
(19) United States
US 2010.0082513A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0082513 A1
Liu (43) Pub. Date: Apr. 1, 2010

(54) SYSTEMAND METHOD FOR DISTRIBUTED
DENIAL OF SERVICE DENTIFICATION AND
PREVENTION

(76) Inventor: Lei Liu, San Jose, CA (US)

Correspondence Address:
MHKKGASUN
P.O. BOX 398
AUSTIN, TX 78767 (US)

(21) Appl. No.: 12/239,521

(22) Filed: Sep. 26, 2008

Publication Classification

(51) Int. Cl.
G06N 5/02 (2006.01)
G06F 5/8 (2006.01)
G06F2L/00 (2006.01)

initialize attack tree(s) and/or overlay
network for distributed system

100

deploy data Collection agents On
two or more nodes

110

(52) U.S. Cl. 706/46; 706/61; 726/23
(57) ABSTRACT

Systems and methods for discovery and classification of
denial of service attacks in a distributed computing system
may employ local agents on nodes thereof to detect resource
related events. An information later agent may determine if
events indicate attacks, perform clustering analysis to deter
mine if they represent known or unknown attack patterns,
classify the attacks, and initiate appropriate responses to pre
vent and/or mitigate the attack, including sending warnings
and/or modifying resource pool(s). The information layer
agent may consult a knowledge base comprising information
associated with known attack patterns, including state-action
mappings. An attack tree model and an overlay network (over
which detection and/or response messages may be sent) may
be constructed for the distributed system. They may be
dynamically modified in response to changes in System con
figuration, State, and/or workload. Reinforcement learning
may be applied to the tuning of attack detection and classifi
cation techniques and to the identification of appropriate
responses.

data Collection agent OnonenOdedetects event,
sends message to information layer agent

120

information layer agent
COinSults knowledge base

130

information layer agent
Selects appropriate response(s)
to known/unknown attack pattern

145

take action with respect to Current
WicifeSOLIrCeS

150

take action With respect to potential
WicifeSOLIrCeS

160

information layer agent determines
probability of attack for previously

unknown pattern

Continue operation
185

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 1 of 36

Patent Application Publication Apr. 1, 2010 Sheet 1 of 12 US 2010/0082513 A1

initialize attack tree(s) and/or overlay
network for distributed system

100

deploy data Collection agents On
tWO Or mOre n00eS

110

dataCOleClion agenton OnenOdedetectSevent,
Sends message to information layer agent

120

information layer agent
Consults knowledge base

130

information layer agent determines
probability of attack for previously

unknown pattern
information layer agent 155

Selects appropriate response(s)
to known/unknown attack pattern

145

take action With respect to Current
Victim reSOLIrCeS

150
COntinue Operation

185

FIG. 1

take action With respect to potential
Victim reSOurCeS

160

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 2 of 36

Patent Application Publication Apr. 1, 2010 Sheet 2 of 12 US 2010/0082513 A1

Central nOde 21

proceSSOr
215

memory 220

program knowledge
inStructionS base

225 230

meSSageS
aCCOrding
to peer-to
peer
platform

maSternOde maSternOde protocols
240a 240b

information information
layer agent layer agent

245a 245b
meSSages
aCCOrding
to peer-to
peer
platform
protocols

COmpute n00e
260a

data
COllection
agent
275a

Compute node
260b

data
COllection
agent
2750

FIG.

Compute node
260C

data
COleCtion
agent
275C

COmpute n00e
260d

data
COllection
agent
275d

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 3 of 36

Patent Application Publication Apr. 1, 2010 Sheet 3 of 12 US 2010/0082513 A1

initiate attack Class determination
300

aCCeSS knowledge base, apply applicable rules,
policies, dynamic programming, and/or discovery

algorithm to determination
310

return probability determination,
take appropriate action(S)

320

receive feedback regarding prediction
and/or effect of action(s) taken

330

update knowledge base uSing reinforcement
learning techniques, take additional action(s)

340

FIG. 3

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 4 of 36

Patent Application Publication Apr. 1, 2010 Sheet 4 of 12 US 2010/0082513 A1

data Collection agent deployed On
distributed nOde

400

data Collection agent monitorS State,
reSOurce uSage, WOrkload,

and/or other parameter values
410

State Change,
threShOld reached, Or

threshold rate of change
reached?

420

data Collection agent Sends
meSSage to information

layer agent indicating event
430

FIG. 4

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 5 of 36

Patent Application Publication Apr. 1, 2010 Sheet 5 of 12 US 2010/0082513 A1

s/ gOOd Critical
501 503

?eSUre alarm

State 505 504
diagram

550

FIG. 5A

pool 520

attributeS 525

private float utilization
private int state

OperationS 530

public pool()
public float getUtilization()
public void setUtilization (float val)
public int getState()
public void setState(int val)

FIG. 5B

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 6 of 36

Patent Application Publication Apr. 1, 2010 Sheet 6 of 12 US 2010/0082513 A1

602

publish(II),

publish(II)k, I
604 606 608

publish(II)

publish(II)

publish(II) publish(II)

610

publish(II)in

FIG. 6

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 7 of 36

Patent Application Publication Apr. 1, 2010 Sheet 7 of 12 US 2010/0082513 A1

FIG. 7

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 8 of 36

Patent Application Publication Apr. 1, 2010 Sheet 8 of 12 US 2010/0082513 A1

COrStruct attack tree and/Or
Overlay network for attack tree path

discovery and flood control
800

receive feedback regarding Change
in System configuration, Workload,

State Of node, etc.
810

modify attack tree and/or
Overlay network

dependent On Change
820

FIG. 8

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 9 of 36

Patent Application Publication Apr. 1, 2010 Sheet 9 of 12 US 2010/0082513 A1

S. N S. S.
\

N
N

V
V

s
W V

W
W
W
W
W
W
W

s
NetNut's Exhibit 1209

NetNut Ltd. v. Bright Data Ltd.
IPR2021-00465

Page Page 10 of 36

Patent Application Publication Apr. 1, 2010 Sheet 10 of 12 US 2010/0082513 A1

knowledge base
1050

/grid cell 1020ay fond cell 1020by

COmpute
node(s)
1040a

COmpute
node(s)
1040b

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 11 of 36

Patent Application Publication Apr. 1, 2010 Sheet 11 of 12 US 2010/0082513 A1

fireWall
1160a N

Computing
I nOde

mo fWCG 1150a

mObile device
1140b

COmputing
nOde
1150b

mObile device
1140C

mObile device
1140d

firewall/
1160b

mObile
network 7

1100

FIG. 11

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 12 of 36

Patent Application Publication Apr. 1, 2010 Sheet 12 of 12 US 2010/0082513 A1

COmputer SyStem 1200

knowledge
base

repository
1205

program instructionS 122

data COllection information knowledge
agent layer agent layer agent
1225 1235 1245

interCOnnect 1290

input/Output network Storage proceSSOr(s) E. CE
interface(s) deViCeS 1280 1285

1265 1275

COmputer
System
1230

FIG. 12

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 13 of 36

US 2010/0082513 A1

SYSTEMAND METHOD FOR DISTRIBUTED
DENIAL OF SERVICE DENTIFICATION AND

PREVENTION

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 This invention relates generally to distributed com
puting resources, and more particularly to systems and meth
ods for distributed denial of service attack tree discovery and
flood control.
0003 2. Description of the Related Art
0004 Distributed Denial of Service (DDoS) attacks are a
critical issue for dynamic and stochastic task environments.
The result of these attacks is often removal or degradation of
one or a set of computation nodes within a dynamic task
environment, and/or removal or degradation of one or a set of
storage nodes within a distributed storage environment. A
typical class of attacks could be initiated from a leaf process
ing node against a pervasive computing graph along the edges
of the vertices. For example, a DDoS attack may apply a
scanning operation throughout an entire grid environment
(e.g., on all nodes) or may deploy a malicious agent on those
nodes to consume memory and/or CPU resources.
0005 Intrusion detection is a method of identifying
attempts to compromise CIAA (confidentiality, integrity,
availability and authenticity) of computational resources.
Various data center operations may perform intrusion detec
tion manually or automatically. Manual intrusion detection
typically examines evidence from system calls, log files, audit
trails or network packet flows. Systems that perform auto
mated intrusion detection are sometimes referred to as intru
sion detection systems (IDSs). Modern IDSs typically
employ a combination of the above two classes oftechniques.
As probable attacks are discovered by IDSs, relevant infor
mation is typically logged to files or databases and alerts are
generated. In addition, automatic responsive actions and/or
even preventive rule-based controls may be implemented
through access control systems.
0006 Due to advances in information security techniques,
intrusion preventive systems (IPSs) described in the literature
may provide a practical mechanism to defend against intru
sion attacks on computational graphs or prevent abuse of
computational resources. These IPSs can be divided into two
categories: misuse-prevention techniques and anomaly-pre
vention methods. Misuse-prevention tools are typically based
on a set of signatures that describe known attack States and
that are used to match a current state against a known attack
state. If a current state corresponding to an actual attack
matches one of attack classes listed in the database, then it is
Successfully identified. A disadvantage of this approach is
that it cannot prevent previously unknown attacks (also called
Zero-day attacks). Anomaly prevention uses profiles about
normal states to prevent intrusions by noting significant
deviations between the parameters of the observed traffic of
networks and those of normal states. Prevention against
anomaly attacks has been an active research topic. However,
it suffers from high false-positive error rates because unseen
normal behaviors are often misclassified as attacks. Current
methods for intrusion detection and prevention (including
Some that use reinforcement learning) are builton static archi
tectures and/or parameters (e.g., a fixed number of nodes,
layers of computations, and number and type of parameters).
These methods typically depend on Supervised training with
known attack types. However, in dynamic programming set

Apr. 1, 2010

tings, there may be no available training set. Current methods
for intrusion detection using machine learning typically
require human interaction to improve rule-based binary clas
sifications, and tuning is limited within a fixed architecture
having fixed optimized weights and biased nodes that impact
classification results. In addition, current methods typically
return results as a classification (typically, a binary classifi
cation: attack yes or attack no). Evolution computing has
been proposed improve learning networks. However, it inher
its the memory bound problem in traditional artificial intelli
gence techniques.

SUMMARY

0007 Systems and methods for discovery and prevention
of denial of service attacks in a distributed computing system
are disclosed. In some embodiments, the system may employ
local data collection agents on each of a plurality of nodes to
detect resource-related events on those nodes. For example, a
data collection agent may be configured to detect a parameter
value crossing a threshold value, a parameter value change
rate exceeding a change rate threshold, a parameter value
becoming out of range, a parameter value becoming in range,
or a change in a parameter value trend. In various embodi
ments, data collection agents may be implemented using
Software, hardware (e.g., sensors), or a combination of Soft
ware and/or hardware elements configured to detect resource
related events.

0008 An information layer agent on one or more nodes
(e.g., on each node or on one or more central nodes) may
determine if an event is indicative of an imminent or current
attack, may determine if the event represents a known attack
pattern or a previously unknown attack pattern, and may
classify the attack. The information layer agent may consult a
knowledge base comprising information associated with
known attack patterns, including state-action mappings.
0009. The information layer agent may initiate appropri
ate responses to prevent and/or mitigate the attack, including
sending warnings and/or modifying resource pool(s) on a
current victim node (e.g., the node on which a resource
related event was detected) and/or on potential victim nodes
(e.g., the neighbors of a current victim node). In some
embodiments, if it is determined that an event represents a
previously unknown attack pattern, the information layer
agent may perform clustering analysis to identify a known
attack pattern sharing at least Some characteristics with the
unknown attack pattern, and may initiate a response action
dependent on the identified known attack pattern. In other
embodiments, the information layer agent may randomly
select a response action for a previously unknown attack
pattern, or may initiate simulation of the unknown attack
pattern.
0010. In some embodiments, an attack tree model and/or
an overlay network (over which detection and/or response
messages may be sent) may be constructed for the distributed
system. For example, an attack detection and classification
technique may be applied in response to the event detection,
which may probe the nodes of distributed computing system
using multicast inquires to construct a model of the progres
sion (or likely progression) of an attack from one node to
another in the distributed system. The attack tree model and/
or overlay network may in some embodiments be dynami
cally modified in response to changes in System configura
tion, state, and/or workload.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 14 of 36

US 2010/0082513 A1

0011 Reinforcement learning techniques may be applied
to the tuning of attack detection and classification techniques,
to construction and/or modification of the attack tree model
and/or overlay network, and to the identification of appropri
ate responses. For example, tuning the attack detection and
classification techniques may in various embodiments
include modifying a number of input nodes, output nodes or
hidden nodes of a model of the distributed computing system,
selecting a different attack detection and classification tech
nique, adding, removing or modifying a state-action value
pair used by the attack detection and classification technique,
or modifying a number of layers of an overlay network for the
system.
0012. The methods described herein may be implemented,
at least in part, by program instructions stored in a memory
coupled to one or more processors on various nodes in a
distributed computing system, (e.g., by program instructions
stored on a computer-readable storage medium and execut
able by the one or more processors in the computing system).
The program instructions may be included in the same
memory as one in which a knowledge based of known attack
pattern information in stored, or in a different memory, in
different embodiments. In some embodiments, the knowl
edge base may be partitioned according to attack type,
resource domain, or other parameters, and may be distributed
on multiple nodes in the computing system.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 is a flow chart illustrating a method for iden
tifying and responding to a DDOS attack, according to one
embodiment.
0014 FIG. 2 is a block diagram illustrating a distributed
system on which identification and/or prevention of DDOS
attacks are implemented, according to one embodiment.
0015 FIG.3 is a flowchart illustrating a method for updat
ing a knowledge base using RL techniques, according to one
embodiment.
0016 FIG. 4 is a flowchart illustrating the use of event
driven messages, according to one embodiment.
0017 FIG. 5A illustrates a state diagram for a state
machine used in attack detection and prevention, according to
one embodiment.
0018 FIG. 5B illustrates an object representing a resource
pool, according to one embodiment.
0019 FIG. 6 is a data flow diagram illustrating attack tree
discovery, according to one embodiment.
0020 FIG. 7 illustrates an overlay network of a distributed
computing system, according to one embodiment.
0021 FIG. 8 is a flow chart illustrating a method for updat
ing an attack tree or overlay network using RL techniques,
according to one embodiment.
0022 FIG. 9 is a diagram illustrating the results of a
machine learning tuning operation, according to one embodi
ment.

