storing 
information in a form (e.g., Software, processing application) 
readable by a machine (e.g., a computer) and executable by 
the machine to implement the methods described herein. A 
machine-readable storage medium may include, but is not 
limited to, magnetic storage medium (e.g., floppy diskette); 
optical storage medium (e.g., CD-ROM); magneto optical 
storage medium; read only memory (ROM); random access 
memory (RAM); erasable programmable memory (e.g., 
EPROM and EEPROM); flash memory; electrical, or other 
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types of media Suitable for storing program instructions. In 
addition, program instructions may be communicated to 
computer system 1200 using optical, acoustical or other form 
of propagated signal (e.g., carrier waves, infrared signals, 
digital signals, etc.) in order to program the computer system 
to perform the processes described herein. In other embodi 
ments, all or a portion of the methods described herein may be 
implemented by hardware components of computer system 
1200 (e.g., by one or more FPGAs, or by other dedicated 
circuitry configured to perform these processes). 
0252. A computer system 1200 may include a processor 
unit 1280 (possibly including multiple processors, a single 
threaded processor, a multi-threaded processor, a multi-core 
processor, etc.). The computer system 1200 may also include 
one or more system memories 1210 (e.g., one or more of 
cache, SRAM, DRAM, RDRAM, EDO RAM, DDR RAM, 
SDRAM, Rambus RAM, EEPROM, etc.), a system intercon 
nect 1290 (e.g., LDT. PCI, ISA, etc.), one or more network 
interface(s) 1265 (e.g., an ATM interface, an Ethernet inter 
face, a Frame Relay interface, etc.), and one or more storage 
device(s) 1275 (e.g., optical storage, magnetic storage, etc.). 
Memory 1210 and/or storage devices 1275 may include a 
computer-readable storage medium, as described above, and 
may include other types of memory as well, or combinations 
thereof. Note that in some embodiments, network interface(s) 
1290 may include hardware and/or software support for 
implementing internal and/or external interconnect resources 
(e.g., NAT, load balancing, VPN, WebDAV, etc.). In the 
example illustrated in FIG. 12, computer system 1200 may 
include one or more input/output devices 1285, such as a 
monitor or other display device through which users may 
interact with computer system 1200 (e.g., through a GUI). 
Other embodiments may include fewer components or addi 
tional components not illustrated in FIG.12 (e.g., video cards, 
audio cards, additional network interfaces, peripheral 
devices, etc.). The processor unit(s) 1280, the storage device 
(s) 1275, the network interface 1265, the input/output devices 
1285, and the system memory 1210 may be coupled to the 
system interconnect 1290, as shown in this example. 
0253) One or more of the system memories 1210 may 
embody one or more knowledge base repositories 1205, as 
described herein. Note that in some embodiments, a knowl 
edge base repository 1205 may be included in one or more of 
storage devices 1275, instead of, or in addition to, being 
included in system memory 1210. Note that various elements 
illustrated in FIG. 12 as residing in memory 1210 may in 
some embodiments be implemented in different memory 
spaces (e.g., a shared memory space and one or more local 
memory spaces) within a single physical memory or as dif 
ferent memory spaces distributed across any number of 
physical memories devices (e.g., in one or more storage 
devices 1275 and/or storage devices of a computing system 
other than computer system 1200), in different embodiments. 
0254. In some embodiments, memory 1210 may include 
program instructions 1220 computer-executable to imple 
ment all or a portion of the methods described herein. For 
example, program instructions 1220 may be executable to 
implement a data collection agent 1225, an information layer 
agent 1235, and a knowledge layer agent 1245. A knowledge 
layer agent may in Some embodiments provide functionality 
to query and/or modify the contents of knowledge base 
repository 1205. For example, knowledge layer agent 1245 
may be configured to receive messages from information 
layer agent 1235 comprising a repository query and/or a new 
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or modified entry to be stored in knowledge base 1205. Note 
that data collection agent 1225, information layer agent 1235, 
and knowledge layer agent 1245 may each be implemented in 
any of various programming languages or methods. For 
example, in one embodiment, data collection agent 1225 may 
be JavaTM based, while in other embodiments, they may be 
written using the C or C++ programming languages. Simi 
larly, information layer agent 1235 and knowledge layer 
agent 1245 may be implemented in JavaTM, C, or C++, among 
other programming languages, according to various embodi 
ments. Moreover, in some embodiments, data collection 
agent 1225, information layer agent 1235, and knowledge 
layer agent 1245 may not be implemented using the same 
programming language. For example, data collection agent 
1225 may be C++ based, while other components may be 
developed using Cor JavaTM. While the example illustrated in 
FIG. 12 depicts a computer system 1200 in which a data 
collection agent 1225, an information layer agent 1235, a 
knowledge layer agent 1245, and a knowledge base reposi 
tory 1205 are resident on the same node, in other embodi 
ments instances of these elements may be resident on two or 
more nodes in a distributed environment, such as those 
described herein. Note that program instructions 1220 may in 
Some embodiments include instructions configured to imple 
ment other functionality not shown, Such as a compiler, 
debugger, operating system, or other standard and/or custom 
Software components of a computing system. 
0255 While systems and methods for attack discovery 
and prevention have been described herein with reference to 
various embodiments, it will be understood that these 
embodiments are illustrative and that the scope is not limited 
to them. Although the embodiments above have been 
described in detail, numerous variations and modifications 
will become apparent once the above disclosure is fully 
appreciated. Many variations, modifications, additions, and 
improvements are possible. More generally, the system and 
methods are described in the context of particular embodi 
ments. For example, the blocks and logic units identified in 
the description are for understanding the described invention 
and not meant to be limiting. Functionality may be separated 
or combined in blocks differently in various realizations or 
described with different terminology. Plural instances may be 
provided for components described herein as a single 
instance. Boundaries between various components, opera 
tions and data stores are somewhat arbitrary, and particular 
operations are illustrated in the context of specific illustrative 
configurations. Other allocations of functionality are envi 
sioned and may fall within the scope of claims that follow. 
Finally, structures and functionality presented as discrete 
components in the exemplary configurations may be imple 
mented as a combined structure or component. These and 
other variations, modifications, additions, and improvements 
may fall within the scope as defined in the claims that follow. 
It is intended that the following claims be interpreted to 
embrace all Such variations and modifications. 

