
US 2013 0304796A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0304796 A1

Jackowski et al. (43) Pub. Date: Nov. 14, 2013

(54) SYSTEMS AND METHODS FOR PROVIDING (52) U.S. Cl.
QUALITY OF SERVICE VIAA FLOW CPC H04L 67/10 (2013.01)
CONTROLLED TUNNEL USPC .. 709/202

(71) Applicant: Citrix Systems, Inc., (US) (57) ABSTRACT

(72) Inventors: Steven J. Jackowski. Santa Cruz, CA The present invention is directed towards systems and meth
(US); Seth Keith, Scotts Valley, CA ods for providing Quality of Service (QoS) via a flow con
(US); Kutluk Testicioglu, Mountain trolled tunnel. Traffic from a plurality of applications may be
View, CA (US) directed into a single connection or flow-controlled tunnel

21) Appl. No.: 13/869,831 and QoS policies may be applied across the plurality of appli
(21) Appl. No 9 cations without configuration of individual link speeds,
22) Filed: Apr. 24, 2013 enabling OoS scheduling to dvnamically adiust traffic trans (22) pr. A4, 9. g to dy yad

mission and reception rates to ensure priority management of
Related U.S. Application Data applications regardless of a final endpoint of the application

63) Continuati faroplication No. 12/893.025, filed communications. Accordingly, traffic of different types,
(63) so E.p N.e 8 3. 783. CC. Ol including VPN, HTTP Voice-over-IP (VoIP), remote desktop

p. Z9, s • L vs. 8 Y-s - - s x- - - protocol traffic, or other traffic may be easily balanced and

Publication Classification prioritized. In many embodiments, the tunnel may be trans
parent to applications, such that without any application con

(51) Int. Cl. figuration, application traffic may still be prioritized by QoS
H04L 29/08 (2006.01) requirements.

ABa.

Client 102

Client 102a

Appliance
WAN

Appliance
WAN

Optimization Optimization
device) device

Client 102n Server 106m

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 1 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 1 of 14 Patent Application Publication

() 0 89

eZO? ?uello

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 2 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 2 of 14 Patent Application Publication

EE-EE „002

EE-EE 00Z

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 3 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 3 of 14 Patent Application Publication

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 4 of 45

Patent Application Publication Nov. 14, 2013 Sheet 4 of 14 US 2013/030479.6 A1

O S

Software

101 120

CPU

150

123
Display

I/O device(s) Installation NetWOrk
CTRL Device Interface

126 127 N-124a-n 116 118

Pointing Keyboard

FIG. 1D

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 5 of 45

Patent Application Publication Nov. 14, 2013 Sheet 5 of 14 US 2013/030479.6 A1

101

140
Main

Processor

I/O I/O Memory
Port Port POrt

1

FIG. 1E

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 6 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 6 of 14 Patent Application Publication

o

Port N. 266N

Port 1 266A

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 7 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 7 of 14 Patent Application Publication

e90), J?AuÐS

EZ "SDI

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 8 of 45

Patent Application Publication Nov. 14, 2013 Sheet 8 of 14 US 2013/030479.6 A1

Client 102

user mode 303

1st Program
App 1 App 2 322

App N

interceptor 350

NetWork Streaming Client 306

Stack
Collection Agent 304

267

SSL VPN Agent 308
API data

structure 325 Network optimization
engine 250

Acceleration Agent 302

Client Agent 120

FIG. 3

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 9 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 9 of 14 Patent Application Publication

GOZ JO ,00Z eoue??ddy

~~ ~90

J3|?uun_L enenO

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 10 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 10 of 14 Patent Application Publication

50? J?Au3S uo/pue “GO? JO 007 30ue||ddwy º ZOJ Quello

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 11 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 11 of 14

507 ?Inpo/N ÁXOud Ieuun Len?no

305 0pOu J0Sn

Patent Application Publication

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 12 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 12 of 14 Patent Application Publication

907

50? J?Au3S uo/pue “GO? JO 007 30ue||ddwy º ZOJ Quello

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 13 of 45

US 2013/030479.6 A1 Nov. 14, 2013 Sheet 13 of 14

907 ?InpOWN KXOJ) |?uun L en?n?)

50? J?Au3S JOIpue “GO? JO 007 30ue||ddwy º ZOJ Quello

Patent Application Publication

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 14 of 45

Patent Application Publication Nov. 14, 2013 Sheet 14 of 14 US 2013/030479.6 A1

Proxy plurality of transport layer connections
602

Receive data from each of the plurality of proxied
Connections in order according to an assigned priority

604

Communicate, in order according to assigned priority,
predetermined amount data from each of plurality of

proxied connections
606

F.G. 6

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 15 of 45

US 2013/030479.6 A1

SYSTEMIS AND METHODS FOR PROVIDING
QUALITY OF SERVICE VIAA FLOW

CONTROLLED TUNNEL

RELATED APPLICATION

0001. This application claims priority to and is a continu
ation of U.S. Non-provisional application Ser. No. 12/893,
025, entitled “Systems And Methods For Providing Quality
Of Service Via A Flow Controlled Tunnel”, filed on Sep. 29,
2010, and issued as U.S. Pat. No. 8,433,783 on Apr. 30, 2013,
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

0002 The present disclosure generally relates to data
communication networks. In particular, the present disclo
Sure relates to systems and methods for providing quality of
service of a plurality of applications via a flow controlled
tunnel.

BACKGROUND OF THE INVENTION

0003. In many systems executing a plurality of applica
tions, it may be desirable to prioritize communications among
the applications to meet performance, bandwidth and latency
requirements. However, because of the different demands of
these applications, and different server or endpoint destina
tions for application traffic, quality of service management
may be complicated or require tedious per-link configuration.
This may be particularly undesirable in mobile environments,
Such as Smartphones or laptops, where users may connect
from several different locations and over several different
links in a week, or even in a single day.

BRIEF SUMMARY OF THE INVENTION

0004. The present invention is directed towards systems
and methods for providing Quality of Service (QoS) via a
flow controlled tunnel. Traffic from a plurality of applications
may be directed into a single connection or flow-controlled
tunnel and QoS policies may be applied across the plurality of
applications without configuration of individual link speeds,
enabling QoS Scheduling to dynamically adjust traffic trans
mission and reception rates to ensure priority management of
applications regardless of a final endpoint of the application
communications. Accordingly, traffic of different types,
including VPN, HTTP Voice-over-IP (VoIP), remote desktop
protocol traffic, or other traffic may be easily balanced and
prioritized. In many embodiments, the tunnel may be trans
parent to applications, such that without any application con
figuration, application traffic may still be prioritized by QoS
requirements.
0005. In one aspect, the present invention features a
method for providing quality of service of a plurality of
applications via a flow controlled tunnel. The method
includes an agent operating at a portion of a network Stack of
a client proxying a plurality of transport layer connections
corresponding to each of a plurality of applications executing
on the client. The method also includes the agent receiving
data from each of the plurality of proxied transport layer
connections in an order according to an assigned priority
from classification of each of the plurality of applications.
The method further includes the agent communicating to a
first tunneling application executing on the client, in the order
according to the assigned priority, a predetermined amount of
data received from each of the plurality of proxied transport

Nov. 14, 2013

layer connections, the first tunneling application having an
established transport layer connection to a second tunneling
application.
0006. In some embodiments, the method includes the first
tunneling application on the client transmitting the predeter
mined amount of data from each of the applications to the
second tunneling application executing on a device interme
diary to the client and a plurality of a servers. In other embodi
ments, the agent executes in a kernel space of the client and
the first tunneling application executes in a user space of the
client.
0007. In one embodiment, the method includes the agent
proxying each of the plurality of transport layer connections
back to the client. In another embodiment, the method
includes the agent proxying each of the plurality of transport
layer connections transparently to each of the plurality of
applications.
0008. In some embodiments, the method includes the
agent classifying each of the plurality of applications accord
ing to a Quality of Service classification scheme. In other
embodiments, the method includes the agent applying Qual
ity of Service upon communicating the predetermined
amount of data to the first tunneling application. In still other
embodiments, the method includes the agent communicating
each of the predetermined amount of data upon receipt to the
first tunneling application.
0009. In one embodiment, the method includes the agent
receiving an indication from one or more of the plurality of
proxied transport layer connections that data is available to be
read. In a further embodiment, the method includes the agent
propagating the indication to the first tunneling application
and responsive to the indication, the first tunneling applica
tion accepting the predetermined amount of data from each of
the one or more proxied transport layer connections in the
order of the priority.
0010. In another aspect, the present invention features a
system for providing quality of service of a plurality of appli
cations via a flow controlled tunnel. The system includes an
agent operating at a portion of a network stack of a client and
proxying a plurality of transport layer connections corre
sponding to each of a plurality of applications executing on
the client. The system also includes a first tunneling applica
tion executing on the client and having an established trans
port layer connection to a second tunneling application. The
system further includes the agent receiving data from each of
the plurality of proxied transport layer connections in an
order according to an assigned priority from classification of
each of the plurality of applications and communicating to the
first tunneling application, in the order according to the
assigned priority, a predetermined amount of data received
from each of the plurality of proxied transport layer connec
tions.
0011. In some embodiments, first tunneling application
transmits the predetermined amount of data from each of the
applications to the second tunneling application executing on
a device intermediary to the client and a plurality of a servers.
In other embodiments, the agent executes in a kernel space of
the client and the first tunneling application executes in user
space of the client.
0012. In one embodiment, the agent proxies each of the
plurality of proxied transport layer connections back to the
client. In another embodiment, the agent proxies each of the
plurality of proxied transport layer connections transparently
to each of the plurality of applications. In still another

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 16 of 45

US 2013/030479.6 A1

embodiment, the agent classifies each of the plurality of
applications according to a Quality of Service classification
scheme. In yet still another embodiment, the agent applies
Quality of Service scheduling as the predetermined amount
of data is communicated to the first tunneling application.
0013. In some embodiments, the agent communicates to
the first tunneling application each of the predetermined
amount of data upon receipt to the first tunneling application.
In one embodiment, the agent receives an indication from one
or more of the plurality of proxied transport layer connections
that data is available to be read. In a further embodiment, the
agent propagates the indication to the first tunneling applica
tion and responsive to the indication, the first tunneling appli
cation accepts the predetermined amount of data from each of
the one or more proxied transport layer connections in the
order of the priority.
0014. The details of various embodiments of the invention
are set forth in the accompanying drawings and the descrip
tion below.

BRIEF DESCRIPTION OF THE FIGURES

0015 The foregoing and other objects, aspects, features,
and advantages of the invention will become more apparent
and better understood by referring to the following descrip
tion taken in conjunction with the accompanying drawings, in
which:
0016 FIG. 1A is a block diagram of an embodiment of a
network environment for a client to access a server via one or
more network optimization appliances;
0017 FIG. 1B is a block diagram of another embodiment
of a network environment for a client to access a server via
one or more network optimization appliances in conjunction
with other network appliances;
0018 FIG. 1C is a block diagram of another embodiment
of a network environment for a client to access a server via a
single network optimization appliance deployed Stand-alone
or in conjunction with other network appliances;
0019 FIGS. 1D and 1E are block diagrams of embodi
ments of a computing device;
0020 FIG. 2A is a block diagram of an embodiment of an
appliance for processing communications between a client
and a server,
0021 FIG. 2B is a block diagram of another embodiment
of a client and/or server deploying the network optimization
features of the appliance;
0022 FIG. 3 is a block diagram of an embodiment of a
client for communicating with a server using the network
optimization feature;
0023 FIG. 4A is a block diagram of an embodiment of a
system for providing quality of service of a plurality of appli
cations via a flow controlled tunnel;
0024 FIG. 4B is a block diagram of an embodiment of a
client or appliance for providing quality of service of a plu
rality of applications via a flow controlled tunnel;
0025 FIG. 4C is a block diagram of an embodiment of a
queue tunnel proxy on a client or appliance;
0026 FIG. 5A is a block diagram of an embodiment of
communication flow within a system providing quality of
service of a plurality of applications via a flow controlled
tunnel;
0027 FIG. 5B is a block diagram of an embodiment of
communication flow within a system providing quality of
service of a plurality of applications via an encryption gate
way and a flow controlled tunnel; and

Nov. 14, 2013

0028 FIG. 6 is a flow chart of an embodiment of a method
for providing quality of service of a plurality of applications
via a flow controlled tunnel.
0029. The features and advantages of the present invention
will become more apparent from the detailed description set
forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding ele
ments throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or
structurally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

0030. For purposes of reading the description of the vari
ous embodiments of the present invention below, the follow
ing descriptions of the sections of the specification and their
respective contents may be helpful:

0031. Section. A describes a network environment and
computing environment useful for practicing an
embodiment of the present invention;

0.032 Section B describes embodiments of a system and
appliance architecture for accelerating delivery of a
computing environment to a remote user;

0033 Section C describes embodiments of a client
agent for accelerating communications between a client
and a server, and

0034 Section D describes embodiments of systems and
methods for providing quality of service of a plurality of
applications via a flow controlled tunnel.

A. Network and Computing Environment
0035. Prior to discussing the specifics of embodiments of
the systems and methods of an appliance and/or client, it may
be helpful to discuss the network and computing environ
ments in which such embodiments may be deployed. Refer
ring now to FIG. 1A, an embodiment of a network environ
ment is depicted. In brief overview, the network environment
has one or more clients 102a-102n (also generally referred to
as local machine(s) 102, or client(s) 102) in communication
with one or more servers 106a-106n (also generally referred
to as server(s) 106, or remote machine(s) 106) via one or more
networks 104, 104", 104". In some embodiments, a client 102
communicates with a server 106 via one or more network
optimization appliances 200, 200' (generally referred to as
appliance 200). In one embodiment, the network optimiza
tion appliance 200 is designed, configured or adapted to opti
mize Wide Area Network (WAN) network traffic. In some
embodiments, a first appliance 200 works in conjunction or
cooperation with a second appliance 200' to optimize network
traffic. For example, a first appliance 200 may be located
between a branch office and a WAN connection while the
second appliance 200' is located between the WAN and a
corporate Local Area Network (LAN). The appliances 200
and 200' may work together to optimize the WAN related
network traffic between a client in the branch office and a
server on the corporate LAN.
0036 Although FIG. 1A shows a network 104, network
104' and network 104" (generally referred to as network(s)
104) between the clients 102 and the servers 106, the clients
102 and the servers 106 may be on the same network 104. The
networks 104, 104". 104" can be the same type of network or
different types of networks. The network 104 can be a local
area network (LAN). Such as a company Intranet, a metro
politan area network (MAN), or a wide area network (WAN).

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 17 of 45

US 2013/030479.6 A1

Such as the Internet or the World Wide Web. The networks
104, 104". 104" can be a private or public network. In one
embodiment, network 104 or network 104" may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104 and/or network 104" a public network. In
another embodiment, networks 104, 104". 104" may be pri
vate networks. In some embodiments, clients 102 may be
located at a branch office of a corporate enterprise communi
cating via a WAN connection over the network 104 to the
servers 106 located on a corporate LAN in a corporate data
Center.

0037. The network 104 may be any type and/or form of
network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local
area network, a telecommunications network, a data commu
nication network, a computer network, an ATM (Asynchro
nous Transfer Mode) network, a SONET (Synchronous Opti
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net
work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 may be a bus, star, or ring
network topology. The network 104 and network topology
may be of any such network or network topology as known to
those ordinarily skilled in the art capable of supporting the
operations described herein.
0038. As depicted in FIG. 1A, a first network optimization
appliance 200 is shown between networks 104 and 104 and a
second network optimization appliance 200' is also between
networks 104' and 104". In some embodiments, the appliance
200 may be located on network 104. For example, a corporate
enterprise may deploy an appliance 200 at the branch office.
In other embodiments, the appliance 200 may be located on
network 104". In some embodiments, the appliance 200' may
be located on network 104" or network 104". For example, an
appliance 200 may be located at a corporate data center. In
one embodiment, the appliance 200 and 200' are on the same
network. In another embodiment, the appliance 200 and 200'
are on different networks.

0039. In one embodiment, the appliance 200 is a device for
accelerating, optimizing or otherwise improving the perfor
mance, operation, or quality of service of any type and form
of network traffic. In some embodiments, the appliance 200 is
a performance enhancing proxy. In other embodiments, the
appliance 200 is any type and form of WAN optimization or
acceleration device, sometimes also referred to as a WAN
optimization controller. In one embodiment, the appliance
200 is any of the product embodiments referred to as WAN
Scaler manufactured by Citrix Systems, Inc. of Ft. Lauder
dale, Fla. In other embodiments, the appliance 200 includes
any of the product embodiments referred to as BIG-IP link
controller and WANjet manufactured by F5 Networks, Inc. of
Seattle, Wash. In another embodiment, the appliance 200
includes any of the WX and WXC WAN acceleration device
platforms manufactured by Juniper Networks, Inc. of Sunny
vale, Calif. In some embodiments, the appliance 200 includes
any of the steelhead line of WAN optimization appliances
manufactured by Riverbed Technology of San Francisco,
Calif. In other embodiments, the appliance 200 includes any
of the WAN related devices manufactured by Expand Net
works Inc. of Roseland, N.J. In one embodiment, the appli
ance 200 includes any of the WAN related appliances manu
factured by Packeteer Inc. of Cupertino, Calif., such as the

Nov. 14, 2013

PacketShaper, iShared, and Skyx product embodiments pro
vided by Packeteer. In yet another embodiment, the appliance
200 includes any WAN related appliances and/or software
manufactured by Cisco Systems, Inc. of San Jose, Calif., such
as the Cisco Wide Area Network Application Services soft
ware and network modules, and Wide Area Network engine
appliances.
0040. In some embodiments, the appliance 200 provides
application and data acceleration services for branch-office or
remote offices. In one embodiment, the appliance 200
includes optimization of Wide Area File Services (WAFS). In
another embodiment, the appliance 200 accelerates the deliv
ery of files, such as via the Common Internet File System
(CIFS) protocol. In other embodiments, the appliance 200
provides caching in memory and/or storage to accelerate
delivery of applications and data. In one embodiment, the
appliance 205 provides compression of network traffic at any
level of the network stack or at any protocol or network layer.
In another embodiment, the appliance 200 provides transport
layer protocol optimizations, flow control, performance
enhancements or modifications and/or management to accel
erate delivery of applications and data over a WAN connec
tion. For example, in one embodiment, the appliance 200
provides Transport Control Protocol (TCP) optimizations. In
other embodiments, the appliance 200 provides optimiza
tions, flow control, performance enhancements or modifica
tions and/or management for any session or application layer
protocol. Further details of the optimization techniques,
operations and architecture of the appliance 200 are discussed
below in Section B.

0041. Still referring to FIG. 1A, the network environment
may include multiple, logically-grouped servers 106. In these
embodiments, the logical group of servers may be referred to
as a server farm 38. In some of these embodiments, the serves
106 may be geographically dispersed. In some cases, a farm
38 may be administered as a single entity. In other embodi
ments, the server farm 38 comprises a plurality of server
farms 38. In one embodiment, the server farm executes one or
more applications on behalf of one or more clients 102.
0042. The servers 106 within each farm 38 can be hetero
geneous. One or more of the servers 106 can operate accord
ing to one type of operating system platform (e.g., WIN
DOWS NT, manufactured by Microsoft Corp. of Redmond,
Wash.), while one or more of the other servers 106 can operate
on according to another type of operating system platform
(e.g., Unix or Linux). The servers 106 of each farm 38 do not
need to be physically proximate to another server 106 in the
same farm 38. Thus, the group of servers 106 logically
grouped as a farm 38 may be interconnected using a wide
area network (WAN) connection or metropolitan-area net
work (MAN) connection. For example, a farm 38 may
include servers 106 physically located in different continents
or different regions of a continent, country, state, city, cam
pus, or room. Data transmission speeds between servers 106
in the farm 38 can be increased if the servers 106 are con
nected using a local-area network (LAN) connection or some
form of direct connection.