0023 FIG. 10 is a block diagram illustrating a multi-grid
network, according to one embodiment.
0024 FIG. 11 illustrates the passing of messages between
mobile devices and other nodes in a distributed computing
environment, according to one embodiment.
0025 FIG. 12 is a block diagram illustrating an exemplary
computer system configured to implement attack discovery
and/or prevention, according to one embodiment.
0026. While the invention is described herein by way of
example for several embodiments and illustrative drawings,

Apr. 1, 2010

those skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the intention is to coverall
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims. Any headings used herein are for organiza
tional purposes only and are not meant to limit the scope of
the description or the claims. As used herein, the word “may
is used in a permissive sense (i.e., meaning having the poten
tial to), rather than the mandatory sense (i.e., meaning must).
Similarly, the words “include”, “including', and “includes’
mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

0027 Systems and methods for providing autonomous
denial of service (DOS) attack prevention, attack detection/
identification, and/or rule making in dynamic distributed net
works are disclosed. The systems and methods described
herein may in Some embodiments be Suitable for application
to distributed denial of service (DDoS) attacks in peer-to-peer
(P2P) environments, mobile networks, grid computing envi
ronments, and/or other diverse task environments. As
described herein, in Some embodiments, a learning approach
(e.g., Q function or other reinforcement learning approach)
may facilitate preventative detection through methods for
refining detection of and responses to known attack patterns,
discovering new attack patterns and/or building attack tree
models (e.g., models of the expected or actual progression of
an attack from one node to the next in a distributed environ
ment) for use in near-future predictions and adaptive flood
control. For example, an attack may begin at a leaf node and
move to others (e.g., neighboring nodes). In some embodi
ments, the attack discovery algorithm may probe the distrib
uted environment beginning at the initial victim mode and
moving up to the tree to the root node, sending notifications
and/or taking other actions in order to block the attack. The
system and methods described herein may be generally appli
cable to attacks of various types and on various resources in a
distributed system, including memory, input/output (I/O)
resources, storage resources, and compute (e.g., CPU)
resources, in different embodiments.
0028 Previous attempts at machine learning-based pre
vention networks relied heavily on static architectures and/or
parameters (e.g., a fixed number of nodes, layers of compu
tations, and number and/or type of parameters monitored). In
contrast, the methods described herein may in Some embodi
ments include dynamically modifying attacktree models and/
or membership functions based on in-bound pattern fluctua
tions and/or changes to system configurations, workloads,
etc. (e.g., incrementally refining initial, arbitrary models
using machine learning techniques). These methods may in
Some embodiments be transport-level independent (i.e., they
may be applied at or above level 7, rather than at level 3 or 4).
0029. The system and methods described herein may pro
vide learning based searches for DDoS detection and corre
sponding scheduling to control attack traffic. They may
include event driven messaging in a reprogrammable, Scal
able response/resolution environment (e.g., a virtual overlay
network), as described in more detail herein. In some embodi
ments, the methods may include dynamic promotion and/or
demotion of membership functions (or rules thereof), and
may report a probability of an attack, rather than an event

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 15 of 36

US 2010/0082513 A1

classification. These methods may in some embodiments
facilitate self-managed defense systems that are automati
cally adaptable to environmental changes during normal
usage, to variations in known or previously unknown attack
patterns, and to corresponding changes in responses to attacks
over time.

0030 The autonomous machine learning methods
described herein may differ from those of traditional learning
based IDSs and even traditional artificial intelligence (AI)
machine learning techniques in several areas, as described
below. In some embodiments, detection may be initialized
using an arbitrary network with a programmable architecture,
and may be autonomously tuned by a reinforcement learning
(RL) based utility framework. In previous systems, in order to
train learning networks (e.g., neural networks), the numbers
and types of input nodes, layers, the nodes at which to present
non-linearity, and output nodes are predefined based on prob
lem specifications. However, these specifications may not be
known ahead of time or may not be feasible to apply to online
detection, limiting performance and convergence of detec
tion. Therefore, rather than using this type of static detection
architecture, in some embodiments the methods described
herein may include the use of a programmable architecture
without fixed input nodes, hidden layers, and/or output nodes.
The reinforcement learning based utility framework may be
configured to autonomously tune the input nodes, hidden
layers and output nodes. Therefore, the architecture of the
neurons may become the parameters of the RL based tuning
framework. In addition, the approximating architecture may
not be restricted to a multilayered perceptron structure with
sigmoidal nonlinear functions. Instead, any arbitrary struc
tures, such as Bayes Networks, may be autonomously con
structed and tuned, in various embodiments.
0031 Previous learning-based IDSs typically required
Supervised training with known attack types to map inputs
and outputs, where matching involves unknown non-linear
ity. However, in dynamic programming (DP) settings, there
may be no available training set that could be used for
approximation. In some embodiments, evaluations may be
performed by simulation, with the decisions being improved
using simulation results. In some embodiments, with simula
tions involving autonomous (i.e., self-managed) tuning using
the RL based utilities described herein, effective online detec
tion may be facilitated without training. For simulations of
unknown attacks, those having the most frequently occurring
states may be better approximated than those of average fre
quency.
0032. Furthermore, because existing machine learning
methods are typically computationally intensive, and exhibit
a considerable percentage of training errors for large state
spaces, off-line training is commonly used for approximation
mapping. By contrast, the system and methods described
herein may in some embodiments use an RL based tuning
utility framework to ensure online learning to improve detec
tion in real time. This may allow the methods the flexibility to
better control intrusion detection.
0033. In addition, in complex systems with large state
spaces, large amounts of training data may be required for
approximation if traditional machine learning networks are
used for detection. However, a sufficient volume of data may
not be available in real time. Therefore, the system and meth
ods described herein may employ autonomous tuning with
training and online learning (e.g., a combination of DP tech
niques, RL techniques, and neural networks, in which RL is

Apr. 1, 2010

used fortuning). In contrast to traditional learning networks,
the methods described herein may comprise self-managed
learning methods. Such that biased datasets may impact con
Vergence but not detection results.
0034 Previous tuning-based intrusion detection systems
have been proposed for fixed detection models. However,
unlike the autonomous methods described herein, those
methods typically rely on human interactions to continually
improve rule-based binary classifiers. Furthermore, in tradi
tional learning networks, tuning is limited within a fixed
architecture with fixed weightings and biased nodes. By con
trast, the system and methods described herein may in some
embodiments employ an interactive utility framework to tune
the entire architecture using least squared error fitting. In
addition, rather than including specified parameters in the
feature vectors, the methods described herein may start with
any arbitrary number of parameters as input to prevention
networks. Traditionally, feature vectors were summarized in
aheuristic sense to be critical characteristics of each state, and
analysis and intuition need to be applied to derive the feature
parameters. In the systems described herein however, there
may be no static architecture, and the RL based utility frame
work may tune the number and/or selection of parameters
used.

0035) To serve large continuous system spaces, the RL
based methods described herein may provide state-action and
reward/cost factor mapping. In some embodiments, semi
Markov Decision Problem (SMDP) theory may be applied.
Specifically, RL search approximation and learning factor
multi-layer perceptron may be employed to simplify search
decision organization and prediction. In addition, a set of RL
interactive algorithmic operations and augmented learning
network operations may be included, as described herein.
0036. The methods described herein may provide autono
mous tuning of prevention networks without fixed input
parameters and/or layer architectures. The tuning may in
Some embodiments be performed using an incremental algo
rithm grounded in reinforcement learning techniques. In con
trast to traditional optimization techniques requiring static
state specification, these methods may use arbitrary state
parameters for intrusion prevention optimization. For
machine learning in large state space, sample reduction meth
ods may be used. Specifically, both attribute selection and
random instance selection may be applied to Q learning for
the prevention networks.
0037. In some embodiments, the system and methods
described herein may be implemented by components mod
eled as being on several abstraction layers of a distributed
system hierarchy: a data collection layer, an information
layer, and a knowledge layer. One or more agents may be
deployed on each node to implement these layers. For
example, a data collection layer may be implemented by one
or more agents (e.g., sensors) distributed on each node in the
distributed system. These agents may be responsible for col
lecting relevant data at each node (e.g., resource usage, per
formance, workload, etc.) The data collection agents may in
Some embodiments also be configured to transform or clas
Sify collected data (e.g., time series data, or frequency series
data) as discrete values (e.g., CPU usage equals “high.
“medium, or “low”), according to programmable bound
aries. In such embodiments, the data collection agents may
report an event in response to a transition from one discrete
value to another, e.g., rather than reporting periodic samples
or averages of collected data. In other embodiments, data

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 16 of 36

US 2010/0082513 A1

collection agents may report an event in response to detecting
a threshold value or a threshold rate of change (e.g., a Sudden
change, rather than an incremental one). Data collection
agents may report these and other events by sending messages
to an information layer, in Some embodiments.
0038. In some embodiments, an information layer may be
implemented by agents distributed among two or more nodes,
while in others it may be implemented by an agent on a central
node. Information layer agents may be responsible for aggre
gating data received from one or more data collection layer
agents (e.g., data received from one or more nodes and con
tained in event driven messages) and/or for performing clus
tering or trend analysis as part of determining the probability
that a DDoS attack is underway or is imminent. In some
embodiments, information layer agents may apply a rules
based analysis (e.g., using membership functions based on
known rules) and/or may apply reinforcement learning tech
niques (e.g., fuZZy rules) to collected data, and may return a
probability that the corresponding event(s) indicate an attack.
For example, an information layer agent may be configured to
determine if a workload trend (e.g., its rate of change) is
outside the expected range for the given workload or work
load type.
0039. The information layer agent may consult a knowl
edge base to determine if observed behavior matches a known
attack pattern and therefore indicates that a current or near
term attack is likely. For example, the information layer agent
may access a repository of known attack patterns, which may
be stored as a portion of a collection of program instructions
executable to implement membership functions correspond
ing to the known attack patterns, or stored as data representing
known attack patterns that may be accessed by program
instructions executable to implement membership functions,
in different embodiments. This knowledge layer may in vari
ous embodiments be located on the same node or nodes as the
information layer, or on one or more other nodes (e.g., it may
be distributed, or may be located on a different central node
than the information layer). For example, the knowledge base
may include attack patterns and/or membership functions
based on 20-40 kernel parameters (e.g., CPU utilization, disk
utilization, memory utilization, I/O resource utilization, I/O
ratio, network packet ratio, state packet ratio, or another
parameterusable in a mathematical model of the system). The
knowledge base may associate appropriate responses to
known attack patterns and the information layer may invoke
these responses if a known attack pattern is detected. For
example, in various embodiments and in response to different
attack patterns, memory or other resources may be re-allo
cated in the distributed system, a resource usage quota may be
changed, attack notification messages (e.g., warnings,
alarms, or alerts) may be sent to one or more nodes (e.g.,
neighboring nodes), inquiry messages may be sent to one or
more nodes (e.g., to probe an attack tree, according to a
particular attack discovery and classification algorithm
selected for the attack), a resource or node may be shut down
or disconnected from the network, etc.
0040. When observed behavior does not match a known
attack pattern, the information layer may also be configured
to select (e.g., arbitrarily or according to clustering analysis
that identifies a known attack pattern having at least some of
the same characteristics as the unknown attack pattern) an
attack discovery and classification technique, and/or one or
more attack responses (e.g., attack notification messages to be
sent or modifications to resource pool in order to prevent or

Apr. 1, 2010

mitigate an attack). The information layer may also be con
figured to dynamically tune the knowledge base based on the
results or effect of the response(s) to reflect a previously
unknown attack pattern (e.g., by adding or modifying mem
bership functions) using RL techniques. For example, rein
forcement learning techniques may be applied to membership
functions based on feedback indicating the accuracy of attack
predictions made by existing membership functions. In other
words, reinforcement learning techniques and/or dynamic
programming may be used by information layer agents to
recognize new attack patterns, and then to add them (along
with appropriate responses) to the knowledge base.
0041. In some embodiments, the information layer may
also be configured to update the knowledge base (e.g., to tune
membership functions and/or attack responses) based on
changes in the system environment and/or workload, in some
embodiments. This is described in more detail below. In such
embodiments, fuzzy rules, neural nets, or reinforcement
learning techniques may be applied to membership functions
based on Such changes. Note that in Some embodiments,
additional parameters may be added to attack patterns and/or
membership functions maintained by the knowledge layer, if
it is determined that they may contribute to more accurate
predictions of attack behavior.
0042. In addition to the data layer agents, information
layer agents, and/or knowledge base deployed on various
nodes of a distributed system, each defensive node may
include a mechanism to construct an attack tree and an adap
tive packet delivery mechanism for flood control (e.g., an
overlay network), as described in more detail herein.
0043. A method for performing DDoS identification and
prevention is illustrated by the flow chart in FIG. 1, according
to one embodiment. In this example, attack tree(s) and/or an
overlay network may be initialized for a distributed system, as
in 100. The initial attack trees and/or overlay network may be
generated dependent on a predicted, current, or historical
system configuration, on simulation data, on training data, or
arbitrarily (e.g., based on heuristics or a default configura
tion), in various embodiments. Note that in other embodi
ments, an attack tree and/or overlay network may not be
constructed or initialized until an attack (or probable attack)
is detected).
0044. In the example illustrated in FIG. 1, data collection
agents are deployed on two or more nodes in the distributed
environment, as in 110. When one of these data collection
agents detects an event, as in 120, it sends a message to an
information layer agent. For example, the data collection
agent may send a message indicating that CPU or I/O
resource usage on the corresponding node has changed from
a “medium level to a “high level. Messages sent between
the nodes of the distributed system may be sent via the overlay
network, as described in more detail below.
0045. In this example, the information layer agent consults
a knowledge base, as shown in 130 and described above, to
determine if the event (i.e., the observed behavior) matches a
known attack pattern (e.g., as stored in the knowledge base).
This is shown as decision block 140. Membership functions
based on fuzzy rules and/or trend analysis may be used to
determine the probability that a DDoS attack is underway,
according to known attack patterns. The probability determi
nation may in Some embodiments include weighted compu
tations, in which data values of different parameters have
different weightings. For example, if memory usage is "high
and CPU usage is “medium high”, the information layer agent

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 17 of 36

US 2010/0082513 A1

may determine that the probability that this indicates a CPU
attack is 60%, while if CPU usage is “high” and memory
usage is “medium high”, the information layer may determine
that the probability that this indicates a CPU attack is 75%. In
Some embodiments, the information layer agent may com
bine the information contained in the newly received message
with other information received from the same or other nodes,
and/or with other known parameter values, and the aggre
gated information may match a known attack pattern. For
example, the data collection layer may send a new message to
the information layer indicating that CPU usage has transi
tioned to “high, and that I/O operations have transitioned to
“high”. The information layer may have received a previous
message indicating that memory usage was “medium', and
an indication that the workload is characterized as an online
transaction load (for which a standard or expected profile
exists). In this example, a membership function applied at the
information layer may determine that the probability that this
behavior indicates a CPU attack is 85%, and may return a
value of 85%.

0046. If it is determined that the observed behavior is
representative of a known attack pattern, shown as the posi
tive exit from 140, the information layer may select an appro
priate response to the known attack pattern, as described
herein. This is shown as 145. As illustrated in FIG. 1, action
may be taken with respect to the current victim resources
(e.g., the resource(s) of the node on which the event was
detected). This is shown as 150 in FIG. 1. For example, the
information layer agent may alert the corresponding node or
may initiate action on the node (e.g., by sending a message
indicating that node's resources should be throttled back,
removed from the distributed resource pool, or otherwise
protected from the predicted attack). In addition, in this
example, action may be taken with respect to potential victim
resources, as in 160. For example, an adaptive flood control
mechanism may be invoked (e.g., by sending messages other
nodes) in order to prevent an attack from propagating to
neighboring nodes, according to an attack tree for the distrib
uted system and/or individual nodes thereof. This is described
in more detail below.

