US009063755B2

a2 United States Patent
Rempell et al.

US 9,063,755 B2
Jun. 23, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR (52) US.CL

PRESENTING INFORMATION ON MOBILE CPC i GO6F 9/4443 (2013.01)
DEVICES (58) Field of Classification Search
CPC e GOGF 3/048
(75) Inventors: Steven H. Rempell, Novato, CA (US); USPC 715/738
David Chrobak, Clayton, CA (US); Ken See application file for complete search history.
Brown, San Martin, CA (US)
(56) References Cited
(73) Assignee: Express Mobile, inc., Novato, CA (US)
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 2004/0055017 AL* 3/2004 Delpuchetal. 725/110
US.C. 154(b) by 154 days 2004/0163020 Al* 82004 Sidman 714/100
> Y ys: 2005/0149935 Al* 7/2005 Benedetti . e 7187102
2005/0273705 Al* 12/2005 McCain 715/513
(21) Appl. No.: 12/936,395 2006/0063518 ALl* 3/2006 Paddon etal. .. . 455/418
(22) PCTFiled: Apr. 6,2009 OTHER PUBLICATIONS
(86) PCT No.: PCT/US2009/039695 Stina Nylander.et al. “”l?he Ubiquitous Inte.ractor-Dc.eVice Independent
Access to Mobile Services” (Computer-Aided Design for User Inter-
§ 371 (c)(1), faces IV, Proceedings of the Fifth International Conference on Com-
(2), (4) Date: Now. 3,2010 puter-Aided Design of User Interfaces CADUI’2004, Jan. 2004, pp.
271-282).%
(87) PCT Pub. No.: W02009/126591
% .
PCT Pub. Date: Oct. 15, 2009 cited by examiner
(65) Prior Publication Data Primary Examiner — Jennifer To
Assistant Examiner — Xuyang Xia
US 2011/0107227 Al May 5, 2011 (74) Attorney, Agent, or Firm — Steven R. Vosen
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 61/166,651, filed on Apr. Embodiments of a system and method are described for gen-
3, 2009, provisional application No. 61/113,471, filed erating and distributing programming to mobile devices over
on Nov. 11, 2008, provisional application No. anetwork. Devices are provided with Players specific to each
61/123,438, filed on Apr. 7, 2008. device and Applications that are device independent.
Embodiments include a full-featured WYSIWYG authoring
nt. CL environment, including the ability to bind web components to
(51) Int.Cl i including the ability to bind web comp
GO6F 3/048 (2013.01) objects.
GO6F 9/44 (2006.01)
GO6F 9/45 (2006.01) 28 Claims, 18 Drawing Sheets
100 \
A
110 Authering w 120 Server
Platform .
111 Memory 5 J Interface
1 ooree
Routines .
115 Screen _/
B~ ™~ A
117 Input
130 pevice
Interface
Content
Server emon
|~
Interface d N § 135 processor
ey || T | [Adobe Inc. v.
N Express Mobile, Inc.,

IPR2021-XXXXX
U.S. Pat. 9,063,755

Exhibit 1001 Exhibit 1001

Page 01 of 40

phan_b
Text Box
Adobe Inc. v.
Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1001

U.S. Patent Jun. 23,2015 Sheet 1 of 18 US 9,063,755 B2

100
Y

A
110 Authoring | » 120 Server
Platform
,4,,,_,_,_,_MM,_,_,_,_,“_]_,_,_,_,_M__ 121 Network
111 Memory BJ Interface
112 Authoring
Tool 123 Memory
125 Processor
14 oy
evice
Routines x
T

113 Processor N

115 Screen U

AN

117 Input h 4
Device 130 Device
131 Network
Interface
Content
140
140 Sepyer /{;_Qr_\ 133 Memory
141 Network F 3
Interface C N f) 133 processor
< R
143 Memory w | 137
R’j Screen
145 Processor 139 input
Device

FIG. TA

Exhibit 1001
Page 02 of 40

U.S. Patent

100
~

Jun. 23, 2015

Sheet 2 of 18 US 9,063,755 B2

110 Authoring
Platform

A B \I

A’BN\E I\A B

1203 Server 120b Server

A-1,B-1 |

¥

.4

A-N, B-N

A-2,B-2 -

130-1 Device 1

130-2 Device 2 MDEVECE N

C-1,R-1

Exhibit 1001
Page 03 of 40

C-N, R-N—

FIG. 1B

U.S. Patent Jun. 23,2015 Sheet 3 of 18 US 9,063,755 B2

200
Ty

Players
Y "‘) 110
Authoring
Platform
Load Registry
Applications
) Access
120 Registry 220
Server WebComponent
Registry
I Deploy
Applications Registry
A
A 4 v Web v
. Content
210 Paayerj 130 140
Response . . > - Content
Director A ~ Device - - Server
Content
Request A
Proxy
HTTR/XML
Request
and
Response ¢
230

Web Service

FIG. 2A

Exhibit 1001
Page 04 of 40

US 9,063,755 B2

Sheet 4 of 18

Jun. 23, 2015

U.S. Patent

01A3(] adepiau| 10553501 mN @mnm
induj geT UISHS 7er pomieN TEL SET
h
A y y y. A
A
wi21sAg
Buneredp [
] 2
= peEel
h
aulyde
0apIA EIA T L eeeen
SEEEL
Jabeuey AIOWS [BNLIA
olpny sabeuw| 1dd pue _mvo_\LcmmM__H_ume.:B I./{ o
PEEEL ZSEE eeeel
K
)))
N 2bed (19bed tl Z abey L obeq MmaIp abed a|Buls e
)) Av) IR N B B I A » Bunussaidas spslqo !//. lecel
uonesiddy TEET hueldwo? saulydep [enUIA -+
84016 ploddy GEL] deap BEET
Aouwepy TET
Hdneg 0l

Exhibit 1001

Page 05 of 40

US 9,063,755 B2

Sheet 5 of 18

Jun. 23, 2015

U.S. Patent

60¢

YL

o &%ﬁn@

.

g
o

i

Ve DI

€ | bLo
yLog

€
3L0€

°210¢ | 2LOE [elLoe

PLOE dlOE

Exhibit 1001

Page 06 of 40

US 9,063,755 B2

Sheet 6 of 18

Jun. 23, 2015

U.S. Patent

d¢ Old

2/0¢

¥e60¢&

g€ee0t

“_ e/0¢

ce60¢E

e

SRS

~— LB/0E

et

_ _
960t P60E 260 960t E60¢

?/,/. 60¢

Exhibit 1001
Page 07 of 40

U.S. Patent Jun. 23,2015 Sheet 7 of 18 US 9,063,755 B2

_'—
309b

~N

R AR R

309b1

Gote External Web Page reglacing Current Frame
Goto Exleraal Web Page Launched in a Hew Window
et & specific Page Wiew

Goto External Wel Page replacing the Top Frame
Goto the next Page View

Executs JavaSoript Bethod

Pansafesums Page Timeout

Execnie 30 Application

Goto 8 Specific Side s 8 Page Wiew

Exit Applicalion

Exit Mayer

Place Phore Call

Send String on HRE

Send String on HRE or Numeric Keys

309b2
By

Advanced Inferactive Seliings

309b3
Mouse Siste

. Timelice Entry Suppressed PN%
" Enable Server Listener Ubject Selectsd Audio 5&533.*35/‘
e g -g:ﬁ‘ oy

i

309b4

" Toggle Children on FIRE
I Hide non-related Childres

309b5
/—_

Ohject Selected: Text Field

FIG. 3C

Exhibit 1001
Page 08 of 40

U.S. Patent Jun. 23,2015 Sheet 8 of 18 US 9,063,755 B2

309c

Sotvats
Tumelne &

P

Chisct Animation Specifications
Direction i

Movemeat
o

Fade

Fadeln

Fade Out

Scroll Lelt
Seroll Right
Custom
Muli-Paint
Seek Cursor
Attach
Deposit
Send Home

772

UE 0B el g0 LN e LA P ek

el R WL~ R A B A

P2
97

P

FIG. 3D

Exhibit 1001
Page 09 of 40

U.S. Patent Jun. 23,2015 Sheet 9 of 18 US 9,063,755 B2

Exhibit 1001
Page 10 of 40

309

309e1

L

Altribuies Exposed

L

Web Component and Web Service Cspera%mns

309e3

309e11

309e12

309e4\ Default Attribute Value

309e5\ Database Name Tahis Name 309e7
3
309e6
Channel Name Channel Fead Cperation 309e10
3098 ——{Revters vl 11
Object Selected: Page \

U.S. Patent Jun. 23,2015 Sheet 10 of 18 US 9,063,755 B2

319

vt

Select @ Web Componsnt Select Resulis Page —319b
RSS Display List | Rtap
Mapluest-Directions. getDirections :
MapGusst-GetMapUiuster-Pan.pani Activation C»‘mkms/
Maphuest-GaiflapClester-Par.pand vl

319a HMeplvest Getflapliyster Paspant : o
Haptuest-GetMapUinster Panpani® Genseate Ul Chjects

b

%

\ a0 iNapOeest- GalilapUClexter-Pan.getMapliusiar
g BN RO R R SN\
4 iMNapduest POLget RO

Pictures

SendSMS

Woatherd

Woathar

tovies

Stochs

FRACHons gatfriends

FEACtrns. et Stalus

FEacHons. sendii

FEACHoRs.golild

FRACHoRsapoadPhoto

Logon

Wehsearch

R551

AT opiGgetlTopin

RingTone-Topid

Searchal

Search

Search-Ringlones

Napsimage

319d

319

FIG. 3F

Exhibit 1001
Page 11 of 40

US 9,063,755 B2

Sheet 11 of 18

Jun. 23, 2015

U.S. Patent

av "Oid V¥ 'Old

7 sy,
e sk B !

s CL B UGS 1IN SATE DRR T

: gyt
e woily

230p; NG DB BlIGD il \ : N%\\\

T ARG LRl

Exhibit 1001
Page 12 of 40

US 9,063,755 B2

G Oild
D9 'Ol J20S PTOS 920S c0s
bzos

Sheet 12 of 18

Jun. 23, 2015

U.S. Patent

d9 Old

V9 Ol

mmom\? 205

00§

Exhibit 1001

Page 13 of 40

U.S. Patent Jun. 23,2015 Sheet 13 of 18 US 9,063,755 B2

700

701a

701b

701c1
701¢c —»

701c2

701d

7/01e

SEMED

FlG. 7

Exhibit 1001
Page 14 of 40

U.S. Patent

Exhibit 1001
Page 15 of 40

800
\

Jun. 23, 2015

Sheet 14 of 18

801
Website System

803
SMS Server

US 9,063,755 B2

130 Device

805
Content Server

900
Y

805

FIG. 8

901
Promo Code

Content Server

903

3rd Party Server|

FIG. 9

U.S. Patent Jun. 23,2015 Sheet 15 of 18 US 9,063,755 B2

Mobie
Loritam
Gatoway

_ S 101 1
ANASSRDK
aad Goflactor :

Sorga

1073 = e
1074 :
FA—— ;‘""-'5016

1015 —.