What is claimed is: 
1. A computer-implemented method, comprising: 
receiving a message comprising information indicative of 

an event detected on one of a plurality of nodes in a 
distributed computing system; 

accessing a knowledge base comprising information asso 
ciated with known computing system attack patterns; 

classifying the event as being representative of one of the 
known computing system attack patterns or as being 
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representative of an unknown attack pattern, dependent, 
at least in part, on said accessing; and 

initiating a response to the event, dependent on said clas 
Sifying. 

2. The method of claim 1, further comprising: 
updating the knowledge base using reinforcement learn 

ing, dependent on said response. 
3. The method of claim 2, 
wherein said classifying comprises applying an attack 

detection and classification technique; and 
wherein said updating comprises tuning the attack detec 

tion and classification technique using reinforcement 
learning. 

4. The method of claim 3, wherein said tuning comprises 
one or more of: 

modifying a number of input nodes, output nodes or hidden 
nodes of a model of the distributed computing system; 
Selecting a different attack detection and classification 
technique; adding, removing or modifying a state-action 
value pair used by the attack detection and classification 
technique; and modifying a number of layers of an over 
lay network over which messages are sent during said 
applying. 

5. The method of claim 1, further comprising: 
dynamically modifying an attack tree model of the distrib 

uted computing system, dependent on a change in con 
figuration of the distributed computing system, a change 
in a pattern of received event messages, or a change in 
workload in the distributed computing system. 

6. The method of claim 1, further comprising: 
dynamically modifying an overlay network of the distrib 

uted computing system over which event detection mes 
Sages or attack response messages are sent dependent on 
a change in configuration of the distributed computing 
system, a change inapattern of received event messages, 
or a change in a workload in the distributed computing 
system. 

7. The method of claim 1, further comprising: 
determining a probability that the event signifies an attack 

on the distributed computing system; 
wherein said determining comprises applying one or more 

rules or policies to the information indicative of the 
event; and 

wherein the one or more rules or policies are workload 
dependent, node-dependent, dependent on a previous 
state, or dependent on an attack domain. 

8. The method of claim 1, wherein said initiating a response 
comprises one or more of constructing an attack tree model 
for the distributed computing system, constructing an overlay 
network for the distributed computing system over which 
event detection messages or attack response messages are to 
be sent, sending an attack notification message to one or more 
of the plurality of nodes, modifying a resource allocation 
associated with one or more of the plurality of nodes, and 
removing a resource associated with one or more of the plu 
rality of nodes from a resource pool in the distributed com 
puting System. 

9. The method of claim 1, wherein in response to classify 
ing the attack as an unknown attack pattern, said initiating a 
response comprises one or more of performing a clustering 
analysis to identify a known attack pattern sharing at least 
Some characteristics with the unknown attack pattern, ran 
domly selecting a response action, and simulating the 
unknown attack pattern. 
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10. The method of claim 1, wherein the event comprises 
one or more of a parameter value crossing a threshold value, 
a parameter value change rate exceeding a change rate thresh 
old, a parameter value becoming out of range, a parameter 
value becoming in range, and a change in a parameter value 
trend. 

11. The method of claim 1, wherein the event is represen 
tative of a distributed denial of service attack on the distrib 
uted computing system. 