0043 Servers 106 may be referred to as a file server, appli
cation server, web server, proxy server, or gateway server. In
some embodiments, a server 106 may have the capacity to
function as either an application server or as a master appli
cation server. In one embodiment, a server 106 may include
an Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 18 of 45

US 2013/030479.6 A1

has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.
0044. In some embodiments, a client 102 communicates
with a server 106. In one embodiment, the client 102 com
municates directly with one of the servers 106 in a farm 38. In
another embodiment, the client 102 executes a program
neighborhood application to communicate with a server 106
in a farm 38. In still another embodiment, the server 106
provides the functionality of a master node. In some embodi
ments, the client 102 communicates with the server 106 in the
farm 38 through a network 104. Over the network 104, the
client 102 can, for example, request execution of various
applications hosted by the servers 106a-106n in the farm 38
and receive output of the results of the application execution
for display. In some embodiments, only the master node
provides the functionality required to identify and provide
address information associated with a server 106" hosting a
requested application.
0045. In one embodiment, the server 106 provides func

tionality of a web server. In another embodiment, the server
106a receives requests from the client 102, forwards the
requests to a second server 106b and responds to the request
by the client 102 with a response to the request from the server
106b. In still another embodiment, the server 106 acquires an
enumeration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
Such as display data, generated by an execution of the iden
tified application on the server 106.

Deployed With Other Appliances.

0046 Referring now to FIG. 1B, another embodiment of a
network environment is depicted in which the network opti
mization appliance 200 is deployed with one or more other
appliances 205, 205" (generally referred to as appliance 205 or
second appliance 205) such as a gateway, firewall or accel
eration appliance. For example, in one embodiment, the
appliance 205 is a firewall or security appliance while appli
ance 205" is a LAN acceleration device. In some embodi
ments, a client 102 may communicate to a server 106 via one
or more of the first appliances 200 and one or more second
appliances 205.
0047 One or more appliances 200 and 205 may be located
at any point in the network or network communications path
between a client 102 and a server 106. In some embodiments,
a second appliance 205 may be located on the same network
104 as the first appliance 200. In other embodiments, the
second appliance 205 may be located on a different network
104 as the first appliance 200. In yet another embodiment, a
first appliance 200 and second appliance 205 is on the same
network, for example network 104, while the first appliance
200' and second appliance 205" is on the same network, such
as network 104".
0048. In one embodiment, the second appliance 205
includes any type and form of transport control protocol or
transport later terminating device. Such as a gateway or fire
wall device. In one embodiment, the appliance 205 terminates

Nov. 14, 2013

the transport control protocol by establishing a first transport
control protocol connection with the client and a second
transport control connection with the second appliance or
server. In another embodiment, the appliance 205 terminates
the transport control protocol by changing, managing or con
trolling the behavior of the transport control protocol connec
tion between the client and the server or second appliance. For
example, the appliance 205 may change, queue, forward or
transmit network packets in manner to effectively terminate
the transport control protocol connection or to actor simulate
as terminating the connection.
0049. In some embodiments, the second appliance 205 is a
performance enhancing proxy. In one embodiment, the appli
ance 205 provides a virtual private network (VPN) connec
tion. In some embodiments, the appliance 205 provides a
Secure Socket Layer VPN (SSL VPN) connection. In other
embodiments, the appliance 205 provides an IPsec (Internet
Protocol Security) based VPN connection. In some embodi
ments, the appliance 205 provides any one or more of the
following functionality: compression, acceleration, load-bal
ancing, Switching/routing, caching, and Transport Control
Protocol (TCP) acceleration.
0050. In one embodiment, the appliance 205 is any of the
product embodiments referred to as Access Gateway, Appli
cation Firewall, Application Gateway, or NetScaler manufac
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. As such,
in some embodiments, the appliance 205 includes any logic,
functions, rules, or operations to perform services or func
tionality such as SSL VPN connectivity, SSL offloading,
Switching/load balancing, Domain Name Service resolution,
LAN acceleration and an application firewall.
0051. In some embodiments, the appliance 205 provides a
SSL VPN connection between a client 102 and a server 106.
For example, a client 102 on a first network 104 requests to
establish a connection to a server 106 on a second network
104". In some embodiments, the second network 104" is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104". Such as a corporate network. In one
embodiment, a client agent intercepts communications of the
client 102 on the first network 104, encrypts the communica
tions, and transmits the communications via a first transport
layer connection to the appliance 205. The appliance 205
associates the first transport layer connection on the first
network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 205
receives the intercepted communication from the clientagent,
decrypts the communications, and transmits the communica
tion to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer
connection may be a pooled transport layer connection. In
one embodiment, the appliance 205 provides an end-to-end
secure transport layer connection for the client 102 between
the two networks 104, 104
0052. In one embodiments, the appliance 205 hosts an
intranet internet protocol or intranetIP address of the client
102 on the virtual private network 104. The client 102 has a
local network identifier, such as an internet protocol (IP)
address and/or host name on the first network 104. When
connected to the second network 104 via the appliance 205,
the appliance 205 establishes, assigns or otherwise provides
an IntranetIP, which is network identifier, such as IP address
and/or host name, for the client 102 on the second network
104". The appliance 205 listens for and receives on the second

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 19 of 45

US 2013/030479.6 A1

or private network 104" for any communications directed
towards the client 102 using the clients established
IntranetIP. In one embodiment, the appliance 205 acts as or on
behalf of the client 102 on the second private network 104.
0053. In some embodiment, the appliance 205 has an
encryption engine providing logic, business rules, functions
or operations for handling the processing of any security
related protocol, such as SSL or TLS, or any function related
thereto. For example, the encryption engine encrypts and
decrypts network packets, or any portion thereof, communi
cated via the appliance 205. The encryption engine may also
setup or establish SSL or TLS connections on behalf of the
client 102a-102n, server 106a-106n, or appliance 200, 205.
AS Such, the encryption engine provides offloading and accel
eration of SSL processing. In one embodiment, the encryp
tion engine uses a tunneling protocol to provide a virtual
private network between a client 102a-102n and a server
106a-106m. In some embodiments, the encryption engine
uses an encryption processor. In other embodiments, the
encryption engine includes executable instructions running
on an encryption processor.
0054. In some embodiments, the appliance 205 provides
one or more of the following acceleration techniques to com
munications between the client 102 and server 106: 1) com
pression, 2) decompression, 3) Transmission Control Proto
colpooling, 4) Transmission Control Protocol multiplexing,
5) Transmission Control Protocol buffering, and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of
much of the processing load caused by repeatedly opening
and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each
server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech
nique is referred to herein as “connection pooling'.
0055. In some embodiments, in order to seamlessly splice
communications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 205 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing. In
Some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 205, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 205 and the destination
address is changed from that of appliance 205 to that of the
requesting client 102. The sequence numbers and acknowl
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement expected by the
client 102 on the appliance's 205 transport layer connection
to the client 102. In some embodiments, the packet checksum
of the transport layer protocol is recalculated to account for
these translations.

0056. In another embodiment, the appliance 205 provides
Switching or load-balancing functionality for communica
tions between the client 102 and server 106. In some embodi
ments, the appliance 205 distributes traffic and directs client
requests to a server 106 based on layer 4 payload or applica
tion-layer request data. In one embodiment, although the
network layer or layer 2 of the network packet identifies a

Nov. 14, 2013

destination server 106, the appliance 205 determines the
server 106 to distribute the network packet by application
information and data carried as payload of the transport layer
packet. In one embodiment, a health monitoring program of
the appliance 205 monitors the health of servers to determine
the server 106 for which to distribute a client's request. In
some embodiments, if the appliance 205 detects a server 106
is not available or has a load over a predetermined threshold,
the appliance 205 can direct or distribute client requests to
another server 106.

0057. In some embodiments, the appliance 205 acts as a
Domain Name Service (DNS) resolver or otherwise provides
resolution of a DNS request from clients 102. In some
embodiments, the appliance intercepts a DNS request trans
mitted by the client 102. In one embodiment, the appliance
205 responds to a client’s DNS request with an IP address of
or hosted by the appliance 205. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 205 responds to a client’s DNS request with an
IP address of a server 106 determined by the appliance 200.
0058. In yet another embodiment, the appliance 205 pro
vides application firewall functionality for communications
between the client 102 and server 106. In one embodiment, a
policy engine 295 provides rules for detecting and blocking
illegitimate requests. In some embodiments, the application
firewall protects against denial of service (DoS) attacks. In
other embodiments, the appliance inspects the content of
intercepted requests to identify and block application-based
attacks. In some embodiments, the rules/policy engine
includes one or more application firewall or security control
policies for providing protections against various classes and
types of web or Internet based vulnerabilities, such as one or
more of the following: 1) buffer overflow, 2) CGI-BIN param
eter manipulation, 3) form/hidden field manipulation, 4)
forceful browsing, 5) cookie or session poisoning, 6) broken
access control list (ACLS) or weak passwords, 7) cross-site
scripting (XSS), 8) command injection, 9) SQL injection, 10)
error triggering sensitive information leak, 11) insecure use
of cryptography, 12) server misconfiguration, 13) back doors
and debug options, 14) website defacement, 15) platform or
operating systems Vulnerabilities, and 16) Zero-day exploits.
In an embodiment, the application firewall of the appliance
provides HTML form field protection in the form of inspect
ing or analyzing the network communication for one or more
of the following: 1) required fields are returned, 2) no added
field allowed, 3) read-only and hidden field enforcement, 4)
drop-down list and radio button field conformance, and 5)
form-field max-length enforcement. In some embodiments,
the application firewall of the appliance 205 ensures cookies
are not modified. In other embodiments, the appliance 205
protects against forceful browsing by enforcing legal URLs.
0059. In still yet other embodiments, the application fire
wall appliance 205 protects any confidential information con
tained in the network communication. The appliance 205 may
inspector analyze any network communication in accordance
with the rules or polices of the policy engine to identify any
confidential information in any field of the network packet. In
some embodiments, the application firewall identifies in the
network communication one or more occurrences of a credit
card number, password, social security number, name, patient
code, contact information, and age. The encoded portion of

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 20 of 45

US 2013/030479.6 A1

the network communication may include these occurrences
or the confidential information. Based on these occurrences,
in one embodiment, the application firewall may take a policy
action on the network communication, Such as prevent trans
mission of the network communication. In another embodi
ment, the application firewall may rewrite, remove or other
wise mask Such identified occurrence or confidential
information.
0060 Although generally referred to as a network optimi
zation or first appliance 200 and a second appliance 205, the
first appliance 200 and second appliance 205 may be the same
type and form of appliance. In one embodiment, the second
appliance 205 may perform the same functionality, orportion
thereof, as the first appliance 200, and Vice-versa. For
example, the first appliance 200 and second appliance 205
may both provide acceleration techniques. In one embodi
ment, the first appliance may perform LAN acceleration
while the second appliance performs WAN acceleration, or
vice-versa. In another example, the first appliance 200 may
also be a transport control protocol terminating device as with
the second appliance 205. Furthermore, although appliances
200 and 205 are shown as separate devices on the network, the
appliance 200 and/or 205 could be a part of any client 102 or
Server 106.
0061 Referring now to FIG. 1C, other embodiments of a
network environment for deploying the appliance 200 are
depicted. In another embodiment as depicted on the top of
FIG. 1C, the appliance 200 may be deployed as a single
appliance or single proxy on the network 104. For example,
the appliance 200 may be designed, constructed or adapted to
perform WAN optimization techniques discussed herein
without a second cooperating appliance 200'. In other
embodiments as depicted on the bottom of FIG. 1C, a single
appliance 200 may be deployed with one or more second
appliances 205. For example, a WAN acceleration first appli
ance 200, such as a Citrix WANScaler appliance, may be
deployed with a LAN accelerating or Application Firewall
second appliance 205, such as a Citrix NetScaler appliance.

Computing Device
0062. The client 102, server 106, and appliance 200 and
205 may be deployed as and/or executed on any type and form
of computing device. Such as a computer, network device or
appliance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1D and 1E depict block diagrams of a computing
device 100 useful for practicing an embodiment of the client
102, server 106 or appliance 200. As shown in FIGS. 1D and
1E, each computing device 100 includes a central processing
unit 101, and a main memory unit 122. As shown in FIG. 1D,
a computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi
tional optional elements, such as one or more input/output
devices 130a-130b (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.
0063. The central processing unit 101 is any logic circuitry
that responds to and processes instructions fetched from the
main memory unit 122. In many embodiments, the central
processing unit is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, Ill., those manufactured by Transmeta Corpo

Nov. 14, 2013

ration of Santa Clara, Calif.; the RS/6000 processor, those
manufactured by International Business Machines of White
Plains, N.Y.; or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 100 may
be based on any of these processors, or any other processor
capable of operating as described herein.
0064. Main memory unit 122 may be one or more memory
chips capable of storing data and allowing any storage loca
tion to be directly accessed by the microprocessor 101, such
as Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO DRAM),
Burst Extended Data Output DRAM (BEDO DRAM),
Enhanced DRAM (EDRAM), synchronous DRAM
(SDRAM), JEDEC SRAM, PC 100 SDRAM, Double Data
Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ES
DRAM), SyncLink DRAM (SLDRAM), Direct Rambus
DRAM (DRDRAM), or Ferroelectric RAM (FRAM). The
main memory 122 may be based on any of the above
described memory chips, or any other available memory
chips capable of operating as described herein. In the embodi
ment shown in FIG. 1D, the processor 101 communicates
with main memory 122 via a system bus 150 (described in
more detail below). FIG. 1E depicts an embodiment of a
computing device 100 in which the processor communicates
directly with main memory 122 via a memory port 103. For
example, in FIG. 1E the main memory 122 may be
DRDRAM.

0065 FIG. 1E depicts an embodiment in which the main
processor 101 communicates directly with cache memory
140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 101 commu
nicates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 122 and is typically provided by SRAM,
BSRAM, or EDRAM. In the embodiment shown in FIG. 1C,
the processor 101 communicates with various I/O devices
130 via a local system bus 150. Various busses may be used to
connect the central processing unit 101 to any of the I/O
devices 130, including a VESAVL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodiments
in which the I/O device is a video display 124, the processor
101 may use an Advanced Graphics Port (AGP) to commu
nicate with the display 124. FIG. 1E depicts an embodiment
of a computer 100 in which the main processor 101 commu
nicates directly with I/O device 130 via HyperTransport,
Rapid I/O, or InfiniBand. FIG. 1E also depicts an embodi
ment in which local busses and direct communication are
mixed: the processor 101 communicates with I/O device 130a
using a local interconnect bus while communicating with I/O
device 130b directly.
0066. The computing device 100 may support any suitable
installation device 116, such as a floppy disk drive for receiv
ing floppy disks such as 3.5-inch, 5.25-inch disks or ZIP
disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM
drive, tape drives of various formats, USB device, hard-drive
or any other device Suitable for installing software and pro
grams such as any client agent 120, or portion thereof. The
computing device 100 may further comprise a storage device
128, such as one or more hard disk drives or redundant arrays
of independent disks, for storing an operating system and

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 21 of 45

US 2013/030479.6 A1

other related Software, and for storing application Software
programs such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIX(R), a bootable
CD for GNU/Linux that is available as a GNU/Linux distri
bution from knoppix.net.
0067 Furthermore, the computing device 100 may
include a network interface 118 to interface to a Local Area
Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter, wire
less network adapter, USB network adapter, modem or any
other device Suitable for interfacing the computing device
100 to any type of network capable of communication and
performing the operations described herein. A wide variety of
I/O devices 130a-130n may be present in the computing
device 100. Input devices include keyboards, mice, track
pads, trackballs, microphones, and drawing tablets. Output
devices include video displays, speakers, inkjet printers, laser
printers, and dye-sublimation printers. The I/O devices 130
may be controlled by an I/O controller 123 as shown in FIG.
1D. The I/O controller may control one or more I/O devices
Such as a keyboard 126 and a pointing device 127, e.g., a
mouse or optical pen. Furthermore, an I/O device may also
provide storage 128 and/or an installation medium 116 for the
computing device 100. In still other embodiments, the com
puting device 100 may provide USB connections to receive
handheld USB storage devices such as the USB Flash Drive
line of devices manufactured by Twintech Industry, Inc. of
Los Alamitos, Calif.
0068. In some embodiments, the computing device 100
may comprise or be connected to multiple display devices
124a-124m, which each may be of the same or different type
and/or form. As such, any of the I/O devices 130a-130n
and/or the I/O controller 123 may comprise any type and/or
form of suitable hardware, software, or combination of hard
ware and software to support, enable or provide for the con
nection and use of multiple display devices 124a-124n by the
computing device 100. For example, the computing device
100 may include any type and/or form of video adapter, video
card, driver, and/or library to interface, communicate, con
nect or otherwise use the display devices 124a-124n. In one
embodiment, a video adapter may comprise multiple connec
tors to interface to multiple display devices 124a-124n. In
other embodiments, the computing device 100 may include
multiple video adapters, with each video adapter connected to
one or more of the display devices 124a-124n. In some
embodiments, any portion of the operating system of the
computing device 100 may be configured for using multiple
displays 124a-124n. In other embodiments, one or more of
the display devices 124a-124n may be provided by one or
more other computing devices, such as computing devices
100a and 100b connected to the computing device 100, for
example, via a network. These embodiments may include any
type of Software designed and constructed to use another
computer's display device as a second display device 124a
for the computing device 100. One ordinarily skilled in the art

Nov. 14, 2013

will recognize and appreciate the various ways and embodi
ments that a computing device 100 may be configured to have
multiple display devices 124a-124n.
0069. In further embodiments, an I/O device 130 may be a
bridge 170 between the system bus 150 and an external com
munication bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Giga
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPIbus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.
0070 A computing device 100 of the sort depicted in
FIGS. 1D and 1E typically operate under the control of oper
ating systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running
any operating system such as any of the versions of the
Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any real-time operating system, any open
Source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWSNT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating System, among others.
0071. In other embodiments, the computing device 100
may have different processors, operating systems, and input
devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600
or 650 smart phone manufactured by Palm, Inc. In this
embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a stylus
input device as well as a five-way navigator device. More
over, the computing device 100 can be any workstation, desk
top computer, laptop or notebook computer, server, handheld
computer, mobile telephone, any other computer, or other
form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein.

B. System and Appliance Architecture
0072 Referring now to FIG. 2A, an embodiment of a
system environment and architecture of an appliance 200 for
delivering and/or operating a computing environment on a
client is depicted. In some embodiments, a server 106
includes an application delivery system 290 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 102 is in
communication with a server 106 via network 104 and appli
ance 200. For example, the client 102 may reside in a remote
office of a company, e.g., a branch office, and the server 106
may reside at a corporate data center. The client 102 has a
client agent 120, and a computing environment 215. The

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 22 of 45

US 2013/030479.6 A1

computing environment 215 may execute or operate an appli
cation that accesses, processes or uses a data file. The com
puting environment 215, application and/or data file may be
delivered via the appliance 200 and/or the server 106.
0073. In some embodiments, the appliance 200 acceler
ates delivery of a computing environment 215, or any portion
thereof, to a client 102. In one embodiment, the appliance 200
accelerates the delivery of the computing environment 215 by
the application delivery system 290. For example, the
embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable
by the application from a central corporate data center to a
remote user location, such as a branch office of the company.
In another embodiment, the appliance 200 accelerates trans
port layer traffic between a client 102 and a server 106. In
another embodiment, the appliance 200 controls, manages, or
adjusts the transport layer protocol to accelerate delivery of
the computing environment. In some embodiments, the appli
ance 200 uses caching and/or compression techniques to
accelerate delivery of a computing environment.
0074. In some embodiments, the application delivery
management system 290 provides application delivery tech
niques to deliver a computing environment to a desktop of a
user, remote or otherwise, based on a plurality of execution
methods and based on any authentication and authorization
policies applied via a policy engine 295. With these tech
niques, a remote user may obtain a computing environment
and access to server stored applications and data files from
any network connected device 100. In one embodiment, the
application delivery system 290 may reside or execute on a
server 106. In another embodiment, the application delivery
system 290 may reside or execute on a plurality of servers
106a-106m. In some embodiments, the application delivery
system 290 may execute in a server farm 38. In one embodi
ment, the server 106 executing the application delivery sys
tem 290 may also store or provide the application and data
file. In another embodiment, a first set of one or more servers
106 may execute the application delivery system 290, and a
different server 106.n may store or provide the application and
data file. In some embodiments, each of the application deliv
ery system 290, the application, and data file may reside or be
located on different servers. In yet another embodiment, any
portion of the application delivery system 290 may reside,
execute or be stored on or distributed to the appliance 200, or
a plurality of appliances.
0075. The client 102 may include a computing environ
ment 215 for executing an application that uses or processes
a data file. The client 102 via networks 104, 104' and appli
ance 200 may request an application and data file from the
server 106. In one embodiment, the appliance 200 may for
ward a request from the client 102 to the server 106. For
example, the client 102 may not have the application and data
file stored or accessible locally. In response to the request, the
application delivery system 290 and/or server 106 may
deliver the application and data file to the client 102. For
example, in one embodiment, the server 106 may transmit the
application as an application stream to operate in computing
environment 215 on client 102.
0076. In some embodiments, the application delivery sys
tem 290 comprises any portion of the Citrix Access SuiteTM
by Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation ServerTM and/or any of the Microsoft(R) Win
dows Terminal Services manufactured by the Microsoft Cor
poration. In one embodiment, the application delivery system

Nov. 14, 2013

290 may deliver one or more applications to clients 102 or
users via a remote-display protocol or otherwise via remote
based or server-based computing. In another embodiment,
the application delivery system 290 may deliver one or more
applications to clients or users via steaming of the applica
tion.