G Drenment Trsg

1017

Playdr régquests
Conter Servay

o Pawi Data
130~ HITER0FOST = — 1018
0 e 1019
"t 1020
1021

Dy naeie

erit Coriterd Server 140

FIG. 10

Exhibit 1001
Page 16 of 40

US 9,063,755 B2

Sheet 16 of 18

Jun. 23, 2015

U.S. Patent

saEsAS] SO

AR SPPBIIIIAGE FusBE Y BRSREEAS s

SOUAIDE QUM
GMBEEISY

Bl GOBE
SUBBHIBY

BN) SEERNLRL]
ouseRdy

WD oy |
Blildlaaa g
CUISTRITK

WEG MUSBaEK

msdoenng apeD A
npug g

S—

i
7 (T

TR

Ftd
Burpug
s

BT Ay

AauBisars in
e vogesddy
urgoyddy S,
Yid W\W ”
i

Ll "Dl

Exhibit 1001

Page 17 of 40

(operadn
j1Buies) 4sih

{sws ‘e iy gpel ‘Lpel
aseleIel o4 owsady

¢l Ol

US 9,063,755 B2

Sheet 17 of 18

Jun. 23, 2015

U.S. Patent

aseqeied
SSAPPY di

seaippy o4 Busn
e rdoyisiien
- BUIUIIBIB0

814 seudoydy pusg

BLUIDL A

&4

(o8 ‘Bng uesiog
woddng Jain
wiebBy Jesn Busn
POy ‘exe puid

aseqmeg Lol
waby sesn

7

SoT1L
SOISHB0BIBYY

A DEULISe
&\

Jorel esuodeaky_ oLz

AR

A T

T AT T,

ﬂ%@%& diaushy 1850y} JepesH dilH

00c1

Exhibit 1001

Page 18 of 40

U.S. Patent Jun. 23,2015 Sheet 18 of 18 US 9,063,755 B2

Guery for
,,,,, Device Characteristics
Operator and Locals

Generale
JADR

Response Director

Query and Receive
URL for Matehing Plavey

1303

Bevice Appropriste Player Install

Player Profile
Database

1305
\

Player Build Process
Generate Players for alt
Abstraction nplementations

FIG. 13

Exhibit 1001
Page 19 of 40

US 9,063,755 B2

1
SYSTEMS AND METHODS FOR
PRESENTING INFORMATION ON MOBILE
DEVICES

TECHNICAL FIELD

The present invention generally relates to providing soft-
ware for mobile devices, and more particularly to a method
and system for authoring Applications for devices.

BACKGROUND ART

Internet-connected mobile devices are becoming ever
more popular. While these devices provide portability to the
Internet, they generally do not have the capabilities of non-
mobile devices including computing, input and output capa-
bilities.

In addition, the mobility of the user while using such
devices provides challenges and opportunities for the use of
the Internet. Further, unlike non-mobile devices, there are a
large number of types of devices and they tend to have a
shorter lifetime in the marketplace. The programming of the
myriad of mobile devices is a time-consuming and expensive
proposition, thus limiting the ability of service providers to
update the capabilities of mobile devices.

Thus there is a need in the art for a method and apparatus
that permits for the efficient programming of mobile devices.
Such a method and apparatus should be easy to use and
provide output for a variety of devices.

DISCLOSURE OF INVENTION

In certain embodiments, a system is provided to generate
code to provide content on a display of a platform. The system
includes a database of web services obtainable over a network
and an authoring tool. The authoring tool is configured to
define an object for presentation on the display, select a com-
ponent of a web service included in said database, associate
said object with said selected component, and produce code
that, when executed on the platform, provides said selected
component on the display of the platform.

In certain other embodiments, a method is provided for
providing information to platforms on a network. The method
includes accepting a first code over the network, where said
first code is platform-dependent; providing a second code
over the network, where said second code is platform-inde-
pendent; and executing said first code and said second code
on the platform to provide web components obtained over the
network.

In certain embodiments, a method for displaying content
on a platform utilizing a database of web services obtainable
over a network is provided. The method includes: defining an
object for presentation on the display; selecting a component
of' a web service included in said database; associating said
object with said selected component; and producing code
that, when executed on the platform, provides said selected
component on the display of the platform.

In one embodiment, one of the codes is a Player, which is
a thin client architecture that operates in a language that
manages resources efficiently, is extensible, supports a robust
application model, and has no device specific dependencies.
In another embodiment, Player P is light weight and extends
the operating system and/or virtual machine of the device to:
Manage all applications and application upgrades, and
resolve device, operating system, VM and language fragmen-
tation.

Exhibit 1001
Page 20 of 40

10

30

40

45

50

2

In another embodiment, one of the codes is an Application
that is a device independent code that interpreted by the
Player.

These features together with the various ancillary provi-
sions and features which will become apparent to those
skilled in the art from the following detailed description, are
attained by the system and method of the present invention,
preferred embodiments thereof being shown with reference
to the accompanying drawings, by way of example only,
wherein:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A is an illustrative schematic of one embodiment of
a system including an authoring platform and a server for
providing programming instructions to a device over a net-
work;

FIG. 1B is schematic of an alternative embodiment system
for providing programming instructions to device over a net-
work;

FIG. 2A is a schematic of an embodiment of system illus-
trating the communications between different system com-
ponents;

FIG. 2B is a schematic of one embodiment of a device
illustrating an embodiment of the programming generated by
authoring platform;

FIGS. 3A and 3B illustrate one embodiment of a publisher
interface as it appears, for example and without limitation, on
a screen while executing an authoring tool;

FIG. 3C illustrates an embodiment of the Events Tab'

FIG. 3D illustrates one embodiment of an Animation Tab;

FIG. 3E illustrates one embodiment of Bindings Tab;

FIG. 3F illustrates one embodiment of a pop-up menu for
adding web components;

FIG. 4A shows a publisher interface having a layout on a
canvas; and FIG. 4B shows a device having the resulting
layout on a device screen;

FIG. 5 shows a display of launch strips;

FIG. 6A is a display of a Channel Selection List;

FIG. 6B is a display of a Widget Selection List;

FIG. 6C is a display of a Phone List;

FIG. 7 shows a display of a mash-up;

FIG. 8 is a schematic of an embodiment of a push capable
system,

FIG. 9 is a schematic of an alternative embodiment of a
push capable system;

FIG. 10 is a schematic of one embodiment of a feed col-
lector;

FIG. 11 is a schematic of an embodiment of a Mobile
Content Gateway;

FIG. 12 is a schematic of one embodiment of a system that
includes a response director, a user agent database, an IP
address database, and a file database; and

FIG. 13 is a schematic of another embodiment of a system
that includes a response director, a user agent database, an IP
address database, and a file database.

Reference symbols are used in the Figures to indicate cer-
tain components, aspects or features shown therein, with
reference symbols common to more than one Figure indicat-
ing like components, aspects or features shown therein.

MODE(S) FOR CARRYING OUT THE
INVENTION

FIG. 1A is an illustrative schematic of one embodiment of
a system 100 including an authoring platform 110 and a
server 120 for providing programming instructions to a

US 9,063,755 B2

3

device 130 over a network N. In one embodiment, device 130
is a wireless device, and network N includes wireless com-
munication to the device. Alternatively, system 100 may pro-
vide access over network N to other information, data, or
content, such as obtainable as a web service over the Internet.
In general, a user of authoring platform 110 may produce
programming instructions or files that may be transmitted
over network N to operate device 130, including instructions
or files thatare sent to device 130 and/or server 120. The result
of'the authoring process is also referred to herein, and without
limitation, as publishing an Application.

Embodiments include one or more databases that store
information related to one or more devices 130 and/or the
content provided to the devices. It is understood that such
databases may reside on any computer or computer system on
network N, and that, in particular, the location is not limited to
any particular server, for example.

Device 130 may be, for example and without limitation, a
cellular telephone or a portable digital assistant, includes a
network interface 131, a memory 133, a processor 135, a
screen 137, and an input device 139. Network interface 131 is
used by device 130 to communication over a wireless net-
work, such as a cellular telephone network, a WiFi network or
a WiMax network, and then to other telephones through a
public switched telephone network (PSTN) or to a satellite, or
over the Internet. Memory 133 includes programming
required to operate device 130 (such as an operating system or
virtual machine instructions), and may include portions that
store information or programming instructions obtained over
network interface 131, or that are input by the user (such as
telephone numbers or images from a device camera (not
shown). In one embodiment screen 137 is a touch screen,
providing the functions of the screen and input device 139.

Authoring platform 110 includes a computer or computer
system having a memory 111, a processor 113, a screen 115,
and an input device 117. It is to be understood that memory
111, processor 113, screen 115, and input device 117 are
configured such a program stored in the memory may be
executed by the processor to accept input from the input
device and display information on the screen. Further, the
program stored in memory 111 may also instruct authoring
platform 110 to provide programming or information, as indi-
cated by the line labeled “A” and to receive information, as
indicated by the line labeled “B.”

Memory 111 is shown schematically as including a stored
program referred to herein, and without limitation, as an
authoring tool 112. In one embodiment, authoring tool 112 is
a graphical system for designing the layout of features as a
display that is to appear on screen 137. One example of
authoring tool 112 is the CDER™ publishing platform (Ex-
press Mobile, Inc., Novato, Calif.).

In another embodiment, which is not meant to limit the
scope of the present invention, device 130 may include an
operating system having a platform that can interpret certain
routines. Memory 111 may optionally include programming
referred to herein, and without limitation, as routines 114 that
are executable on device 130.

Routines 114 may include device-specific routines—that
is, codes that are specific to the operating system, program-
ming language, or platform of specific devices 130, and may
include, but are not limited to, Java, Windows Mobile, Brew,
Symbian OS, or Open Handset Alliance (OHA). Several
examples and embodiments herein are described with refer-
ence to the use of Java. It is to be understood that the invention
is not so limited, except as provided in the claims, and that one
skilled in the art could provide Players for devices using
routines provided on a platform. Thus as an example, routines

Exhibit 1001
Page 21 of 40

10

15

20

25

30

35

40

45

50

55

60

65

4

114 may include Java API’s and an authoring tool System
Development Kit (SDK) for specific devices 130.