0047. If it is determined that the observed behavior does
not match a known attack pattern, shown as the negative exit
from 140, the information layer agent may determine the
probability that the observed behavior represents a previously
unknown attack pattern, as in 155. For example, in some
embodiments, the information layer agent may be configured
to determine if resource usage or trends therein are a likely
indicator of a previously unknown attack pattern (e.g.,
according to fuZZy rules; Quality of Service policies, autho
rization/security policies, or other policies; and/or a cluster
ing analysis to determine similarities with known attack pat
terns). If it is determined that the probability that the observed
behavior indicates an attack is high, shown as the positive exit
from 180, the method may continue as above, with the infor
mation layer selecting an appropriate response, taking action
on the current victim node and, in some embodiments, on
potential victim nodes, as in 145,150, and 160 of FIG. 1. For
example, the information layer may select an attack discovery
algorithm arbitrarily or in accordance with a response Suit
able for a similar known attack pattern, etc. If it is determined
that the probability that the observed behavior indicates an
attack is low (e.g., that it is likely that the observed behavior
indicates normal operation for the given workload), shown as

Apr. 1, 2010

the negative exit from 180, operation may continue, shown in
this example as 185 and the feedback to 120.
0048. As described above, the methods for identification
and prevention/mitigation of DDoS attacks may in some
embodiments be implemented in a distributed environment
by agents at a data collection layer, an information layer, and
a knowledge layer. FIG. 2 illustrates one such distributed
system, according to one embodiment. In this example, the
distributed system includes a central node 210, two master
nodes 240, and four compute nodes 260, although the archi
tecture may be arbitrarily scaled and/or partitioned differ
ently, in different embodiments. In this example, each com
pute node 260 includes a data collection agent 275,
implemented as program instructions stored in a memory 270
and executable on the respective compute node 260 to collect
and, in some embodiments, discretize data relevant to that
node. In other embodiments, a data collection agent 275 may
include one or more sensors (e.g., hardware elements config
ured to collect data) in addition to, or instead of. Such program
instructions.

0049. In the example illustrated in FIG. 2, data collection
agents 275 of each compute node 260 may send event driven
messages to one of the master nodes 240 using peer-to-peer
platform protocols, although other communication protocols
may be employed in other embodiments. In this example,
each of the master nodes 240 includes an information layer
agent 245, which may be implemented as program instruc
tions stored in a memory 250 and executable on the respective
master node 240 to apply rule-based methods to determine
the probability that a detected event indicates a current or
imminent attack, to classify the attack (e.g., according to
information stored in knowledge base 230), and/or to apply
reinforcement learning methods to update the membership
functions, attack trees, overlay networks, attack discovery
and classification techniques, and/or attack responses stored
in knowledge base 230. In this example, knowledge base 230
is included in memory 220 of central node 210, and is
accessed using messages exchanged with information layer
agents 245 on master nodes 240, according to peer-to-peer
platform protocols. For example, information layer agent
245a may access knowledge base 230 to determine if
observed behavior reported by data collection agent 275b
matches a known attack pattern or if it indicates a previously
unknown attack pattern. The information layer agent 245a
may return an indication of the probability of an attack (e.g.,
in messages, according to the peer-to-peer platform proto
cols) to the compute node 260 and/or to a central node (e.g.,
central node 210), in various embodiments. Information layer
agent 245a may also send messages to one or more of com
pute nodes 260 in response to determining that an attack is
underway (e.g., to send an alarm, warning or other notifica
tion message, or to initiate the taking of an action on the node
to prevent and/or mitigate the effects of the attack), and/or
may send messages to central node 210 (e.g., to update
knowledge base 230 in response to feedback, system configu
ration or workload changes, or observed results of an action
taken). Messages may also be exchanged in order to build
and/or update the attack tree in response to attack detection
(e.g., using multi-cast inquiries). In this example, memory
220 of central node 210 also includes programs instructions
225, executable on central node 210 to maintain and/or
update knowledge base 230, or to perform other functionality,
in different embodiments.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 18 of 36

US 2010/0082513 A1

0050. Note that while the example illustrated in FIG. 2
includes data collection agents 275 and information layer
agents 245 implemented as computer-executable program
instructions stored in a memory, in other embodiments, data
collection agents 275 and/or information layer agents 245
may be implemented in hardware (e.g., in one or more field
programmable gate array components, or FPGAs), or in a
combination of hardware and Software elements configured
to provide the functionality described herein.
0051. A method for applying reinforcement learning tech
niques to DDoS identification (e.g., attack class determina
tion) is illustrated in FIG.3, according to one embodiment. In
this example, an attack class determination is initiated, as in
300. For example, an attack probability determination (e.g.,
execution of a membership function implemented in Soft
ware, hardware, or a combination thereof) may be initiated in
response to an information layer agent receiving one or more
event messages from a data collection agent in a distributed
system. As described above, the information layer agent may
access a knowledge base and may apply applicable rules and
policies to determine if the event indicates a known attack
pattern or a previously unknown attack pattern, as in 310.
0052. In the example illustrated in FIG. 3, the information
layer agent returns a result of the determination, as in 320, and
initiates the taking of appropriate action(s). Note that, unlike
traditional attack identification techniques, the methods
described herein may not return a binary classification of the
observed behavior (e.g., a binary indication that the observed
behavior is or is not representative of an attack), but may
return an indication of the probability that an attack is in
progress and/or is imminent in the distributed system. As
described herein, this probability may be determined depen
dent on computations involving weighted parameter values
(e.g., CPU usage, I/O usage, memory usage, resource trends),
on workload profiles (e.g., this behavior is normal for this
application, but not for that one), or other variables, and may
involve identification of known attack patterns or a prediction
that observed behavior is indicative of a previously unknown
attack pattern, in Some embodiments. For previously
unknown attack patterns, the information layer may apply a
clustering analysis in an attempt to classify the new attack
pattern, as described in more detail below. The information
layer may selectaresponse to the new attack pattern based on
this classification attempt (which may be refined later using
RL techniques).
0053. In the example illustrated in FIG. 3, feedback may
be received regarding the accuracy of the attack class deter
mination, as in 330. In some embodiments, agents on one or
more nodes may continue to collect data after receiving an
indication of a probable attack, and this data may be used to
determine that an attack did or did not take place. For
example, trend data collected on a suspected victim node may
show that a sudden increase in resource usage did not consti
tute the beginning of a DDoS attack, but was merely a tem
porary spike in resource usage by an authorized application.
In another example, data collected following an indication of
a probable attack may show that an attack was, in deed, in
progress, but that it was mitigated or otherwise contained
through actions initiated in response to the attack prediction
(e.g., by throttling back the available resources on victim
nodes and/or potential victim nodes). In some embodiments,
it may be possible for an information layer agent to autono
mously determine whether an attack classification or predic

Apr. 1, 2010

tion was accurate in 90% of cases or more, while any remain
ing predictions may be validated or invalidated through
human interaction.

0054. In this example, in response to feedback on the
accuracy of the attack classification, the information layer
agent may update the knowledge base, as in 340. In some
embodiments, the information layer agent may apply rein
forcement learning techniques, dependent on the received
feedback, to tune the membership functions and/or other con
tents of the knowledge base relative to a known attack pattern,
e.g., to modify parameter values (e.g., boundary values)
reported to a membership function, to modify the number
and/or type of parameters used in a membership function
computation, to promote rules found to correlate well with
actual attacks, or to demote rules found to correlate poorly
with actual attacks, in different embodiments.
0055 For example, RL techniques may be used to deter
mine that one or more other parameters may be needed to
better distinguish between “normal' behavior and an attack
pattern, or distinguish between various attack patterns. In
another example, RL techniques may be used to tune a mem
bership function so that it maps a higher or lower attack
probability value to a given state value. In various embodi
ments, the information layer agent may use reinforcement
learning techniques to add information to the knowledge base
relative to known attack patterns or to previously unknown
attack patterns, as described herein. In some embodiments,
received feedback may be used to update a confidence level
associated with a membership function, to change the relative
weighting of parameters used in a membership function com
putation, or to modify action(s) to be taken in response to
known and/or unknown attack patterns to better mitigate or
contain them. In some embodiments, received feedback may
be used to modify the attack discovery/classification algo
rithm to be applied to the particular attack pattern, as
described in more detail below. Note also that in response to
receiving feedback about a state change due to actions taken
at 320, the method may include taking additional action(s) at
340, according to current or modified policies and/or state
action value mappings.
0056. As previously noted, data collection agents (e.g.,
sensors) may in Some embodiments be deployed on the nodes
of a distributed computing system, and may send messages to
an information layer agent on the same or another node
including an indication of an event relevant to the data they
collect. FIG. 4 illustrates a method for this event-driven mes
saging, according to one embodiment. In this example, a data
collection agent is deployed on a distributed node, as in 400.
In some embodiments, a data collection agent may include a
sensor or other hardware element, such as an FPGA, instead
or, or in addition to various Software elements. In some
embodiments, a data collection agent may be deployed auto
matically on a node (e.g., a remote or mobile node) in
response to the node being registered in the distributed com
puting environment.
0057. In this example, the data collection agent monitors
one or more of a state of the node or of a process/thread
executing thereon, resource usage and/or trends, a workload
or throughput, or the values of other parameters, as in 410. For
example, a data collection agent may collect data using one or
more of an impStat command, aniostat command, or a Vmstat
command of the node's operating system, in one embodi
ment. As described above, the data collection agent may be
configured to transform time series data (e.g., values returned

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 19 of 36

US 2010/0082513 A1

by these commands over time) into discretely classified data,
according to programmable (or otherwise dynamically con
figurable) boundaries. For example, in one embodiment,
resource usage may be classified as “low” if it is between
0-30%, “medium-low if between 30-50%, “medium' if
between 50-70%, “medium-high” if between 70-85%, and
“high” if between 85-100%.
0058 As illustrated in FIG. 4, if the data collection agent
detects a change of state (e.g., a transition from “medium
high CPU usage to “high CPU usage), a threshold value that
is reached, or a threshold rate of change that is reached (e.g.,
in the case of a Sudden, rather than an incremental change in
resource usage is detected), it may send a message to the
information layer agent indicating this even, as in 430. In
other words, rather than collecting periodic samples and
sending them in messages to the information layer, or sending
periodic messages containing average values to the informa
tion layer, in some embodiments, only event-driven messages
(e.g., on State transitions, or Sudden changes) may be sent to
the information layer for analysis. When no such threshold or
state transition is detected, shown as the negative exit from
420, the data collection agent may continue to collect data
until such an event is detected. This is shown in FIG. 4 as the
feedback loop to 410.
0059. In various embodiments, multiple categories of
rules may be applied by data collection agents to determine if
an event has occurred for which a message should be sent to
an information layer agent. For example, in one embodiment,
rules may be directed to CPU resource usage, I/O resource
usage, memory usage, combinations of CPU resource usage,
I/O resource usage and/or memory usage, or to trends in Such
usage. In some embodiments, events may be triggered depen
dent on an expected workload for a particular application. For
example, the dynamic workload of a banking application may
exhibit a standard profile appropriate for an online transaction
load (e.g., with arrival times on the order of 1000/second)
when operating normally, and the information layer agent
may be configured to detect if the workload is very different
from the expected profile and/or if the workload suddenly
changes (e.g., if it suddenly increases to 5000/second). For
example, if the expected workload for the corresponding
nodes typically exhibits CPU usage="medium' when I/O
usage="medium', but the observed parameter values indicate
CPU usage="high' when I/O usage="medium, the informa
tion layer may apply a membership function to the observed
parameter values and may determine that the probability of a
CPU attack is 60%, in one embodiment. In some embodi
ments, the membership functions may be integrated with
intelligence data (e.g., token based identity or other security
mechanisms), and the intelligence data may be included as
additional parameters in determining the probability of an
attack.

0060 FIG. 5A illustrates a state diagram 550 for a state
machine that may be used by a data collection agent and/or
information layer agent in a storage area network to deter
mine if an event indicates a possible attack and/or to deter
mine an appropriate response to the event, according to one
embodiment. In this example, three bits may be used to
encode the State of a node. In this example, the use of a state
machine (e.g., observation of state transitions) may eliminate
the need to store previous utilization information. In this
example, the state machine may also be used to ingest stop
attributes for a resource pool and may be used to resolve
policy conflicts.

Apr. 1, 2010

0061. In the example illustrated in FIG. 5A, the state
encodings may be as follows:

OOO GOOD
OO1 RESUME
O10 WARN
O11 ALARM
100 CRITICAL
101 INIT

0062. In this example, state transitions for an agent moni
toring storage resources may be defined by the following
pseudo-code:

if previous resource usage 2 70% and current usage < 70%
Ingest Stopped
Resume(X, Ingest)
Emit(X, RESUME, logger)

if previous resource usage 2 70 and current usage < 70%
Ingest Not Stopped
Emit(x, GOOD)

if previous resource usage < 70% and current usage < 70%
State(x, GOOD)
No Rule for Overhead

if previous usage < 70% and current usage 2 70%
Emit(X, WARN, logger)
Remove(X, VTVs)

if previous usage 2 90% and 70% is current usage <90%
Emit(X, ALARM, logger)
Remove(X, VTVs)

if current usage 2 90%
Emit(x, CRITICAL, logger)
Stop(X, Ingest)
Remove(X, VTVs)

0063. In the example illustrated in FIG.5A and described
above, various notifications indicating the state of the moni
tored resource(s) (e.g., GOOD, RESUME, WARN, ALARM,
or CRITICAL) may be sent in response to a state transition, as
indicated in the “Emit’ statements above. Other actions that
may be taken in response to such state transitions include
stopping ingest, resuming ingest, and removing a node (e.g.,
a virtual tape Volume, as above, or another storage device or
other instance of a distributed resource) from the allocation
pool.
0064 FIG. 5B illustrates the design of an object that in one
embodiment may be used to represent Such a resource pool,
shown as 520. In this example, the object may include
attributes 525 of the pool, including state and utilization. In
this example, the object may include corresponding opera
tions (e.g., methods) usable to observe ('get') and/or modify
(“set') the state and utilization of the resource pool. State
transition rules for the state diagram illustrated in FIG. 5A
may be order sensitive, in some embodiments. For example,
pseudo-code corresponding to the rules for this state machine
may include:

Rule 1.1 Leave State 001, O10, 101, Enter State OOO, Good Rule
Pool (x) m (State (INIT) v State (WARN) v State (RESUME)) a

(Utilization (x) < 0.7) -> State (GOOD)
1.2 Leave State OOO, Enter State 010, Warn Rule
Pool (x) M State (GOOD) m (Utilization (x) > 0.7) -> State
(WARN)m
Emit (X, WARN, logger) a Remove(X, VTVs)

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 20 of 36

US 2010/0082513 A1

-continued

1.3 Enter State 100, Critical Rule
Pool (x) m (State (CRITICAL)) m (Utilization (x) 20.9) ->
State (CRITICAL)
a Emit(x, CRITICAL, logger) A Stop(X, Ingest) a
Remove(x VTVs)

1.4 Leave State 100, Enter State 011, Alarm Rule
Pool (x) M State (CRITICAL) m (0.7 a Utilization (x) < 0.) -->
State(ALARM) m
Emit (X, ALARM, logger) a Remove(X, VTVs)

1.5 Leave State 011, Enter State 001, Resume Rule
Pool (x) M State(ALARM) m (Utilization (x) < 0.7) ->
Resume(X, Ingest)^

State (RESUME) m Emit (x, RESUME, logger)

0065. As previously noted, in some embodiments, a vir
tual overlay network (e.g., a mobile aware overlay detection
network) may be constructed and used in attack tree discov
ery and flood control. Use of a virtual overlay network may in
Some embodiments minimize data transmissions between
layers and/or across domains. The overlay network may
include lightweight agents (e.g., for remote, Small, and/or
mobile devices), a distributed data structure for associating
neighbor Vertices, and an attack policy of flood control action
mapping within an attack state space. A generic event drive
model may be employed in the attack tree discovery and may
be independent of layer3 and 4 protocols. Workload learning,
(e.g., based on Q learning), and fair share scheduling algo
rithms may be employed in attack tree discovery and/or flood
control.