0077. In one embodiment, the application delivery system
290 includes a policy engine 295 for controlling and manag
ing the access to, selection of application execution methods
and the delivery of applications. In some embodiments, the
policy engine 295 determines the one or more applications a
user or client 102 may access. In another embodiment, the
policy engine 295 determines how the application should be
delivered to the user or client 102, e.g., the method of execu
tion. In some embodiments, the application delivery system
290 provides a plurality of delivery techniques from which to
select a method of application execution, such as a server
based computing, streaming or delivering the application
locally to the client 120 for local execution.
0078. In one embodiment, a client 102 requests execution
ofan application program and the application delivery system
290 comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi
ment, in response to the request or receipt of credentials, the
application delivery system 290 enumerates a plurality of
application programs available to the client 102. The appli
cation delivery system 290 receives a request to execute an
enumerated application. The application delivery system 290
selects one of a predetermined number of methods for execut
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
290 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 290 may select a
method of execution of the application enabling the client or
local machine 102 to execute the application program locally
after retrieving a plurality of application files comprising the
application. In yet another embodiment, the application
delivery system 290 may select a method of execution of the
application to stream the application via the network 104 to
the client 102.

0079 A client 102 may execute, operate or otherwise pro
vide an application, which can be any type and/or form of
Software, program, or executable instructions such as any
type and/or form of web browser, web-based client, client
server application, a thin-client computing client, an ActiveX
control, or a Java applet, or any other type and/or form of
executable instructions capable of executing on client 102. In
Some embodiments, the application may be a server-based or
a remote-based application executed on behalf of the client
102 on a server 106. In one embodiment the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol. Such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi
ments, the application comprises any type of software related

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 23 of 45

US 2013/030479.6 A1

to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica
tion related to real-time data communications, such as appli
cations for streaming video and/or audio.
0080. In some embodiments, the server 106 or a server
farm 38 may be running one or more applications, such as an
application providing a thin-client computing or remote dis
play presentation application. In one embodiment, the server
106 or server farm 38 executes as an application, any portion
of the Citrix Access SuiteTM by Citrix Systems, Inc., such as
the MetaFrame or Citrix Presentation Server TM, and/or any of
the Microsoft(R) Windows Terminal Services manufactured
by the Microsoft Corporation. In one embodiment, the appli
cation is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeetingTM provided by
Citrix Online Division, Inc. of Santa Barbara, Calif.,
WebExTM provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor
poration of Redmond, Wash.

Example Appliance Architecture

0081 FIG. 2A also illustrates an example embodiment of
the appliance 200. The architecture of the appliance 200 in
FIG. 2A is provided by way of illustration only and is not
intended to be limiting in any manner. The appliance 200 may
include any type and form of computing device 100. Such as
any element or portion described in conjunction with FIGS.
1D and 1E above. In brief overview, the appliance 200 has one
or more network ports 266A-226N and one or more networks
stacks 267A-267N for receiving and/or transmitting commu
nications via networks 104. The appliance 200 also has a
network optimization engine 250 for optimizing, accelerating
or otherwise improving the performance, operation, or qual
ity of any network traffic or communications traversing the
appliance 200.
0082. The appliance 200 includes or is under the control of
an operating system. The operating system of the appliance
200 may be any type and/or form of Unix operating system
although the invention is not so limited. As such, the appli
ance 200 can be running any operating system such as any of
the versions of the Microsoft(R) Windows operating systems,
the different releases of the Unix and Linux operating sys
tems, any version of the Mac OS(R) for Macintosh computers,
any embedded operating system, any network operating sys
tem, any real-time operating system, any open Source oper
ating System, any proprietary operating System, any operating
systems for mobile computing devices or network devices, or
any other operating system capable of running on the appli
ance 200 and performing the operations described herein.
0083. The operating system of appliance 200 allocates,
manages, or otherwise segregates the available system
memory into what is referred to askernel or system space, and
user or application space. The kernel space is typically
reserved for running the kernel, including any device drivers,
kernel extensions or other kernel related software. As known

Nov. 14, 2013

to those skilled in the art, the kernel is the core of the operating
system, and provides access, control, and management of
resources and hardware-related elements of the appliance
200. In accordance with an embodiment of the appliance 200,
the kernel space also includes a number of network services
or processes working in conjunction with the network opti
mization engine 250, or any portion thereof. Additionally, the
embodiment of the kernel will depend on the embodiment of
the operating system installed, configured, or otherwise used
by the device 200. In contrast to kernel space, userspace is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
directly and uses service calls in order to access kernel Ser
vices. The operating system uses the user or application space
for executing or running applications and provisioning of user
level programs, services, processes and/or tasks.
I0084. The appliance 200 has one or more network ports
266 for transmitting and receiving data over a network 104.
The network port 266 provides a physical and/or logical
interface between the computing device and a network 104 or
another device 100 for transmitting and receiving network
communications. The type and form of network port 266
depends on the type and form of network and type of medium
for connecting to the network. Furthermore, any software of
provisioned for or used by the network port 266 and network
stack 267 may run in either kernel space or user space.
I0085. In one embodiment, the appliance 200 has one net
work stack 267, such as a TCP/IP based stack, for communi
cating on a network 105, such with the client 102 and/or the
server 106. In one embodiment, the network stack 267 is used
to communicate with a first network, such as network 104,
and also with a second network 104". In another embodiment,
the appliance 200 has two or more network Stacks, such as
first network stack 267A and a second network stack 267N.
The first network stack 267A may be used in conjunction with
a first port 266A to communicate on a first network 104. The
second network stack 267N may be used in conjunction with
a second port 266N to communicate on a second network
104". In one embodiment, the network stack(s) 267 has one or
more buffers for queuing one or more network packets for
transmission by the appliance 200.
I0086. The network stack 267 includes any type and form
of software, or hardware, or any combinations thereof, for
providing connectivity to and communications with a net
work. In one embodiment, the network stack 267 includes a
software implementation for a network protocol suite. The
network stack 267 may have one or more network layers, such
as any networks layers of the Open Systems Interconnection
(OSI) communications model as those skilled in the art rec
ognize and appreciate. As such, the network Stack 267 may
have any type and form of protocols for any of the following
layers of the OSI model: 1) physical link layer, 2) data link
layer, 3) network layer, 4) transport layer, 5) session layer, 6)
presentation layer, and 7) application layer. In one embodi
ment, the network stack 267 includes a transport control
protocol (TCP) over the network layer protocol of the internet
protocol (IP), generally referred to as TCP/IP. In some
embodiments, the TCP/IP protocol may be carried over the
Ethernet protocol, which may comprise any of the family of
IEEE wide-area-network (WAN) or local-area-network
(LAN) protocols, such as those protocols covered by the
IEEE 802.3. In some embodiments, the network stack 267 has

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 24 of 45

US 2013/030479.6 A1

any type and form of a wireless protocol, such as IEEE 802.11
and/or mobile internet protocol.
I0087. In view of a TCP/IP based network, any TCP/IP
based protocol may be used, including Messaging Applica
tion Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Com
mon Internet File System (CIFS) protocol (file transfer),
Independent Computing Architecture (ICA) protocol,
Remote Desktop Protocol (RDP), Wireless Application Pro
tocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP)
protocol. In another embodiment, the network stack 267 com
prises any type and form of transport control protocol. Such as
a modified transport control protocol, for example a Transac
tion TCP (T/TCP), TCP with selection acknowledgements
(TCP-SACK), TCP with large windows (TCP-LW), a con
gestion prediction protocol Such as the TCP-Vegas protocol,
and a TCP spoofing protocol. In other embodiments, any type
and form of user datagram protocol (UDP), such as UDP over
IP may be used by the network stack 267, such as for voice
communications or real-time data communications.

0088. Furthermore, the network stack 267 may include
one or more network drivers Supporting the one or more
layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating
system of the computing device 100 or as part of any network
interface cards or other network access components of the
computing device 100. In some embodiments, any of the
network drivers of the network stack 267 may be customized,
modified or adapted to provide a custom or modified portion
of the network stack 267 in support of any of the techniques
described herein.

0089. In one embodiment, the appliance 200 provides for
or maintains a transport layer connection between a client 102
and server 106 using a single network stack 267. In some
embodiments, the appliance 200 effectively terminates the
transport layer connection by changing, managing or control
ling the behavior of the transport control protocol connection
between the client and the server. In these embodiments, the
appliance 200 may use a single network stack 267. In other
embodiments, the appliance 200 terminates a first transport
layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server
106 for use by or on behalf of the client 102, e.g., the second
transport layer connection is terminated at the appliance 200
and the server 106. The first and second transport layer con
nections may be established via a single network stack 267. In
other embodiments, the appliance 200 may use multiple net
work stacks, for example 267A and 267N. In these embodi
ments, the first transport layer connection may be established
or terminated at one network stack 267A, and the second
transport layer connection may be established or terminated
on the second network stack 267N. For example, one network
stack may be for receiving and transmitting network packets
on a first network, and another network Stack for receiving
and transmitting network packets on a second network.
0090. As shown in FIG. 2A, the network optimization
engine 250 includes one or more of the following elements,
components or modules: network packet processing engine
240, LAN/WAN detector 210, flow controller 220, QoS
engine 236, protocol accelerator 234, compression engine
238, cache manager 232 and policy engine 295'. The network
optimization engine 250, or any portion thereof, may include
Software, hardware or any combination of software and hard
ware. Furthermore, any software of provisioned for or used

Nov. 14, 2013

by the network optimization engine 250 may run in either
kernel space or user space. For example, in one embodiment,
the network optimization engine 250 may run in kernel space.
In another embodiment, the network optimization engine 250
may run in user space. In yet another embodiment, a first
portion of the network optimization engine 250 runs in kernel
space while a second portion of the network optimization
engine 250 runs in user space.

Network Packet Processing Engine
0091. The network packet engine 240, also generally
referred to as a packet processing engine or packet engine, is
responsible for controlling and managing the processing of
packets received and transmitted by appliance 200 via net
work ports 266 and network stack(s) 267. The network packet
engine 240 may operate at any layer of the network stack 267.
In one embodiment, the network packet engine 240 operates
at layer 2 or layer 3 of the network stack 267. In some
embodiments, the packet engine 240 intercepts or otherwise
receives packets at the network layer, such as the IPlayer in a
TCP/IP embodiment. In another embodiment, the packet
engine 240 operates at layer 4 of the network stack 267. For
example, in Some embodiments, the packet engine 240 inter
cepts or otherwise receives packets at the transport layer, Such
as intercepting packets as the TCP layer in a TCP/IP embodi
ment. In other embodiments, the packet engine 240 operates
at any session or application layer above layer 4. For example,
in one embodiment, the packet engine 240 intercepts or oth
erwise receives network packets above the transport layer
protocol layer, such as the payload of a TCP packet in a TCP
embodiment.
0092. The packet engine 240 may include a buffer for
queuing one or more networkpackets during processing. Such
as for receipt of a networkpacket or transmission of a network
packet. Additionally, the packet engine 240 is in communi
cation with one or more network stacks 267 to send and
receive network packets via network ports 266. The packet
engine 240 may include a packet processing timer. In one
embodiment, the packet processing timer provides one or
more time intervals to trigger the processing of incoming, i.e.,
received, or outgoing, i.e., transmitted, network packets. In
Some embodiments, the packet engine 240 processes network
packets responsive to the timer. The packet processing timer
provides any type and form of signal to the packet engine 240
to notify, trigger, or communicate a time related event, inter
val or occurrence. In many embodiments, the packet process
ing timer operates in the order of milliseconds, Such as for
example 100 ms, 50 ms, 25 ms, 10 ms, 5 ms or 1 ms.
0093. During operations, the packet engine 240 may be
interfaced, integrated or be in communication with any por
tion of the network optimization engine 250, such as the
LAN/WAN detector 210, flow controller 220, QoS engine
236, protocol accelerator 234, compression engine 238,
cache manager 232 and/or policy engine 295'. As such, any of
the logic, functions, or operations of the LAN/WAN detector
210, flow controller 220, QoS engine 236, protocol accelera
tor 234, compression engine 238, cache manager 232 and
policy engine 295 may be performed responsive to the packet
processing timer and/or the packet engine 240. In some
embodiments, any of the logic, functions, or operations of the
encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression logic 238 may be per
formed at the granularity of time intervals provided via the
packet processing timer, for example, at a time interval of less

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 25 of 45

US 2013/030479.6 A1

than or equal to 10 ms. For example, in one embodiment, the
cache manager 232 may perform expiration of any cached
objects responsive to the integrated packet engine 240 and/or
the packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet
processing timer, such as at every 10 ms.

Cache Manager

0094. The cache manager 232 may include software, hard
ware or any combination of software and hardware to store
data, information and objects to a cache in memory or storage,
provide cache access, and control and manage the cache. The
data, objects or content processed and stored by the cache
manager 232 may include data in any format, such as a
markup language, or any type of data communicated via any
protocol. In some embodiments, the cache manager 232
duplicates original data stored elsewhere or data previously
computed, generated or transmitted, in which the original
data may require longer access time to fetch, compute or
otherwise obtain relative to reading a cache memory or stor
age element. Once the data is stored in the cache, future use
can be made by accessing the cached copy rather than refetch
ing or recomputing the original data, thereby reducing the
access time. In some embodiments, the cache may comprise
a data object in memory of the appliance 200. In another
embodiment, the cache may comprise any type and form of
storage element of the appliance 200, such as a portion of a
hard disk. In some embodiments, the processing unit of the
device may provide cache memory for use by the cache man
ager 232. In yet further embodiments, the cache manager 232
may use any portion and combination of memory, storage, or
the processing unit for caching data, objects, and other con
tent.

0095. Furthermore, the cache manager 232 includes any
logic, functions, rules, or operations to perform any caching
techniques of the appliance 200. In some embodiments, the
cache manager 232 may operate as an application, library,
program, service, process, thread or task. In some embodi
ments, the cache manager 232 can comprise any type of
general purpose processor (GPP), or any other type of inte
grated circuit, such as a Field Programmable Gate Array
(FPGA), Programmable Logic Device (PLD), or Application
Specific Integrated Circuit (ASIC).

Policy Engine

0096) The policy engine 295' includes any logic, function
or operations for providing and applying one or more policies
or rules to the function, operation or configuration of any
portion of the appliance 200. The policy engine 295' may
include, for example, an intelligent statistical engine or other
programmable application(s). In one embodiment, the policy
engine 295 provides a configuration mechanism to allow a
user to identify, specify, define or configure a policy for the
network optimization engine 250, or any portion thereof. For
example, the policy engine 295 may provide policies for what
data to cache, when to cache the data, for whom to cache the
data, when to expire an object in cache or refresh the cache. In
other embodiments, the policy engine 236 may include any
logic, rules, functions or operations to determine and provide
access, control and management of objects, data or content
being cached by the appliance 200 in addition to access,

Nov. 14, 2013

control and management of security, network traffic, network
access, compression or any other function or operation per
formed by the appliance 200.
I0097. In some embodiments, the policy engine 295' pro
vides and applies one or more policies based on any one or
more of the following: a user, identification of the client,
identification of the server, the type of connection, the time of
the connection, the type of network, or the contents of the
network traffic. In one embodiment, the policy engine 295'
provides and applies a policy based on any field or header at
any protocol layer of a network packet. In another embodi
ment, the policy engine 295 provides and applies a policy
based on any payload of a network packet. For example, in
one embodiment, the policy engine 295' applies a policy
based on identifying a certain portion of content of an appli
cation layer protocol carried as a payload of a transport layer
packet. In another example, the policy engine 295' applies a
policy based on any information identified by a client, server
or user certificate. In yet another embodiment, the policy
engine 295' applies a policy based on any attributes or char
acteristics obtained about a client 102, such as via any type
and form of endpoint detection (see for example the collec
tion agent of the client agent discussed below).
I0098. In one embodiment, the policy engine 295' works in
conjunction or cooperation with the policy engine 295 of the
application delivery system 290. In some embodiments, the
policy engine 295" is a distributed portion of the policy engine
295 of the application delivery system 290. In another
embodiment, the policy engine 295 of the application deliv
ery system 290 is deployed on or executed on the appliance
200. In some embodiments, the policy engines 295, 295' both
operate on the appliance 200. In yet another embodiment, the
policy engine 295', or a portion thereof, of the appliance 200
operates on a server 106.

Multi-Protocol and Multi-Layer Compression Engine
I0099. The compression engine 238 includes any logic,
business rules, function or operations for compressing one or
more protocols of a network packet, such as any of the pro
tocols used by the network stack 267 of the appliance 200.
The compression engine 238 may also be referred to as a
multi-protocol compression engine 238 in that it may be
designed, constructed or capable of compressing a plurality
of protocols. In one embodiment, the compression engine 238
applies context insensitive compression, which is compres
Sion applied to data without knowledge of the type of data. In
another embodiment, the compression engine 238 applies
context-sensitive compression. In this embodiment, the com
pression engine 238 utilizes knowledge of the data type to
Select a specific compression algorithm from a suite of suit
able algorithms. In some embodiments, knowledge of the
specific protocol is used to perform context-sensitive com
pression. In one embodiment, the appliance 200 or compres
Sion engine 238 can use port numbers (e.g., well-known
ports), as well as data from the connection itself to determine
the appropriate compression algorithm to use. Some proto
cols use only a single type of data, requiring only a single
compression algorithm that can be selected when the connec
tion is established. Other protocols contain different types of
data at different times. For example, POP, IMAP, SMTP, and
HTTP all move files of arbitrary types interspersed with other
protocol data.
I0100. In one embodiment, the compression engine 238
uses a delta-type compression algorithm. In another embodi

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 26 of 45

US 2013/030479.6 A1

ment, the compression engine 238 uses first site compression
as well as searching for repeated patterns among data stored
in cache, memory or disk. In some embodiments, the com
pression engine 238 uses a lossless compression algorithm. In
other embodiments, the compression engine uses a lossy
compression algorithm. In some cases, knowledge of the data
type and, sometimes, permission from the user are required to
use a lossy compression algorithm. Compression is not lim
ited to the protocol payload. The control fields of the protocol
itself may be compressed. In some embodiments, the com
pression engine 238 uses a different algorithm than that used
for the payload.
0101. In some embodiments, the compression engine 238
compresses at one or more layers of the network stack 267. In
one embodiment, the compression engine 238 compresses at
a transport layer protocol. In another embodiment, the com
pression engine 238 compresses at an application layer pro
tocol. In some embodiments, the compression engine 238
compresses at a layer 2-4 protocol. In other embodiments, the
compression engine 238 compresses at a layer 5-7 protocol.
In yet another embodiment, the compression engine com
presses a transport layer protocol and an application layer
protocol. In some embodiments, the compression engine 238
compresses a layer 2-4 protocol and a layer 5-7 protocol.
0102. In some embodiments, the compression engine 238
uses memory-based compression, cache-based compression
or disk-based compression or any combination thereof. As
Such, the compression engine 238 may be referred to as a
multi-layer compression engine. In one embodiment, the
compression engine 238 uses a history of data stored in
memory, Such as RAM. In another embodiment, the compres
sion engine 238 uses a history of data stored in a cache, Such
as L2 cache of the processor. In other embodiments, the
compression engine 238 uses a history of data stored to a disk
or storage location. In some embodiments, the compression
engine 238 uses a hierarchy of cache-based, memory-based
and disk-based data history. The compression engine 238
may first use the cache-based data to determine one or more
data matches for compression, and then may check the
memory-based data to determine one or more data matches
for compression. In another case, the compression engine 238
may check disk storage for data matches for compression
after checking either the cache-based and/or memory-based
data history.
0103) In one embodiment, multi-protocol compression
engine 238 compresses bi-directionally between clients
102a-102n and servers 106a-106n any TCP/IP based proto
col, including Messaging Application Programming Inter
face (MAPI) (email), File Transfer Protocol (FTP), Hyper
Text Transfer Protocol (HTTP), Common Internet File
System (CIFS) protocol (file transfer), Independent Comput
ing Architecture (ICA) protocol, Remote Desktop Protocol
(RDP), Wireless Application Protocol (WAP), Mobile IP pro
tocol, and Voice Over IP (VoIP) protocol. In other embodi
ments, multi-protocol compression engine 238 provides
compression of HyperTextMarkup Language (HTML) based
protocols and in Some embodiments, provides compression
of any markup languages, such as the Extensible Markup
Language (XML). In one embodiment, the multi-protocol
compression engine 238 provides compression of any high
performance protocol. Such as any protocol designed for
appliance 200 to appliance 200 communications. In another
embodiment, the multi-protocol compression engine 238
compresses any payload of or any communication using a

Nov. 14, 2013

modified transport control protocol, such as Transaction TCP
(T/TCP), TCP with selection acknowledgements (TCP
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol.
0104. As such, the multi-protocol compression engine 238
accelerates performance for users accessing applications via
desktop clients, e.g., Microsoft Outlook and non-Web thin
clients, such as any client launched by popular enterprise
applications like Oracle, SAP and Siebel, and even mobile
clients, such as the Pocket PC. In some embodiments, the
multi-protocol compression engine by integrating with
packet processing engine 240 accessing the network Stack
267 is able to compress any of the protocols carried by a
transport layer protocol. Such as any application layer proto
col.