Server 120 is a computer or computer system that includes
anetwork interface 121, a memory 123. and a processor 125.
Is to be understood that network interface 121, memory 123,
and processor 125 are configured such that a program stored
in the memory may be executed by the processor to: accept
input and/or provide output to authoring platform 110; accept
input and/or provide output through network interface 121
over network N to network interface 131; or store information
from authoring platform 110 or from device 130 for transmis-
sion to another device or system at a later time.

In one embodiment, authoring platform 110 permits a user
to design desired displays for screen 137 and actions of device
130. In other words, authoring platform 110 is used to pro-
gram the operation of device 130. In another embodiment,
authoring platform 110 allows a user to provide input for the
design of one or more device displays and may further allow
the user to save the designs as device specific Applications.
The Applications may be stored in memory 123 and may then
be sent, when requested by device 130 or when the device is
otherwise accessible, over network N, through network inter-
face 130 for storage in memory 133.

In an alternative embodiment, analytics information from
devices 130 may be returned from device 130, through net-
work N and server 120, back to authoring platform 110, as
indicated by line B, for later analysis. Analytics information
includes, but is not limited to, user demographics, time of day,
and location. The type of analytic content is only limited by
which listeners have been activated for which objects and for
which pages. Analytic content may include, but is not limited
to, player-side page view, player-side forms-based content,
player-side user interactions, and player-side object status.

Content server 140 is a computer or computer system that
includes a network interface 141, a memory 143. and a pro-
cessor 145. It is to be understood that network interface 141,
memory 143, and processor 145 are configured such that a
stored program in the memory may be executed by the pro-
cessor to accepts requests R from device 130 and provide
content C over a network, such as web server content the
Internet, to device 130.

FIG. 1B is schematic of an alternative embodiment system
100 for providing programming instructions to device 130
over a network N that is generally similar to the system of
FIG. 1A. The embodiment of FIG. 1B illustrates that system
100 may include multiple servers 120 and/or multiple devices
130.

In the embodiment of FIG. 1B, system 100 is shown as
including two or more servers 120, shown illustratively and
without limitation as servers 120a and 1205. Thus some of the
programming or information between authoring platform
110 and one or more devices 130 may be stored, routed,
updated, or controlled by more than one server 120. In par-
ticular, the systems and methods described herein may be
executed on one or more server 120.

Also shown in FIG. 1B are a plurality of devices 130,
shown illustratively and without limitation as device 130-1,
130-1,...130-N. System 100 may thus direct communication
between individual server(s) 120 and specific device(s) 130.

As described subsequently, individual devices 130 may be
provided with program instructions which may be stored in
each device’s memory 133 and where the instructions are
executed by each device’s processor 135. Thus, for example,
server(s) 120 may provide device(s) 130 with programming
in response to the input of the uses of the individual devices.
Further, different devices 130 may be operable using different
sets of instructions, that is having one of a variety of different

US 9,063,755 B2

5

“device platforms.” Differing device platforms may result,
for example and without limitation, to different operating
systems, different versions of an operating system, or differ-
ent versions of virtual machines on the same operating sys-
tem. In some embodiments, devices 130 are provided with
some programming from authoring system 100 that is par-
ticular to the device.

In one embodiment, system 100 provides permits a user of
authoring platform 110 to provide instructions to each of the
plurality of devices 130 in the form of a device- or device-
platform specific instructions for processor 135 of the device,
referred to herein and without limitation as a “Player,” and a
device-independent program, referred to herein and without
limitation as an “Application” Thus, for example, authoring
platform 110 may be used to generate programming for a
plurality of devices 130 having one of several different device
platforms. The programming is parsed into instructions used
by different device platforms and instructions that are inde-
pendent of device platform. Thus in one embodiment, device
130 utilizes a Player and an Application to execute program-
ming from authoring platform 110. A device having the cor-
rect Player is then able to interpret and be programmed
according to the Application.

In one alternative embodiment, the Player is executed the
first time by device 130 (“activated”) through an Application
directory. In another alternative embodiment, the Player is
activated by a web browser or other software on device 130.
In yet another alternative embodiment, Player is activated
through a signal to device 130 by a special telephone num-
bers, such as a short code.

When the Application and the Player are provided to
memory 133, the functioning of device 130 may occur in
accordance with the desired programming. Thus in one
embodiment, the Application and Player includes program-
ming instructions which may be stored in memory 133 and
which, when executed by processor 135, generate the
designed displays on screen 137. The Application and Player
may also include programming instructions which may be
stored in memory 133 and which provide instructions to
processor 135 to accept input from input device 139.

Authoring tool 112 may, for example, produce and store
within memory 111a plurality of Players (for different
devices 130) and a plurality of Applications for displaying
pages on all devices. The Players and Applications are then
stored on one or more servers 120 and then provided to
individual devices 130. In general, Applications are provided
to device 130 for each page of display or a some number of
pages. A Player need be provided once or updated as neces-
sary, and thus may be used to display a large number of
Applications. This is advantageous for the authoring process,
since all of the device-dependent programming is provided to
a device only once (or possibly for some small number of
upgrades), permitting a smaller Application, which is the
same for each device 130.

Thus, for example and without limitation, in one embodi-
ment, the Player transforms device-independent instructions
of the Application into device-specific instructions that are
executable by device 130. Thus, by way of example and
without limitation, the Application may include Java pro-
gramming for generating a display on screen 137, and the
Player may interpret the Java and instruct processor 135 to
produce the display according to the Application for execu-
tion on a specific device 130 according to the device platform.
The Application may in general include, without limitation,
instructions for generating a display on screen 137, instruc-
tions for accepting input from input device 139, instructions

Exhibit 1001
Page 22 of 40

10

15

20

25

30

35

40

45

50

55

60

65

6

for interacting with a user of device 130, and/or instructions
for otherwise operating the device, such as to place a tele-
phone call.

The Application is preferably code in a device-independent
format, referred to herein and without limitation as a Portable
Description Language (PDL). The device’s Player interprets
or executes the Application to generate one or more “pages”
(“Applications Pages™) on a display as defined by the PDL.
The Player may include code that is device-specific—that it,
each device is provided with a Player that is used in the
interpretation and execution of Applications. Authoring tool
112 may thus be used to design one or more device-indepen-
dent Applications and may also include information on one or
more different devices 130 that can be used to generate a
Player that specific devices may use to generate displays from
the Application.

In one embodiment, system 100 provides Players and
Applications to one server 120, as in FIG. 1A. In another
embodiment, system 100 provides Players to a first server
120a and Applications to a second server 1205, as in FIG. 1B.

In one embodiment, authoring tool 112 may be used to
program a plurality of different devices 130, and routines 114
may include device-specific routines. In another embodi-
ment, the Player is of the type that is commonly referred to as
a “thin client”—that is, software for running on the device as
a client in client-server architecture with a device network
which depends primarily on a central server for processing
activities, and mainly focuses on conveying input and output
between the user and the server.

In one embodiment, authoring platform 110 allows user to
arrange objects for display on screen. A graphical user inter-
face (“GUI,” or “UI”) is particularly well suited to arranging
objects, but is not necessary. The objects may correspond to
one or more of an input object, an output object, an action
object, or may be a decorative display, such as a logo, or
background color or pattern, such as a solid or gradient fill. In
another embodiment, authoring platform 110 also permits a
user to assign actions to one or more of an input object, an
output object, or an action object. In yet another embodiment,
authoring platform 110 also permits a user to bind one or
more of an input object, an output object, or an action object
with web services or web components, or permits a user to
provide instructions to processor 135 to store or modify infor-
mation in memory 133, to navigate to another display or
service, or to perform other actions, such as dialing a tele-
phone number.

In certain embodiments, the applicant model used in devel-
oping and providing Applications is a PDL. The PDL can be
conceptually viewed as a device, operating system and virtual
machine agnostic representation of Java serialized objects. In
certain embodiments, the PDL is the common language for
authoring tool 112, the Application, and Player. Thus while
either designing the Application with the authoring tool 112,
or programming with the SDK, the internal representation of
the programming logic is in Java. In one embodiment the
SDK is used within a multi-language software development
platform comprising an IDE and a plug-in system to extend it,
such as the Eclipse Integrated Development Environment
(see, for example, http://www.eclipse.org/). At publish time
the Java code is translated into a PDL. This translation may
also occur in real-time during the execution of any Web Ser-
vices or backend business logic that interacts with the user.

One embodiment for compacting data that may be used is
describedin U.S. Pat. No. 6,546,397 to Rempell (“Rempell”),
the contents of which are incorporated herein by reference. In
that patent the compressed data is described as being a data-

US 9,063,755 B2

7

base. The terminology used here is a PDL, that is the “internal
database” of Rempell is equivalent to the PDL of the present
Application.

The use of a PDL, as described in Rempell, permits for
efficient code and data compaction. Code, as well as vector,
integer and Boolean data may be compacted and then com-
pressed resulting in a size reduction of 40 to 80 times that of
the original Java serialized objects. This is important not only
for performance over the network but for utilizing the virtual
memory manager of the Player more efficiently. As an
example, the reassembled primitives of the Java objects may
first undergo logical compression, followed by LZ encoding.

The use of a PDL also provides virtual machine and oper-
ating system independence. Since the reassembled primitives
of'the Application no longer have any dependencies from the
original programming language (Java) that they were defined
in. The PDL architecture takes full advantage of this by
abstracting all the virtual machine and/or operating system
interfaces from the code that processes the PDL.

In one embodiment, the PDL is defined by the means of
nested arrays of primitives. Accordingly, the use of a PDL
provides extensibility and compatibility, with a minimal
amount of constraints in extending the Player seamlessly as
market demands and device capabilities continue to grow.
Compatibility with other languages is inherent based on the
various Player abstraction implementations, which may be,
for example and without limitation, Java CDC, J2SE or
MIDP2 implementations.

In one embodiment, the architecture of Player P includes
an abstraction interface that separates all device, operating
system and virtual machine dependencies from the Player’s
Application model business logic (that is, the logic of the
server-side facilities) that extend the Application on the
Player so that it is efficiently integrated into a comprehensive
client/server Application. The use of an abstraction interface
permits the more efficient porting to other operating systems
and virtual machines and adding of extensions to the Appli-
cationmodel so that a PDL can be implemented once and then
seamlessly propagated across all platform implementations.
The Application model includes all the currently supported
UT objects and their attributes and well as all of the various
events that are supported in the default Player. Further, less
robust platforms can be augmented by extending higher end
capabilities inside that platform’s abstraction interface imple-
mentation.