0.066. As noted above, in some embodiments, an event
driven model may be established in order to probe the routes
of the attack path discovery. In order to efficiently identify
attack paths for launching attacks towards the targeted victim
nodes, an asynchronous event driven model may be used, as
described herein. In some embodiments, attack discovery
packets may be asynchronous and reliable, and events may be
eventually published or consumed within an expected time
delay at a discrete time t. This discrete time may in some
embodiments represent real time rather than virtual time. In
other words, if an event occurs at time t, the probability of the
same event occurring at t+Ö goes to Zero, where Ö->OO. In
Some embodiments nodes may always begin asynchronously
and may wake up their closest neighbors.
0067. In one embodiment, a distributed environment may
be represented as a set of computing resources located at the
nodes of a network graph, G=(V, E). In this example, a vertex
is a virtual environment identified within an attack tree that
may be used as a bookkeeping data structure, and an edge is
the attack path or knowledge to another attacked vertex. The
edge between an attacked vertex u and another vertex v, where
u,veV, may be represented as {u, V}. In this example, W may
denote the attack, and may represent a finite set of processes
for targeted resources (pl. p. ps. ... pa).
0068. The weight, weight (i,j), of an attacked path may be
computed as a function of the number of edges that a node has
and the load of the node. The load may be represented as li,
j), which may denote the shortest path between a vertex i and
a vertex j in G, where i,jeV. The load may also be quantified
by the system characteristics via a neutral network. In this
example, BAD may represent a finite set of virtual attacked
nodes. A specific attacked environment may be utilized as a
resource pool as it is assigned to the environment. An attacked
environment may be created on a vertex.

Apr. 1, 2010

0069 {b,b,b,...b.; for every i, 1sisn, a set bePBAD.
0070 FIG. 6 illustrates an event driven model for attack
tree discovery, according to one embodiment. In other words,
FIG. 6 illustrates an overlay of a network graph, in which
virtual environments Z, Z, Z, Z, and Z, are neighbors. In
this example, a set of attack discovery LINK channels are
used to process transmissions for set II. In this example, an
attack tree discovery process dip, may be associated with each
nodei, ieV. In this example, a set of attack propagation events
II, may denote a policy mapping of flood control actions and
state from victim nodes to the neighbors that have shared
edges with the vertex i representing the victims. For every i,
lsism, a set LeTI. Conceptually, an event may be thought of
as a set of these actions. In this example, for an attack discov
ery action TL, the output of the discovery action is formed as a
non-blocking call publish (II), (shown in FIG. 6 as a path
from 602 to 608), and the input of a discovery action may be
formed as a non-blocking call consume (II), (not shown).
(0071. In the example illustrated in FIG. 6, a msg, (e.g.,
publish (II)) may represent a discovery control packet over
a LINK channel as an event at of the attack tree occurring over
an edge i,j for triggering a state transition. Both a victim alert
and an attack tree discovery message may initiate a state
transition. Hence, as an event at occurs, a msg, may be
denoted by an augmented BNF generic messaging set and the
attack discovery protocol MADP
0072 An attack path discovery and classification algo
rithm may be configured to discover a set of virtual environ
ments, referred to as BAD, in which a set of resources is
attacked. The event driven model may represent event based
control flow in parallel and/or distributed computing systems.
In some embodiments, traditional communication packets
may be modeled as events of flow control, and events may be
triggered by messages passing between two processes or
between threads within processes. Event based messaging
may in some embodiments be based on a platform indepen
dent data exchange protocol, and established on platform
neutral channels, such as a socket, pipe, named pipe, etc. In
various embodiments, messages may be encapsulated within
an event based data exchange in a synchronous or asynchro
nous mode. An asynchronous event messaging mode may
facilitate a priority queue and scheduling that is scalable and
allows good throughput in the case of a large-scale resource
discovery, while decoupling message payloads with layer3
and layer 4 protocols.
0073. In some embodiments, a state transition may be
triggered by a messaging exchange and/or by an intrusion
alert, and attack discovery routing may be modeled to con
struct an event driven model for event publishing and con
Sumption. The publication and consumption pattern may rep
resent the life cycle of an event, as it is processed. To support
mobility awareness of the messaging model, asymmetric
communication links may be used in the event model, rather
than traditional infrastructure based handshaking (e.g., bidi
rectional three-way handshaking using REQ, SYNC, and
ACK). Within the overlay network, power nodes may act as
routing nodes, even without dedicated mobile routers, in
Some embodiments. In Such embodiments, overlay elements
may deliver packets via a mobile Internet Protocol (IP) or
dynamic host configuration protocol (DHCP) managed fixed
infrastructure.

0074. In one embodiment, a workload learning and fair
scheduling algorithm operation may be defined over a parent
node to generate an event (II) as follows:

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 21 of 36

US 2010/0082513 A1

node - parent (node), where node re, e neighbors
II node - usage *C.; where C. - share share,

0075. In this example, the step size, m, is the learning ratio
used in adjusting an estimated weight of a node i from a
previously estimated weight and the expected load of the
node.
0.076 A policy action of the scheduling and planning algo
rithm may in some embodiments distribute the load of packet
deliveries among the vertices along an attack path. The tar
geted nodes may be simultaneously and asynchronously
requested to ensure fairness amongst the parties utilizing the
resources. In some embodiments, two levels of sharing may
be supported. On the top level, each virtual execution envi
ronment may compete for resource shares based on the ratio
of the number of shares per execution environment and the
total number of shares per node. In some embodiments, the
ratio may be a deterministic factor for load allocation. In the
example described above, the value of a flood control action
a in an attack states may be defined by a policy J, as follows:

0077. In order to support a large population attack state
space of unknown depth, a pervasive data structure may in
Some embodiments be used for computation procedure analy
sis and design. In such embodiments, as a victim node is
alarmed, the attacked virtual environment b, where bePAD
is sufficed with an efficient graph and tree algorithm via a
discovery process dp, hosted on a victim vertex i whereieV in
G. In addition, the discovery process may communicate over
the directed edges and have no foreknowledge about the size,
diameter, and input distribution of the attack tree of a mobile
ad-hoc peer-to-peer network.
0078. In G, for a set of V, for which the size is VI, a
strategy may be applied in order to select a next node (repre
sented using a bookkeeping data structure) to expand from a
fringe (a set of explored nodes). The data structure may
present a node including a state, parent node, action, path,
cost, and/or depth.
0079 Extending a graph tree, a formulated attack path
discovery algorithm may be used to locate a set of paths to a
victim node from which an attacker launches DoS attacks to
overwhelm victim resources. In some embodiments, an
attack tree discovery algorithm operation may perform a
lookup of all vertices and some edges of a networking range,
which may include a set of selected edges forming a tree
spanning attacked vertices and paths. Each discovery process
may ultimately return the parent routing nodes in an attack
tree. Simultaneously, a Q learning plan may perform sched
uling of a workload to Suboptimal paths in order to implement
a flood control mechanism. A distributed computing proce
dure may be further described (in pseudo-code) using the
example task below:

DISCOVER-ATTACK (node) return done, cutoff
if first-call then INIT-STATE (node.)
if node type is mode (node) then

C8Se.

victim node: result - PUBLISH(II)

Apr. 1, 2010

-continued

C8Se.

edge node: result - CONTROL(node.)
C8Se.

both: result - PUBLISH(II) A CONTROL(node.)
if done A cutoff return failure
return done

PUBLISH(II) return done, failure
m - construct(II)
result - publish (m)
return result

CONTROL(nodei) return done, failure | cutoff
for depth - 0, goes -> co do
if DEPTH(node.) = depth then return cutoff
else for each neighbors do
result - LEARN-SHARE(node)
return result

0080. In some embodiments, a unique host identifier may
be used in a naming scheme without knowledge of node
indices within a neighborhood. To formulate parallelism, a
state space may in some embodiments be distributed among
processes. Using an unstructured graph, static partitioning
may result in an unbalanced workload. This may be due to the
variation of the partitions of a discovery space, and/or to
overhead associated with assigning each process to each ver
tex. In one embodiment, the distribution may include parti
tioning a search space to each process with each disjoint
Vertex. In this example, as a goal node is identified, all pro
cesses may terminate the discovery.
I0081. An overlay network for attack discovery and flood
control may in Some embodiments sit on top of a physical
network, and may cross VLANs, Subnets, domains, etc., each
of which may have their own policies. As noted above, such
an overlay network may be applied at or above application
layer 7, rather than attransport layer 2 or 3, in various embodi
mentS.

I0082 Heterogeneous computing is one of the common
characteristics typically found within mobile ad-hoc peer-to
peer task environments. Therefore, such environments
require an attack discovery system that is adaptive to different
hardware architecture platforms, operating systems, and
mobile devices. In addition to the traditional end-to-end con
siderations in System design space, the fundamental issues of
mobile ad-hoc peer-to-peer networks suggest design consid
erations that are applicable to a mobile attack discovery pro
tocol (MADP). Traditional operating system-specific kernel
space module analysis and design on Vendor-specific plat
forms are challenged by the above requirements. Hence, a
layer 7 distributed attack discovery methodology and flood
control analysis, as described herein, may be well suited for
attack identification and prevention in Such environments. In
Some embodiments, bit operations may be applied in the
system design. By aligning these system designs with the
algorithmic operations design, a variety of programming lan
guages (e.g., from advanced languages to firmware) may be
adopted for implementation. For example, in some embodi
ments, the JavaTM programming language may be adopted. In
some embodiments (e.g., those in which the variability of
infrastructure security policies may be a concern), an attack
tree discovery protocol design may be implemented using an
extension of HTTP 1.1 for event communications and
exchanges via firewall policies, and normal UDP tunneling
along core, edge or source routing and processing nodes.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 22 of 36

US 2010/0082513 A1

0083) To enable a mobile attack discovery agent (MADA)
on a mobile node, a carrier may send short messages to mobile
subscribers. In this way, a MADA may be deployed to a
mobile device. In some embodiments, a MADA may be a
MIDP 2.0 compliant application. In such embodiments, upon
completion of a download, a content delivery service may be
used to notify a routing node within an overlay network. As
the MADA is enabled on a mobile device, the node receiving
a notification may advertise its presence to a MADA via a
mobile attack discovery protocol (MADP). As previously
noted, MADP may be implemented as an extension of HTTP
1.1, support of which is mandatory for any MIDP compliant
application. A MADP event message inherits the HTTP 1.1
message headers within a message body. Thus, a mobile node
hosting a MADA may be invited to participate in an overlay
network for a mobile attack discovery. In some embodiments
a mobile node may manage the life cycle of a MADA. In such
embodiments, as a specific victim event is alarmed, a MADP
event message may be initiated for an attack tree discovery.
For a large population attack discovery, both a synchronous
protocol (e.g., according to the synchronous nature of HTTP)
and asynchronous attack identification and flood control may
be designed and implemented. Specifically, an asynchronous
attack tree discovery may be performed through a push of
notifications upon a path discovery of a result set, or by
polling of an identification message of a resource resolution,
in different embodiments. As a path expansion, a Q learning
and a fair share scheduling based policy action may control a
flood attack in order to ensure the resilience of the system in
response to a DoS attack.
0084. In some embodiments, if a MADA accepts an invi
tation from a node within an overlay network, it may join the
overlay network. When a MADA joins the overlay network, a
virtual node (VNode) may be created on the node that origi
nated the invitation (e.g., a more powerful node than the
mobile devices on the network). Conversely, a mobile node
may in some embodiments leave the overlay network by
powering off or by disabling the MADA service, in different
embodiments. A mobile node may in Some embodiments
understand its current location within an overlay network
according to the node hosting the associated VNode. In some
embodiments, a VNode on the overlay network may be used
for learning and planning of packet scheduling.
0085. In general, a dynamic attack detection overlay envi
ronment may be formed for a large-scale distributed attack
discovery in an environment with distributed processor,
memory, disk and/or I/O allocations. However, the proposed
MADA differs from traditional DDoS systems in part in that
it may serve as a truly distributed attack discovery mecha
nism, rather than as a central defensive approach. In some
embodiments, a MADA may virtualize mobile nodes within
an overlay networkin order to reduce the cost of an attack tree
search and to ensure Survivability during the disconnections
from learning for scheduling.
I0086 FIG. 7 illustrates the logical architecture of a detec
tion overlay network, according to one embodiment. In this
example, mobile nodes 702 and 704 have joined an overlay
network 706, and are represented therein by virtual nodes 721
and 722, respectively. In this example, data structure 708 may
represents a mapping of the nodes of the overlay network and
their neighbors. In this example, mobile nodes 702 and 704
include mobile discovery processes mdp, and mdp, respec
tively, while Node2 includes a discovery process dpa.

Apr. 1, 2010

I0087. Unlike with previous machine learning approaches
to intrusion detection, the system and methods described
herein may not assume a static architecture (e.g., one having
a fixed topology with a fixed number of input nodes, output
node, and hidden nodes). FIG. 8 illustrates a method for
modifying attack trees and/or overlay networks, according to
one such embodiment. In this example, an attack tree and/or
overlay network may be constructed for a given distributed
system (e.g., a grid computing environment, mobile ad-hoc
network, etc.), as in 800. For example, an initial attack tree
and/or overlay network may be constructed based on a
known, expected, or assumed system configuration, a known
or assumed workload, on simulation or training data, or arbi
trarily, in different embodiments. At some point, the system
may receive feedback indicating a change in the system con
figuration, the workload, and/or the State of one or more nodes
in the system, as in 810. For example, event driven messages
received from data collection agents, or messages received in
response to an attack class discovery probe may indicate that
a node has been attacked, added, or shut down, or that the
workload has increased or decreased, or otherwise exhibits a
change in its characteristics. In response to this feedback, the
system may be configured to automatically modify the attack
tree and/or overlay network for the system, dependent on the
change, as in 820. In some embodiments, reinforcement
learning techniques may be applied to the building and updat
ing of attack trees and/or the overlay networks used in attack
discovery and/or flood control. For example, when the value
of a state of one of the nodes of the system changes, a state
action value mapping for the system may indicate that a
change should be made to the attack tree and/or overlay
network

0088. With common infrastructure constraints, a fixed
infrastructure based on layer 3, 4, and multi-cast protocols
may not be suitable for use in mobile ad-hoc networks due to
firewall policies and other security restrictions. In addition,
even within a fixed infrastructure network, a multi-cast pro
tocol may not be scalable to a large space attacktree discovery
due, e.g., to the overhead of event messaging and limited
bandwidth. On the other hand, HTTP is an infrastructure
friendly protocol and a universal protocol Supported by a
majority of mobile devices and data center computation
resources from high-end servers to low-end desktop comput
ers, laptop computers, routing devices, and PDAs. Therefore,
in some embodiments, MADP (a distributed attack tree dis
covery protocol) may be implemented as an extension of
HTTP 1.1, using an attack discovery specific defined message
header and body that are embedded within an HTTP message
body. In some embodiments, HTTP POST methods may be
used to transmit packets over mobile networks. In some
embodiments, MRDP 1.0 may be used as a synchronous and
an asynchronous event messaging protocol in order to serve a
large population of attack discovery network. An event mes
sage exchange for an attack tree discovery life cycle may
include the following: agent invitation, node registration, re
registration, attack alert, and discovery.
I0089. In some embodiments, the MADP may use a
“<majord.<minors' numbering scheme to indicate protocol
version control. In Such embodiments, adding event compo
nents without the impact of communication behavior may not
cause a version update. In one embodiment, the <major
number may be incremented in the case of format change of
an event within the protocol, and the <minor> number may be