LAN/WAN Detector

0105. The LAN/WAN detector 238 includes any logic,
business rules, function or operations for automatically
detecting a slow side connection (e.g., a wide area network
(WAN) connection Such as an Intranet) and associated port
267, and a fast side connection (e.g., a local area network
(LAN) connection) and an associated port 267. In some
embodiments, the LAN/WAN detector 238 monitors network
traffic on the network ports 267 of the appliance 200 to detect
a synchronization packet, sometimes referred to as a "tagged”
network packet. The synchronization packet identifies a type
or speed of the network traffic. In one embodiment, the syn
chronization packet identifies a WAN speed or WAN type
connection. The LAN/WAN detector 238 also identifies
receipt of an acknowledgement packet to a tagged synchro
nization packet and on which port it is received. The appli
ance 200 then configures itself to operate the identified port
on which the tagged synchronization packet arrived so that
the speed on that port is set to be the speed associated with the
network connected to that port. The other port is then set to the
speed associated with the network connected to that port.
0106 For ease of discussion herein, reference to “fast
side will be made with respect to connection with a wide area
network (WAN), e.g., the Internet, and operating at a network
speed of the WAN. Likewise, reference to “slow” side will be
made with respect to connection with a local area network
(LAN) and operating at a network speed the LAN. However,
it is noted that “fast' and “slow sides in a network can change
on a per-connection basis and are relative terms to the speed
of the network connections or to the type of network topology.
Such configurations are useful in complex network topolo
gies, where a network is “fast' or “slow' only when compared
to adjacent networks and not in any absolute sense.
0107. In one embodiment, the LAN/WAN detector 238
may be used to allow for auto-discovery by an appliance 200
of a network to which it connects. In another embodiment, the
LAN/WAN detector 238 may be used to detect the existence
or presence of a second appliance 200' deployed in the net
work 104. For example, an auto-discovery mechanism in
operation in accordance with FIG. 1A functions as follows:
appliance 200 and 200' are placed in line with the connection
linking client 102 and server 106. The appliances 200 and
200' are at the ends of a low-speed link, e.g., Internet, con
necting two LANs. In one example embodiment, appliances
200 and 200" each include two ports—one to connect with the
“lower speed link and the other to connect with a “higher
speed link, e.g., a LAN. Any packet arriving at one port is

99

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 27 of 45

US 2013/030479.6 A1

copied to the other port. Thus, appliance 200 and 200' are each
configured to function as a bridge between the two networks
104.

0108. When an end node, such as the client 102, opens a
new TCP connection with another end node, such as the
server 106, the client 102 sends a TCP packet with a synchro
nization (SYN) header bit set, or a SYN packet, to the server
106. In the present example, client 102 opens a transport layer
connection to server 106. When the SYN packet passes
through appliance 200, the appliance 200 inserts, attaches or
otherwise provides a characteristic TCP header option to the
packet, which announces its presence. If the packet passes
through a second appliance, in this example appliance 200'
the second appliance notes the header option on the SYN
packet. The server 106 responds to the SYN packet with a
synchronization acknowledgment (SYN-ACK) packet.
When the SYN-ACK packet passes through appliance 200', a
TCP header option is tagged (e.g., attached, inserted or
added) to the SYN-ACK packet to announce appliance 200'
presence to appliance 200. When appliance 200 receives this
packet, both appliances 200,200' are now aware of each other
and the connection can be appropriately accelerated.
0109 Further to the operations of the LAN/WAN detector
238, a method or process for detecting “fast' and “slow sides
of a network using a SYN packet is described. During a
transport layer connection establishment between a client 102
and a server 106, the appliance 200 via the LAN/WAN detec
tor 238 determines whether the SYN packet is tagged with an
acknowledgement (ACK). If it is tagged, the appliance 200
identifies or configures the port receiving the tagged SYN
packet (SYN-ACK) as the “slow side. In one embodiment,
the appliance 200 optionally removes the ACK tag from the
packet before copying the packet to the other port. If the
LAN/WAN detector 238 determines that the packet is not
tagged, the appliance 200 identifies or configure the port
receiving the untagged packet as the “fast side. The appli
ance 200 then tags the SYN packet with an ACK and copies
the packet to the other port.
0110. In another embodiment, the LAN/WAN detector
238 detects fast and slow sides of a network using a SYN
ACK packet. The appliance 200 via the LAN/WAN detector
238 determines whether the SYN-ACK packet is tagged with
an acknowledgement (ACK). If it is tagged, the appliance 200
identifies or configures the port receiving the tagged SYN
packet (SYN-ACK) as the “slow side. In one embodiment,
the appliance 200 optionally removes the ACK tag from the
packet before copying the packet to the other port. If the
LAN/WAN detector 238 determines that the packet is not
tagged, the appliance 200 identifies or configures the port
receiving the untagged packet as the “fast' side. The LAN/
WAN detector 238 determines whether the SYN packet was
tagged. If the SYN packet was not tagged, the appliance 200
copied the packet to the other port. If the SYN packet was
tagged, the appliance tags the SYN-ACK packet before copy
ing it to the other port.
0111. The appliance 200, 200' may add, insert, modify,
attach or otherwise provide any information or data in the
TCP option header to provide any information, data or char
acteristics about the network connection, network traffic flow,
or the configuration or operation of the appliance 200. In this
manner, not only does an appliance 200 announce its presence
to another appliance 200' or tag a higher or lower speed
connection, the appliance 200 provides additional informa
tion and data via the TCP option headers about the appliance

Nov. 14, 2013

or the connection. The TCP option header information may be
useful to or used by an appliance in controlling, managing,
optimizing, acceleration or improving the network traffic
flow traversing the appliance 200, or to otherwise configure
itself or operation of a network port.
0112 Although generally described in conjunction with
detecting speeds of network connections or the presence of
appliances, the LAN/WAN detector 238 can be used for
applying any type of function, logic or operation of the appli
ance 200 to a port, connection or flow of network traffic. In
particular, automated assignment of ports can occur when
ever a device performs different functions on different ports,
where the assignment of a port to a task can be made during
the units operation, and/or the nature of the network segment
on each port is discoverable by the appliance 200.

Flow Control

0113. The flow controller 220 includes any logic, business
rules, function or operations for optimizing, accelerating or
otherwise improving the performance, operation or quality of
service of transport layer communications of networkpackets
or the delivery of packets at the transport layer. A flow con
troller, also sometimes referred to as a flow control module,
regulates, manages and controls data transfer rates. In some
embodiments, the flow controller 220 is deployed at or con
nected at a bandwidth bottleneck in the network 104. In one
embodiment, the flow controller 220 effectively regulates,
manages and controls bandwidth usage or utilization. In other
embodiments, the flow control modules may also be deployed
at points on the network of latency transitions (low latency to
high latency) and on links with media losses (such as wireless
or satellite links).
0114. In some embodiments, a flow controller 220 may
include a receiver-side flow control module for controlling
the rate of receipt of network transmissions and a sender-side
flow control module for the controlling the rate of transmis
sions of network packets. In other embodiments, a first flow
controller 220 includes a receiver-side flow control module
and a second flow controller 220' includes a sender-side flow
control module. In some embodiments, a first flow controller
220 is deployed on a first appliance 200 and a second flow
controller 220" is deployed on a second appliance 200'. As
such, in some embodiments, a first appliance 200 controls the
flow of data on the receiverside and a second appliance 200
controls the data flow from the sender side. In yet another
embodiment, a single appliance 200 includes flow control for
both the receiver-side and sender-side of network communi
cations traversing the appliance 200.
0.115. In one embodiment, a flow control module 220 is
configured to allow bandwidth at the bottleneck to be more
fully utilized, and in some embodiments, not overutilized. In
some embodiments, the flow control module 220 transpar
ently buffers (or rebuffers data already buffered by, for
example, the sender) network sessions that pass between
nodes having associated flow control modules 220. When a
session passes through two or more flow control modules
220, one or more of the flow control modules controls a rate
of the session(s).
0116. In one embodiment, the flow control module 200 is
configured with predetermined data relating to bottleneck
bandwidth. In another embodiment, the flow control module
220 may be configured to detect the bottleneck bandwidth or
data associated therewith. Unlike conventional network pro
tocols such as TCP, a receiver-side flow control module 220

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 28 of 45

US 2013/030479.6 A1

controls the data transmission rate. The receiver-side flow
control module controls 220 the sender-side flow control
module, e.g., 220, data transmission rate by forwarding trans
mission rate limits to the sender-side flow control module
220. In one embodiment, the receiver-side flow control mod
ule 220 piggybacks these transmission rate limits on
acknowledgement (ACK) packets (or signals) sent to the
sender, e.g., client 102, by the receiver, e.g., server 106. The
receiver-side flow control module 220 does this in response to
rate control requests that are sent by the sender side flow
control module 220". The requests from the sender-side flow
control module 220" may be "piggybacked on data packets
sent by the sender 106.
0117. In some embodiments, the flow controller 220
manipulates, adjusts, simulates, changes, improves or other
wise adapts the behavior of the transport layer protocol to
provide improved performance or operations of delivery, data
rates and/or bandwidth utilization of the transport layer. The
flow controller 220 may implement a plurality of data flow
control techniques at the transport layer, including but not
limited to 1) pre-acknowledgements, 2) window virtualiza
tion, 3) recongestion techniques, 3) local retransmission tech
niques, 4) wavefront detection and disambiguation, 5) trans
port control protocol selective acknowledgements, 6)
transaction boundary detection techniques and 7) repacketi
Zation.

0118. Although a sender may be generally described
herein as a client 102 and a receiver as a server 106, a sender
may be any end point such as a server 106 or any computing
device 100 on the network 104. Likewise, a receiver may be a
client 102 or any other computing device on the network 104.

Pre-Acknowledgements

0119. In brief overview of a pre-acknowledgement flow
control technique, the flow controller 220, in some embodi
ments, handles the acknowledgements and retransmits for a
sender, effectively terminating the sender's connection with
the downstream portion of a network connection. In reference
to FIG. 1B, one possible deployment of an appliance 200 into
a network architecture to implement this feature is depicted.
In this example environment, a sending computer or client
102 transmits data on network 104, for example, via a switch,
which determines that the data is destined for VPN appliance
205. Because of the chosen network topology, all data des
tined for VPN appliance 205 traverses appliance 200, so the
appliance 200 can apply any necessary algorithms to this
data.

0120 Continuing further with the example, the client 102
transmits a packet, which is received by the appliance 200.
When the appliance 200 receives the packet, which is trans
mitted from the client 102 to a recipient via the VPN appli
ance 205 the appliance 200 retains a copy of the packet and
forwards the packet downstream to the VPN appliance 205.
The appliance 200 then generates an acknowledgement
packet (ACK) and sends the ACK packet back to the client
102 or sending endpoint. This ACK, a pre-acknowledgment,
causes the sender 102 to believe that the packet has been
delivered successfully, freeing the sender's resources for sub
sequent processing. The appliance 200 retains the copy of the
packet data in the event that a retransmission of the packet is
required, so that the sender 102 does not have to handle
retransmissions of the data. This early generation of acknowl
edgements may be called “preacking

Nov. 14, 2013

I0121. If a retransmission of the packet is required, the
appliance 200 retransmits the packet to the sender. The appli
ance 200 may determine whether retransmission is required
as a sender would in a traditional system, for example, deter
mining that a packet is lost if an acknowledgement has not
been received for the packet after a predetermined amount of
time. To this end, the appliance 200 monitors acknowledge
ments generated by the receiving endpoint, e.g., server 106
(or any other downstream network entity) so that it can deter
mine whether the packet has been successfully delivered or
needs to be retransmitted. If the appliance 200 determines that
the packet has been successfully delivered, the appliance 200
is free to discard the saved packet data. The appliance 200
may also inhibit forwarding acknowledgements for packets
that have already been received by the sending endpoint.
I0122. In the embodiment described above, the appliance
200 via the flow controller 220 controls the Sender 102
through the delivery of pre-acknowledgements, also referred
to as “preacks', as though the appliance 200 was a receiving
endpoint itself. Since the appliance 200 is not an endpoint and
does not actually consume the data, the appliance 200
includes a mechanism for providing overflow control to the
sending endpoint. Without overflow control, the appliance
200 could run out of memory because the appliance 200
stores packets that have been preacked to the sending end
point but not yet acknowledged as received by the receiving
endpoint. Therefore, in a situation in which the sender 102
transmits packets to the appliance 200 faster than the appli
ance 200 can forward the packets downstream, the memory
available in the appliance 200 to store unacknowledged
packet data can quickly fill. A mechanism for overflow con
trol allows the appliance 200 to control transmission of the
packets from the sender 102 to avoid this problem.
I0123. In one embodiment, the appliance 200 or flow con
troller 220 includes an inherent “self-clocking overflow con
trol mechanism. This self-clocking is due to the order in
which the appliance 200 may be designed to transmit packets
downstream and send ACKs to the sender 102 or 106. In some
embodiments, the appliance 200 does not preack the packet
until after it transmits the packet downstream. In this way, the
sender 102 will receive the ACKs at the rate at which the
appliance 200 is able to transmit packets rather than the rate at
which the appliance 200 receives packets from the sender
100. This helps to regulate the transmission of packets from a
Sender 102.

Window Virtualization

0.124. Another overflow control mechanism that the appli
ance 200 may implement is to use the TCP window size
parameter, which tells a sender how much buffer the receiver
is permitting the sender to fill up. A nonzero window size
(e.g., a size of at least one Maximum Segment Size (MSS)) in
a preack permits the sending endpoint to continue to deliver
data to the appliance, whereas a Zero window size inhibits
further data transmission. Accordingly, the appliance 200
may regulate the flow of packets from the sender, for example
when the appliance's 200 buffer is becoming full, by appro
priately setting the TCP window size in each preack.
0.125. Another technique to reduce this additional over
head is to apply hysteresis. When the appliance 200 delivers
data to the slower side, the overflow control mechanism in the
appliance 200 can require that a minimum amount of space be
available before sending a nonzero window advertisement to
the sender. In one embodiment, the appliance 200 waits until

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 29 of 45

US 2013/030479.6 A1

there is a minimum of a predetermined number of packets,
Such as four packets, of space available before sending a
nonzero window packet, such as a window size of four
packet). This reduces the overhead by approximately a factor
four, since only two ACK packets are sent for each group of
four data packets, instead of eight ACK packets for four data
packets.
0126. Another technique the appliance 200 or flow con

troller 220 may use for overflow control is the TCP delayed
ACK mechanism, which skips ACKs to reduce network traf
fic. The TCP delayed ACKs automatically delay the sending
of an ACK, either until two packets are received or until a
fixed timeout has occurred. This mechanism alone can result
in cutting the overhead in half moreover, by increasing the
numbers of packets above two, additional overhead reduction
is realized. But merely delaying the ACK itself may be insuf
ficient to control overflow, and the appliance 200 may also use
the advertised window mechanism on the ACKs to control the
sender. When doing this, the appliance 200 in one embodi
ment avoids triggering the timeout mechanism of the sender
by delaying the ACK too long.
0127. In one embodiment, the flow controller 220 does not
preack the last packet of a group of packets. By not preacking
the last packet, or at least one of the packets in the group, the
appliance avoids a false acknowledgement for a group of
packets. For example, if the appliance were to send a preack
for a last packet and the packet were Subsequently lost, the
sender would have been tricked into thinking that the packet
is delivered when it was not. Thinking that the packet had
been delivered, the sender could discard that data. If the
appliance also lost the packet, there would be no way to
retransmit the packet to the recipient. By not preacking the
last packet of a group of packets, the sender will not discard
the packet until it has been delivered.
0128. In another embodiment, the flow controller 220 may
use a window virtualization technique to control the rate of
flow or bandwidth utilization of a network connection.
Though it may not immediately be apparent from examining
conventional literature such as RFC 1323, there is effectively
a send window for transport layer protocols such as TCP. The
send window is similar to the receive window, in that it
consumes buffer space (though on the sender). The senders
send window consists of all data sent by the application that
has not been acknowledged by the receiver. This data must be
retained in memory in case retransmission is required. Since
memory is a shared resource. Some TCP stack implementa
tions limit the size of this data. When the send window is full,
an attempt by an application program to send more data
results in blocking the application program until space is
available. Subsequent reception of acknowledgements will
free send-window memory and unblock the application pro
gram. In some embodiments, this window size is known as the
socket buffer size in some TCP implementations.
0129. In one embodiment, the flow control module 220 is
configured to provide access to increased window (or buffer)
sizes. This configuration may also be referenced to as window
virtualization. In the embodiment of TCP as the transport
layer protocol, the TCP header includes a bit string corre
sponding to a window scale. In one embodiment, “window'
may be referenced in a context of send, receive, or both.
0130. One embodiment of window virtualization is to
insert a preacking appliance 200 into a TCP session. In ref
erence to any of the environments of FIG. 1A or 1B, initiation
of a data communication session between a source node, e.g.,

Nov. 14, 2013

client 102 (for ease of discussion, now referenced as source
node 102), and a destination node, e.g., server 106 (for ease of
discussion, now referenced as destination node 106) is estab
lished. For TCP communications, the source node 102 ini
tially transmits a synchronization signal (“SYN) through its
local area network 104 to first flow control module 220. The
first flow control module 220 inserts a configuration identifier
into the TCP header options area. The configuration identifier
identifies this point in the data path as a flow control module.
I0131 The appliances 200 via a flow control module 220
provide window (or buffer) to allow increasing data buffering
capabilities within a session despite having end nodes with
small buffer sizes, e.g., typically 16 kbytes. However, RFC
1323 requires window scaling for any buffer sizes greater
than 64 kbytes, which must be set at the time of session
initialization (SYN, SYN-ACK signals). Moreover, the win
dow scaling corresponds to the lowest common denominator
in the data path, often an end node with small buffer size. This
window scale often is a scale of 0 or 1, which corresponds to
a buffer size of up to 64k or 128 kbytes. Note that because the
window size is defined as the window field in each packet
shifted over by the window scale, the window scale estab
lishes an upper limit for the buffer, but does not guarantee the
buffer is actually that large. Each packet indicates the current
available buffer space at the receiver in the window field.
0.132. In one embodiment of scaling using the window
virtualization technique, during connection establishment
(i.e., initialization of a session) when the first flow control
module 220 receives from the source node 102 the SYN
signal (or packet), the flow control module 220 stores the
windows scale of the source node 102 (which is the previous
node) or stores a 0 for window scale if the scale of the previous
node is missing. The first flow control module 220 also modi
fies the scale, e.g., increases the scale to 4 from 0 or 1, in the
SYN-FCM signal. When the second flow control module 220
receives the SYN signal, it stores the increased scale from the
first flow control signal and resets the scale in the SYN signal
back to the source node 103 scale value for transmission to the
destination node 106. When the second flow controller 220
receives the SYN-ACK signal from the destination node 106,
it stores the scale from the destination node 106 scale, e.g., 0
or 1, and modifies it to an increased scale that is sent with the
SYN-ACK-FCM signal. The first flow control node 220
receives and notes the received window scale and revises the
windows scale sent back to the source node 102 back down to
the original scale, e.g., 0 or 1. Based on the above window
shift conversation during connection establishment, the win
dow field in every Subsequent packet, e.g., TCP packet, of the
session must be shifted according to the window shift con
version.