In one embodiment, authoring platform 110 provides one
or more pages, which may be provided in one Application, or
a plurality of Applications, which are stored in memory 123
and subsequently provided to memory 133. In certain
embodiments, the Application includes instructions R to
request content or web services C from content server 140.
Thus, for example and without limitation, the request is for
information over the network via a web service, and the
request R is responded to with the appropriate information for
display on device 130. Thus, for example, a user may request
a news report. The Application may include the layout of the
display, including a space for the news, which is downloaded
form content server 140 for inclusion on the display. Other
information that may be provided by content server 140 may
include, but is not limited to, pages, Applications, multime-
dia, and audio.

FIG. 2A is a schematic of a system 200 of an embodiment
of system 100 illustrating the communications between dif-
ferent system components. System includes a response direc-
tor 210, a web component registry 220, and a web service 230.
System 200 further includes authoring platform 110, server

Exhibit 1001
Page 23 of 40

20

25

40

45

8

120, device 130 and content server 140 are which are gener-
ally similar to those of the embodiments of FIGS. 1A and 1B,
except as explicitly noted.

Response director 210 is a computer or computer system
that may be generally similar to server 120 including the
ability to communicate with authoring platform 110 and one
or more devices 130. In particular, authoring platform 110
generates one or more Players (each usable by certain devices
130) which are provided to response director 210. Devices
130 may be operated to provide response director 210 with a
request for a Player and to receive and install the Player. In
one embodiment, device 130 provides response director 210
with device-specific information including but not limited to
make, model, and/or software version of the device. Response
director 210 then determines the appropriate Player for the
device, and provides the device with the Player over the
network.

Web service 230 is a plurality of services obtainable over
the Internet. Each web service is identified and/or defined as
an entry in web component registry 230, which is a database,
XML file, or PDL that exists on a computer that may be a
server previously described or another server 120. Web com-
ponent registry 230 is provided through server 120 to author-
ing platform 110 so that a user of the authoring platform may
bind web services 230 to elements to be displayed on device
130, as described subsequently.

In one embodiment, authoring platform 110 is used in
conjunction with a display that provides a WYSIWYG envi-
ronment in which a user of the authoring platform can pro-
duce an Application and Player that produces the same dis-
play and the desired programming on device 130. Thus, for
example, authoring tool 112 provides a display on screen 115
that corresponds to the finished page that will be displayed on
screen 137 when an Application is intercepted, via a Player,
on processor 135 of device 130.

Authoring platform 110 further permits a user of the
authoring platform to associate objects, such as objects for
presenting on screen 137, with components of one or more
web services 230 that are registered in web component reg-
istry 220. In one embodiment, information is provided in an
XML file to web component registry 220 for each registered
components of each web service 230. Web component regis-
try 220 may contain consumer inputs related to each web
service 230, environmental data such as PIM, time or location
values, persistent variable data, outputs related to the web
service, and/or optional hinting for improving the user’s pro-
ductivity.

A user of authoring platform 110 of system 200 may define
associations with web services as WebComponent Bindings.
In one embodiment, authoring platform 110 allows a user to
associate certain objects for display that provide input or
output to components of web service 230. The associated
bindings are saved as a PDL in server 120.

In one embodiment, an XML web component registry 220
for each registered web service 230 is loaded into authoring
platform 110. The user of system 200 can then assign com-
ponents of any web service 230 to an Application without any
need to write code. In one embodiment, a component of web
service 230 is selected from authoring platform 110 which
presents the user with WYSIWYG dialog boxes that enable
the binding of all the inputs and outputs of component of web
service 230 to a GUI component of the Application as will be
displayed on screen 137. In addition, multiple components of
one or more web service 230 can be assigned to any Object or
Event in order to facilitate mashups. These Object and/or
Event bindings, for each instance of a component of any web
service 230, are stored in the PDL. The content server 140

US 9,063,755 B2

9

handles all communication between device 130 and the web
service 230 and can be automatically deployed as a web
application archive to any content server.

Device 130, upon detecting an event in which a component
of a web service 230 has been defined, assembles and sends
all related inputs to content server 240, which proxies the
request to web service 230 and returns the requested infor-
mation to device 130. The Player on device 130 then takes the
outputs of web service 230 and binds the data to the Ul
components in the Application, as displayed on screen 137.

In one embodiment, the mechanism for binding the outputs
of'the web service to the Ul components is through symbolic
references that matches each output to the symbolic name of
the Ul component. The outputs, in one embodiment, may
include meta-data which could become part of the inputs for
subsequent interactions with the web service.

For example, if a user of authoring platform 110 wants to
present an ATOM feed on device 130, they would search
through a list of Ul Components available in the authoring
platform, select the feed they want to use, and bind the output
of the feed summary to a textbox. The bindings would be
saved into the PDL on server 120 and processed by device 130
at runtime. If the ATOM feed does not exist a new one can be
added to the web component registry that contains all the
configuration data required, such as the actual feed URL, the
web component manager URL, and what output fields are
available for binding.

In another embodiment, components of web services 230
are available either to the user of authoring platform 110 or
otherwise accessible through the SDK and Java APIs of rou-
tines 114. System 200 permits an expanding set of compo-
nents of web services 230 including, but not limited to: server
pages from content server 120; third-party web services
including, but not limited to: searching (such through Google
or Yahoo), maps (such as through MapQuest and Yahoo),
storefronts (such as through ThumbPlay), SMS share (such as
through clickatel), stock quotes, social networking (such as
through FaceBook), stock quotes, weather (such as through
Accuweather) and/or movie trailers. Other components
include web services for communication and sharing through
chats and forums and rich messaging alerts, where message
alerts are set-up that in turn could have components of Web
Services 230 defined within them, including the capture of
consumer generated and Web Service supplied rich media
and textual content.

System 200 also permits dynamic binding of real-time
content, where the inputs and outputs of XML web services
are bound to GUI components provided on screen 137. Thus,
for example, a user of authoring platform 110 may bind
attributes of UI Objects to a particular data base field on a
Server. When running the Application, the current value in the
referenced data base will be immediately applied. During the
Application session, any other real time changes to these
values in the referenced data base will again be immediately
displayed.

As an example of dynamic binding of real-time content, an
RSS feeds and other forms of dynamic content may be
inserted into mobile Applications, such as device 130, using
system 200. Authoring platform 110 may include a “RSS
display” list which permits a user to select RSS channels and
feeds from an extensible list of available dynamic content.
Meta data, such as titles, abstracts and Images can be revealed
immediately by the user as they traverse this RSS display list,
bringing the PC experience completely and conveniently to
mobile devices 130. In addition, Authoring platform 110 may
include a dialog box that dynamically links objects to dataand
feeds determined by RSS and chat databases. Any relevant
attribute for a page view and/or object can be dynamically
bound to a value in a server-side database. This includes
elements within complex objects such as: any icon or text

Exhibit 1001
Page 24 of 40

30

40

45

10

element within a graphical list; any icon within a launch strip;
any feature within any geographical view of a GIS service
object; and/or any virtual room within a virtual tour.

As an example of third-party web services 230 that may be
provided using system 200, a user of authoring platform 110
can place, for example, Yahoo maps into device 130 by bind-
ing the required component of the Yahoo Maps Web Service,
such as Yahoo Map’s Inputs and/or Outputs to appropriate
Objects of authoring platform 110. System 200 also provides
binding to web services for text, image and video searching
by binding to components of those web services.

In one embodiment, an Application for displaying on
device 130 includes one or more Applications Pages, each
referred to herein as an “XSP,” that provides functionality that
extends beyond traditional web browsers. The XSP is defined
as a PDL, in a similar manner as any Application, although it
defines a single page view, and is downloaded to the Player
dynamically as required by the PDL definition of the Appli-
cation. Thus, for example, while JSPs and ASPs, are restricted
to the functionality supported by the web browser, the func-
tionality of XSPs can be extended through authoring platform
110 having access to platform dependent routines 114, such
as Java APIs. Combined with dynamic binding functionality,
an XSP, a page can be saved as a page object in an author’s
“pages” library, and then can be dynamically populated with
real-time content simultaneously as the page is downloaded
to a given handset Player based on a newly expanded API.
XSP Server Pages can also be produced programmatically,
but in most cases authoring platform 110 will be a much more
efficient way to generate and maintain libraries of dynami-
cally changing XSPs.

With XSPs, Applications Pages that have dynamic content
associated with them can be sent directly to device 130, much
like how a web browser downloads an HTML page through a
external reference. Without XSPs, content authors would
have to define each page in the Application. With XSPs, no
pages need to be defined. Thus, for example, in a World Cup
Application, one page could represent real-time scores that
change continuously on demand. With polling (for example,
a prompt to the users asking who they predict will win a
game), a back-end database would tabulate the information
and then send the results dynamically to the handsets. With a
bar chart, the Application would use dynamic PDL with scal-
ing on the fly. For example, the server would recalibrate the
bar chart for every ten numbers.

Other combinations of components of web services 230
include, but are not limited to, simultaneous video chat ses-
sions, inside an integrated page view, with a video or televi-
sion station; multiple simultaneous chat sessions, each with a
designated individual and/or group, with each of the chat
threads visible inside an integrated page view.

Another extension of an XSP is a widget object. Widgets
can be developed from numerous sources including, but not
limited to, authoring platform 110, a Consumer Publishing
Tool, and an XML to Widget Conversion Tool where the SDK
Widget Libraries are automatically populated and managed,
or Widget Selection Lists that are available and can be popu-
lated with author defined Icons.

Applications, Players, and Processing in a Device

FIG. 2B is a schematic of one embodiment of a device 130
illustrating an embodiment of the programming generated by
authoring platform 110. Memory 133 may include several
different logical portions, such as a heap 133a, a record store
1335 and a filesystem (not shown).

As shown in FIG. 2B, heap 133a and record store 1336
include programming and/or content. In general, heap 133a is
readily accessible by processor 135 and includes, but is not
limited to portions that include the following programming: a
portion 13341 for virtual machine compliant objects repre-
senting a single Page View for screen 137; a portion 13342 for

US 9,063,755 B2

11

a Player; a portion 13343 for a virtual machine; and a portion
133a4 for an operating system.