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 23 of 36

US 2010/0082513 A1

incremented when a change may add to the event semantics
and/or when it indicates additional capabilities of a sender.
0090. In some embodiments, MADPevents consist of two
preliminary event types, which represent the requests from
publishers to consumers and responses from consumers to
publishers. These events may be specified using an aug
mented BNF format, as shown below:

(0091 MADP-event request; MADP/1.0 events
0092. Both publisher and consumer messages may use a
generic event model to transmit the payload of a message. An
event may be composed of a header and an event body. Since
in some embodiments a MADP is decoupled with the trans
port layer, a BNF event definition may be applicable to HTTP,
UDP, etc. A MADP 1.0 event may be embedded within an
event body of a generic event format. A robust MADP event
publishing may ignore any empty line received as it being
processed (i.e., as it is reading a protocol stream). A sequence
ID may be utilized for an event tracking. A checksum may be
used for an integrity check over energy saving nodes. A
MADP/S may be built upon a secure socket based transport
layer security. A sample attack alert event is shown using the
pseudo-code below:

event-body = (victim-address, event-lifetime, seq., reserved)
victim-address = *OCTET
event-lifetime = *OCTET
seq = *OCTET
reserved = *OCTET
OCTET = <any 8 bit sequence of data

0093. Anomaly attacks are stochastic processes, which
may generate random state transitions of information struc
ture. Attack prevention may involve observation of relative
abrupt changes, which are stochastic within an infinite time
horizon. In the setting of dynamic task environments, attack
prevention is a dynamic problem, which may be further for
mulated as either an objective function parametric optimiza
tion problem or a dynamic action state control optimization
problem.
0094 Parametric function optimization can be easily
implemented for function evaluation with fixed parameters.
However, parametric function optimization may lead to high
dimensionality, and searching over the entire solution space
may result in slow convergence. Also, control optimization
may need to be incorporated in the middle of trajectories.
Furthermore, each problem may present it own challenges.
Prevention actions and associated State changes form a sto
chastic decision process, which is usually probabilistic. With
Such memory-less properties, intrusion prevention may in
Some embodiments be modeled as a class of control optimi
zation problems with a semi-Markov model. Therefore,
autonomous prevention may be thought of as a state-action
control optimization problem to dynamically locate an opti
mal action in each state in the system. Since it is a memory
less process, each state transition probability may be inde
pendent of previous states but not of current state. In addition,
the transition time may not employ a unity time step.
0095. In real systems, state transition probabilities and
reward discount factors may be unknown or may be hard to
compute. Without transition probability matrices (TPM),
transition reward matrices (TRM), and transition time matri
ces (TTM) as the cornerstones of a theoretical model, autono
mous prevention may be difficult to formalize as a traditional

Apr. 1, 2010

Markov Decision Problem (MDP), which can be solved by
DP algorithms. Objective prevention function may have high
dimensional random decision variables in a large state space.
It may be hard to obtain the probability mass or distribution
function of these parameters. Furthermore, a given a distri
bution function may not have closed form solutions. With
distribution of inbound, random system decision variables,
estimated transition probability and reward matrices may
generate TPMs and TRMs via simulators. The solution may
not scale to large State and solution spaces. For large State
spaces, state-aggregation may be required to approximate the
model with a manageable number of states.
0096. The goal of autonomous attack prevention is to
sense and evaluate abrupt changes with fixed or dynamic
minimal average delay to minimize the false alarm ratio. As
rewards are returned as feedback to a SMDP task environ
ment, the autonomous methods described herein may be used
to predict resource contention and dependability to ensure
service Survivability. Hence, achievement of the goal may in
Some embodiments be dependent on performance metrics:
the rate of false alarms, the intrusion detection rate, and the
delay of detection. An augmented receiver operating charac
teristic (ROC) curve may be used to model the delay of
detection. For an infinite horizon problem, along run average
reward may be used as a performance metric. A relaxed
version of the problem may result in a minimum average
delay of detection actions for a given fixed false alarm rate.
0097. In one example, an MDP for a single agent may be
modeled by a quadruple (S.; A. R. T.) consisting of

0098. A finite set of states S.; where seS
0099. A finite set of actions A: where aeA
01.00. A reward function c: SXAxS->R
0101. A state transition function: T: SXA->PD(S),
which maps the agent's current state and action into a set
of probability distribution over inputs.

States Q:
0102 x1: type of machine learning networks
0.103 X2: input nodes of learning networks
0.104 X3: output nodes of learning networks
0105 x4: hidden layer of learning networks
0106 X5: numeric weight matrix of learning networks
0107 x6: Q factors of ROC values

0108. This conservative state-space definition satisfies the
semi-Markov properties. However, it may result in a state
space that is too large to approximate in practice. With RL
optimization, prevention rewards may be treated as State val
ues learned by interactions. Therefore, with RL methods,
optimal policies may be reached without an explicit search
over all possible sequence of states and actions. Hence,
dynamic prevention problems may be resolved with large and
even infinite space with function approximation, in some
embodiments. Consequently, the dynamic prevention prob
lem may be formulated as an RL and DP based SMDP prob
lem with model-free prevention function approximation. In
Some embodiments, the attack classification problem may be
divided into two Sub-problems (e.g., attack prediction and
attack class discovery), as described below.
0109 Attack class prediction may be used to map a dis
crete attack feature space to labeled attack classes. Specifi
cally, the attack class prediction problem may involve assign
ing data samples to a specific class category. In some
embodiments, this class prediction problem may be formu
lated as a computation problem to derive class predictors for

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 24 of 36

US 2010/0082513 A1

unknown classes from those of known classes using machine
learning in the task environment.
0110. In some embodiments, a task environment may
exhibit the following properties with respect to attack class
prediction:

0111. The class prediction process may include a set of
training samples.

0112 Classification may be completely dependent on
the current feature extraction and attribute values.
Therefore, the task environment may be deterministic.

0113. The task environment may be a discrete task envi
ronment having a set of discrete training and incoming
datasets.

0114. The class prediction process may in some embodi
ments be dependent on the following properties:

0115 state: A classification state specified by sc/as, spe
cifically, the classification assignment of a data sample
into a labeled class type.

0116 performance: An augmented ROC curve (e.g.,
augmented to include the delay of prediction) may be
used for machine learning performance measurement.

0117. In one example, the problem formulation may be
dependent on the following properties:

0118 states: A finite set of feature extracted training
samples with attack attribute values. For a sample
dataset of size k, there are 42xk possible predictors for
the learning attack classification state space. Since the
ratio of dimensionality is k+42, this represents a large
sample of medium dimension. In some embodiments,
the class prediction problem may be divided into two
Sub-problems: an attribute or instance selection prob
lem, and a predictor learning problem. The attribute
selection problem may involve discovery of the attack
features, which may be strongly related to class distinc
tion. Consequently, the class prediction problem may be
transformed into an instance or attribution selection
problem, and a learning prediction upon the selected
samples.

0119 initial state: In this example, there are 75 MB
attack attribute values for 42 attribute samples. In this
example, 4 labeled classes for the samples are itemized
within Attribute-Relation File Format (arff) files.

I0120 goal state: Classification predictors have been
discovered and a classification model has been to cat
egorize the samples into the classes.

I0121 Goal Test(): The classification should align the
performance function with the ROC curve. For conve
nience, AUC, the area under the ROC curve, is selected
for performance measurement. The AUC should be
greater than 09.

0.122 Classification Cost: This may represent the delay
associated with algorithmic complexities.

0123. The class prediction problem may in some embodi
ments be formulated as an attribute selection problem and a
predictor learning problem upon selected attributes of large
samples with medium dimensionality. Large samples may be
used to learn and test the prediction.
0.124. Attack class discovery by attack attributes may in
Some embodiments involve the classification of samples into
different groups. The training datasets may be partitioned into
Sub-sets so that each cluster shares common traits, which may
be represented by extracted feature sets. Attack class discov
ery may involve the grouping of data samples into specific
class categories that represent not only current data clusters

Apr. 1, 2010

but also unknown classes. In some embodiments, this attack
class discovery problem may be formulated as a computation
problem to derive cluster predictors for unknown classes
from those of known classes.

0.125. In some embodiments, a task environment formula
tion may be associated with the following environment prop
erties:

0.126 The clustering process has a set of percepts and
training samples.

0127. Since clustering is completely dependent on the
current feature extraction and attack attribute values, it is
a deterministic task environment.

0128. The environment is a discrete task environment
with a set of discrete training and incoming datasets.

I0129. In some embodiments, goal formulation may be
associated with the following goal properties:

0.130 state: A clustering State specified by S. Spe
cifically, this may represent the cluster classification of
given data samples into groups.

0131 performance: The receive operating characteris
tics (ROC) curve has been proposed in literature for
machine learning performance measurement. In some
embodiments, an ROC curve augmented to include the
delay of prediction may be employed.

0.132. In one example, the problem formulation may be
dependent on the following properties:

0.133 states: A finite set of feature extracted training
samples with attack attribute values. For a sample
dataset of size k, there are 42xk possible predictors for
the learning attack classification state space. Since the
ratio of dimensionality is k+42, this represents a large
sample of medium dimension. In some embodiments,
the class prediction problem may be divided into two
Sub-problems: an attribute or instance selection prob
lem, and a predictor learning problem. The attribute
selection problem may involve discovery of the attack
features, which may be strongly related to class distinc
tion. Consequently, the class prediction problem may be
transformed into an instance or attribution selection
problem, and a learning prediction upon the selected
samples.

0.134 initial state: In this example, there are 42 attribute
values of samples. The labeled classes for the samples
may be listed within the arff files.

0.135 goal state: Classification predictors have been
discovered and a classification model has been to cat
egorize the samples into the classes. Possible unknown
types are identified, along with the proposed algorithms
and data structures.

0.136 Goal Test(): The clustering should align the per
formance function with the ROC curve that is greater
than 09.

0.137 Clustering Cost: This may represent the delay
associated with algorithmic complexities.

0.138 Class discovery may be formulated as instance or
attribute selection problem and a cluster learning problem
upon selected attributes of Small samples with high dimen
sionality.
0.139. For prevention action control optimization, MDP
techniques may yield optimal solutions on a control optimi
Zation problem, and may be employed along with additional

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 25 of 36

US 2010/0082513 A1

non-linear-programming methods in Stochastic dynamic pro
gramming (e.g., value and policy iterations). However, for a
complex system, it may be difficult to construct the theoreti
cal model required for MDP formulation. In some embodi
ments, RLtechniques may be employed in choosing a scheme
for function approximation, as described in more detail
below.

0140. As a random variable, the expected immediate
reward of a state transition with action a from states, to state
s, may be defined as:

sieS

0141. In this example, p(si; a. s.) represents the long run
transition probability from states, to states, when MDP is
running with action a selected in States, S denotes a set of
decision states in the sample space, and r(s, a. s.) represents
the immediate reward earned from states, to states,
0142. If a deterministic stationary policy. It is followed. It

(S,) is the action that will be selected in states. The average
reward associated with policy at may be derived as:

rt(s) = Er(t(s)) = X. p(Si)r(Si, (7 (Si)
sieS

0143. In this example. It represents an n-tuple associated
with n states, p(s) represents the infinitely long run transition
probability of state i when MDP is running with the policy at
followed, S denotes a set of decision states in the sample
space, and under policy L(si), r(s; L (s)) denotes the expected
immediate reward earned in the states, when action u(s) is
selected in state i.

0144. Using the above equation, optimal policies may in
some embodiments be evaluated with the maximum rewards.
Therefore, the performance objective function described
above may provide a conceptual model for control optimiza
tion. To identify the optimal action value and associated
policy, the transition probability matrices and transition
reward matrices associated with each policy may be com
puted to evaluate the objective performance metrics resulted
from each policy. This may limit the solution to small state
spaces due to the exponential computation for mn (i.e., in
states and m actions in each state) introduced by the concep
tual model described above. To optimize controls, DP algo
rithms may be used to solve the MDP problems, in some
embodiments. For example, by solving Bellman equations,
the value components of a value function vector may be
utilized to locate the optimal actions or policies. Various
forms of Bellman equations may be used to resolve MDP
problems, in different embodiments. The Bellman equation
for a given policy in the average reward context may require
k iterations of evaluation on linear equations in which each
policy is selected in the iteration to derive the optimal poli
cies. Value iteration is anotherform of Bellman equations that
may not require solving any equation. Therefore has evolved
as a pillar of RL algorithms.

Apr. 1, 2010

(0145
reward:

From Bellman optimality equation for average

V (S) = max
aeA(s),se S

0.146
0147

s, followed by policy
0.148 V*(s) denotes the element of value function vec

-e

tor V associated with optimal policy for states,
10149 p(S, a. s.) denotes the transition probability from

states, to states, under action a.
(0150 r(s.a. s.) denotes the expected immediate reward

in states, as action a is taken
0151 p denotes the average reward associated with
the optimal policy.

0152 To resolve the value bound problem, relative value
interaction may be employed. In the k" interaction:

In this equation:
A(s) denotes the finite set of actions taken in State

r(Si, a) - p +
W

W. (S;) = - V., (S; k+1(Si) as Ees X. p(Si, a, Si) Vi (Si) - (Si)

0153. In the setting of non-unity transition times, relative
value interaction was proposed. In the k" interaction:

r(si, a) - p i(Si, a, Si)+

V-1 (Si) = max
aeA(s)...sie S

- VI (Si)

I0154) In this equation,t(s.a. s.) denotes the transition time
-e

from states, to states, followed by policy J with action a
taking place. The equation above indicates that the maximum
value V* selection may runaway from regular value iterations
with deterministic optimal path location.
0155 The above interactive conceptual model requires
intensive computation. In addition, it requires a theoretical
model. From RL literature, a provable convergent approach
has been developed for learning optimal policies in continu
ous state and action spaces under average rewards. This tech
nique has been applied to research with non-trivial configu
rations. However, there is no existing discussion on RL and
optimization within the search State and action space. The
methods described herein may employ self-organization of
an index structure for state-action value mapping for search
function numeric method approximation.
0156 Optimization of intrusion prevention may in some
embodiments be used to tune an initial prevention network
with arbitrary network parameters and architecture. The
objective of this tuning may be to obtain the approximate
optimal architecture with a given input vector for a specific
attack. The number of resulting networks may depend on the
average reward and long-term cost of the detection optimiza
tion. In various embodiments, it may be implemented as both
an online and an off-line incremental learning method to
optimize the traditional neuron based detection techniques.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 26 of 36

US 2010/0082513 A1

The tuning may be thought of as a reinforcement learning
problem for optimizing neuron architecture. These methods
may exhibit the characteristics, “dynamic' and “autono
mous', as discussed below:

0157 Dynamic: Since intrusion prevention may formu
late the detection as a stochastic DP problem, it may
exhibit dynamic properties.

0158 Autonomous: To handle large state spaces and
unknown attack types, the DP problem may be trans
formed into an RL based autonomous tuning problem
(i.e., autonomous in terms of interactively tuning the
networks with programmable architecture, algorithms
and data structures).

0159 Data Reduction: To tune large data instances with
medium to high dimensional attributes, a random Subset
of sample instances may be selected by tenfold extrac
tion to avoid biased filtering. In addition, to search the
space of attribute Subset, greedy hill-climbing may be
augmented with a backtracking feature utilized for cor
relation based reduction. This data reduction technique
may result in a speedup of detection convergence over
other methods.