I0133. The window scale, as described above, expresses
buffer sizes of over 64k and may not be required for window
virtualization. Thus, shifts for window scale may be used to
express increased buffer capacity in each flow control module
220. This increase in buffer capacity in may be referenced as
window (or buffer) virtualization. The increase in buffer size
allows greater packet through put from and to the respective
end nodes 102 and 106. Note that buffer sizes in TCP are
typically expressed in terms of bytes, but for ease of discus
sion “packets' may be used in the description herein as it
relates to virtualization.

I0134. By way of example, a window (or buffer) virtual
ization performed by the flow controller 220 is described. In
this example, the source node 102 and the destination node

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 30 of 45

US 2013/030479.6 A1

106 are configured similar to conventional end nodes having
a limited buffer capacity of 16 kbytes, which equals approxi
mately 10 packets of data. Typically, an end node 102, 106
must wait until the packet is transmitted and confirmation is
received before a next group of packets can be transmitted. In
one embodiment, using increased buffer capacity in the flow
control modules 220, when the source node 103 transmits its
data packets, the first flow control module 220 receives the
packets, stores it in its larger capacity buffer, e.g., 512 packet
capacity, and immediately sends back an acknowledgement
signal indicating receipt of the packets (“REC-ACK') back to
the source node 102. The source node 102 can then “flush” its
current buffer, load it with 10 new data packets, and transmit
those onto the first flow control module 220. Again, the first
flow control module 220 transmits a REC-ACKsignal back to
the source node 102 and the source node 102 flushes its buffer
and loads it with 10 more new packets for transmission.
0135. As the first flow control module 220 receives the
data packets from the source nodes, it loads up its buffer
accordingly. When it is ready the first flow control module
220 can begin transmitting the data packets to the second flow
control module 230, which also has an increased buffer size,
for example, to receive 512 packets. The second flow control
module 220" receives the data packets and begins to transmit
10 packets at a time to the destination node 106. Each REC
ACK received at the second flow control node 220 from the
destination node 106 results in 10 more packets being trans
mitted to the destination node 106 until all the data packets are
transferred. Hence, the present invention is able to increase
data transmission throughput between the source node
(sender) 102 and the destination node (receiver) 106 by taking
advantage of the larger buffer in the flow control modules
220, 220' between the devices.
0136. It is noted that by “preacking the transmission of
data as described previously, a sender (or source node 102) is
allowed to transmit more data than is possible without the
preacks, thus affecting a larger window size. For example, in
one embodiment this technique is effective when the flow
control module 220, 220" is located “near anode (e.g., source
node 102 or destination node 106) that lacks large windows.

Recongestion

0.137 Another technique or algorithm of the flow control
ler 220 is referred to as recongestion. The standard TCP
congestion avoidance algorithms are known to perform
poorly in the face of certain network conditions, including:
large RTTS (round trip times), high packet loss rates, and
others. When the appliance 200 detects a congestion condi
tion Such as long round trip times or high packet loss, the
appliance 200 intervenes, Substituting an alternate congestion
avoidance algorithm that better suits the particular network
condition. In one embodiment, the recongestion algorithm
uses preacks to effectively terminate the connection between
the sender and the receiver. The appliance 200 then resends
the packets from itself to the receiver, using a different con
gestion avoidance algorithm. Recongestion algorithms may
be dependent on the characteristics of the TCP connection.
The appliance 200 monitors each TCP connection, character
izing it with respect to the different dimensions, selecting a
recongestion algorithm that is appropriate for the current
characterization.
0.138. In one embodiment, upon detecting a TCP connec
tion that is limited by round trip times (RTT), a recongestion
algorithm is applied which behaves as multiple TCP connec

Nov. 14, 2013

tions. Each TCP connection operates within its own perfor
mance limit but the aggregate bandwidth achieves a higher
performance level. One parameter in this mechanism is the
number of parallel connections that are applied (N). Too large
a value of Nand the connection bundle achieves more than its
fair share of bandwidth. Too small a value of N and the
connection bundle achieves less than its fair share of band
width. One method of establishing “N' relies on the appliance
200 monitoring the packet loss rate, RTT, and packet size of
the actual connection. These numbers are plugged into a TCP
response curve formula to provide an upper limit on the
performance of a single TCP connection in the present con
figuration. If each connection within the connection bundle is
achieving Substantially the same performance as that com
puted to be the upper limit, then additional parallel connec
tions are applied. If the current bundle is achieving less per
formance than the upper limit, the number of parallel
connections is reduced. In this manner, the overall fairness of
the system is maintained since individual connection bundles
contain no more parallelism than is required to eliminate the
restrictions imposed by the protocol itself. Furthermore, each
individual connection retains TCP compliance.
(0.139. Another method of establishing “N” is to utilize a
parallel flow control algorithm such as the TCP “Vegas”
algorithm or its improved version "Stabilized Vegas.” In this
method, the network information associated with the connec
tions in the connection bundle (e.g., RTT. loss rate, average
packet size, etc.) is aggregated and applied to the alternate
flow control algorithm. The results of this algorithm are in
turn distributed among the connections of the bundle control
ling their number (i.e., N). Optionally, each connection within
the bundle continues using the standard TCP congestion
avoidance algorithm.
0140. In another embodiment, the individual connections
within a parallel bundle are virtualized, i.e., actual individual
TCP connections are not established. Instead the congestion
avoidance algorithm is modified to behave as though there
were N parallel connections. This method has the advantage
of appearing to transiting network nodes as a single connec
tion. Thus the QOS, security and other monitoring methods of
these nodes are unaffected by the recongestion algorithm. In
yet another embodiment, the individual connections within a
parallel bundle are real, i.e., a separate. TCP connection is
established for each of the parallel connections within a
bundle. The congestion avoidance algorithm for each TCP
connection need not be modified.

Retransmission

0.141. In some embodiments, the flow controller 220 may
apply a local retransmission technique. One reason for imple
menting preacks is to prepare to transit a high-loss link (e.g.,
wireless). In these embodiments, the preacking appliance 200
or flow control module 220 is located most beneficially
"before the wireless link. This allows retransmissions to be
performed closer to the high loss link, removing the retrans
mission burden from the remainder of the network. The appli
ance 200 may provide local retransmission, in which case,
packets dropped due to failures of the link are retransmitted
directly by the appliance 200. This is advantageous because it
eliminates the retransmission burden upon an end node. Such
as server 106, and infrastructure of any of the networks 104.
With appliance 200 providing local retransmissions, the
dropped packet can be retransmitted across the high loss link

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 31 of 45

US 2013/030479.6 A1

without necessitating a retransmit by an end node and a cor
responding decrease in the rate of data transmission from the
end node.

0142. Another reason for implementing preacks is to avoid
a receive time out (RTO) penalty. In standard TCP there are
many situations that result in an RTO, even though a large
percentage of the packets in flight were Successfully received.
With standard TCP algorithms, dropping more than one
packet within an RTT window would likely result in a tim
eout. Additionally, most TCP connections experience a tim
eout if a retransmitted packet is dropped. In a network with a
high bandwidth delay product, even a relatively small packet
loss rate will cause frequent Retransmission timeouts
(RTOs). In one embodiment, the appliance 200 uses a retrans
mit and timeout algorithm is avoid premature RTOs. The
appliance 200 or flow controller 220 maintains a count of
retransmissions is maintained on a per-packet basis. Each
time that a packet is retransmitted, the count is incremented
by one and the appliance 200 continues to transmit packets. In
Some embodiments, only if a packet has been retransmitted a
predetermined number of times is an RTO declared.

Wavefront Detection and Disambiguation

0143. In some embodiments, the appliance 200 or flow
controller 220 uses wavefront detection and disambiguation
techniques in managing and controlling flow of network traf
fic. In this technique, the flow controller 220 uses transmit
identifiers or numbers to determine whether particular data
packets need to be retransmitted. By way of example, a sender
transmits data packets over a network, where each instance of
a transmitted data packet is associated with a transmit num
ber. It can be appreciated that the transmit number for a packet
is not the same as the packet's sequence number, since a
sequence number references the data in the packet while the
transmit number references an instance of a transmission of
that data. The transmit number can be any information usable
for this purpose, including a timestamp associated with a
packet or simply an increasing number (similar to a sequence
number or a packet number). Because a data segment may be
retransmitted, different transmit numbers may be associated
with a particular sequence number.
0144. As the sender transmits data packets, the sender
maintains a data structure of acknowledged instances of data
packet transmissions. Each instance of a data packet trans
mission is referenced by its sequence number and transmit
number. By maintaining a transmit number for each packet,
the sender retains the ordering of the transmission of data
packets. When the sender receives an ACK or a SACK, the
sender determines the highest transmit number associated
with packets that the receiver indicated has arrived (in the
received acknowledgement). Any outstanding unacknowl
edged packets with lower transmit numbers are presumed
lost.

0145. In some embodiments, the sender is presented with
an ambiguous situation when the arriving packet has been
retransmitted: a standard ACK/SACK does not contain
enough information to allow the sender to determine which
transmission of the arriving packet has triggered the acknowl
edgement. After receiving an ambiguous acknowledgement,
therefore, the sender disambiguates the acknowledgement to
associate it with a transmit number. In various embodiments,
one or a combination of several techniques may be used to
resolve this ambiguity.

Nov. 14, 2013

0146 In one embodiment, the sender includes an identifier
with a transmitted data packet, and the receiver returns that
identifier or a function thereof with the acknowledgement.
The identifier may be a timestamp (e.g., a TCP timestamp as
described in RFC 1323), a sequential number, or any other
information that can be used to resolve between two or more
instances of a packet's transmission. In an embodiment in
which the TCP timestamp option is used to disambiguate the
acknowledgement, each packet is tagged with up to 32-bits of
unique information. Upon receipt of the data packet, the
receiver echoes this unique information back to the sender
with the acknowledgement. The sender ensures that the origi
nally sent packet and its retransmitted version or versions
contain different values for the timestamp option, allowing it
to unambiguously eliminate the ACK ambiguity. The sender
may maintain this unique information, for example, in the
data structure in which it stores the status of sent data packets.
This technique is advantageous because it complies with
industry standards and is thus likely to encounter little or no
interoperability issues. However, this technique may require
ten bytes of TCP header space in some implementations,
reducing the effective throughput rate on the network and
reducing space available for other TCP options.
0.147. In another embodiment, another field in the packet,
such as the IP ID field, is used to disambiguate in a way
similar to the TCP timestamp option described above. The
sender arranges for the ID field values of the original and the
retransmitted version or versions of the packet to have differ
ent ID fields in the IP header. Upon reception of the data
packet at the receiver, or a proxy device thereof, the receiver
sets the ID field of the ACK packet to a function of the ID field
of the packet that triggers the ACK. This method is advanta
geous, as it requires no additional data to be sent, preserving
the efficiency of the network and TCP header space. The
function chosen should provide a high degree of likelihood of
providing disambiguation. In a preferred embodiment, the
sender selects IPID values with the most significant bit set to
0. When the receiver responds, the IP ID value is set to the
same IPID value with the most significant bit set to a one.
0.148. In another embodiment, the transmit numbers asso
ciated with non-ambiguous acknowledgements are used to
disambiguate an ambiguous acknowledgement. This tech
nique is based on the principle that acknowledgements for
two packets will tend to be received closer in time as the
packets are transmitted closer in time. Packets that are not
retransmitted will not result in ambiguity, as the acknowl
edgements received for Such packets can be readily associ
ated with a transmit number. Therefore, these known transmit
numbers are compared to the possible transmit numbers for
an ambiguous acknowledgement received near in time to the
known acknowledgement. The sender compares the transmit
numbers of the ambiguous acknowledgement against the last
known received transmit number, selecting the one closest to
the known received transmit number. For example, if an
acknowledgement for data packet 1 is received and the last
received acknowledgement was for data packet 5, the sender
resolves the ambiguity by assuming that the third instance of
data packet 1 caused the acknowledgement.

Selective Acknowledgements
0149 Another technique of the appliance 200 or flow con
troller 220 is to implement an embodiment of transport con
trol protocol selective acknowledgements, or TCPSACK, to
determine what packets have or have not been received. This

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 32 of 45

US 2013/030479.6 A1

technique allows the sender to determine unambiguously a
list of packets that have been received by the receiver as well
as an accurate list of packets not received. This functionality
may be implemented by modifying the Sender and/or
receiver, or by inserting sender- and receiver-side flow control
modules 220 in the network path between the sender and
receiver. In reference to FIG. 1A or FIG. 1B, a sender, e.g.,
client 102, is configured to transmit data packets to the
receiver, e.g., server 106, over the network 104. In response,
the receiver returns a TCP Selective Acknowledgment option,
referred to as SACK packet to the sender. In one embodiment,
the communication is bi-directional, although only one direc
tion of communication is discussed here for simplicity. The
receiver maintains a list, or other suitable data structure, that
contains a group of ranges of sequence numbers for data
packets that the receiver has actually received. In some
embodiments, the list is sorted by sequence number in an
ascending or descending order. The receiver also maintains a
left-off pointer, which comprises a reference into the list and
indicates the left-off point from the previously generated
SACK packet.
0150. Upon reception of a data packet, the receiver gener
ates and transmits a SACK packet back to the sender. In some
embodiments, the SACK packet includes a number of fields,
each of which can hold a range of sequence numbers to
indicate a set of received data packets. The receiver fills this
first field of the SACK packet with a range of sequence
numbers that includes the landing packet that triggered the
SACK packet. The remaining available SACK fields are filled
with ranges of sequence numbers from the list of received
packets. As there are more ranges in the list than can be loaded
into the SACK packet, the receiver uses the left-off pointer to
determine which ranges are loaded into the SACK packet.
The receiver inserts the SACK ranges consecutively from the
Sorted list, starting from the range referenced by the pointer
and continuing down the list until the available SACK range
space in the TCP header of the SACK packet is consumed.
The receiver wraps around to the start of the list if it reaches
the end. In some embodiments, two or three additional SACK
ranges can be added to the SACK range information.
0151. Once the receiver generates the SACK packet, the
receiver sends the acknowledgement back to the sender. The
receiver then advances the left-off pointer by one or more
SACK range entries in the list. If the receiver inserts four
SACK ranges, for example, the left-off pointer may be
advanced two SACK ranges in the list. When the advanced
left-off pointer reaches at the end of the list, the pointer is reset
to the start of the list, effectively wrapping around the list of
known received ranges. Wrapping around the list enables the
system to perform well, even in the presence of large losses of
SACK packets, since the SACK information that is not com
municated due to a lost SACK packet will eventually be
communicated once the list is wrapped around.
0152. It can be appreciated, therefore, that a SACK packet
may communicate several details about the condition of the
receiver. First, the SACK packet indicates that, upon genera
tion of the SACK packet, the receiver had just received a data
packet that is within the first field of the SACK information.
Secondly, the second and subsequent fields of the SACK
information indicate that the receiver has received the data
packets within those ranges. The SACK information also
implies that the receiver had not, at the time of the SACK
packets generation, received any of the data packets that fall
between the second and subsequent fields of the SACK infor

Nov. 14, 2013

mation. In essence, the ranges between the second and Sub
sequent ranges in the SACK information are “holes' in the
received data, the data therein known not to have been deliv
ered. Using this method, therefore, when a SACK packet has
Sufficient space to include more than two SACK ranges, the
receiver may indicate to the sendera range of data packets that
have not yet been received by the receiver.
0153. In another embodiment, the sender uses the SACK
packet described above in combination with the retransmit
technique described above to make assumptions about which
data packets have been delivered to the receiver. For example,
when the retransmit algorithm (using the transmit numbers)
declares a packet lost, the Sender considers the packet to be
only conditionally lost, as it is possible that the SACK packet
identifying the reception of this packet was lost rather than the
data packet itself. The sender thus adds this packet to a list of
potentially lost packets, called the presumed lost list. Each
time a SACK packet arrives, the known missing ranges of
data from the SACK packet are compared to the packets in the
presumed lost list. Packets that contain data known to be
missing are declared actually lost and are Subsequently
retransmitted. In this way, the two schemes are combined to
give the sender better information about which packets have
been lost and need to be retransmitted.

Transaction Boundary Detection
0154) In some embodiments, the appliance 200 or flow
controller 220 applies a technique referred to as transaction
boundary detection. In one embodiment, the technique per
tains to ping-pong behaved connections. At the TCP layer,
ping-pong behavior is when one communicant—a sender
sends data and then waits for a response from the other com
municant—the receiver. Examples of ping-pong behavior
include remote procedure call, HTTP and others. The algo
rithms described above use retransmission timeout (RTO) to
recover from the dropping of the last packet or packets asso
ciated with the transaction. Since the TCP RTO mechanism is
extremely coarse in Some embodiments, for example requir
ing a minimum one second value in all cases), poor applica
tion behavior may be seen in these situations.
0.155. In one embodiment, the sender of data or a flow
control module 220 coupled to the sender detects a transac
tion boundary in the data being sent. Upon detecting a trans
action boundary, the sender or a flow control module 220
sends additional packets, whose reception generates addi
tional ACK or SACK responses from the receiver. Insertion of
the additional packets is preferably limited to balance
between improved application response time and network
capacity utilization. The number of additional packets that is
inserted may be selected according to the current loss rate
associated with that connection, with more packets selected
for connections having a higher loss rate.
0156. One method of detecting a transaction boundary is
time based. If the Sender has been sending data and ceases,
then after a period of time the sender or flow control module
200 declares a transaction boundary. This may be combined
with other techniques. For example, the setting of the PSH
(TCP Push) bit by the sender in the TCP header may indicate
a transaction boundary. Accordingly, combining the time
based approach with these additional heuristics can provide
for more accurate detection of a transaction boundary. In
another technique, if the sender or flow control module 220
understands the application protocol, it can parse the protocol
data stream and directly determine transaction boundaries. In

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 33 of 45

US 2013/030479.6 A1

Some embodiment, this last behavior can be used independent
of any time-based mechanism.
0157 Responsive to detecting a transaction boundary, the
sender or flow control module 220 transmits additional data
packets to the receiver to cause acknowledgements there
from. The additional data packets should therefore be such
that the receiver will at least generate an ACK or SACK in
response to receiving the data packet. In one embodiment, the
last packet or packets of the transaction are simply retrans
mitted. This has the added benefit of retransmitting needed
data if the last packet or packets had been dropped, as com
pared to merely sending dummy data packets. In another
embodiment, fractions of the last packet or packets are sent,
allowing the sender to disambiguate the arrival of these pack
ets from their original packets. This allows the receiver to
avoid falsely confusing any reordering adaptation algorithms.
In another embodiment, any of a number of well-known
forward error correction techniques can be used to generate
additional data for the inserted packets, allowing for the
reconstruction of dropped or otherwise missing data at the
receiver.

0158. In some embodiments, the boundary detection tech
nique described herein helps to avoid a timeout when the
acknowledgements for the last data packets in a transaction
are dropped. When the sender or flow control module 220
receives the acknowledgements for these additional data
packets, the sender can determine from these additional
acknowledgements whether the last data packets have been
received or need to be retransmitted, thus avoiding a timeout.
In one embodiment, if the last packets have been received but
their acknowledgements were dropped, a flow control mod
ule 220 generates an acknowledgement for the data packets
and sends the acknowledgement to the sender, thus commu
nicating to the sender that the data packets have been deliv
ered. In another embodiment, if the last packets have not been
received, a flow control module 200 sends a packet to the
sender to cause the sender to retransmit the dropped data
packets.

Repacketization

0159. In yet another embodiment, the appliance 200 or
flow controller 220 applies a repacketization technique for
improving the flow of transport layer network traffic. In some
embodiments, performance of TCP is proportional to packet
size. Thus increasing packet sizes improves performance
unless it causes Substantially increased packet loss rates or
other nonlinear effects, like IP fragmentation. In general,
wired media (Such as copper or fibre optics) have extremely
low bit-error rates, low enough that these can be ignored. For
these media, it is advantageous for the packet size to be the
maximum possible before fragmentation occurs (the maxi
mum packet size is limited by the protocols of the underlying
transmission media). Whereas for transmission media with
higher loss rates (e.g., wireless technologies such as WiFi.
etc., or high-loss environments such as power-line network
ing, etc.), increasing the packet size may lead to lower trans
mission rates, as media-induced errors cause an entire packet
to be dropped (i.e., media-induced errors beyond the capabil
ity of the standard error correcting code for that media),
increasing the packet loss rate. A sufficiently large increase in
the packet loss rate will actually negate any performance
benefit of increasing packet size. In some cases, it may be
difficult for a TCP endpoint to choose an optimal packet size.