Record store 13356 (or alternatively the filesystem)
includes, but is not limited to, portions 13351 for Applications
and non-streaming content, which may include portions
133a2 for images, portions 133a4 for audio, and/or portions
13345 for video. and portions 133562 for non-Application
PDLs, such as a Master Page PDL for presenting repeating
objects, and Alerts, which are overlayed on the current page
view. Other content, such as streaming content may be pro-
vided from network interface 131 directly to the Media Codec
of'device 130 with instructions from Player on how to present
the audio or video.

In one embodiment, the Player includes a Threading Model
and a Virtual Memory Manager. The Threading Model first
manages a queue of actions that can be populated based on
Input/Output events, Server-side events, time-based events,
or events initiated by user interactions. The Threading Model
further manages the simultaneous execution of actions occur-
ring at the same time. The Virtual Memory Manager includes
a Logical Virtual Page controller that provides instructions
from the record store to the heap, one page at time. Specifi-
cally, the Virtual Memory Manager controls the transfer of
one of the Application Pages and its virtual machine compli-
ant objects into portion 13341 as instructions readable by the
Player or Virtual Machine. When the Player determines that a
new set of instructions is required, the information (such as
one Application Page is retrieve from the Record store, con-
verted into virtual machine compliant objects (by processor
135 and according to operation by the Player, Virtual
Machine, etc). and stored in heap 133a. Alternatively, the
Player may augment virtual machine compliant objects with
its own libraries for managing user interactions, events,
memory, etc.

The connection of portions 133a1, 13342, 13343, 13344,
record store 1336 and processor 135 are illustrative of the
logical connection between the different types of program-
ming stored in Heap 133a and record store 1335, that is, how
data is processed by processor 135.

The Player determines which of the plurality of Applica-
tion Pages in portion 13351 is required next. This may be
determined by input actions from the Input Device 139, or
from instructions from the current Application Page. The
Player instructs processor 135 to extract the PDF from that
Applications Page and store it in portion 133a1. The Player
then interprets the Application Page extracted from PDL
which in turn defines all of the virtual machine compliant
Objects, some of which could have attributes that refer to
images, audio, and/or video stored in portions 13343, 13304,
13345, respectively.

The Virtual Machine in portion 13343 processes the Player
output, the Operating System in portion 13343 processes the
Virtual Machine output which results in machine code that is
processed by the Operating System in portion 133a4.

In another embodiment, the Player is a native program that
interacts directly with the operating system.

Embodiments of a Publishing Environment

In one embodiment, authoring platform 110 includes a
full-featured authoring tool 112 that provides a what-you-
see-is-what-you-get (WYSIWYG) full featured editor. Thus,
for example, authoring tool 112 permits a user to design an
Application by placing objects on canvas 305 and optionally
assigning actions to the objects and save the Application.
System 100 then provides the Application and Player to a
device 130. The Application as it runs on device 130 has the
same look and operation as designed on authoring platform

Exhibit 1001
Page 25 of 40

20

35

40

45

55

12

110. In certain embodiments, authoring platform 110 is, for
example and without limitation, a PC-compatible or a Macin-
tosh computer.

Authoring platform 110 produces an Application having
one or more Applications Pages, which are similar to web
pages. That is, each Applications Page, when executed on
device 130 may, according to its contents, modify what is
displayed on screen 137 or cause programming on the device
to change in a manner similar to how web pages are displayed
and navigated through on a website.

In one embodiment, authoring tool 112 allows a user to
place one or more objects on canvas 305 and associate the
objects with an Applications Pages. Authoring platform 110
maintains a database of object data in memory 111, including
but not limited to type of object, location on which page, and
object attributes. The user may add settings, events, anima-
tions or binding to the object, from authoring tool 112, which
are also maintained in memory 111. Authoring tool 112 also
allows a user to define more than one Applications Page.

In another embodiment, authoring tool 112, provides Java
programming functions of the Java API for specific devices
130 as pull-down menus, dialog boxes, or buttons. This per-
mits a user of authoring platform 110 to position objects that,
after being provided as an Application to device 130, activate
such Java functions on the device.

In certain embodiments, authoring platform 110, as part of
system 100, permits designers to include features of advanced
web and web services Applications for access by users of
device 130. Some of the features of advanced web and web
services include, but are not limited to: slide shows, images,
video, audio, animated transitions, multiple chats, and mouse
interaction; full 2-D vector graphics; GIS (advanced LBS),
including multiple raster and vector layers, feature sensitive
interactions, location awareness, streaming and embedded
audio/video, virtual tours, image processing and enhance-
ment, and widgets. In other embodiments the features are
provided for selection in authoring platform 110 through
interactive object libraries.

In certain embodiments, authoring platform 110, as part of
system 100, allows the inclusion of child objects which may
eventually be activated on device 130 by the user of the device
or by time. The uses of the child objects on device 130
include, but are not limited to: mouse over (object selection),
hover and fire events and launching of object-specific, rich-
media experiences.

In certain other embodiments, authoring platform 110, as
part of system 100, provides advanced interactive event mod-
els on device 130, including but not limited to: user-, time-
and/or location-initiated events, which allow content devel-
opers to base interactivity on specific user interactions and/or
instances in time and space; timelines, which are critical for
timing of multiple events and for animations when entering,
on, or exiting pages of the Application; waypoints, which act
similar to key frames, to allow smooth movement of objects
within pages of the Application. Waypoints define positions
on a page object’s animation trajectory. When an object
reaches a specific waypoint other object timelines can be
initiated, creating location-sensitive multiple object interac-
tion, and/or audio can be defined to play until the object
reaches the next waypoint.

Authoring platform 110 may also define a Master Page,
which acts as a template for an Applications Page, and may
also define Alert Pages, which provide user alerts to a user of
device 130.

In certain embodiments, authoring platform 110, as part of
system 100, provides full style inheritance on device 130.
Thus, for example and without limitation, both master page

US 9,063,755 B2

13

inheritance (for structural layout inheritance and repeating
objects) and object styles (for both look and feel attribute
inheritance) are supported. After a style has been defined for
an object, the object will inherit the style. Style attributes
include both the look and the feel of an object, including
mouse interaction, animations, and timelines. Each page may
include objects that may be a parent object or a child object.
A child object is one that was created by first selecting a
parent object, and then creating a child object. Child objects
are always part of the same drawing layer as its parent object,
but are drawn first, and are not directly selectable when run-
ning the Application. A parent object is any object that is not
a child object, and can be selected when running the Appli-
cation.

As an example, the user of authoring tool 112 may create
various text objects on canvas 305 using a style that sets the
font to red, the fonts of these objects will be red. Suppose user
of authoring tool 112 changes the font color of a specific
button to green. Iflater, the user of authoring tool 112 changes
the style to blue; all other text objects that were created with
that style will become blue except for the button thathad been
specifically set to green.

In certain other embodiments, authoring platform 110 pro-
vides page view, style, object, widget and Application tem-
plate libraries. Authoring platform 110 may provide tem-
plates in private libraries (available to certain users of the
authoring platform) and public libraries (available to all users
of the authoring platform). Templates may be used to within
authoring platform 110 to define the look and feel of the entire
Application, specific pages, or specific slide shows and vir-
tual tours a seen on device 130.

FIGS. 3 A and 3B illustrate one embodiment of a publisher
interface 300 as it appears, for example and without limita-
tion, on screen 115 while executing authoring tool 112. In one
embodiment, publisher interface 300 includes a Menu bar
301, a Tool bar 303, a Canvas 305, a Layer Inspector 307
having subcomponents of a page/object panel 307a, an object
style panel 3075, and a page alert panel 307¢, and a Resource
Inspector 309.

In general, publisher interface 300 permits a user of author-
ing platform 110 to place objects on canvas 305 and then
associate properties and/or actions to the object, which are
stored in the Application. As described subsequently, pub-
lisher interface 300 permits a user to program a graphical
interface for the screen 137 of device 130 on screen 115 of
authoring platform 110, save an Application having the pro-
gramming instructions, and save a Player for the device. The
intended programming is carried out on device 130 when the
device, having the appropriate device platform Player,
receives and executes the device-independent Application.

Thus, for example, authoring tool 112 maintains, in
memory 111, a list of every type of object and any properties,
actions, events, or bindings that may be assigned to that
object. As objects are selected for an Application, authoring
tool 112 further maintains, in memory 111, a listing of the
objects. As the user selects objects, publisher interface 300

10

15

20

25

30

35

40

45

50

14

provides the user with a choice of further defining properties,
actions, events, or bindings that may be assigned to each
particular object, and continues to store the information in
memory 111.

In one embodiment, publisher interface 300 is a graphical
interface that permits the placement and association of
objects in a manner typical of, for example, vector graphics
editing programs (such as Adobe Illustrator). Objects located
on canvas 305 placed and manipulated by the various com-
mands within publisher interface 300 or inputs such as an
input device 117 which may be a keyboard or mouse. As
described herein, the contents of canvas 305 may be saved as
an Application that, through system 100, provide the same or
a similar placement of objects on screen 137 and have actions
defined within publisher interface 300. Objects placed on
canvas 305 are intended for interaction with user of device
130 and are referred to herein, without limitation, as objects
or Ul (user interface) objects. In addition, the user of interface
300 may assign or associate actions or web bindings to Ul
objects placed on canvas 305 with result in the programming
device 130 that cause it to respond accordingly.

Objects include, but are not limited to input UI objects,
response Ul objects. Input Ul objects include but are not
limited to: text fields (including but not limited to alpha,
numeric, phone number, or SMS number); text areas; choice
objects (including but not limited to returning the selected
visible string or returning a numeric hidden attribute); single
item selection lists (including but not limited to returning the
selected visible string or returning a numeric hidden
attribute); multi item selection lists (including but not limited
to returning all selected items (visible text string or hidden
attribute) or cluster item selection lists (returning the hidden
attributes for all items).

Other input Ul objects include but are not limited to: check
boxes; slide show (including but not limited to returning a
numeric hidden attribute, returning a string hidden attribute,
or returning the hidden attributes for all slides); and submit
function (which can be assigned to any object including sub-
mit buttons, vectors, etc.).

Response Ul Objects may include, but are not limited to:
single line text objects, which include: a text Field (including
but not limited to a URL, audio URL, or purchase URL), a
text button, a submit button, or a clear button. Another
response Ul objects include: a multiple line text object, which
may include a text area or a paragraph; a check box; an image;
a video; a slide show (with either video or image slides, or
both); choice objects; list objects; or control lists, which
control all the subordinate output UI objects for that web
component. Control list objects include, but are not limited to:
list type or a choice type, each of which may include a search
response list or RSS display list.