0160 Dynamic programming algorithms may require
computation of a theoretical model of a system based on
transition probabilities, transition rewards and transition
times. These quantities may be unknown or difficult to evalu
ate. Specifically, to obtain transition probabilities, multiple
integrals with the probability distribution functions of many
random variables may be involved in the calculation on a
complex stochastic system.
0161. Both DP and RL algorithms may have a dependency
with

X P(x),
Xst

the distributions of the random variables that govern the sys
tem behavior for a time interval t. For continuous random
variables, J. f(x)dt may be applied. However, RL tech
niques may not require the above theoretical model quantity
evaluation or estimations, but may simulate the system using
the distributions of the governing random variables. For
autonomous search, the technique may require the distribu
tion of random decision variables.
0162 RL techniques may provide near optimal solutions
without evaluation of the above quantities. As with DP tech
niques, one element of a value function vector may be asso
ciated with each state variable. An RL search algorithm may
associate each element of the value mapping vector with a
given state-action pair (i, a) as Q (i, a) for a search cost or
reward evaluation in order to derive optimal polices.
0163 Value iteration algorithms do not compute the sys
tem of linear equations. However, value iteration for MDP
may pose difficulties for Bellman optimality equation com
putations having an unknown value of the average reward
(p). For SMDP, the average reward context may involve an
approximation Solution space. However, regular DP value
iteration may become unbounded for average reward MDP.
Hence, relative value iteration may keep the operation
bounded. Due to the discounting factor, which may be hard to
measure in the real world, average reward tends to be a more
popular performance measure.

Apr. 1, 2010

0164. In some embodiments, feedback may take the form
of a discrete environmental signal. In Such embodiments,
after each action, the learning agent may receive immediate
feedback from the task environment. In one embodiment, the
immediate reinforcement reward signals re R may be as fol
lows:

0.165 r—a A penalty resulted from a wrong action
0166 r=b. A reward is granted as a target is learned
0.167 r=c The goal state is reached
0168 r=-1 The cost of any action during learning
0169 r=0.0 The default feedback signal for all non-termi
nal states

0170 As shown in the example above, moving toward the
target may be less costly than the absolute value of moving in
the wrong direction, since keeping an agent in a valid task
environment may be more important than getting to the target
(a|DcDb). Conceptually, the agent needs to learn to achieve
the goal without rewards. In other words, the absolute value of
the penalty should be significantly larger than the reward
from the excepted move. The agent may be required to stay in
the task environment to move toward the goal state. However,
the Sooner an action is rewarded, the Sooner the agent may
learn. In some embodiments, the cost of moving may be
measured by a negative unit reward from the task environ
ment. It may be larger than the reward from getting to the
correct position, so that the steps considered in the search
evaluation achieve the minimized path (0<b<c-1).
0171 To further relax the large stages, an infinite horizon
problem may be used to representanapproximation. For large
state space, value-mapping vectors may not be stored explic
itly, but function-approximation may be used to solve the high
dimensionality problem during RL value iterations. If the
time spent in a transition is not unity, the average reward per
unit time over an infinite time horizon may be defined as:

k

E

0172
reward:

From the Bellman optimality equation for average

W

X. p(si, a, si) r(si, a, Si)+ V (s) V(S) = max
aeA(s),se S

where

(0173 V* (s) denotes the element of value function
-e

vector V associated with optimal policy for states,
(0174 p(s.a. s.) denotes the transition probability from

states, to states, under action a.
(0175 r(s.a. s.) denotes the expected immediate reward

in states, as action a is taken
0176 From Robbins-Monro algorithm, value and state
action mapping vectors in the Bellman equation may be
defined without the dependency of transition probability:

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 27 of 36

US 2010/0082513 A1

Qi, a) - (1 - a)0i, a) + ay(i, a, j) + Ali, Q(j, b)

0177. To resolve the divergent iteration problem of tradi
tional Bellman optimality equations and associated DP algo
rithms, a relative value function proposition may be utilized.

Qi, a) - (1 - a)0i, a) + ay(i, a, j) + max Q(j, b)- Q(i", a') eA(i)

0178. In this equation, a state-action pair (i, a) may be
selected arbitrarily.
0179 Since the discounting factor is usually unknown in
real world problems, and taking transition time without unity
into consideration, it may be difficult to apply the Bellman
equation to value iterations with unknown average reward of
the optimal policy p without normalization of SMDP. How
ever, by estimation of p, the above equation may be given as:

y(Si, a, Si) - pi(Si, a, Si)+
Q(Si, a) = (1 - a)9(Si, a) + a max Q(Si, b) - Q(s, a)

be A(i)

0180. In one embodiment, a dynamic machine learning
detection algorithm, as described herein, may be imple
mented, at least in part, using program instructions similar to
those illustrated by the pseudo-code below.

DYNAMIC-DETECT (s, a, limit)
Description: Dynamic detection with learning network
function approximation
INPUT: state space, action space and maximum iteration jumps
OUTPUT: solution to the problem
S., A - SUB-SPACE (S, A)
INIT-FACTORS (S, A, limit)
for each kink max do

LOCATE-ACTION (S, A, Q)
ris, tiss PROBE (sp. a. s.)
SIMULATE-ACTION (r.t. t.)
UPDATE-ACTION (Q (sa), A)
TUNE-LEARNING (Q (si; limit), A)
LOCATE-POLICY (Q (sa))

return maxQ (l, b)

0181. The methods called by the dynamic detection
method above may in one embodiment be implemented, at
least in part, using program instructions similar to those illus
trated by the pseudo-code below.

TUNE-LEARNING (s, limit)
Description: Tuning learning network function approximation
INPUT: State space, action space and maximum iteration jumps
OUTPUT: solution to the problem
w(i) - RANDOMIZE.()
SSE - 100000000000f
tolerance - RANDOMIZE.()
for each m in N do

for each in k do

Apr. 1, 2010

-continued

C. e-Am
- -

if (SSE-SSE < limit)BREAK
INIT-FACTORS (s, a, limit)

Description: Initialize values and state-action mapping,
visiting factors for state

space S
NPUT: State space, action space and maximum iteration jumps
counts max(lengthS, lengthA)
or each s, in count do

Q (s.a.) - 0
Visit (s.a.) <- O

k s- O
C. e-O.1
otal reward - O
otal time - O
p - 0
cp s- O
k limit

LOCATE-ACTION (s, a, Q)
Description: locate action with maximum Q factor value starting from

states, randomly select action a
nput: state space, action space and Q factors
Output: action a that generates maximum Q factor
s, s- RANDOMIZE(S)
a s- RANDOMIZE(A)
or eacha, in Q do

cp s- O
return a

cp s- 1
return NIL

SIMULATE-ACTION (r,t)
Description: Simulate action a
nput: immediate reward from actiona, transition time from states,

to states,
Visit (st, a) - Visit (sa) + 1
ke-k+ 1
C - A/V (st, a)

UPDATE-ACTION (Q (sa), A)
Description: Update State-Action Value Mapping
nput: State-Action Value Mapping
Output: updated State-Action Value Mapping
Q (s; a) - (1 - C) Q (s; a) + C (r.t-pt(s.a. s.) + max (Q (SA))
return Q (s.a.)

LOCATE-POLICY (Q (sa))
Description: Locate a policy with optimal State-Action Value
Mapping
nput: state space
F (p == 0)

THEN

total reward - total reward + r(s; a. s.)
total time - total time + ts, a, s.)

p - total reward/total time

0182. In the example pseudo-code above, TUNE
LEARNING may represent a machine tuning algorithm, as
described in more detail herein. In this example, INIT-FAC
TORS may represent a method usable to initialize parameters
used in dynamic machine learning, while LOCATE-ACTION
may represent a randomized algorithm used to locate an
action with the maximum State-Action value mapping. In this
example, SIMULATE-ACTION may represent a method for
simulating an action, and UPDATE-ACTION may represent
a method for updating the State-Action value mapping.
LOCATE-POLICY may represent a method a locating a
policy with optimal State-Action value mapping.
0183. As previously noted, the fundamental property of
the value function may be employed in machine tuning. This
may be used to produce an accurate estimation represented in
a tabular format with a set of tuples, which comprise states or
state-action pairs.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 28 of 36

US 2010/0082513 A1

p1 = p + f3, (y(S, at , S: 1) - p.)

0184 In the equations above, p, and 3, are positive step
parameters set to 1/t and the discount rate is ye0, 1). The
above iterative learning approach may converge to the opti
mal state-action value with discount. However, there may be
no convergence proof for this approach in cases of average
reward. In addition, the above equations may not be well
Suited for large or continuous action and state spaces.
0185. Let Q(s, a, p) approximate to Q' (s, a) based on a
linear combination of basis functions with a parameter vector

0186.
ber of real valued components, p=(p', p. ...

(p(S, a)=({p(S, a), p(S, a), ...

0187 Hence, 69(s, a, p) may represent a smooth differen
tiable function of p for all seS. The above Bellman equation
error may be estimated by the mean-squared-error over a
distribution P of inputs, as shown below.

In this example, a column vector with a fixed num
p) and

, (p's, a))

seS

MSE(p) = X(y – op)
p=l

0188 Hence, unless validation is performed, there may be
no guarantee of the network's performance. A common
approach may be to split data into two Subsets in order to
generate neurons and predict the function rewards.

(0189
and Vp, Q(p), for any function Q denotes the vector of partial
derivatives.

In this equation, C. is a positive step-size parameter,

-> 0Q(p) 09(p) 09(p)
Wp, p.9(p) (i. Öp, (2) 6p, (t)

0190. In this equation, (p(sa) is a vector of all basis
functions. Since

Vp,0(s, a, p.)=p(S, a)

the above equation may be updated as:

Apr. 1, 2010

0191 Hence, the average reward estimate may be updated
as follows:

0.192 As noted earlier, this choice may result in the sample
average method, which may be guaranteed to converge to the
true action value by the law of large numbers. A well-known
result in stochastic approximation theory yields the condi
tions about the learning rate

(2. a = co and X. ise)

which may be required to assure convergence with probabil
ity 1.
0193 As discussed earlier, real world systems and real
time measurement may have large state and action spaces
resulting in latency and errors to reach a convergent state.
Hence, autonomous search may depend on the nature of the
parameterized function approximation to generalize from a
limited Subset of current state space over a much larger Subset
of state and action space. In some embodiments, index data
structure mapping techniques may be used to lookup a state
action value function, to generalize from them, to construct a
numeric value approximation of the entire search function.
0194 The attack class discovery problem described herein
may be to group data samples in specific individual class
categories that not only represent current data clusters, but
may also be used in predicting previously unknown attack
classes.
0.195. In some embodiments, Q learning may be used to
optimize the clustering methods, e.g., by computing and com
paring various cluster methods. First of all, to reduce the
dimensionality of learning, only selected training and test
data sets may be used for class discovery. As described below,
in one evaluation, several clustering methods were evaluated
for class discovery with 100% accuracy.
0196. The k-means algorithm is an algorithm to cluster
objects based on attributes into k partitions. It attempts to find
the centers of natural clusters in the data. With the k-means
algorithm, attributes may hold a vector space. The result of
one evaluation described herein showed that k-means algo
rithms may discover attack classes with 100% accuracy, using
both training and test datasets. In this evaluation, the cluster
sum of squared errors was 0.563.
0.197 An RL iterative algorithm runs an arbitrary cluster
on data that has been passed through an arbitrary filter. Like
the cluster, the structure of the filter may be based exclusively
on the training data and test instances that are processed by
the filter without changing their structure. A filtered cluster
algorithm was found to report discovery of the attack classes
with 100% accuracy with both training and test datasets. In
this evaluation, the cluster sum of squared errors is 0.563.
0198 Clustering data uses a farthest-first algorithm to
develop a best possible heuristic to resolve k-center problem.
In this evaluation, the farthest-first algorithm was found to
report discovery of attack classes with 100% accuracy with
both training and test datasets.
0199 Hence, the evaluation resulted in a proposal to use
k-means algorithm, filtered cluster algorithm and/or a far
thest-first algorithm for attack discovery prediction, since
these algorithms demonstrated both accuracy and perfor
mance of prediction for the selected training and test datasets.
0200. A large published data repository hosting intrusion
dataset was selected to evaluate the proposed approaches for

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 29 of 36

US 2010/0082513 A1

several reasons: (1) it is a Subset of Standard dataset and is a
revision of the 1998 DARPA intrusion detection evaluation
dataset originated from MIT Lincon Labs; (2) it is a dataset
proved by researchers and has been used for the third inter
national knowledge discovery and data mining tools compe
tition and the fifth international conference on knowledge
discovery and data mining; (3) it is an intrusion prediction
specific dataset the motivation for which was to build a net
work intrusion predictive model for detect intrusions or
attacks; (3) it includes broad intrusions simulated in a military
network environment; and (4) this dataset has been prepro
cessed.
0201 In this dataset, features characterizing network traf

fic behavior have been extracted to compose each record. The
values in each data record are in two categories. One is a
symbolic value and another comprises real numbers. The data
size in this evaluation was 75 MB. The dataset contained 22
attack types that can be classified in four main intrusion
classes as shown in Table 1, below.

TABLE 1.

KDDCup99 Attack Classes

Attack Class Attack Category Attack Samples

normal normal 95278
u2r buffer overflow, 59

loadmodule, multihop,
perl, rootkit

r21 ftp write, guess passwd, 1119
imap, phf, spy, warezclient,
Warezmaster

dos back, land, neptune, pod, 391.458
Smurf, teardrop

prb ipsweep, nmap, portsweep, 4107
Satan

0202 There are two prevention datasets published with
KDDCup99 samples. The first dataset includes distinguished
distinctions, which may be used for classification training.
The second dataset, for which appearances are similar, may
be used to evaluate the correctness of the proposed class
predictors. These same two datasets were used in the evalu
ation described herein.
0203 Specifically, the first training dataset is composed of
75 MB samples. Within the training dataset, samples are
labeled as being in one of 4 classes of attacks. The class
distinction may be used for training of class prediction and
clustering techniques. The second independent test dataset
includes 45 MB samples. The test dataset includes the same
classes of samples as those in the training dataset. The class
categories in the test dataset may be used to compute the
learning performance of ROC values. For finer optimization,
attack types may be used for class labels in the tests.
0204. Using the above data samples, a data feeder was
designed and developed to transform the published datasets
into the Attribute-Relation File Format (arff) for training and
prediction. Each parameter in the dataset was formulated as a
data feature, and a value was the corresponding percept of the
variable. Hence, there were 42 attributes existing in the result
ing training.arff and test.arff relations. These were used for
training and testing purposes, respectively. In the evaluation
described herein, the two arff files may be used for attribute
selection in order to identify the sub-space of feature extrac
tion for further classification learning. The specific attribute
selection may be applied to classifier level so that compatible

Apr. 1, 2010

results may beachieved. The results show that there were only
ten attributes selected for the classification test. The selected
attributes, in this example, were protocol type, service, Src
bytes, dst bytes, wrong fragment, count, diff Srv rate, dst
host SrV count, dst host same Src port rate, and dst host
rerror rate.
0205. In the example evaluation, to conduct sample reduc
tion, multiple attribute space search and evaluation methods
are considered for attribute selection. The evaluation may
search the space of attribute subsets by greedy hill-climbing
augmented with a backtracking facility. In different embodi
ments, the method may first start with the empty set of
attributes and search forward, may start with the full set of
attributes and search backward, or may start at any point and
search in both directions. In addition, a correlation-based
feature Subset selection may be used to generate the Sub
space of selected training and test datasets. Some Such
embodiments may evaluate the worth of a subset of attributes
by the individual predictive ability of each feature along with
the degree of redundancy between them. In such embodi
ments, subsets of attributes that are highly correlated with the
classes, while having low inter-correlation, are preferred.
0206. In the example evaluation, instance selection was a
Suitable fit for the sample reduction. Instance-based sample
reduction may produce a random Subset of a dataset using
sampling with replacement or without replacement, in differ
ent embodiments. Since the original dataset fits in memory,
the number of instances in the generated dataset may be
specified as 1%, in this example. The filter may be made to
maintain the class distribution in the sub-sample or to bias the
class distribution toward a uniform distribution. After
instance sampling, randomized 1% training and test datasets
may be created for further classification prediction and clus
tering prediction.
0207. In addition to format conversion, there may be sev
eral modifications to the dataset in this evaluation:

0208 All string type attributes may be defined as nomi
nal data types.

0209 Both relation and attribute definition may be
inserted into datasets.

0210. The attack type and attack class labels may be
included in the arff files to calculate learning perfor
mance as different test cases.

