Appendix A-2: Proposed, Substitute Claims

29. (proposed substitute for claim 15) 15. A method for fetching a [fresh] content over the Internet[, requested by a first device, identified in the Internet by a first identifier,] from a first server identified in the Internet by a second identifier via a group of multiple [tunnel] devices, each identified in the Internet by an associated group device identifier,

the method comprising the step of partitioning the [fresh] content into a plurality of content slices, each content slice containing at least part of the [fresh] content, and identified using a content slice identifier, and for each of the content slices, comprising the steps of:

(a) selecting a [tunnel] device from the group;

(b) sending over the Internet a first request [from the first device] to the selected [tunnel] device using [a tunneling protocol and]the group device identifier of the selected [tunnel] device, the first request including the content slice identifier and the second identifier[, the first request identifies the source of the fresh content as the first server];

(c) in response to receiving the sent first request by the selected [tunnel] device, receiving over the Internet the content slice [from the first server via]from the selected [tunnel] device; and

[(d) in response to receiving the content slice, sending the content slice to the first device using the first identifier and;]

wherein the method further comprising[comprises] the step of constructing the [fresh] content from the received plurality of content slices, and

wherein each of the [tunnel] devices in the group is a client device [comprising a consumer electronic device with a client operating system and

wherein the second identifier is a complete URL and

wherein the first device remains anonymous as to the first tunnel device and the first server].

30. (proposed substitute for claim 16) 16. The method according to claim 15[29], wherein the content is composed of bits, nibbles, bytes, characters, words, or strings, and the partitioning is based on bit, nibble, byte, multi-byte, number, character, word, or string level.

31. (proposed substitute for claim 17) $\frac{17}{17}$. The method according to claim $\frac{15}{29}$, wherein the content is composed of files, or programs, and the partitioning is based on file or program level.

32. (proposed substitute for claim 18) 18. The method according to claim 17[31], wherein the content is a website content comprising multiple webpages, and the partitioning is based webpages level.

33. (proposed substitute for claim 19) $\frac{19}{19}$. The method according to claim $\frac{15}{29}$, wherein all of the parts of the content are included in all of the content slices.

34. (proposed substitute for claim 20) $\frac{20}{20}$. The method according to claim $\frac{15}{29}$, wherein all of the content slices have the same size.

35. (proposed substitute for claim 23) $\frac{23}{23}$. The method according to claim $\frac{15}{29}$, wherein the partitioning is sequential in the content.

36. (proposed substitute for claim 24) $\frac{24}{24}$. The method according to claim $\frac{15}{29}$, wherein the partitioning is non-sequential in the content.

37. (proposed substitute for claim 27) $\frac{27}{27}$. The method according to claim $\frac{15}{29}$, wherein the number of content slices is higher than the number of [tunnel] devices in the group.

38. (proposed substitute for claim 28) $\frac{28}{28}$. The method according to claim $\frac{15}{29}$, wherein the number of content slices is lower than the number of [tunnel] devices in the group.