As a further example of objects that may be used with
authoring tool 112, Table I lists Data Types, Preferred Input,
Input Candidates, Preferred Output and Output Candidates
for one embodiment of an authoring tool.

TABLE 1

One embodiment of supported objects

Data Types Preferred Input Input Candidates Preferred Output Output Candidates
boolean Check Box Check Box Check Box Check Box
Int Text Field (integer) Text Field (integer) Text Field (integer) Text Field (integer)

Exhibit 1001
Page 26 of 40

Text Field (Phone #)
Text Field (SMS #)

Text Field (Phone #)
Text Field (SMS #)

Choice Choice
List (single select) List (single select)
Text Button

US 9,063,755 B2

15 16
TABLE I-continued
One embodiment of supported objects
Data Types Preferred Input Input Candidates Preferred Output Output Candidates
String Text Field (Alpha) Any Text Field (Alpha) Any
multilineString Text Area Text Area Text Area Text Area
Paragraph
ImageURL N/A N/A Image Image
Slide Show
VideoURL N/A N/A Video Video
Slide Show
List Single Item List Single Item List Single Item List Any List Type
Multi-Select List Any Choice Type
Complex List (see Complex
Choice List Specification)
Slide Show
ComplexList Complex List Single Item List Single Item List Any List Type
Multi-Select List (see Complex List
Complex List Specification)
Slideshow Slide Show Slide Show Slide Show Slide Show
SearchResponseList N/A N/A Search Response List Search Response List
Control List
Complex List
Choice
RSSList N/A N/A RSS Display List RSS Display List
Control List
Complex List
Choice
SingleSelectionList Choice Choice Choice Choice
Complex List Complex List
MultiSelectionList Multi-Selection List Multi-Selection List Multi-Selection List Multi-Selection List
ServiceActivation Submit Button Any N/A N/A
ChannellmageURL N/A N/A Image Image
Video
Slide Show
ChannelDescription N/A N/A Text Area Text Area
Paragraph
Text Field
Text Button
List
Choice
ChannelTitle N/A N/A Text Field Text Field
Text Button
Paragraph
Text Area
List
Choice
URL Text Field Text Field
(URL request) (URL request)
Audio URL Text Field Text Field
(Audio URL request) (Audio URL request)
Purchase URL Text Field Text Field
(Purchase URL request) (Purchase URL request)
Image Data Image Image
Slide Show
Image List Data Slide Show Slide Show
Image
Persistent Variable N/A N/A N/A N/A
Pipeline Multiple Select ~ Multi-select List Multi-select List N/A N/A
Complex List
Slide Show
Phone Number Text Field Text Field Text Field Text Field
(numeric type) Text Button (numeric type) Text Button
Hidden Attribute Complex List Complex List Complex List Complex List
Slide Show Slide Show
Collection List N/A N/A Slide Show Complex List
Slide Show

In general, publisher interface 300 permits a user to define

an Application as one or more Applications Pages, select Ul 60

objects from Menu bar 301 or Tool bar 303 and arrange them

onanApplications Page by placing the objects canvas 305. An
Application Page is a page that is available to be visited
through any navigation event. Application Pages inherit all 5
the attributes of the Master Page, unless that attribute is spe-
cifically changed during an editing session.

Exhibit 1001
Page 27 of 40

Authoring platform 110 also stores information for each UL
object on each Application Page of an Application. Layer
Inspector 307 provides lists of Applications Pages, Ul objects
on each Applications Page, and Styles, including templates.
Objects may be selected from canvas 305 or Layer Inspector
307 causing Resource Inspector 309 to provide lists of vari-
ous Ul objects attributes which may be selected from within
the Resource Inspector. Publisher interface 300 also permits a
user to save their work as an Application for layer transfer and

US 9,063,755 B2

17

operation of device 130. Publisher interface 300 thus pro-
vides an integrated platform for designing the look and opera-
tion of device 130.

The information stored for each Ul object depends, in part,
on actions which occur as the result of a user of device 130
selecting the Ul object from the device. Ul objects include,
but are not limited to: navigational objects, such as widget or
channel launch strips or selection lists; message objects for
communicating, such as a multiple chat, video chat, phone
and/or SMS lists or fields or a pop-up alert; text fields or areas;
check boxes; pull down menus; selection lists and buttons;
pictures; slide shows; video or LBS maps; shapes or text
defined by a variety of tools; a search response; or an RSS
display.

In certain embodiments, publisher interface 300 permits a
user to assign action to Ul objects, including but not limited
to, programming of the device 130 or a request for informa-
tion over network N. In one embodiment, for example and
without limitation, publisher interface 300 has a selection to
bind a UI object to a web service—that is, associate the Ul
object or a manipulation or selection of Ul object with web
services. Publisher interface 300 may also include many
drawing and text input functions for generating displays that
may be, in some ways, similar to drawing and/or word pro-
cessing programs, as well as toolbars and for zooming and
scrolling of a workspace.

Each UI object has some form, color, and display location
associate with it. Further, for example and without limitation,
UT objects may have navigational actions (such as return to
home page), communications actions (such as to call the
number in a phone number field), or web services (such as to
provide and/or retrieve certain information from a web ser-
vice). Each of the these actions requires authoring platform
110 to store the appropriate information for each action. In
addition, Ul objects may have associated patent or child
objects, default settings, attributes (such as being a password
or a phone number), whether a field is editable, animation of
the object, all of which may be stored by authoring platform
110, as appropriate.

Menu bar 301 provides access features of publisher inter-
face 300 through a series of pull-down menus that may
include, but are not limited to, the following pull-down
menus: a File menu 301a, an Edit menu 3015, a View menu
301c, a Project menu 3014, an Objects menu 301e, an Events
menu 3017, a Pages menu 301g, a Styles menu 301/, and a
Help menu 301:.

File menu 301a provides access to files on authoring plat-
form 110 and may include, for example and without limita-
tion, selections to open a new Application or master page,
open a saved Application, Application template, or style tem-
plate, import a page, alert, or widget, open library objects
including but not limited to an image, video, slide show,
vector or list, and copying an Application to a user or to Server
120.

Edit menu 3015 may include, but is not limited to, selec-
tions for select, cut, copy, paste, and edit functions.

View menu 301c¢ may include, but is not limited to, selec-
tions for zooming in and out, previewing, canvas 305 grid
display, and various palette display selections.

Project menu 3014 may include, but is not limited to,
selections related to the Application and Player, such as selec-
tions that require a log in, generate a universal Player, gener-
ate server pages, activate server APls and extend Player APIs.
A Universal Player will include all the code libraries for the
Player, including those that are not referenced by the current

Exhibit 1001
Page 28 of 40

10

15

20

25

30

35

40

45

50

55

60

65

18

Application. Server APIs and Player APIs logically extend
the Player with Server-side or device-side Application spe-
cific logic.

Objects menu 301e includes selections for placing various
objects on canvas 305 including, but not limited to: navigation
UT objects, including but not limited to widget or channel
launch strips or selection lists; message-related Ul objects,
including but not limited to multiple chat, video chat, phone
and/or SMS lists or fields, or a pop-up alert; shapes, which
provides for drawing tools; forms-related objects, including
but not limited to text fields; scrolling text box, check box,
drop-down menu, list menu, submit button or clear button;
media-related Ul objects such as pictures, slide shows, video
or LBS maps; text-related Ul objects such as buttons or para-
graphs; and variables, including but not limited to time, date
and audio mute control.

Events menu 301/ includes selections for defining child
objects, mouse events, animations or timelines.

Pages menu 301g includes selection for handling multi-
page Applications, and may include selections to set a master
page, delete, copy, add or go to Applications Pages.

Styles menu 301/ includes selections to handle styles,
which are the underlying set of default appearance attributes
or behaviors that define any object that is attached to a style.
Styles are a convenient way for quickly creating complex
objects, and for changing a whole collection of objects by just
modifying their common style. Selections of Styles menu
301 include, but not limited to, define, import, or modify a
style, or apply a template. Help menu 301/ includes access a
variety of help topics.

Tool bar 303 provides more direct access to some of the
features of publisher interface 300 through a series of pull-
down menus. Selections under tool bar 303 may include
selections to:

control the look of publisher interface 300, such as a Panel

selection to control the for hiding or viewing various
panels on publisher interface 300;

control the layout being designed, such as an Insert Page
selection to permit a user to insert and name pages;

control the functionality of publisher interface 300, such as
a Palettes selection to choose from a variety of specialized
palettes, such as a View Palette for zooming and controlling
the display of canvas 305, a Command Palette of common
commands, and Color and Shape Palettes;

place objects on canvas 305, which may include selections
such as: a Navigation selection to place navigational objects,
such as widget or channel launch strips or selection lists), a
Messages selection to place objects for communicating, such
as a multiple chat, video chat, phone and/or SMS lists or
fields, or a pop-up alert, a Forms selection to place objects
such as text fields or areas, check boxes, pull down menus,
selection lists, and buttons, a Media selection to place pic-
tures, slide shows, video or LBS maps, and a Shapes selection
having a variety of drawing tools, a Text selection for placing
text, a search response, or an RSS display, and Palettes.

In one embodiment, Tool bar 303 includes a series of
pull-down menus that may include, but are not limited to,
items from Menu bar 301 organized in the following pull-
down menus: a Panel menu 303a, an Insert Page menu 3035,
a Navigation menu 303¢, a Messages menu 3034, a Forms
menu 303e, a Media menu 303/, a Shapes menu 303g, a Text
menu 303/, and a Palettes menu 301:.

Panel menu 303a permits a user of authoring platform 110
to change the appearance of interface 300 by, controlling
which tools are on the interface or the size of canvas 305.
Insert Page menu 3035 permits a user of authoring platform
110 to open a new Application Page. Navigation menu 303¢

US 9,063,755 B2

19

displays a drop down menu of navigational-related objects
such as a widget or channel launch strip or selection list.
Messages menu 303d displays a drop down menu of messag-
ing-related objects such as multiple chat, video chat, phone or
SMS lists or fields, and pop-up alerts. Forms menu 303e
displays a drop down menu of forms-related objects includ-
ing, but not limited to, a text field, a text area, a check box, a
drop down menu, a selection list, a submit button, and a clear
button. Media menu 303/ displays a drop down menu of
media-related objects including, but not limited to, a picture,
slide show, video or LBS map. Shapes menu 303g displays a
drop down menu of draw tools, basic shapes, different types
of lines and arrows and access to a shape library. Text menu
303; displays a drop down menu of text-related objects,
including but not limited to a text button, paragraph, search
response, RSS display and variables such as time and date.