0211. After attribute and instance selection is com
pleted, the above arff files may be filtered with only
selected attributes or instances inarff format. Hence, the
final classification computation may import only these
selected arff files.

0212. In this example, the selected datasets may only have
42 attack attribute name and value pairs for 4940 samples in
the training dataset and 3110 samples in the test dataset. This
may result in a significant cost reduction for learning of class
prediction and clustering.
0213. The detailed value of the sample instance is pre
sented in Table 2 below. As shown in Table 2, encoding may
be done for each symbolic data type in Table 1 in order to
apply them to initialize an arbitrary network for tuning. For
example, protocol type, Service, flag, land, logged in,
is host login, is guest login, and back may be required to be
encoded with the sample instance, which may be utilized for
classification network tuning.
0214. Although RL based interactive optimization may be
used for network tuning, the initial arbitrary learning network
may be established with heuristics of the problem specifica

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 30 of 36

US 2010/0082513 A1

tion. In this example, with 42 extracted features of network
communications, 42 input nodes may be selected to initialize
the input layer. A hidden layer may be initialized with 3
nodes, whereas output nodes may be initialized as 5 nodes for
each class of the listed attack types.
0215 Tuning may be done using RL interactive algo
rithms for optimizing the initial network architecture. The
network may be monitored and modified during training time.
In this example, the nodes in the network may all be sigmoid.
The properties that may be tuned include:

0216
0217 Learning Rate for the back-propagation algo
rithm

0218 Momentum Rate for the back-propagation algo
rithm

0219)
0220. The consequential number of errors allowed for
validation testing before the network terminates.

0221) Number of nodes on each layer in a multiple layer
network

0222. In literature, predictive models may be parametric,
non-parametric, or semi-parametric. The example evaluation
described herein may be used to study parametric machine
learning methods. The experiments described were designed
to utilize the datasets published with KDDCup99 datasets.
The experiments are designed with consistent evaluation
techniques. First, training of prediction models using the
selected dataset may be evaluated by tenfold cross-validation.
Then, the trained models may be validated using the selected
test datasets. The Q learning based classification results are
described below. Note that Q learning is based on correct
classification due to large sample classification. ROC Values
are listed in the detailed test result tables (Table 1 and Table
2).
0223) In this example, after each move of machine learn
ing method at the top level of selection, the learning agent
may receive a discrete environment signal from the task envi
ronment comprising one of the following reinforcement
immediate reward signals reR:

Type of machine learning network

Number of epochs to train through

0224 r—-10 if agent makes a less correct classification
0225 r–0.1 if agent makes a more correct classification
0226 r–0.4 if all samples are classified correctly
0227 r—-1 the cost of making any selection
0228 r–0.0 otherwise for all non-terminal states

0229. As in the previous discussion, the move to the cor
rect classification may be less than the absolute value of
moving to wrong classification ratios, since keeping the agent
on grid may be more important than getting to the target.
Conceptually, the agent needs to learn to achieve goal without
rewards. The agent may be required to move toward the
correct classification. However, the Sooner the action is
rewarded, the Sooner the agent may learn. The cost of moving
may be measured by a negative unit reward from the task
environment. It may be larger than the reward from getting to
the correct positions. This way, the steps in the path may be
considered in the search evaluation. The results of the evalu
ation of various learning algorithms and related class predic
tion results using training and test datasets are shown in Table
2 below for comparison:

Apr. 1, 2010

TABLE 2

Classification Prediction Result for Q Learning

Classifier
ID Category Algorithm Results (Training/Test)

(1,1) Tree J48 99.08919.91.0932%
(1, 2) Tree LMT: 99.7368%.91.2862%
(1,3) Rule PART: 99.5951%.91.254%
(1, 4) Function LibSVM 97.4291%. 77.6527%
(1, 5) Function MultilayerPerceptron* 99.4.13% 90.51.45%
(1, 6) Function RBFNetwork 99.3725%,80.7074%
(1,7) Meta Select AttributeClassifier 99.3725%.914791%
(1, 8) Bayes BayesNet 99.08919.91.0932%
(1,9) Bayes NaiveBayes 95.6883%. 77.81.35%

0230. In this example, a significant finding from the net
work Q learning result is that Select Attribute(Classifier, Bayes
Network, LMT, PART and Neuro Perceptron Network meth
ods were found to have the highest values and accuracy. This
may indicate that these algorithms are better Suited for attack
class prediction than other methods. Note that tenfold cross
validation on the full training set may be selected for all
algorithm training, in Some embodiments. In embodiments
that use the full training set without cross-validation, the
results may seem overlay optimistic, with full ROC value and
100% correct classification during the training cycle. How
ever, test validation may show the error ratio of classification,
as in Table 2. As shown in this example, cross-validation may
be a Suitable technique for comparing the training perfor
mance of various attack detection and classification tech
niques.
0231. In one autonomous tuning example, an action of
MultilayerPerceptron (MP) with a probability of 1/9 is
selected. The state is marked as s with r=-0.9 due to high
correct classification results with additional moving costs.
This action value mapping may increase the number of visited
state-action pairs by V (1)=V (1)+1. This state transition may
also increase the number of interactions by 1. Hence, the
C=0.1/V=0.1. Therefore, the Q factor may be updated as
follows. Since all Q(s, A(s)) pairs are initialized as -10, the
following equation (shown also above):

Q(s, a)–9(s, a.)+C,ö,

may be evaluated as:

0232 Since the current iteration is less than the maximum
iteration, action BayesNet may be selected as the learning
network with current states. The state may be updated to S
with reward of +0.2 and a moving cost of -1 due to the
expected action to move. Hence, r -0.8 is the total reward of
this computation.

0233 Hence, the states with action BayesNet may be
selected as a significant state as Q(s: a*)=-9.008 for further
Q factor computation.
0234. In this example, the current state may be set to s to
select an action of Select Attribute(Classifier with a probability
of 1/9. The state may be changed to s with r=-0.7 due to the
action to be taken by the agent. This action value mapping
may increase the number of visited state-action pairs by V
(3)=V (3)+1. This state transition may also increase the num
ber of interactions by 1. Hence, the C=0.1/V=0.1. Therefore,
the Q factor may be updated as:

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 31 of 36

US 2010/0082513 A1

0235. In this example, the current state may be set to s to
select an action of LMT with a probability of 1/9. The state
may be changed to sa, with r=-0.6 due to the action to be taken
by the agent. This action value mapping may increase the
number of visited state-action pairs by V (4)=V (4)+1. This
state transition may also increase the number of interactions
by 1. Hence, the CL=0.1/V=0.1. Therefore, the Q factor may be
updated as:

(SA)+9.008-9.0602

0236 Consequently, the states with action listed in Table
1 may be simulated with 1/9 probability distribution. In this
example, the simulation may conclude that LMT is the opti
mal prevention method for the current learning samples.
0237. In this example, with exploration activities, MP may
have equal probability for further tuning of the network archi
tecture. In this example, the current state may be set to S to
select an action of MP with a probability of 1/9. The state may
be changed to ss with r=-0.9 due to the action to be taken by
the agent. This action value mapping may increase the num
ber of visited state-action pairs by V(5)=V(5)+1. This state
transition may also increase the number of interactions by 1.
Hence, the C=0.1/V=0.1. Therefore, the Q factor may be
updated as:

A)+9.008)=-9.092

0238. The subsequent tuning of MP prediction architec
ture, in this example, is illustrated in Table 3, below.

TABLE 3

MP Prediction Result for Q Learning

ID Architecture Results (Training/Test)

(2, 1) 42, 1, 4 98.5029/090.O322%
(2, 2) 42, 3, 4* 98.7854%.90%
(2, 3) 42, 5, 4* 99.1093%.90.90O3%
(2, 4) 42, 5, 10* 98.502%.90%
(2,5) 42, 10,4* 98.7652%.90%

0239. To avoid greedy local optimum, iterations may con
tinue until the maximum interaction number is reached, then
the current state may be set back to S to continue to select an
action. In this example, MP may have an equal probability for
further tuning of network architecture (42, 1, 4). The current
state may be set to sa to select an action of MP with a prob
ability of 1/9. The state may be changed to ss with r=-0.9 due
to the action to be taken by the agent. This action value
mapping may increase the number of visited State-action
pairs by V(5)=V(5)+1. This state transition may also increase
the number of interactions by 1. Hence, the C=0.1/V=0.1.
Therefore, the Q factor may be updated as:

Q(ssMP)=(1-0.1)*Q(ssMP)+0.1*(-0.9)+max9(ss.
A)+9.008)=-9.092

0240. In this example, the current state may be set to ss to
select an action of MP with a probability of 1/9, to continue to
tune the networkas (42, 3, 4). The state may remain as ss with
r=-1 due to the action to be taken by the agent. This action
value mapping may increase the number of visited State
action pairs by V(5)=V(5)+1. This state transition may also
increase the number of interactions by 1. Hence, the CL=0.1/
V=0.05. Therefore, the Q factor may be updated as:

Apr. 1, 2010

0241. Now, the current state may be set to ss to select an
action of MP with a probability of 1/9 to continue to tune
network as (42, 5, 4). The state may remain as ss with r=-0.9
due to the action to be taken by the agent. This action value
mapping may increase the number of visited State-action
pairs by V(5)=V(5)+1. This state transition may also increase
the number of interactions by 1. Hence, the C=0.1/V=0.033.
Therefore, the Q factor may be updated as:

0242 Hence, in this example, Q(s5, 42-5-4) may be
shown to be the optimal state action. In other words, this
evaluation may conclude that a multi-layer perceptron net
work with 42 input nodes, 5 hidden nodes and 4 output nodes
may be an optimal prevention method.
0243 The experimental evaluation of this autonomous
tuning example is illustrated in FIG. 9. This figure illustrates
a simplified version of classification goal discovery without
numerous non-optimal path explorations. In this example,
algorithms determined to be Suitable for use are shown using
solid lines from element 905 (state So), and are identified as
S12, S1,s), Sas). Solo), S7), S(18) and S19). In this
example, element 903 (representing the Multilayer Percep
tron (MP) algorithm, identified as Sis, in Table 2 above) was
selected from among the suitable options. Note that in this
example, element 901 (representing a J48 algorithm, identi
fied as S. in Table 2 above) was determined to be less
suitable, as indicated by the dashed line from element 905 to
element 901. In this example, the results of the tuning of the
MP algorithm are illustrated in FIG. 9 by the solid line from
element 903 to element 904 (representing an architecture of
42 input nodes, 5 hidden nodes, and 4 output nodes, and
identified in Table 3 as Sas). Other suitable options include
states S.2 (representing 42 input nodes, 1 hidden node, and
4 output nodes), Sea (representing 42 input nodes, 5 hidden
nodes, and 10 output nodes), and Sas (representing 42 input
nodes, 10 hidden nodes, and 4 output nodes), as indicated by
the solidlines from Sls, in FIG.9 and various entries in Table
3

0244. The attack prevention problem resolved using the
system and methods described herein may be thought of as
the combinational problem of attack classification and attack
clustering. In some embodiments, to handle learning with
large samples, sample reduction with attribute and instance
selection may reduce both time and space complexities.
0245. From the class prediction results described herein,
SVMs, SMO and Vote may be tuned off by the proposed
autonomous classification algorithms for attack class predic
tion. On the other hand, SelectAttribute(Classifier, BayesNet,
LMT, PART and Neuro Perceptron Network may be
exploited algorithms for autonomous attack class prediction.
Specifically, autonomous Bayes Networks and Neural Net
works may be exploited optimal prevention networks in terms
of time and space complexity, in Some embodiments. Using
the attack clustering results from evaluations described
herein, a k-means algorithm, filtered cluster algorithm and
farthest-first algorithm may be recommended attack discov
ery methods for attack discovery.
0246 The system and methods described herein may be
Suitable for application to any of various computing systems,
including grid computing systems, mobile ad-hoc networks,

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 32 of 36

US 2010/0082513 A1

and other distributed computing environments, in different
embodiments. For example, FIG. 10 illustrates a multi-grid
network 1000 configured to implement the attack discovery
and prevention methods described herein. In this example,
multi-grid network 1000 includes four grid cells 1020, each
of which includes a master node 1030, and a plurality of
compute nodes 1040, although in other embodiments a grid
computing system may include any number of grid cells,
master nodes, and/or compute nodes configured similarly or
differently. Master nodes 1030 may in some embodiments be
similar to master nodes 240 illustrated in FIG. 2, and each
may include an information layer agent, such as information
layer agents 245 of FIG. 2. Similarly, compute nodes 1040
may in some embodiments be similar to compute nodes 260
illustrated in FIG. 2, and each may include a data collection
agent 275. In this example, master node 1030d of grid cell
1020d comprises a knowledge base 1050, which may be
accessible by all of the master nodes 1030 in multi-grid net
work 1000.

0247. In some embodiments, each of a plurality of subnets
within a multi-grid network, or within another distributed
environment, may represent a different attack domain, and
these attack domains may include different policies, knowl
edge bases, and/or rules for carrying out the methods
described herein. In one such embodiment, a knowledge base
may be partitioned and/or distributed across two or more
nodes (e.g., master nodes 1030) such that policies and/or rules
related to storage area network attacks (e.g., device-level.
storage network, or physical layer rules) are included in one
partition, while policies and/or rules (e.g., compute resource,
application-level, or IP network rules) related to internet
applications or other web-based attacks (such as those of a
cloud computing environment or other computing services
environment) are included in one or more other partitions, for
example. Agents of each Subnet, domain, or partition may
monitor different parameters or conditions, and may include
a different mapping of state-action value pairs appropriate for
the type of attack classification directed to that subnet,
domain, or partition. In other words, particular actions may be
mapped to the same conditions or to different conditions on
different Subnets, domains, or partitions. For example, in a
system that includes storage devices that are not IP network
available, a storage area network attack may not be probed
using the IP network, but only on the local network or parti
tion. In some embodiments of partitioned systems, one or
more central nodes may consolidate or aggregate information
generated by information agents in multiple Sub-domains in
order to coordinate responses and/or actions to be taken on
current and/or potential victim nodes, and/or to manage
updates to one or more knowledge bases in the distributed
system. For example, an information agent on a central node
may classify an attack based on a combination of notifications
received from both a storage-focused information layer agent
(e.g., one targeted to a first partition) and a compute-resource
focused information layer agents (e.g., targeted to a second
partition).
0248. As previously noted, the system and methods
described herein may be suitable for implementation in a
mobile ad-hoc network due to their autonomous nature, and
the flexibility and adaptability of their attack tree discovery
and flood control processes. FIG. 11 illustrates one such
mobile ad-hoc network 1100 that includes multiple mobile
devices 1140 behind two different firewalls 1160. In this
example, a very Small (i.e., lightweight) data collection agent,

20
Apr. 1, 2010

which may be different from or similar to one of data collec
tion agents 275 illustrated in FIG. 2, may be deployed on each
of the mobile devices 1140 (not shown). For example, mobile
devices 1140 may include laptop computers, cell phones,
personal digital assistants, devices employing SunSPOTTM
technology, or other mobile devices and program instructions
on each of these devices may be executable to implement a
mobile attack discovery agent (MADA), as described above.
In Some embodiments, data collection agents on mobile
devices 1140 may communicate to information layer agents
on one or more of computing nodes 1150 across firewalls
1160 by sending event driven messages 1141, according to a
mobile attack discovery protocol (MADP), such as that
described above.