Nov. 14, 2013

For example, the optimal packet size may vary across the
transmission path, depending on the nature of each link.
0160. By inserting an appliance 200 or flow control mod
ule 220 into the transmission path, the flow controller 220
monitors characteristics of the link and repacketizes accord
ing to determined link characteristics. In one embodiment, an
appliance 200 or flow controller 220 repacketizes packets
with sequential data into a smaller number of larger packets.
In another embodiment, an appliance 200 or flow controller
220 repacketizes packets by breaking part a sequence of large
packets into a larger number of Smaller packets. In other
embodiments, an appliance 200 or flow controller 220 moni
tors the link characteristics and adjusts the packet sizes
through recombination to improve throughput.

QoS

(0161 Still referring to FIG. 2A, the flow controller 220, in
Some embodiments, may include a QoS Engine 236, also
referred to as a QoS controller. In another embodiment, the
appliance 200 and/or network optimization engine 250
includes the QoS engine 236, for example, separately but in
communication with the flow controller 220. The QoS Engine
236 includes any logic, business rules, function or operations
for performing one or more Quality of Service (QoS) tech
niques improving the performance, operation or quality of
service of any of the network connections. In some embodi
ments, the QoS engine 236 includes network traffic control
and management mechanisms that provide different priorities
to different users, applications, data flows or connections. In
other embodiments, the QoS engine 236 controls, maintains,
or assures a certain level of performance to a user, application,
data flow or connection. In one embodiment, the QoS engine
236 controls, maintains or assures a certain portion of band
width or network capacity for a user, application, data flow or
connection. In some embodiments, the QoS engine 236 moni
tors the achieved level of performance or the quality of ser
Vice corresponding to a user, application, data flow or con
nection, for example, the data rate and delay. In response to
monitoring, the QoS engine 236 dynamically controls or
adjusts scheduling priorities of network packets to achieve
the desired level of performance or quality of service.
0162. In some embodiments, the QoS engine 236 priori
tizes, schedules and transmits network packets according to
one or more classes or levels of services. In some embodi
ments, the class or level service may include: 1) best efforts,
2) controlled load, 3) guaranteed or 4) qualitative. For a best
efforts class of service, the appliance 200 makes reasonable
effort to deliver packets (a standard service level). For a
controlled load class of service, the appliance 200 or QoS
engine 236 approximates the standard packet error loss of the
transmission medium or approximates the behavior of best
effort service in lightly loaded network conditions. For a
guaranteed class of service, the appliance 200 or QoS engine
236 guarantees the ability to transmit data at a determined rate
for the duration of the connection. For a qualitative class of
service, the appliance 200 or QoS engine 236 the qualitative
service class is used for applications, users, data flows or
connection that require or desire prioritized traffic but cannot
quantify resource needs or level of service. In these cases, the
appliance 200 or QoS engine 236 determines the class of
service or prioritization based on any logic or configuration of
the QoS engine 236 or based on business rules or policies. For
example, in one embodiment, the QoS engine 236 prioritizes,

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 34 of 45

US 2013/030479.6 A1

schedules and transmits network packets according to one or
more policies as specified by the policy engine 295, 295'.

Protocol Acceleration

0163 The protocol accelerator 234 includes any logic,
business rules, function or operations for optimizing, accel
erating, or otherwise improving the performance, operation
or quality of service of one or more protocols. In one embodi
ment, the protocol accelerator 234 accelerates any application
layer protocol or protocols at layers 5-7 of the network stack.
In other embodiments, the protocol accelerator 234 acceler
ates a transport layer or a layer 4 protocol. In one embodi
ment, the protocol accelerator 234 accelerates layer 2 or layer
3 protocols. In some embodiments, the protocol accelerator
234 is configured, constructed or designed to optimize or
accelerate each of one or more protocols according to the type
of data, characteristics and/or behavior of the protocol. In
another embodiment, the protocol accelerator 234 is config
ured, constructed or designed to improve a user experience,
response times, network or computer load, and/or network or
bandwidth utilization with respect to a protocol.
0164. In one embodiment, the protocol accelerator 234 is
configured, constructed or designed to minimize the effect of
WAN latency on file system access. In some embodiments,
the protocol accelerator 234 optimizes or accelerates the use
of the CIFS (Common Internet File System) protocol to
improve file system access times or access times to data and
files. In some embodiments, the protocol accelerator 234
optimizes or accelerates the use of the NFS (Network File
System) protocol. In another embodiment, the protocol accel
erator 234 optimizes or accelerates the use of the File Transfer
protocol (FTP).
0.165. In one embodiment, the protocol accelerator 234 is
configured, constructed or designed to optimize or accelerate
a protocol carrying as a payload or using any type and form of
markup language. In other embodiments, the protocol accel
erator 234 is configured, constructed or designed to optimize
or accelerate a HyperText Transfer Protocol (HTTP). In
another embodiment, the protocol accelerator 234 is config
ured, constructed or designed to optimize or accelerate a
protocol carrying as a payload or otherwise using XML (eX
tensible Markup Language).

Transparency and Multiple Deployment Configuration

0166 In some embodiments, the appliance 200 and/or
network optimization engine 250 is transparent to any data
flowing across a network connection or link, such as a WAN
link. In one embodiment, the appliance 200 and/or network
optimization engine 250 operates in Such a manner that the
data flow across the WAN is recognizable by any network
monitoring, QOS management or network analysis tools. In
some embodiments, the appliance 200 and/or network opti
mization engine 250 does not create any tunnels or streams
for transmitting data that may hide, obscure or otherwise
make the network traffic not transparent. In other embodi
ments, the appliance 200 operates transparently in that the
appliance does not change any of the source and/or destina
tion address information or port information of a network
packet, Such as internet protocol addresses or port numbers.
In other embodiments, the appliance 200 and/or network
optimization engine 250 is considered to operate or behave
transparently to the network, an application, client, server or
other appliances or computing device in the network infra

20
Nov. 14, 2013

structure. That is, in Some embodiments, the appliance is
transparent in that network related configuration of any
device or appliance on the network does not need to be modi
fied to support the appliance 200.
0167. The appliance 200 may be deployed in any of the
following deployment configurations: 1) in-line of traffic, 2)
in proxy mode, or 3) in a virtual in-line mode. In some
embodiments, the appliance 200 may be deployed inline to
one or more of the following: a router, a client, a server or
another network device or appliance. In other embodiments,
the appliance 200 may be deployed in parallel to one or more
of the following: a router, a client, a server or another network
device or appliance. In parallel deployments, a client, server,
router or other network appliance may be configured to for
ward, transfer or transit networks to or via the appliance 200.
0.168. In the embodiment of in-line, the appliance 200 is
deployed inline with a WAN link of a router. In this way, all
traffic from the WAN passes through the appliance before
arriving at a destination of a LAN.
0169. In the embodiment of a proxy mode, the appliance
200 is deployed as a proxy device between a client and a
server. In some embodiments, the appliance 200 allows cli
ents to make indirect connections to a resource on a network.
For example, a client connects to a resource via the appliance
200, and the appliance provides the resource either by con
necting to the resource, a different resource, or by serving the
resource from a cache. In some cases, the appliance may alter
the client’s request or the server's response for various pur
poses. Such as for any of the optimization techniques dis
cussed herein. In other embodiments, the appliance 200
behaves as a transparent proxy, by intercepting and forward
ing requests and responses transparently to a client and/or
server. Without client-side configuration, the appliance 200
may redirect client requests to different servers or networks.
In some embodiments, the appliance 200 may perform any
type and form of network address translation, referred to as
NAT, on any network traffic traversing the appliance.
0170 In some embodiments, the appliance 200 is
deployed in a virtual in-line mode configuration. In this
embodiment, a router or a network device with routing or
Switching functionality is configured to forward, reroute or
otherwise provide network packets destined to a network to
the appliance 200. The appliance 200 then performs any
desired processing on the network packets, such as any of the
WAN optimization techniques discussed herein. Upon
completion of processing, the appliance 200 forwards the
processed network packet to the router to transmit to the
destination on the network. In this way, the appliance 200 can
be coupled to the router in parallel but still operate as it if the
appliance 200 were inline. This deployment mode also pro
vides transparency in that the source and destination
addresses and port information are preserved as the packet is
processed and transmitted via the appliance through the net
work.

End Node Deployment

0171 Although the network optimization engine 250 is
generally described above in conjunction with an appliance
200, the network optimization engine 250, or any portion
thereof, may be deployed, distributed or otherwise operated
on any end node, such as a client 102 and/or server 106. As
Such, a client or server may provide any of the systems and

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 35 of 45

US 2013/030479.6 A1

methods of the network optimization engine 250 described
herein in conjunction with one or more appliances 200 or
without an appliance 200.
0172 Referring now to FIG. 2B, an example embodiment
of the network optimization engine 250 deployed on one or
more end nodes is depicted. In brief overview, the client 102
may include a first network optimization engine 250' and the
server 106 may include a second network optimization engine
250". The client 102 and server 106 may establish a transport
layer connection and exchange communications with or with
out traversing an appliance 200.
0173. In one embodiment, the network optimization
engine 250' of the client 102 performs the techniques
described hereinto optimize, accelerate or otherwise improve
the performance, operation or quality of service of network
traffic communicated with the server 106. In another embodi
ment, the network optimization engine 250" of the server 106
performs the techniques described herein to optimize, accel
erate or otherwise improve the performance, operation or
quality of service of network traffic communicated with the
client 102. In some embodiments, the network optimization
engine 250' of the client 102 and the network optimization
engine 250" of the server 106 perform the techniques
described hereinto optimize, accelerate or otherwise improve
the performance, operation or quality of service of network
traffic communicated between the client 102 and the server
106. In yet another embodiment, the network optimization
engine 250' of the client 102 performs the techniques
described herein in conjunction with an appliance 200 to
optimize, accelerate or otherwise improve the performance,
operation or quality of service of network traffic communi
cated with the client 102. In still another embodiment, the
network optimization engine 250" of the server 106 performs
the techniques described herein in conjunction with an appli
ance 200 to optimize, accelerate or otherwise improve the
performance, operation or quality of service of network traf
fic communicated with the server 106.

C. Client Agent
0.174 Referring now to FIG. 3, an embodiment of a client
agent 120 is depicted. The client 102 has a clientagent 120 for
establishing, exchanging, managing or controlling commu
nications with the appliance 200, appliance 205 and/or server
106 via a network 104. In some embodiments, the clientagent
120, which may also be referred to as a WAN client, acceler
ates WAN network communications and/or is used to com
municate via appliance 200 on a network. In brief overview,
the client 102 operates on computing device 100 having an
operating system with a kernel mode 302 and a user mode
303, and a network stack 267 with one or more layers 310a
310b. The client 102 may have installed and/or execute one or
more applications. In some embodiments, one or more appli
cations may communicate via the network Stack 267 to a
network 104. One of the applications, such as a web browser,
may also include a first program 322. For example, the first
program 322 may be used in some embodiments to install
and/or execute the client agent 120, or any portion thereof.
The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications
from the network stack 267 from the one or more applica
tions.
0.175. As with the appliance 200, the client has a network
stack 267 including any type and form of software, hardware,
or any combinations thereof, for providing connectivity to

Nov. 14, 2013

and communications with a network 104. The network stack
267 of the client 102 includes any of the network stack
embodiments described above in conjunction with the appli
ance 200. In some embodiments, the client agent 120, or any
portion thereof, is designed and constructed to operate with or
work in conjunction with the network stack 267 installed or
otherwise provided by the operating system of the client 102.
(0176). In further details, the network stack 267 of the client
102 or appliance 200 (or 205) may include any type and form
of interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com
munications of the client 102. In one embodiment, an inter
face to the network stack 267 includes an application pro
gramming interface (API). The interface may also have any
function call, hooking or filtering mechanism, event or call
back mechanism, or any type of interfacing technique. The
network stack 267 via the interface may receive or provide
any type and form of data structure. Such as an object, related
to functionality or operation of the network stack 267. For
example, the data structure may include information and data
related to a network packet or one or more networkpackets. In
Some embodiments, the data structure includes, references or
identifies a portion of the network packet processed at a
protocol layer of the network stack 267, such as a network
packet of the transport layer. In some embodiments, the data
structure 325 is a kernel-level data structure, while in other
embodiments, the data structure 325 is a user-mode data
structure. A kernel-level data structure may have a data struc
ture obtained or related to a portion of the network stack 267
operating in kernel-mode 302, or a network driver or other
Software running in kernel-mode 302, or any data structure
obtained or received by a service, process, task, thread or
other executable instructions running or operating in kernel
mode of the operating system.
0177 Additionally, some portions of the network stack
267 may execute or operate in kernel-mode 302, for example,
the data link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the
network stack 267. For example, a first portion 310a of the
network Stack may provide user-mode access to the network
stack 267 to an application while a second portion 310a of the
network stack 267 provides access to a network. In some
embodiments, a first portion 310a of the network stack has
one or more upper layers of the network stack 267, such as
any of layers 5-7. In other embodiments, a second portion
310b of the network stack 267 includes one or more lower
layers, such as any of layers 1-4. Each of the first portion 310a
and second portion 310b of the network stack 267 may
include any portion of the network stack 267, at any one or
more network layers, in user-mode 303, kernel-mode, 302, or
combinations thereof, or at any portion of a network layer or
interface point to a network layer or any portion oforinterface
point to the user-mode 302 and kernel-mode 203.
(0178. The interceptor 350 may include software, hard
ware, or any combination of Software and hardware. In one
embodiment, the interceptor 350 intercepts or otherwise
receives a network communicationatany point in the network
stack 267, and redirects or transmits the network communi
cation to a destination desired, managed or controlled by the
interceptor 350 or client agent 120. For example, the inter
ceptor 350 may intercept a network communication of a
network stack 267 of a first network and transmit the network
communication to the appliance 200 for transmission on a
second network 104. In some embodiments, the interceptor

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 36 of 45

US 2013/030479.6 A1

350 includes or is a driver, such as a network driver con
structed and designed to interface and work with the network
stack 267. In some embodiments, the client agent 120 and/or
interceptor 350 operates at one or more layers of the network
stack 267. Such as at the transport layer. In one embodiment,
the interceptor 350 includes a filter driver, hooking mecha
nism, or any form and type of suitable network driver inter
face that interfaces to the transport layer of the network stack,
such as via the transport driver interface (TDI). In some
embodiments, the interceptor 350 interfaces to a first protocol
layer, Such as the transport layer and another protocol layer,
Such as any layer above the transport protocol layer, for
example, an application protocol layer. In one embodiment,
the interceptor 350 includes a driver complying with the
Network Driver Interface Specification (NDIS), or a NDIS
driver. In another embodiment, the interceptor 350 may be a
min-filter or a mini-port driver. In one embodiment, the inter
ceptor 350, or portion thereof, operates in kernel-mode 202.
In another embodiment, the interceptor 350, or portion
thereof, operates in user-mode 203. In some embodiments, a
portion of the interceptor 350 operates in kernel-mode 202
while another portion of the interceptor 350 operates in user
mode 203. In other embodiments, the client agent 120 oper
ates in user-mode 203 but interfaces via the interceptor 350 to
a kernel-mode driver, process, service, task or portion of the
operating system, Such as to obtain a kernel-level data struc
ture 225. In further embodiments, the interceptor 350 is a
user-mode application or program, Such as application.
(0179. In one embodiment, the interceptor 350 intercepts
or receives any transport layer connection requests. In these
embodiments, the interceptor 350 executes transport layer
application programming interface (API) calls to set the des
tination information, such as destination IP address and/or
port to a desired location for the location. In this manner, the
interceptor 350 intercepts and redirects the transport layer
connection to an IP address and port controlled or managed
by the interceptor 350 or client agent 120. In one embodi
ment, the interceptor 350 sets the destination information for
the connection to a local IP address and port of the client 102
on which the client agent 120 is listening. For example, the
client agent 120 may comprise a proxy service listening on a
local IP address and port for redirected transport layer com
munications. In some embodiments, the client agent 120 then
communicates the redirected transport layer communication
to the appliance 200.
0180. In some embodiments, the interceptor 350 inter
cepts a Domain Name Service (DNS) request. In one embodi
ment, the client agent 120 and/or interceptor 350 resolves the
DNS request. In another embodiment, the interceptor trans
mits the intercepted DNS request to the appliance 200 for
DNS resolution. In one embodiment, the appliance 200
resolves the DNS request and communicates the DNS
response to the client agent 120. In some embodiments, the
appliance 200 resolves the DNS request via another appliance
200' or a DNS Server 106.

0181. In yet another embodiment, the client agent 120 may
include two agents 120 and 120". In one embodiment, a first
agent 120 may include an interceptor 350 operating at the
network layer of the network stack 267. In some embodi
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the

22
Nov. 14, 2013

first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120".
0182. The client agent 120 and/or interceptor 350 may
operate at or interface with a protocol layer in a manner
transparent to any other protocol layer of the network Stack
267. For example, in one embodiment, the interceptor 350
operates or interfaces with the transport layer of the network
stack 267 transparently to any protocol layer below the trans
port layer, such as the network layer, and any protocol layer
above the transport layer, Such as the session, presentation or
application layer protocols. This allows the other protocol
layers of the network stack 267 to operate as desired and
without modification for using the interceptor 350. As such,
the client agent 120 and/or interceptor 350 can interface with
the transport layer to secure, optimize, accelerate, route or
load-balance any communications provided via any protocol
carried by the transport layer, Such as any application layer
protocol over TCP/IP.
0183. Furthermore, the client agent 120 and/or interceptor
350 may operate at or interface with the network stack 267 in
a manner transparent to any application, a user of the client
102, the client 102 and/or any other computing device 100,
Such as a server or appliance 200, 206, in communications
with the client 102. The client agent 120, or any portion
thereof, may be installed and/or executed on the client 102 in
a manner without modification of an application. In one
embodiment, the client agent 120, or any portion thereof, is
installed and/or executed in a manner transparent to any net
work configuration of the client 102, appliance 200, 205 or
server 106. In some embodiments, the clientagent 120, or any
portion thereof, is installed and/or executed with modification
to any network configuration of the client 102, appliance 200,
205 or server 106. In one embodiment, the user of the client
102 or a computing device in communications with the client
102 are not aware of the existence, execution or operation of
the client agent 12, or any portion thereof. As such, in some
embodiments, the client agent 120 and/or interceptor 350 is
installed, executed, and/or operated transparently to an appli
cation, user of the client 102, the client 102, another comput
ing device, such as a server or appliance 200, 2005, or any of
the protocol layers above and/or below the protocol layer
interfaced to by the interceptor 350.
0.184 The clientagent 120 includes a streaming client 306,
a collection agent 304, SSL VPN agent 308, a network opti
mization engine 250, and/or acceleration program 302. In one
embodiment, the client agent 120 is an Independent Comput
ing Architecture (ICA) client, or any portion thereof, devel
oped by Citrix Systems, Inc. of Fort Lauderdale, Fla., and is
also referred to as an ICA client. In some embodiments, the
client agent 120 has an application streaming client 306 for
streaming an application from a server 106 to a client 102. In
another embodiment, the client agent 120 includes a collec
tion agent 304 for performing end-point detection/scanning
and collecting end-point information for the appliance 200
and/or server 106. In some embodiments, the clientagent 120
has one or more network accelerating or optimizing programs
or agents, such as an network optimization engine 250 and an
acceleration program 302. In one embodiment, the accelera
tion program 302 accelerates communications between client
102 and server 106 via appliance 205'. In some embodiments,
the network optimization engine 250 provides WAN optimi
Zation techniques as discussed herein.

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 37 of 45

US 2013/030479.6 A1

0185. The streaming client 306 is an application, program,
process, service, task or set of executable instructions for
receiving and executing a streamed application from a server
106. A server 106 may stream one or more application data
files to the streaming client 306 for playing, executing or
otherwise causing to be executed the application on the client
102. In some embodiments, the server 106 transmits a set of
compressed or packaged application data files to the stream
ing client 306. In some embodiments, the plurality of appli
cation files are compressed and stored on a file server within
an archive file such as a CAB, ZIP SIT, TAR, JAR or other
archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits
the files to the client 102. In another embodiment, the client
102 decompresses, unpackages or unarchives the application
files. The streaming client 306 dynamically installs the appli
cation, orportion thereof, and executes the application. In one
embodiment, the streaming client 306 may be an executable
program. In some embodiments, the streaming client 306
may be able to launch another executable program.
0186 The collection agent 304 is an application, program,
process, service, task or set of executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli
ent's connection to a network 104.