Palettes menu 301/ includes a selection of different palettes
that can be moved about publisher interface 300, where each
palette has specialized commands for making adjustments or
associations to objects easier. Palettes include, but are not
limited to: a page view palette, to permit easy movement
between Applications Pages; a view palette, to execute an
Application or zoom or otherwise control the viewing of an
Application; a commands palette having editing commands;
a color palette for selection of object colors; and a shapes
palette to facilitate drawing objects.

Layer inspector 307 permits a user of publisher interface
300 to navigate, select and manipulate Ul objects on Appli-
cations Pages. Thus, for example, a Page/objects panel 307«
of layer inspector 307 has a listing that may be selected to
choose an Applications Pages within and Application, and Ul
objects and styles within an Applications Page. An Object
styles panel 3075 of layer inspector 307 displays all styles on
the Applications Page and permits selection of Ul objects for
operations to be performed on the objects.

Thus, for example, when objects from Menu bar 301 or
Tool bar 303 are placed on canvas 305, the name of the object
appears in Page/objects panel 307a. Page/objects panel 307a
includes a page display 30741 and an objects display 30742.
Page display 3074l includes a pull down menu listing all
Applications Pages of the Application, and objects display
30742 includes a list of all objects in the Applications Page
(that is, objects on canvas 305).

In general, page/objects panel 3074 displays various asso-
ciations with a Ul object and permits various manipulations
including, but not limited to, operations for parent and child
objects that are assigned to a page, and operations for object
styles, and permits navigating between page types and object
styles, such as switching between the master page and Appli-
cation pages and deselecting object styles and alerts, opening
an Edit Styles Dialog Box and deselecting any master, Appli-
cation or alert page, or selecting an alert page and deselecting
any Master Page or Application Page. A parent or child object
can also be selected directly from the Canvas. In either case,
the Resource Inspector can then be used for modifying any
attribute of the selected object.

Examples of operations provided by page/objects panel
307a on pages include, but are not limited to: importing from
either a user’s private page library or a public page library;
deleting a page; inserting a new page, inheriting all the
attributes of the Master Page, and placing the new page at any
location in the Page List; editing the currently selected page,
by working with an Edit Page Dialog Box. While editing all
the functions of the Resource Inspector 309 are available, as
described subsequently, but are not applied to the actual page
until completing the editing process.

Exhibit 1001
Page 29 of 40

10

15

20

25

30

35

40

45

50

55

60

65

20

Examples of operations provided by of page/objects panel
307a on objects, which may be user interface (UI) objects,
include but are not limited to: changing the drawing order
layer to: bring to the front, send to the back, bring to the front
one layer, or send to the back one layer; hiding (and then
reshowing) selected objects to show Ul objects obstructed by
other UI Objects, delete a selected UI Page Object, and edit-
ing the currently selected page, by working with a Edit Page
Dialog Box.

Object styles panel 3075 of layer inspector 307 displays all
styles on the Applications Page and permits operations to be
performed on objects, and is similar to panel 307a. Examples
of'operations provided by object style panel 3075 include, but
are not limited to: importing from either a user’s private
object library or a public object library; inserting a new object
style, which can be inherited from a currently selected object,
or from a previously defined style object; and editing a cur-
rently selected object style by working with an Edit Style
Dialog Box.

Style attributes can be assigned many attributes, including
the look, and behavior of any object that inherits these
objects. In addition, List Layout Styles can be created or
changed as required. A layout style can define a unbounded
set of Complex List Layouts, including but not limited to: the
number of lines per item in a list, the number of text and image
elements and their location for each line for each item in the
last, the color and font for each text element, and the vertical
and horizontal offset for each image and text element.

Alerts Panel 307¢ provides a way of providing alert pages,
which can have many of the attributes of Application Pages,
but they are only activated through an Event such as a user
interaction, a network event, a timer event, or a system vari-
able setting, and will be superimposed onto whatever is cur-
rently being displayed. Alert Pages all have transparent back-
grounds, and they function as a template overlay, and can also
have dynamic binding to real time content.

Resource inspector 309 is the primary panel for interac-
tively working with Ul objects that have been placed on the
Canvas 305. When a Ul object is selected on Canvas 305, a
user of authoring platform 110 may associate properties of
the selected object by entering or selecting from resource
inspector 309. In one embodiment, resource inspector 309
includes five tab selections: Setting Tab 309a, Events Tab
3095, Animation Tab 309¢, Color Tab 3094 which includes a
color palette for selecting object colors, and Bindings Tab
309e.

Settings Tab 309a provides a dialog box for the basic
configuration of the selected object including, but not limited
to, name, size, location, navigation and visual settings.
Depending upon the type of object, numerous other attributes
could be settable. As an example, the Setting Tab for a Text
Field may include dialog boxes to define the text field string,
define the object style, set the font name, size and effects, set
an object name, frame style, frame width, text attributes (text
field, password field, numeric field, phone number, SMS
number, URL request).

As an example of Setting Tab 309a, FIG. 3B shows various
selections including, but not limited to, setting 30941 for the
web page name, setting 30942 for the page size, including
selections for specific devices 130, setting 30943 indicating
the width and height of the object, and setting 30944 to select
whether background audio is present and to select an audio
file.

FIG. 3C illustrates an embodiment of the Events Tab 3095,
which includes all end user interactions and time based opera-
tions. The embodiment of Events Tab 30956 in FIG. 3C
includes, for example and without limitation, an Events and

US 9,063,755 B2

21
Services 30951, Advanced Interactive Settings 309562, Mouse
State 30953, Object Selected Audio Setting 30954, and Work
with Child Objects and Mouse Overs button 30955.

Events and Services 30951 lists events and services that
may be applied to the selected objects. These include, but are
not limited to, going to external web pages or other Applica-
tions pages, either as a new page or by launching a new
window, executing an Application or JavaScript method,
pausing or exiting, placing a phone call or SMS message, with
or without single or multiple Player download, show launch
strip, or go back to previous page. Examples of events and
services include, but are not limited to those listed in Table II

TABLE I

Events and Services

Goto External Web Page replacing
Current Frame

Goto External Web Page Launched
in a New Window

Goto a specific Internal Web Page
Goto the next Internal Web Page

Goto External Web Page replacing
the Top Frame
Execute JavaScript Method

Pause/Resume Page Timeout
Execute an Application

Goto a specific Internal Web Page
with setting starting slide

Exit Application

Exit Player

ChoiceObject: Remove Icon
from Launch Strip

Goto a specific Internal Web
Page with Alert.

“Backend Synchronization”
Goto Widget Object

Generate Alert.

“With a Fire Event”

Send SMS Message from
Linked Text Field

Toggle Alert. “Display OnFocus,
Hide OffFocus™

Execute an Application with
Alert. “With a Fire Event”
Goto Logical First Page
Generate Alert with Backend
Synchronization

Send SMS Message with Share
(Player Download)

Place PhoneCall from linked

Text Field with Share

(Player Download)

Send IM Alert from linked Text
Field or Text Area

Set and Goto Starting Page
Populate Image

Preferred Launch Strip

Place PhoneCall from linked Text Field

Text Field/Area: Send String on FIRE
ChoiceObject: Add Icon to Launch Strip
Text Field/Area: Send String on FIRE
or Numeric Keys

Advanced Interactive Settings 30952 include Scroll Acti-
vation Enabled, Timeline Entry Suppressed, Enable Server
Listener, Submit Form, Toggle Children on FIRE, and Hide
Non-related Children, Mouse State 309563 selections are
Selected or Fire. When Mouse State Selected is chosen,
Object Selected Audio Setting 30954 of Inactive, Play Once,
Loop, and other responses are presented. When Mouse State
Fire is chosen, Object Selected Audio Setting 30954 is
replaced with FIRE Audi Setting, with appropriate choices
presented.

When Work with Child Objects and Mouse Overs button
30955 is selected, a Child Object Mode box pops up, allowing
a user to create a child object with shortcut to Menu bar 301
actions that may be used define child objects.

FIG. 3D illustrates one embodiment of an Animation Tab
309c¢, which includes all animations and timelines. The Color
Tab includes all the possible color attributes, which may vary
significantly by object type.

Animation Tab 309¢ includes settings involved in anima-
tion and timelines that may be associated with objects. One
embodiment of Animation Tab 309¢ is shown, without limi-
tation, in FIG. 3D, and is described, in Rempell (“Rempell”).

A Color Tab 309d includes a color palette for selecting
object colors.

Bindings Tab 309¢ is where web component operations are
defined and dynamic binding settings are assigned. Thus, for

Exhibit 1001
Page 30 of 40

15

20

25

30

35

40

45

50

55

60

65

22

example, a Ul object is selected from canvas 305, and a web
component may be selected and configured from the bindings
tab. When the user’s work is saved, binding information is
associated with the UI object that will appear on screen 137.

FIG. 3E illustrates one embodiment of Bindings Tab and
includes, without limitation, the following portions: Web
Component and Web Services Operations 309¢1, Attributes
Exposed list 309¢2, panel 309¢3 which includes dynamic
binding of server-side data base values to attributes for the
selected object, Default Attribute Value 309e¢4, Database
Name 309¢5, Table Name 309¢6, Field Name 309¢7, Chan-
nel Name 309¢8, Channel Feed 309¢9, Operation 309¢10,
Select Link 309¢11, and Link Set checkbox 309¢12.

Web Component and Web Services Operations 309¢1
includes web components that may be added, edited or
removed from a selected object. Since multiple web compo-
nents can be added to the same object, any combination of
mash-ups of 3rd party web services is possible. When the
“Add” button of Web Component and Web Services Opera-
tions 309¢1 is selected, a pop-up menu 319, as shown in FIG.
3F, appears on publisher interface 300. Pop-up menu 319
includes, but is not limited to, the options of: Select a Web
Component 319a; Select Results Page 3195; Activation
Options 319¢; Generate Ul Objects 3194; and Share Web
Component 319e.

The Select a Web Component 319a portion presents a list
of web components. As discussed herein, the web compo-
nents are registered and are obtained from web component
registry 220.

Select Results Page 3195 is used to have the input and
output on different pages—that is, when the Results page is
different from Input page. The default selected results page is
either the current page, or, if there are both inputs and outputs,
it will be set provisionally to the next page in the current page
order, if one exists.