0249. The system and methods described herein may be
provided on any of various computing systems (e.g., systems
included in a distributed environment, such as those described
above) configured to implement the functionality described.
FIG. 12 illustrates a computing system 1200 configured to
implement the methods described herein, according to vari
ous embodiments. In one embodiment, a distributed comput
ing environment may be implemented on one or more nodes
that include components similar to those of computer system
1200 (e.g., memory 1210, network interfaces 1265, storage
devices 1275, processors 1280 and input/output devices
1285) and that are configured to communicate with each other
through network interface 1265. For example, computer sys
tem 1230 may include components similar to those of com
puter system 1200 and may be configured to communicate
with computer system 1200 as part of a grid computing envi
ronment, peer-to-peer environment, or mobile network, in
different embodiments. In other embodiments, computer sys
tems 1200 and/or 1230 may comprise more, fewer, or differ
ent components than those illustrated in FIG. 12.
0250 Computer system 1200 may be any of various types
of devices, including, but not limited to, a personal computer
system, desktop computer, laptop or notebook computer,
mainframe computer system, handheld computer or other
mobile device (e.g., a personal digital assistant, application
enabled phone, or mobile communication device), worksta
tion, network computer, a consumer device, application
server, storage device, a peripheral device Such as a Switch,
modem, router, etc, or in general any type of computing
device. As described above, a distributed computing environ
ment may be distributed across two or more nodes, and each
node may comprise a computer system identical or similar to
that illustrated in FIG. 12.

0251. The methods described herein may in some embodi
ments be provided as a computer program product, or soft
ware, that may include a computer-readable storage medium
having Stored thereon program instructions, which may be
used to program a computer system Such as computer system
1200 (or another electronic device) to perform a process
according to the methods described herein. A computer-read
able storage medium may include any mechanism for storing
information in a form (e.g., Software, processing application)
readable by a machine (e.g., a computer) and executable by
the machine to implement the methods described herein. A
machine-readable storage medium may include, but is not
limited to, magnetic storage medium (e.g., floppy diskette);
optical storage medium (e.g., CD-ROM); magneto optical
storage medium; read only memory (ROM); random access
memory (RAM); erasable programmable memory (e.g.,
EPROM and EEPROM); flash memory; electrical, or other

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 33 of 36

US 2010/0082513 A1

types of media Suitable for storing program instructions. In
addition, program instructions may be communicated to
computer system 1200 using optical, acoustical or other form
of propagated signal (e.g., carrier waves, infrared signals,
digital signals, etc.) in order to program the computer system
to perform the processes described herein. In other embodi
ments, all or a portion of the methods described herein may be
implemented by hardware components of computer system
1200 (e.g., by one or more FPGAs, or by other dedicated
circuitry configured to perform these processes).
0252. A computer system 1200 may include a processor
unit 1280 (possibly including multiple processors, a single
threaded processor, a multi-threaded processor, a multi-core
processor, etc.). The computer system 1200 may also include
one or more system memories 1210 (e.g., one or more of
cache, SRAM, DRAM, RDRAM, EDO RAM, DDR RAM,
SDRAM, Rambus RAM, EEPROM, etc.), a system intercon
nect 1290 (e.g., LDT. PCI, ISA, etc.), one or more network
interface(s) 1265 (e.g., an ATM interface, an Ethernet inter
face, a Frame Relay interface, etc.), and one or more storage
device(s) 1275 (e.g., optical storage, magnetic storage, etc.).
Memory 1210 and/or storage devices 1275 may include a
computer-readable storage medium, as described above, and
may include other types of memory as well, or combinations
thereof. Note that in some embodiments, network interface(s)
1290 may include hardware and/or software support for
implementing internal and/or external interconnect resources
(e.g., NAT, load balancing, VPN, WebDAV, etc.). In the
example illustrated in FIG. 12, computer system 1200 may
include one or more input/output devices 1285, such as a
monitor or other display device through which users may
interact with computer system 1200 (e.g., through a GUI).
Other embodiments may include fewer components or addi
tional components not illustrated in FIG.12 (e.g., video cards,
audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit(s) 1280, the storage device
(s) 1275, the network interface 1265, the input/output devices
1285, and the system memory 1210 may be coupled to the
system interconnect 1290, as shown in this example.
0253) One or more of the system memories 1210 may
embody one or more knowledge base repositories 1205, as
described herein. Note that in some embodiments, a knowl
edge base repository 1205 may be included in one or more of
storage devices 1275, instead of, or in addition to, being
included in system memory 1210. Note that various elements
illustrated in FIG. 12 as residing in memory 1210 may in
some embodiments be implemented in different memory
spaces (e.g., a shared memory space and one or more local
memory spaces) within a single physical memory or as dif
ferent memory spaces distributed across any number of
physical memories devices (e.g., in one or more storage
devices 1275 and/or storage devices of a computing system
other than computer system 1200), in different embodiments.
0254. In some embodiments, memory 1210 may include
program instructions 1220 computer-executable to imple
ment all or a portion of the methods described herein. For
example, program instructions 1220 may be executable to
implement a data collection agent 1225, an information layer
agent 1235, and a knowledge layer agent 1245. A knowledge
layer agent may in Some embodiments provide functionality
to query and/or modify the contents of knowledge base
repository 1205. For example, knowledge layer agent 1245
may be configured to receive messages from information
layer agent 1235 comprising a repository query and/or a new

Apr. 1, 2010

or modified entry to be stored in knowledge base 1205. Note
that data collection agent 1225, information layer agent 1235,
and knowledge layer agent 1245 may each be implemented in
any of various programming languages or methods. For
example, in one embodiment, data collection agent 1225 may
be JavaTM based, while in other embodiments, they may be
written using the C or C++ programming languages. Simi
larly, information layer agent 1235 and knowledge layer
agent 1245 may be implemented in JavaTM, C, or C++, among
other programming languages, according to various embodi
ments. Moreover, in some embodiments, data collection
agent 1225, information layer agent 1235, and knowledge
layer agent 1245 may not be implemented using the same
programming language. For example, data collection agent
1225 may be C++ based, while other components may be
developed using Cor JavaTM. While the example illustrated in
FIG. 12 depicts a computer system 1200 in which a data
collection agent 1225, an information layer agent 1235, a
knowledge layer agent 1245, and a knowledge base reposi
tory 1205 are resident on the same node, in other embodi
ments instances of these elements may be resident on two or
more nodes in a distributed environment, such as those
described herein. Note that program instructions 1220 may in
Some embodiments include instructions configured to imple
ment other functionality not shown, Such as a compiler,
debugger, operating system, or other standard and/or custom
Software components of a computing system.
0255 While systems and methods for attack discovery
and prevention have been described herein with reference to
various embodiments, it will be understood that these
embodiments are illustrative and that the scope is not limited
to them. Although the embodiments above have been
described in detail, numerous variations and modifications
will become apparent once the above disclosure is fully
appreciated. Many variations, modifications, additions, and
improvements are possible. More generally, the system and
methods are described in the context of particular embodi
ments. For example, the blocks and logic units identified in
the description are for understanding the described invention
and not meant to be limiting. Functionality may be separated
or combined in blocks differently in various realizations or
described with different terminology. Plural instances may be
provided for components described herein as a single
instance. Boundaries between various components, opera
tions and data stores are somewhat arbitrary, and particular
operations are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi
sioned and may fall within the scope of claims that follow.
Finally, structures and functionality presented as discrete
components in the exemplary configurations may be imple
mented as a combined structure or component. These and
other variations, modifications, additions, and improvements
may fall within the scope as defined in the claims that follow.
It is intended that the following claims be interpreted to
embrace all Such variations and modifications.

What is claimed is:
1. A computer-implemented method, comprising:
receiving a message comprising information indicative of

an event detected on one of a plurality of nodes in a
distributed computing system;

accessing a knowledge base comprising information asso
ciated with known computing system attack patterns;

classifying the event as being representative of one of the
known computing system attack patterns or as being

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 34 of 36

US 2010/0082513 A1

representative of an unknown attack pattern, dependent,
at least in part, on said accessing; and

initiating a response to the event, dependent on said clas
Sifying.

2. The method of claim 1, further comprising:
updating the knowledge base using reinforcement learn

ing, dependent on said response.
3. The method of claim 2,
wherein said classifying comprises applying an attack

detection and classification technique; and
wherein said updating comprises tuning the attack detec

tion and classification technique using reinforcement
learning.

4. The method of claim 3, wherein said tuning comprises
one or more of:

modifying a number of input nodes, output nodes or hidden
nodes of a model of the distributed computing system;
Selecting a different attack detection and classification
technique; adding, removing or modifying a state-action
value pair used by the attack detection and classification
technique; and modifying a number of layers of an over
lay network over which messages are sent during said
applying.

5. The method of claim 1, further comprising:
dynamically modifying an attack tree model of the distrib

uted computing system, dependent on a change in con
figuration of the distributed computing system, a change
in a pattern of received event messages, or a change in
workload in the distributed computing system.

6. The method of claim 1, further comprising:
dynamically modifying an overlay network of the distrib

uted computing system over which event detection mes
Sages or attack response messages are sent dependent on
a change in configuration of the distributed computing
system, a change inapattern of received event messages,
or a change in a workload in the distributed computing
system.

7. The method of claim 1, further comprising:
determining a probability that the event signifies an attack

on the distributed computing system;
wherein said determining comprises applying one or more

rules or policies to the information indicative of the
event; and

wherein the one or more rules or policies are workload
dependent, node-dependent, dependent on a previous
state, or dependent on an attack domain.

8. The method of claim 1, wherein said initiating a response
comprises one or more of constructing an attack tree model
for the distributed computing system, constructing an overlay
network for the distributed computing system over which
event detection messages or attack response messages are to
be sent, sending an attack notification message to one or more
of the plurality of nodes, modifying a resource allocation
associated with one or more of the plurality of nodes, and
removing a resource associated with one or more of the plu
rality of nodes from a resource pool in the distributed com
puting System.

9. The method of claim 1, wherein in response to classify
ing the attack as an unknown attack pattern, said initiating a
response comprises one or more of performing a clustering
analysis to identify a known attack pattern sharing at least
Some characteristics with the unknown attack pattern, ran
domly selecting a response action, and simulating the
unknown attack pattern.

22
Apr. 1, 2010

10. The method of claim 1, wherein the event comprises
one or more of a parameter value crossing a threshold value,
a parameter value change rate exceeding a change rate thresh
old, a parameter value becoming out of range, a parameter
value becoming in range, and a change in a parameter value
trend.

11. The method of claim 1, wherein the event is represen
tative of a distributed denial of service attack on the distrib
uted computing system.

12. A computer-readable storage medium storing program
instructions computer-executable to implement:

receiving a message comprising information indicative of
an event detected on one of a plurality of nodes in a
distributed computing system;

accessing a knowledge base comprising information asso
ciated with known computing system attack patterns;

classifying the event as being representative of one of the
known computing system attack patterns or as being
representative of an unknown attack pattern, dependent,
at least in part, on said accessing; and

initiating a response to the event, dependent on said clas
Sifying.

13. The storage medium of claim 12, wherein the program
instructions are further executable to implement:

updating the knowledge base using reinforcement learn
ing, dependent on said response;

wherein said classifying comprises applying an attack
detection and classification technique; and

wherein said updating comprises tuning the attack detec
tion and classification technique using reinforcement
learning.

14. The storage medium of claim 12, wherein the program
instructions are further executable to implement:

determining a probability that the event signifies an attack
on the distributed computing system;

wherein said determining comprises applying one or more
rules or policies to the information indicative of the
event; and

wherein the one or more rules or policies are workload
dependent, node-dependent, dependent on a previous
state, or dependent on an attack domain.

15. The storage medium of claim 12, wherein said initiat
ing a response comprises one or more of constructing an
attack tree model for the distributed computing system, con
structing an overlay network for the distributed computing
system over which event detection messages or attack
response messages are to be sent, sending an attack notifica
tion message to one or more of the plurality of nodes, modi
fying a resource allocation associated with one or more of the
plurality of nodes, removing a resource associated with one or
more of the plurality of nodes from a resource pool in the
distributed computing system, dynamically modifying an
attack tree model of the distributed computing system,
dynamically modifying an overlay network of the distributed
computing system over which event detection messages or
attack response messages are sent, performing a clustering
analysis to identify a known attack pattern sharing at least
Some characteristics with an unknown attack pattern, ran
domly selecting a response action for an unknown attack
pattern, and simulating an unknown attack pattern.

16. The storage medium of claim 12.
wherein the event comprises one or more of a parameter

value crossing a threshold value, a parameter value
change rate exceeding a change rate threshold, a param

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 35 of 36

US 2010/0082513 A1

eter value becoming out of range, a parameter value
becoming in range, and a change in a parameter value
trend; and

wherein the event is representative of a distributed denial of
service attack on the distributed computing system.

17. A distributed computing system comprising plurality of
nodes, wherein one of the plurality of nodes comprises:

one or more processors; and
a memory coupled to the one or more processors and stor

ing program instructions executable by the one or more
processors to implement:
receiving a message comprising information indicative

of an event detected on one of a plurality of nodes in
a distributed computing system;

accessing a knowledge base comprising information
associated with known computing system attack pat
terns;

classifying the event as being representative of one of the
known computing system attack patterns or as being
representative of an unknown attack pattern, depen
dent, at least in part, on said accessing; and

initiating a response to the event, dependent on said
classifying.

18. The system of claim 17, wherein the program instruc
tions are further executable to implement:

updating the knowledge base using reinforcement learn
ing, dependent on said response;

wherein said classifying comprises applying an attack
detection and classification technique; and

wherein said updating comprises tuning the attack detec
tion and classification technique using reinforcement
learning.

Apr. 1, 2010

19. The system of claim 17, wherein the program instruc
tions are further executable to implement:

determining a probability that the event signifies an attack
on the distributed computing system;

wherein said determining comprises applying one or more
rules or policies to the information indicative of the
event; and

wherein the one or more rules or policies are workload
dependent, node-dependent, dependent on a previous
state, or dependent on an attack domain.

20. The system of claim 17, wherein said initiating a
response comprises one or more of constructing an attack
tree model for the distributed computing system, constructing
an overlay network for the distributed computing system over
which event detection messages or attack response messages
are to be sent, sending an attack notification message to one or
more of the plurality of nodes, modifying a resource alloca
tion associated with one or more of the plurality of nodes,
removing a resource associated with one or more of the plu
rality of nodes from a resource pool in the distributed com
puting system, dynamically modifying an attack tree model
of the distributed computing system, dynamically modifying
an overlay network of the distributed computing system over
which event detection messages or attack response messages
are sent, performing a clustering analysis to identify a known
attack pattern sharing at least some characteristics with an
unknown attack pattern, randomly selecting a response action
for an unknown attack pattern, and simulating an unknown
attack pattern.

NetNut's Exhibit 1209
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 36 of 36