0187. In one embodiment, the collection agent 304 is an
end-point detection and Scanning program, which identifies
and determines one or more attributes or characteristics of the
client. For example, the collection agent 304 may identify and
determine any one or more of the following client-side
attributes: 1) the operating system an/or a version of an oper
ating system, 2) a service pack of the operating system, 3) a
running service, 4) a running process, and 5) a file. The
collection agent 304 may also identify and determine the
presence or version of any one or more of the following on the
client: 1) antivirus software, 2) personal firewall software, 3)
anti-spam Software, and 4) internet security Software. The
policy engine 236 may have one or more policies based on
any one or more of the attributes or characteristics of the client
or client-side attributes.

0188 The SSL VPN agent 308 is an application, program,
process, service, task or set of executable instructions for
establishing a Secure Socket Layer (SSL) virtual private net
work (VPN) connection from a first network 104 to a second
network 104", 104", or a SSL VPN connection from a client
102 to a server 106. In one embodiment, the SSL VPN agent
308 establishes a SSL VPN connection from a public network
104 to a private network 104 or 104". In some embodiments,
the SSL VPN agent 308 works in conjunction with appliance
205 to provide the SSL VPN connection. In one embodiment,
the SSL VPN agent 308 establishes a first transport layer
connection with appliance 205. In some embodiment, the
appliance 205 establishes a second transport layer connection
with a server 106. In another embodiment, the SSL VPN
agent 308 establishes a first transport layer connection with
an application on the client, and a second transport layer

Nov. 14, 2013

connection with the appliance 205. In other embodiments, the
SSL VPN agent 308 works in conjunction with WAN optimi
zation appliance 200 to provide SSL VPN connectivity.
0189 In some embodiments, the acceleration program
302 is a client-side acceleration program for performing one
or more acceleration techniques to accelerate, enhance or
otherwise improve a client’s communications with and/or
access to a server 106. Such as accessing an application pro
vided by a server 106. The logic, functions, and/or operations
of the executable instructions of the acceleration program 302
may perform one or more of the following acceleration tech
niques: 1) multi-protocol compression, 2) transport control
protocol pooling, 3) transport control protocol multiplexing,
4) transport control protocol buffering, and 5) caching via a
cache manager. Additionally, the acceleration program 302
may perform encryption and/or decryption of any communi
cations received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or
more of the acceleration techniques in an integrated manner
or fashion. Additionally, the acceleration program 302 can
perform compression on any of the protocols, or multiple
protocols, carried as a payload of a network packet of the
transport layer protocol.
0190. In one embodiment, the acceleration program 302 is
designed, constructed or configured to work with appliance
205 to provide LAN side acceleration or to provide accelera
tion techniques provided via appliance 205. For example, in
one embodiment of a NetScaler appliance 205 manufactured
by Citrix Systems, Inc., the acceleration program 302
includes a NetScaler client. In some embodiments, the accel
eration program 302 provides NetScaler acceleration tech
niques stand-alone in a remote device. Such as in a branch
office. In other embodiments, the acceleration program 302
works in conjunction with one or more NetScaler appliances
205. In one embodiment, the acceleration program 302 pro
vides LAN-side or LAN based acceleration or optimization
of network traffic.

0191 In some embodiments, the network optimization
engine 250 may be designed, constructed or configured to
work with WAN optimization appliance 200. In other
embodiments, network optimization engine 250 may be
designed, constructed or configured to provide the WAN opti
mization techniques of appliance 200, with or without an
appliance 200. For example, in one embodiment of a WAN
Scaler appliance 200 manufactured by Citrix Systems, Inc.
the network optimization engine 250 includes the WANscaler
client. In some embodiments, the network optimization
engine 250 provides WANScaler acceleration techniques
stand-alone in a remote location, Such as a branch office. In
other embodiments, the network optimization engine 250
works in conjunction with one or more WANScaler appli
ances 200.

0.192 In another embodiment, the network optimization
engine 250 includes the acceleration program 302, or the
function, operations and logic of the acceleration program
302. In some embodiments, the acceleration program 302
includes the network optimization engine 250 or the function,
operations and logic of the network optimization engine 250.
In yet another embodiment, the network optimization engine
250 is provided or installed as a separate program or set of
executable instructions from the acceleration program 302. In
other embodiments, the network optimization engine 250 and
acceleration program 302 are included in the same program
or same set of executable instructions.

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 38 of 45

US 2013/030479.6 A1

0193 In some embodiments and still referring to FIG.3, a
first program 322 may be used to install and/or execute the
client agent 120, or any portion thereof, automatically,
silently, transparently, or otherwise. In one embodiment, the
first program 322 is a plugin component, such an ActiveX
control or Java control or Script that is loaded into and
executed by an application. For example, the first program
comprises an ActiveX control loaded and run by a web
browser application, such as in the memory space or context
of the application. In another embodiment, the first program
322 comprises a set of executable instructions loaded into and
run by the application, Such as a browser. In one embodiment,
the first program 322 is designed and constructed program to
install the client agent 120. In some embodiments, the first
program 322 obtains, downloads, or receives the client agent
120 via the network from another computing device. In
another embodiment, the first program 322 is an installer
program or a plug and play manager for installing programs,
Such as network drivers and the client agent 120, or any
portion thereof, on the operating system of the client 102.
0194 In some embodiments, each or any of the portions of
the client agent 120 a streaming client 306, a collection
agent 304, SSL VPN agent 308, a network optimization
engine 250, acceleration program 302, and interceptor 350—
may be installed, executed, configured or operated as a sepa
rate application, program, process, service, task or set of
executable instructions. In other embodiments, each or any of
the portions of the client agent 120 may be installed,
executed, configured or operated together as a single client
agent 120.

D. Systems and Methods for Providing Quality of Service of
a Plurality of Applications via a Flow Controlled Tunnel
0.195. In many systems executing a plurality of applica

tions, each application may create or utilize a link to one or
more servers, and the speed or bandwidth of these links may
be independently negotiated between each application and
server. Accordingly, applying QoS techniques in these sys
tems may require complicated management to avoid inad
Vertent effects. For example, congestion on a high-priority
link may result in delaying communications on uncongested
low-priority links. Furthermore. QoS policies frequently are
required to be individually configured per link. When a client
moves to a new location, such as a mobile client connecting
from a hotel room, previously configured QoS policies may
be unable to be utilized.
0196. Accordingly, by directing traffic from a plurality of
applications into a single connection or flow-controlled tun
nel, QoS policies may be applied across the plurality of appli
cations without link speed configuration. In some embodi
ments, this tunnel enables QoS scheduling to dynamically
adjust traffic transmission and reception rates to ensure pri
ority management of applications regardless of a final end
point of the application communications. Accordingly, traffic
of different types, including VPN, HTTP Voice-over-IP
(VoIP), remote desktop protocol traffic, or other traffic may be
easily balanced and prioritized. Additionally, by utilizing a
flow controlled tunnel, the QoS provider may not need to
know the rate of the connection between the client and server.
Thus, QoS prioritization and scheduling can be maintained
even if the connection rate changes dynamically, for example
due to interference or station hand-off on a cellular or wireless
WAN connection, congestion on a LAN or WAN, bandwidth
allotment being divided among a plurality of users on a net

24
Nov. 14, 2013

work as they connect and disconnect (Such as bandwidth
availability to a hotel room changing depending on the num
ber of guests using the network), or any other reason. For
example, in a Wireless WAN connection, such as 35, band
width can go from megabits per second to Zero and back in a
matter of seconds. Due to slow start algorithms used in TCP
that drop throughput exponentially on congestion, but
increase linearly, brief drops in bandwidth cause large effi
ciency losses and wastes bandwidth when the link recovers.
However, by using a tunnel for flow control, this waste can be
avoided. Furthermore, in many embodiments, the tunnel may
be transparent to applications, such that without any applica
tion configuration, application traffic may still be prioritized
by QoS requirements.
0197) Many embodiments of systems applying QoS pri
oritization have system or application-specific options. For
example, the Independent Computing Architecture (ICA)
protocol may use TCP options for setting or applying QoS
prioritization, but some intermediary devices between a client
and server may not support these options. By passing traffic of
these sorts through a tunnel connection, the options may be
preserved and processed by the end destination, regardless of
the capabilities of any intermediaries.
0198 Referring now to FIG. 4A, shown is a block diagram
of an embodiment of a system for providing quality of service
of a plurality of applications via a flow controlled tunnel. In
brief overview, in some embodiments, a client 102 commu
nicates via a tunnel protocol 408 over network 104 to an
intermediary appliance 200. Although illustrated as an inter
mediary device, such as an appliance, in many embodiments,
client 102 may communicate via the tunnel protocol to
another client, a server, or any other device acting as a tunnel
endpoint. Similarly, although illustrated as a client 102, in
may embodiments, the first endpoint of the tunnel may be
another client, a server, an appliance, or any other device.
Endpoints of the tunnel, such as client 102 and appliance 200,
may include a queue tunneler client 400a or host 400b,
referred to generally as a queue tunneler 400. Although
referred to as client and host, in many embodiments, a queue
tunneler 400 includes both a client and server process, allow
ing two-way tunneled communications.
(0199. In some embodiments, a client or device at one end
of the tunnel may execute or communicate with other clients
executing one or more applications. Traffic from these appli
cations may be prioritized or processed using any of the other
techniques discussed herein, including compression, accel
eration, and encryption. The queue tunneler client 400a may
encapsulate this traffic with the tunnel protocol and direct the
traffic into the tunnel to the other endpoint. At the opposite
tunnel endpoint, appliance 200 in the embodiment shown in
FIG. 4A, the traffic may be de-encapsulated by queue tun
neler 400b and forwarded to sockets corresponding to con
nections to one or more application servers 106, appliances,
or clients, via one or more networks. Thus, in some embodi
ments, the appliance or other endpoint may provide both QoS
prioritization functions and rerouting of received traffic to
various service providers.
0200 Return traffic from application servers, appliances
or other clients may be similarly compressed, accelerated,
encrypted, or otherwise processed and prioritized in QoS
order by the tunnel endpoint, appliance 200 in FIG. 4A. This
traffic may then be encapsulated and forwarded to client 102
via the tunnel connection. Upon receipt, the queue tunneler
400 on client 102 may de-encapsulate the traffic, perform

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 39 of 45

US 2013/030479.6 A1

other processing including decryption and decompression,
and pass application-specific responses to each of the one or
more applications in QoS priority.
0201 Referring now to FIG. 4B, illustrated is a block
diagram of an embodiment of a computing device for provid
ing quality of service of a plurality of applications via a flow
controlled tunnel. In brief overview, the computing device
may comprise a client, appliance, server, or other computing
device, and may include a QoS and redirection module 404,
queue tunnel proxy module 406, and tunnel protocol 408,
collectively referred to in some embodiments as queue tun
neler 400. As shown, the computing device may also include
a plurality of applications or servers, a transport and network
protocol 402, and a client agent 120.
0202 Referring to FIG. 4B and in more detail, in some
embodiments, one or more applications send traffic via a
transport and network protocol 402. In many embodiments,
transport and network protocol 402 may comprise a transport
protocol such as TCP, UDP, stream control transmission pro
tocol (SCTP), FAST TCP, reliable datagram sockets (RDS)
protocol, Generic Routing Encapsulation (GRE), or any other
transport protocol, and a network protocol such as IPv4, IPv6.
or IPSec. In some embodiments, transport and network pro
tocol 402 may comprise a combined protocol such as Apple
Talk or IPX.
0203) Application traffic passed through or encapsulated
by transport and network protocol 402 may be intercepted or
otherwise received by QoS and redirection module 404. QoS
and redirection module 404 may comprise hardware, soft
ware, or a combination of hardware and software, and may
comprise an application, server, process, service, daemon, or
other executable logic for intercepting or receiving commu
nications, prioritizing traffic according to QoS, and redirect
ing traffic to a tunnel proxy module. In one embodiment in
which the tunnel operates transparently to applications, traffic
from transport and network protocol 402 may include desti
nation addresses and ports that are external to the computing
device. In other embodiments, traffic from transport and net
work protocol 402 may be directed to a local address hosted
by QoS and redirection module 404 serving as a proxy server.
In these embodiments. QoS and redirection module 404 may
perform address translation or lookup or parse application
traffic to determine destination addresses and/or ports.
0204. In some embodiments, QoS and redirection module
404 may comprise one or more filters and redirectors. Filters
may be used to parse outgoing VS. incoming traffic, for
example, or for redirecting traffic to or from another applica
tion. For example, as shown in FIG. 4B with applications 1
and 2, in many embodiments some application traffic may be
redirected to a client agent 120, discussed in detail above.
This may be done for purposes Such as acceleration, com
pression, encryption, or other features provided by the client
agent 120. Other traffic, such as that associated with applica
tion 3 shown in FIG. 4B, may be redirected to queue tunnel
proxy module 406 without passing through the client agent.
This may be done, for example, to separate VoIP traffic from
ICA, RDP or other traffic, for processing using lower latency
techniques. Similarly, traffic from the client agent or directed
to the client agent from an external device may also be filtered
and redirected via the queue tunnel proxy module 406. This
avoids traffic from the client agent 120 being redirected back
to the client agent endlessly.
0205 QoS and redirection module 404 may also comprise
one or more buffers or queues for performing QoS prioritiza

Nov. 14, 2013

tion. In some embodiments, QoS and redirection module 404
may include a single queue or buffer and move data packets
within the buffer according to priority. In other embodiments,
QoS and redirection module 404 may include multiple buff
ers or queues, each corresponding to a priority class. Such as
background, very-low, low, medium, high, or very-high.
Similarly, queues may be associated with a priority class by
value, such as 10, 20, 30, 40, 50, 60, or 70, or any other value.
In other embodiments. QoS and redirection module 404 may
include a buffer, queue, or other similar structure for priority
processing of traffic. For example, some traffic may be des
ignated for immediate transmission, and QoS and redirection
module 404 may transmit this traffic immediately, regardless
of waiting items in even a high-priority queue. QoS and
redirection module 404 may comprise one or more counters
or timers for processing packets from buffers or queues in
order of priority.
0206. In some embodiments. QoS and redirection module
404 may direct packets and other network traffic into a tunnel
provided by queue tunnel proxy module 406 in order of QoS
priority. Similarly, packets and network traffic received over
the tunnel provided by the queue tunnel proxy module 406
may be redirected by QoS and redirection module back to
client agent 120 or one or more applications via the transport
and network protocol. Because packets may be provided over
the tunnel from the remote side in order of priority, in some
embodiments, QoS and redirection module 404 may not need
to perform buffering or queuing on packets received from
queue tunnel proxy module 406. In other embodiments, QoS
and redirection module 404 may buffer packets until
requested by an application or until the application otherwise
prepared to receive them. This may allow for multi-threaded
operation.
0207. In some embodiments. QoS and redirection module
404 may further include one or more classifiers to parse and
classify application traffic. For example, traffic may be clas
sified as corresponding to an application, Such as Microsoft
Outlook; a group of applications, such as “email' or 'games':
a destination; a source: a protocol, such as HTTP or TCP; an
application or service provided by another application, Such
as Google web applications or a Flash-based media player; or
any other classifier. Classifying traffic may allow QoS and
redirection module 404 to apply QoS prioritization at differ
ent levels or according to different policies, based on any
identified characteristics.

0208 Queue tunnel proxy module 406 may comprise
hardware, Software, or a combination of hardware and soft
ware, for processing packets for transmission and receipt via
a tunnel protocol 408. Queue tunnel proxy module 406 may
comprise an application, server, process, service, daemon, or
other executable logic for encapsulating and de-encapsulat
ing traffic with a tunnel protocol. Various tunnel protocols
may be utilized, including generic routing encapsulation
(GRE); layer 2 tunneling protocol (L2TP); UDP-based Data
Transport, sometimes referred to as UDP-based Data Trans
fer Protocol (UDT); SCTP, TCP, or any other protocol. Addi
tionally, the tunnel protocol may use SSL or a similar security
protocol for encryption. In some embodiments, packets
encapsulated by the transport and network protocol 402 may
be further encapsulated as a payload to the tunnel protocol,
which may comprise a UDP or TCP-based tunnel. In some
embodiments, queue tunnel proxy module 406 may include
functionality for establishing various tunnels. For example, if
the infrastructure does not support a UDP-based tunneling

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 40 of 45

US 2013/030479.6 A1

protocol, in these embodiments, the queue tunnel proxy mod
ule 406 may establish a different tunnel, such as a TCP-based
tunnel. UDP-based tunnels may be more efficient in some
embodiments, due to the reduction in the number of acknowl
edgements. Flow control may be provided by the queue tun
nel proxy module 406, for example, using a real-time control
protocol (RTCP) or similar feedback mechanisms.
0209. In some embodiments, incoming traffic via tunnel
protocol 408 may be processed and de-encapsulated by tun
nel proxy module 406 and passed to QoS and redirection
module 404. In one embodiment, as shown in FIG. 4B, QoS
and redirection module 404 may then route the incoming
traffic via transport and network protocol 402 to the corre
sponding application or client agent 120. Applications exter
nal to the computing device may also be targets of incoming
traffic communication. For example, as shown in FIG. 4A, an
intermediary device receiving tunnel traffic may de-encapsu
late and route traffic to one or more destinations external to
the device. In some embodiments, the traffic may include a
destination IP address and/or port which the computing
device may use for redirection. In other embodiments, the
traffic may correspond to a predetermined application, Such
as VoIP, and the intermediary may have a table or other
information indicating a destination for traffic corresponding
to the predetermined application, such as a VoIP server. Instill
other embodiments, the intermediary device may parse the
traffic for identifiers indicating a destination for re-direction,
such as a URL, MAC address, VLAN, or other indicator.
0210 Redirection of tunneled traffic by an intermediary
may be easier in client-initiated connections than in server
initiated connections, because the initiation request may
implicitly or explicitly identify a destination. However, in one
embodiment, the client agent 120 may communicate with the
intermediary, during establishment of the tunnel or at Some
other point, to identify the client, an application of the client,
a capability of the client, or other identifying information
including IP addresses, virtual IP addresses, ports, virtual
ports, VLANs, MAC addresses, or other identifiers. When a
server attempts to initiate a connection to the client via the
intermediary, in this embodiment, the intermediary may use
this information provided by the client agent to achieve
proper routing and identify destinations on the client.
0211. In some embodiments, the queue tunnel proxy mod
ule 406 may transmit data provided by sockets from QoS and
redirection module 404 in an order of priority, using a
weighted fair queuing (WFQ), fair queuing, round robin, or
other algorithm. For example, in one embodiment, queue
tunnel proxy module 406 may process data from one or more
Sockets corresponding to a first traffic class, then one or more
Sockets corresponding to the next traffic class, then one or
more Sockets corresponding to a following traffic class, etc. In
other embodiments, prioritization may be handled by the QoS
and redirection module, with traffic provided in an order of
priority to the queue tunnel proxy module 406.
0212. In one embodiment, queue tunnel proxy module 406
may use a variant of weighted fair queuing, WFO2+, by
Zhang et al., which includes capabilities for rate control and
regulation in addition to queuing and scheduling capabilities
of WFO. In one embodiment applying WFO, the algorithm
assumes a sender that transmits at the rate of the link, and use
the link speed to cause downward pressure on a WFO tree, the
tree comprising multiple traffic classes per link, and multiple
Sockets per class, as discussed above. In another embodiment,
however, the algorithm may be rate-agnostic. Instead, the

26
Nov. 14, 2013

algorithm may use the presence of congestion or rate and
number of congestion notifications on the link to provide back
pressure to the tree.
0213. In some embodiments, a tunnel that includes con
gestion control and flow control for QoS will appear to be a
single link to the WFO algorithm. Thus, QoS scheduling can
be applied from tunnel end to tunnel end, regardless of the
number or type of intermediary links. This may result in better
performance and efficiency over other non-tunneled QoS
implementations, where each intermediary router or node
only has capability of scheduling outgoing packets for the
next link or hop, providing only local QoS. As more traffic is
merged along the route, packet order may change from the
order in which they were transmitted by the first node. How
ever, a tunnel implementation can provide full end-to-end
QoS, without knowing individual link speeds or types, and
regardless of a dynamically changing end-to-end data path. In
a further embodiment, a client and server may establish a
plurality of tunnel connections, and may balance traffic loads
across the tunnels, consolidating flow and congestion control
at the endpoints. This may provide enhanced scalability and
enable use of additional acceleration techniques and process
ing on a per-tunnel basis, and optimal route balancing for the
plurality of tunnels.
0214) Referring now to FIG. 4C, illustrated is a block
diagram of an embodiment of a queue tunnel proxy on a
client, appliance or server, showing distribution of compo
nents between kernel mode 302 and user mode 303. In the
embodiment shown, QoS and redirection module 404 may
execute in kernel mode 302, while queue tunnel proxy mod
ule 406 may execute in user mode 303. In some embodiments,
queue tunnel proxy module 406 may include a socket inter
face 410, a tunnel interface 412, a connection manager 414,
and a data manager 416. Queue tunnel proxy module 406 may
also communicate with a configuration manager 418. In some
embodiments, one of either QoS and redirection module 404
or queue tunnel proxy module 406 may be responsible for
encapsulating packets for the tunnel, or rewriting destination
IP addresses and ports to control redirection.
0215 Still referring to FIG. 4C and in more detail, in some
embodiments, queue tunnel proxy module 406 may include a
socket interface 410. Socket Interface 410 may include any
type and form of socket based programming interface or API.
such as TCP or UDP socket API. Socket interface 410 may
comprise an API or other interface for communicating pack
ets to and from QoS and redirection module 404. In some
embodiments, socket interface 410 or QoS and redirection
module 404 may also include functions or commands for
controlling congestion, such as commands to cause Socket
interface 410 or QoS and redirection module 404 to pause or
resume transmitting data via the communications channel. In
other embodiments, socket interface 410 or QoS and redirec
tion module 404 may include functions or commands for
getting connection information about a new connection,
including information relating to a destination of a connec
tion to be established discussed above.