12. A computer-readable storage medium storing program 
instructions computer-executable to implement: 

receiving a message comprising information indicative of 
an event detected on one of a plurality of nodes in a 
distributed computing system; 

accessing a knowledge base comprising information asso 
ciated with known computing system attack patterns; 

classifying the event as being representative of one of the 
known computing system attack patterns or as being 
representative of an unknown attack pattern, dependent, 
at least in part, on said accessing; and 

initiating a response to the event, dependent on said clas 
Sifying. 

13. The storage medium of claim 12, wherein the program 
instructions are further executable to implement: 

updating the knowledge base using reinforcement learn 
ing, dependent on said response; 

wherein said classifying comprises applying an attack 
detection and classification technique; and 

wherein said updating comprises tuning the attack detec 
tion and classification technique using reinforcement 
learning. 

14. The storage medium of claim 12, wherein the program 
instructions are further executable to implement: 

determining a probability that the event signifies an attack 
on the distributed computing system; 

wherein said determining comprises applying one or more 
rules or policies to the information indicative of the 
event; and 

wherein the one or more rules or policies are workload 
dependent, node-dependent, dependent on a previous 
state, or dependent on an attack domain. 

15. The storage medium of claim 12, wherein said initiat 
ing a response comprises one or more of constructing an 
attack tree model for the distributed computing system, con 
structing an overlay network for the distributed computing 
system over which event detection messages or attack 
response messages are to be sent, sending an attack notifica 
tion message to one or more of the plurality of nodes, modi 
fying a resource allocation associated with one or more of the 
plurality of nodes, removing a resource associated with one or 
more of the plurality of nodes from a resource pool in the 
distributed computing system, dynamically modifying an 
attack tree model of the distributed computing system, 
dynamically modifying an overlay network of the distributed 
computing system over which event detection messages or 
attack response messages are sent, performing a clustering 
analysis to identify a known attack pattern sharing at least 
Some characteristics with an unknown attack pattern, ran 
domly selecting a response action for an unknown attack 
pattern, and simulating an unknown attack pattern. 

16. The storage medium of claim 12. 
wherein the event comprises one or more of a parameter 

value crossing a threshold value, a parameter value 
change rate exceeding a change rate threshold, a param 
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eter value becoming out of range, a parameter value 
becoming in range, and a change in a parameter value 
trend; and 

wherein the event is representative of a distributed denial of 
service attack on the distributed computing system. 

17. A distributed computing system comprising plurality of 
nodes, wherein one of the plurality of nodes comprises: 

one or more processors; and 
a memory coupled to the one or more processors and stor 

ing program instructions executable by the one or more 
processors to implement: 
receiving a message comprising information indicative 

of an event detected on one of a plurality of nodes in 
a distributed computing system; 

accessing a knowledge base comprising information 
associated with known computing system attack pat 
terns; 

classifying the event as being representative of one of the 
known computing system attack patterns or as being 
representative of an unknown attack pattern, depen 
dent, at least in part, on said accessing; and 

initiating a response to the event, dependent on said 
classifying. 

18. The system of claim 17, wherein the program instruc 
tions are further executable to implement: 

updating the knowledge base using reinforcement learn 
ing, dependent on said response; 

wherein said classifying comprises applying an attack 
detection and classification technique; and 

wherein said updating comprises tuning the attack detec 
tion and classification technique using reinforcement 
learning. 

Apr. 1, 2010 

19. The system of claim 17, wherein the program instruc 
tions are further executable to implement: 

determining a probability that the event signifies an attack 
on the distributed computing system; 

wherein said determining comprises applying one or more 
rules or policies to the information indicative of the 
event; and 

wherein the one or more rules or policies are workload 
dependent, node-dependent, dependent on a previous 
state, or dependent on an attack domain. 

20. The system of claim 17, wherein said initiating a 
response comprises one or more of constructing an attack 
tree model for the distributed computing system, constructing 
an overlay network for the distributed computing system over 
which event detection messages or attack response messages 
are to be sent, sending an attack notification message to one or 
more of the plurality of nodes, modifying a resource alloca 
tion associated with one or more of the plurality of nodes, 
removing a resource associated with one or more of the plu 
rality of nodes from a resource pool in the distributed com 
puting system, dynamically modifying an attack tree model 
of the distributed computing system, dynamically modifying 
an overlay network of the distributed computing system over 
which event detection messages or attack response messages 
are sent, performing a clustering analysis to identify a known 
attack pattern sharing at least some characteristics with an 
unknown attack pattern, randomly selecting a response action 
for an unknown attack pattern, and simulating an unknown 
attack pattern. 

NetNut's Exhibit 1209 
NetNut Ltd. v. Bright Data Ltd. 

IPR2021-00465 
Page Page 36 of 36