0216. In some embodiments, the socket interface may lis
ten on one or more local addresses and ports for communica
tions from a QoS and redirection module 404, or other appli
cation communicating directly to the tunnel proxy module.
The socket interface may, in Some embodiments, include
functions or methods for opening a TCP or UDP connection;
sending data from one or more buffers to the tunnel interface
via the data manager, returning received data from the tunnel

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 41 of 45

US 2013/030479.6 A1

interface to QoS and redirection module or another applica
tion; and notifying QoS and redirection module or other
application of an established, open, or closed connection. The
Socket interface may also include functions or methods for
requesting resending of data when a previously attempted
transmission of data has failed.

0217. In some embodiments, queue tunnel proxy module
406 may include a tunnel interface 412. Tunnel interface 412
may comprise an API or other interface for communicating
packets to and from a network interface 118. In some embodi
ments, tunnel interface 412 may also comprise functionality
for establishing and closing tunnel connections to a tunnel
peer, Such as an intermediary appliance, server, or client, as
discussed above. In some embodiments, tunnel interface 412
may provide Support for encapsulation and communication of
packets via several tunnel protocols, including UDT. SCTP.
and TCP, or any other protocol. In some embodiments, a
protocol such as UDT may provide maximum response time
with minimal latency, but in an environment where a network
firewall prevents a UDT connection, then other protocols,
such as TCP Reno, may be used. In some embodiments,
tunnel interface 412 may select a protocol for optimal perfor
mance responsive to security requirements, error rate, and
latency. Accordingly, tunnel interface 412 may also include
functionality for determining error rate, latency, bandwidth,
jitter, round trip time, and other features of a connection, for
benchmarking purposes.
0218. In some embodiments, tunnel interface 412 may
also provide encryption and decryption features, such as SSL
or TLS encryption protocols. Tunnel interface 412 may also
provide one or more callbacks to network interface 118, con
nection manager 414 or data manager 416, including mes
sages to indicate the state of a peer, such as connected, dis
connected, stalled, paused, ready, or any other state; messages
to indicate a send buffer is available; messages to indicate one
or more data packets have been received; messages to indicate
to create a new buffer; or other management or setup func
tions. Although shown in FIGS. 4A and 4B as a single tunnel,
in many embodiments, tunnel interface 412 may include
functionality for establishing a plurality of tunnels to a cor
responding plurality of remote devices and/or a plurality of
network interfaces on a single remote device.
0219. In some embodiments, tunnel interface may include
API functions or methods for establishing or connecting a
tunnel; responding to a remote request to establish a tunnel;
disconnect a tunnel; open or close a TCP, UDP, or other
protocol connection to an destination address and port, and
including an initiator connection handle; transmit a receiver
connection handle responsive to a request to open a connec
tion: pause or resume a connection; and send data of a speci
fied length via a connection. In one embodiment, to avoid
delays of TCP slow start and similar techniques, open open
ing a connection, a tunnel client may immediately begin
sending data. If the device on the opposite side of the tunnel
fails to open a connection, a close message may send back,
and all data in transit discarded. In some embodiments, upon
receipt of a request to open a connection including an initiator
connection handle, the receiver may send an acknowledge
ment with a receiver connection handle. In some embodi
ments, these handles may be unique, may be incremented
with each established connection, may be determined ran
domly, or may be a function of each other. For example, in one
embodiment, a receiver connection handle may be an inverse
of an initiator connection handle or may include the initiator

27
Nov. 14, 2013

handle with a predetermined bit flipped. Commands to pause,
resume, or close a connection, and commands to send datavia
a connection may include the initiator or receiver connection
handle. The tunnel interface may also include local API func
tions or methods for connecting or disconnecting a tunnel
connection, open or close a TCP or UDP connection via the
tunnel, or send a pause or resume command to a remote
computing device via the tunnel to control congestion. These
commands may include a local handle to identify the tunnel.
The tunnel interface may also include commands for sending
data from one or more buffers via a tunnel identified by a local
handle, and may include an identification of the one or more
send buffers. The tunnel interface may also include one or
more callbacks for passing received messages to the data
manager, requesting resending of data in case of connection
or communication failure, sending notification of a peer sta
tus change to the connection manager, notifying a connection
manager of a newly requested or established connection, or
indicating a pause or resume command has been received
from a remote computing device.
0220. In some embodiments, queue tunnel proxy module
406 may include a connection manager 414. Connection
manager 414 may comprise a service, daemon, application,
routine or subroutine, or other executable code or logic for
managing connections via both the Socket interface 410 and
tunnel interface 412. Connection manager 414 may include
functionality for creating and deleting connections, and
maintaining a connection table. In some embodiments, con
nection manager 414 may include one or more timers for
maintaining the connection table by marking dormant con
nections as having timed out. When congestion is detected or
when a pause command is received via the Socket or tunnel
interface, the connection manager 414 may mark a connec
tion as halted and may send a pause command to the corre
sponding other interface. The connection manager 414 may
manage a list of peers; a list of connections; a list of non
paused connections, which may be used to service local Sock
ets; a list of paused connections which may be paused when
the tunnel interface detects congestion or due to back pressure
from the local sockets buffer; a list of connections with data
received from the tunnel that needs to be delivered locally,
which may be buffered until the local connection can accept
the data; a list of new local connections that need to be
established to the peer; and a list a new peer connections that
need to be established locally. In some embodiments, these
lists may be combined into one or more lists. For example, in
one Such embodiment, a connection list may include a flag to
indicate a paused or non-paused connection. Similar flags
may be used to denote other connection statuses.
0221. The connection manager 414 may include function
ality for creating a new connection responsive to a request
received via the socket interface. In some embodiments, the
connection manager 414 may determine a peer unit using a
list of peers, and may include load balancing or other func
tions for selecting a peer from the list of peers. The connection
manager may send to the peer, via the tunnel interface, a
request to establish a new connection. Similarly, in some
embodiments, the connection manager may receive a request
to open a connection via the tunnel interface from a peer, and
may initialize the connection and route incoming packets to
the proper destination. In some embodiments, this may com
prise directing packets to QoS and redirection module 404 for
forwarding to client agent 120 or an application. In other
embodiments, this may comprise directing packets to a net

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 42 of 45

US 2013/030479.6 A1

work interface for transmission to a remote server, interme
diary, or client. In some embodiments, the connection man
ager may redirect a tunneled packet to the original destination
IP address of the payload packet.
0222 Connection manager 414 may also include func

tionality for closing a connection. The connection manager
may close a connection responsive to receiving a request to
close the connection, a failure of transmission in the tunnel, a
timeout, or other reasons. Closing a connection may comprise
cleaning up resources allocated to the connection, resetting
buffers, or performing other maintenance tasks. In some
embodiments, connection manager 414 may also include
functionality for pausing or resuming connections responsive
to congestion. For example, if a local Socket cannot accept all
of the data provided to the Socket, the connection manager
may pause the connection and send a pause command to the
peer unit. Similarly, if the connection manager receives a
pause command from the peer unit, the connection manager
may pause the connection and direct the QoS and redirection
module to pause. Connection manager may also include func
tionality for explicit congestion notifications. In some
embodiments, the connection manager may also perform
periodic housekeeping functions, including maintaining con
nection timeouts and a list of closed connections.

0223) In some embodiments, queue tunnel proxy module
406 may also include a data manager 416. Data manager 416
may comprise an application, service, daemon, routine or
Subroutine, or other executable code or logic for managing
and moving data between the socket interface and tunnel
interface. As shown, in Some embodiments, receive and send
paths may be separate and may be controlled in parallel.
0224. In one embodiment, when the socket interface
receives data from the QoS and redirection module or other
application, it may call a data receive function provided by
data manager 416. Responsive to this function, the data man
ager may attempt to pass the data to a peer unit via the tunnel
interface. If the tunnel interfaces refuses the data, for example
due to congestion or a paused connection, data manager 416
may store the data in a per-connection queue or buffer. This
queue or buffer may then be added to a pending send list.
When the amount of pending data to be send passes a prede
termined threshold, in Some embodiments, the data manager
may send a request to pause the connection to the QoS and
redirection module 404 or other application via the socket
interface. Upon receipt of a connection resume message from
the tunnel interface, data manager 416 will attempt to send
data from the queues or buffers in the pending send list. In
Some embodiments, the data manager may attempt to send as
much data as possible, avoiding delays caused by slow start
techniques.
0225. Similarly, in one embodiment, when the tunnel
interface receives data from the peer via the network inter
face, it may send a callback function to the data manager.
Responsive to this callback, the data manager may attempt to
pass the data to QoS and redirection module or another appli
cation via the socket interface. If the socket interface refuses
the data, for example due to congestion or execution delays,
the data manager may store the data in a local buffer or queue.
When the amount of data to send to local buffers or queues
passes a predetermined threshold, in Some embodiments, the
data manager may send a request to pause the connection to
the remote peer via the tunnel interface. Data manager may
similarly send a resume command when local Sockets are
again able to accept data.

28
Nov. 14, 2013

0226 Referring now to FIGS.5A and 5B, illustrated are
block diagrams of embodiments of communications flow
within a system providing quality of service of a plurality of
applications via a flow controlled tunnel. In brief overview,
FIG. 5A shows an embodiment providing direct QoS and
redirection, while FIG. 5B shows an embodiment providing
redirection via an encryption gateway. In the embodiment
shown in FIG. 5A, traffic flow from an application travels to
QoS module 420 of QoS and redirection module 404, which
intercepts, classifies and prioritizes the traffic, using any of
the techniques described above. The traffic is then passed to
the traffic redirector 422 of QoS and redirection module 404,
which passes the traffic to the queue tunnel proxy module 406
via a socket interface, discussed above. When receiving traf
fic, this is performed in reverse: data is received through the
tunnel and split back into individual streams and delivered to
the application.
0227. In the embodiment shown in FIG. 5B, however, a
client agent 120 is placed in the flow of traffic to perform
additional functions, such as encryption, compression, or
other acceleration techniques. In this embodiment, traffic
from the application is intercepted and prioritized by the QoS
module 420 and then sent to a client agent redirector 424.
Similar to the traffic redirector 422, the client agent redirector
424 sends traffic to a socket of client agent 120 for further
processing using any of the encryption, compression, accel
eration, or other techniques described above. For example,
the client agent 120 may encapsulate the stream in an SSL
stream for sending to a remote decryption module. The client
agent may then transmit the processed traffic back through the
network Stack, where it may be intercepted again by QoS and
redirection module 404. Having already been prioritized, the
traffic may be redirected by traffic redirector 422 to the queue
tunnel proxy module 406 for transmission via the tunnel.
When receiving encrypted, compressed, or otherwise accel
erated traffic, the traffic redirector 422 may direct the traffic
back to the client agent 120 for processing. After processing,
in Some embodiments, the traffic may be passed to client
agent redirector 424, and then returned to QoS and redirection
module 404 for sending to its original destination. In other
embodiments, received traffic processed by the client agent
120 may be sent to the network stack by the client agent and
intercepted by QoS and redirection module 404 for sending to
its original destination.
0228 Referring briefly back to FIG. 4B in connection with
FIGS. 5A and 5B, both embodiments of communications
flow may be utilized simultaneously. For example, as shown
in FIG. 4B, some traffic (corresponding to applications 1 and
2) may be redirected through client agent 120, while other
traffic (corresponding to application 3, and processed traffic
from client agent 120) may be redirected to the queue tunnel
proxy module 406. This may be done, for example, when the
additional processing performed by clientagent 120 is unnec
essary or undesirable for an application, such as a low-latency
VoIP connection.

0229 FIG. 6 is a flow chart of an embodiment of a method
for providing quality of service of a plurality of applications
via a flow controlled tunnel. In brief overview, at step 602, an
agent operating at a portion of a network Stack of a client may
proxy a plurality of transport layer connections correspond
ing to each of a plurality of applications executing on the
client. At step 604, the agent may receive data from each of
the plurality of proxied transport layer connections in an
order according to an assigned priority from classification of

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 43 of 45

US 2013/030479.6 A1

each of the plurality of applications. At step 606, the agent
may communicate, in the order according to the assigned
priority, a predetermined amount of data received from each
of the plurality of proxied transport layer connections via an
established transport layer connection.
0230 Still referring to FIG. 6 and in more detail, at step
602, an agent executing or operating at a portion of a network
stack of a client may proxy a plurality of transport layer
connections corresponding to each of a plurality of applica
tions executing on the client. In some embodiments, proxying
a connection may comprise acting as an intermediary for the
transport layer connection, and may include encapsulating
data of one or more packets from the plurality of transport
layer connections as payloads of one or more tunneling pro
tocol packets. In some embodiments, the agent may proxy
each of the plurality of transport layer connections back to the
client. In many embodiments, the agent may proxy each of the
plurality of transport layer connections transparently to each
of the plurality of applications. For example, the agent may
rewrite destination and/or source addresses or ports or encap
Sulate and de-encapsulate packets transparently to the appli
cations.

0231. At step 604, in some embodiments, the agent may
receive data from each of the plurality of proxied transport
layer connections in an order according to an assigned prior
ity from classification of each of the plurality of applications.
In some embodiments, the agent may classify each of the
plurality of applications according to a Quality of Service
classification scheme. Such classification may be performed
using any identifiable information in the connections, data, or
applications, including by destination, by application, by
application group or type, by protocol, by data size, or any
other information.

0232. At step 606, in some embodiments, the agent may
communicate, to a first tunneling application executing on the
client, a predetermined amount of data received from each of
the plurality of proxied transport layer connections. The first
tunneling application may, in Some embodiments, have an
established transport layer connection to a second tunneling
application, which may execute on a remote computing
device. Such as a remote client, intermediary, or server. In
many embodiments, the agent may communicate the prede
termined data in the order according to the assigned priority.
In some embodiments, the agent may apply Quality of Ser
Vice upon communicating the predetermined amount of data
to the first tunneling application. In other embodiments, the
agent may communicate each of the predetermined amount of
data upon receipt to the first tunneling application.
0233. In some embodiments, the first tunneling applica
tion on the client may transmit the predetermined amount of
data from each of the applications to a second tunneling
application executing on a device intermediary to the client
and a plurality of servers. In many embodiments, the agent
may execute in a kernel space or kernel mode of the client and
the first tunneling application may execute in a user space or
user mode of the client. In some embodiments, the agent may
receive an indication from one or more of the plurality of
proxied transport layer connections that data is available to be
read. In a further embodiment, the agent may propagate the
indication to the first tunneling application and, responsive to
the indication, the first tunneling application may accept the
predetermined amount of data from each of the one or more
proxied transport layer connections in the order of priority.

29
Nov. 14, 2013

0234. While various embodiments of the methods and sys
tems have been described, these embodiments are exemplary
and in no way limit the scope of the described methods or
systems. Those having skill in the relevant art can effect
changes to form and details of the described methods and
systems without departing from the broadest scope of the
described methods and systems. Thus, the scope of the meth
ods and systems described herein should not be limited by any
of the exemplary embodiments and should be defined in
accordance with the accompanying claims and their equiva
lents.
What is claimed:
1. A method for providing via a client agent a quality of

service of a plurality of applications, the method comprising:
(a) receiving, by an agent executing on a client responsive

to an indication that data is available to be read, data
from each of a plurality of transport layer connections
corresponding to each application of a plurality of appli
cations executing on the client in an order according to a
priority assigned to each application;

(b) providing, by the agent to a tunneling application
executing on the client, in the order according to the
assigned priority, a predetermined amount of data
received from each of the plurality of transport layer
connections; and

(c) transmitting by the tunneling application via a network,
each of the predetermined of amount data in the order
according to the assigned priority.

2. The method of claim 1, wherein step (a) further com
prising proxying, by the agent operating at a layer of a net
work stack of the client, each of the plurality of transport layer
connections.

3. The method of claim 1, wherein step (a) further com
prises maintaining, by the agent, a plurality of buffers for
holding data from each of the plurality of applications, each
of the plurality of buffers corresponding to the priority
assigned to each application.

4. The method of claim 1, wherein step (b) further com
prises providing, by the agent, the indication to the tunneling
application.

5. The method of claim 1, wherein step (c) further com
prises accepting, by the tunneling application, the predeter
mined amount of data from each of the one or more transport
layer connections in the order of the priority assigned to each
application.

6. The method of claim 1, further comprising transmitting,
by the tunneling application via the network, the predeter
mined amount of data from each of the applications to a
second tunneling application executing on a second device.

7. The method of claim 1, wherein step (c) further com
prises classifying, by the agent, each of the plurality of appli
cations according to a classification scheme.

8. The method of claim 7, wherein step (c) further com
prises assigning, by the agent, the priority to each application
based on classification.

9. The method of claim 1, wherein step (c) further com
prises transmitting, by the tunneling application, each of the
predetermined data in the order according to the tunneling
priority using a fair queue algorithm.

10. The method of claim 1, wherein step (c) further com
prises transmitting, by the tunneling application, each of the
predetermined data in the order using a round robin algo
rithm.

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 44 of 45

US 2013/030479.6 A1

11. A system for providing via a client agent a quality of
service of a plurality of applications, the system comprising:

an agent executable on a client and configured to receive,
responsive to an indication that data is available to be
read, data from each of a plurality of transport layer
connections corresponding to each application of a plu
rality of applications executing on the client in an order
according to a priority assigned to each application;

a tunneling application executable on the client;
wherein the agent is configured to provide to the tunneling

application in the order according to the assigned prior
ity, a predetermined amount of data received from each
of the plurality of transport layer connections; and

wherein the tunneling application is configured to transmit,
via a network, each of the predetermined of amount data
in the order according to the assigned priority.

12. The system of claim 11, wherein the agentis configured
to operate at a layer of a network stack of the client and proxy
each of the plurality of transport layer connections.

13. The system of claim 11, wherein the agent is configured
to maintain a plurality of buffers for holding data from each of
the plurality of applications, each of the plurality of buffers
corresponding to the priority assigned to each application.

30
Nov. 14, 2013

14. The system of claim 11, wherein the agentis configured
to provide the indication to the tunneling application.

15. The system of claim 11, wherein the tunneling appli
cation is configured to accept the predetermined amount of
data from each of the one or more transport layer connections
in the order of the priority assigned to each application.

16. The system of claim 11, wherein the tunneling appli
cation is configured to transmit via the network, the predeter
mined amount of data from each of the applications to a
second tunneling application executing on a second device.

17. The system of claim 11, wherein the agent is configured
to classify each of the plurality of applications according to a
classification scheme.

18. The system of claim 17, wherein the agent is configured
to assign the priority to each application based on classifica
tion.

19. The system of claim 11, wherein the tunneling appli
cation is configured to transmit each of the predetermined
data in the order according to the tunneling priority using a
fair queue algorithm.

20. The system of claim 11, wherein the tunneling appli
cation is configured to transmit each of the predetermined
data in the order using a round robin algorithm.

k k k k k

NetNut's Exhibit 1213
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 45 of 45