Activation Options 319¢ include, if there are no Input Ul
Objects, a choice to either “Preload” the web component,
similar to how dynamic binding, or have the web component
executed when the “Results” page is viewed by the consumer.

Generate Ul Objects 319c¢, if selected, will automatically
generate the Ul objects. If not selected, then the author will
bind the Web Component Inputs and Results to previously
created Ul Objects.

Share Web Component 319e is available and will become
selected under the following conditions: 1) Web Component
is Selected which already has been used by the current Appli-
cation; or 2) the current Input page is also a “Result” page for
that Web component. This permits the user of device 130,
after viewing the results, to extend the Web Component
allowing the user to make additional queries against the same
Web Component. Examples of this include, but are not lim-
ited to, interactive panning and zooming for a Mapping Appli-
cation, or additional and or refined searches for a Search
Application.

Dynamic Binding permits the binding of real time data,
that could either reside in a 3’7 party server-side data base, or
in the database maintained by Feed Collector 1010 for aggre-
gating live RSS feeds, as described subsequently with refer-
ence to FI1G. 10.

Referring again to FIG. 3E, Attributes Exposed list 309¢2
are the attributes available for the selected object that can be
defined in real time through dynamic binding.

Panel 309¢3 exposes all the fields and tables associated
with registered server-side data bases. In one embodiment,
the user would select an attribute from the “Attributes
Exposed List” and then select a data base, table and field to
define the real time binding process. The final step is to define

US 9,063,755 B2

23

the record. If the Feed Collector data base is selected, for
example, then the RSS “Channel Name” and the “Channel
Feed” drop down menus will be available for symbolically
selected the record. For other data bases the RSS “Channel
Name” and the “Channel Feed” drop down menus are
replaced by a “Record ID” text field.

Default Attribute Value 309¢4 indicates the currently
defined value for the selected attribute. It will be overriddenin
real time based on the dynamic linkage setting.

Database Name 309¢5 indicates which server side data
base is currently selected. Table Name 309¢6 indicates which
table of the server side data base is currently selected.

Field Name 309¢7, indicates which field form the selected
table of the server side data base is currently selected.

Channel Name 309¢8 indicates a list of all the RSS feeds
currently supported by the Feed Collector. This may be
replaced by “Record ID” if a data base other than the Feed
Collector 1010 is selected.

Channel Feed 309¢9 indicates the particular RSS feed for
the selected RSS Channel. Feed Collector 1010 may maintain
multiple feeds for each RSS channel.

Operation 309¢10, as a default operation, replaces the
default attribute value with the real time value. In other
embodiments this operation could be append, add, subtract,
multiply or divide.

Select Link 309¢11 a button that, when pressed, creates the
dynamic binding. Touching the “Select Link” will cause the
current data base selections to begin the blink is some manner,
and the “Select Link” will change to “Create Link”. The user
could still change the data base and attribute choices. Touch-
ing the “Create Link” will set the “Link Set” checkbox and the
“Create Link” will be replaced by “Delete Link™ if the user
wishes to subsequently remove the link. When the application
is saved, the current active links are used to create the SPDL.

Link Set checkbox 309¢12 indicates that a link is currently
active.

Anexample ofthe design of a display is shown in FIGS. 4A
and 4B according the system 100, where FIG. 4A shows
publisher interface 300 having a layout 410 on canvas 305,
and FIG. 4B shows a device 130 having the resulting layout
420 onscreen 137. Thus, for example, authoring platform 110
is used to design layout 410. Authoring platform 110 then
generates an Application and a Player specific to device 130
of FIG. 4B. The Application and Player are thus used by
device 130 to produce layout 420 on screen 137.

As illustrated in FIG. 4A, a user has placed the following
on canvas 305 to generate layout 410: text and background
designs 411, a first text input box 413, a second text input box
415, and a button 417. As an example which is not meant to
limit the scope of the present invention, layout 410 is screen
prompts a user to enter a user name in box 413 and a password
in box 415, and enter the information by clicking on button
417.

In one embodiment, all UT objects are initially rendered as
Java objects on canvas 305. When the Application is saved,
the UI objects are transformed into the PDL, as described
subsequently.

Thus, for example, layout 410 may be produced by the user
of authoring platform 110 selecting and placing a first Text
Field as box 413 then using the Resource Inspector 309 por-
tion of interface 300 to define its attributes.

Device User Experience

Systems 100 and 200 provide the ability for a very large
number of different types of user experiences. Some of these
are a direct result of the ability of authoring platform 110 to
bind Ul objects to components of web services. The following

Exhibit 1001
Page 31 of 40

10

15

20

25

30

35

40

45

50

55

60

65

24

description is illustrative of some of the many types of expe-
riences of using a device 130 as part of system 100 or 200.

Device 130 may have a one or more of a very powerful and
broad set of extensible navigation objects, as well as object-
and pointer-navigation options to make it easy to provide a
small mobile device screen 137 with content and to navigate
easily among page views, between Applications, or within
objects in a single page view of an Application.

Navigation objects include various types of launch strips,
various intelligent and user-friendly text fields and scrolling
text boxes, powerful graphical complex lists, as well as Desk-
top-level business forms. In fact, every type of object can be
used for navigation by assigning a navigation event to it. The
authoring tool offers a list of navigation object templates,
which then can be modified in numerous ways.

Launch Strips and Graphical List Templates Launch Strips

Launch strips may be designed by the user of authoring
platform 110 with almost no restrictions. They can be station-
ary or appear on command from any edge of the device, their
size, style, audio feedback, and animations can be freely
defined to create highly compelling experiences.

FIG. 5 shows a display 500 of launch strips which may be
on displayed canvas 305 or on screen 137 of device 130
having the proper Player and Application. Display 501
includes a portal-type Launch Strip 501 and a channel-type
Launch Strip 502, either one of which may be included for
navigating the Application.

Launch Strip 501 includes Ul objects 501a, 5015, 501c,
501d, and 501e that that becomes visible from the left edge of
the display, when requested. Ul objects 501a, 5015, 501c,
501d, and 501¢ are each associated, through resource inspec-
tor 309 with navigational instructions, including but not lim-
ited to navigating to a different Applications Page, or request-
ing web content. When the Applications Page, having been
saved by authoring platform 110 and transferred to display
130, is executed on device 130, auser of the device may easily
navigate the Application.

Launch Strip 502 includes Ul objects 5025, 502¢, 5024,
and 503¢ that that becomes visible from the bottom of the
display, when requested. Ul objects 501a, 5015, 501¢, 5014,
and 501e are each associated, through resource inspector 309
with navigational instructions, including but not limited to
navigating to a different Applications Page, or requesting web
content. Launch Strip 502 also includes Ul objects 502a and
503g, which include the graphic of arrows, and which provide
access to additional navigation objects (not shown) when
selected by a user of device 130. Launch strip 502 may also
include sound effects for each channel when being selected,
as well as popup bubble help.

Additional navigational features are illustrated in FIG. 6 A
as a display of a Channel Selection List 601a, in FIG. 6B as a
display of a Widget Selection List 6015, and in FIG. 6C as
display of a Phone List 601c. Lists 601a, 6015, and 601¢ may
be displayed on canvas 305 or on screen 137 of device 130
having the proper Player and Application. As illustrated,
graphical lists 601a, 6015, and 601¢ may contain items with
many possible text and image elements. Each element can be
defined at authoring time and/or populated dynamically
through one or more Web Service 250 or API. Assignable
Navigation Events. All objects, and/or all elements within an
object, can be assigned navigation events that can be extended
to registered web services or APIs. For example, a Rolodex-
type of navigation event can dynamically set the starting slide
of the targeted page view (or the starting view of a targeted
Application).

In the embodiment of FIGS. 6A, 6B, and 6C, each list
601a, 6015, and 601c¢ has several individual entries that are

US 9,063,755 B2

25

each linked to specific actions. Thus Channel Selection List
601a shows three objects, each dynamically linked to a web
service (ESPN, SF 49ers, and Netflix) each providing a link to
purchase or obtain items from the Internet. Widget Selection
List 6015 includes several objects presenting different wid-
gets for selecting. Phone List 601c¢ includes a list phone
number objects of names that, when selected by a user of
device 130 cause the number to be dialed Entries in Phone
List 601c¢ may be generated automatically from either the
user’s contact list that is resident on the device, or though a
dynamic link to any of user’s chosen server-side facilities
such as Microsoft Outlook, Google Malil, etc. In one embodi-
ment, Phone List 601¢ may be generated automatically using
a web component assigned to the Application, which would
automatically perform those functions.

In another embodiment, authoring platform 110 allows a
navigation selection of objects with a Joy Stick and/or Cursor
Keys in all 4 directions. When within a complex object the
navigation system automatically adopts to the navigation
needs for that object. For coordinate sensitive objects such as
geographical information services (GIS) and location-based
services (LBS) or virtual tours a soft cursor appears. For Lists,
scrolling text areas and chats, Launch strips, and slide shows
the navigation process permits intuitive selection of elements
within the object. Scroll bars and elevators are optionally
available for feedback. If the device has a pointing mecha-
nism then scroll bars are active and simulate the desktop
experience.

Personalization and Temporal Adoption

System 100 and 200 permit for the personalization of
device 130 by a variety of means. Specifically, what is dis-
played on screen 137 may depend on either adoption or cus-
tomization. Adoption refers to the selection of choices, navi-
gation options, etc. are based on user usage patterns.
Temporal adoption permits the skins, choices, layouts, con-
tent. widgets, etc. to be further influenced by location (for
example home, work or traveling) and time of day (including
season and day of week). Customization refers to user select-
able skins, choices, layouts, dynamic content, widgets, etc.
that are available either through a customization on the phone
or one that is on the desktop but dynamically linked to the
user’s other internet connected devices.

To support many personalization functions there must be a
convenient method for maintaining, both within a user’s ses-
sion, and between sessions, memory about various user
choices and events. Both utilizing a persistent storage mecha-
nism on the device, or a database for user profiles on a server,
may be employed.

FIG. 7 shows a display 700 of a mash-up which may be on
displayed canvas 305 or on screen 137 of device 130 having
the proper Player and Application. Display 700 includes sev-
eral object 701 that have been dynamically bound, including
an indication of time 7014, an indication of unread text mes-
sages 7015, an RSS news feed 701c¢ (including 2 “ESPN Top
Stories” 701¢1 and 701¢2), components 701d from two Web
Services—a weather report (“The Weather Channel”), and a
traffic report 701e (“TRAFFIC.COM”).

In assembling the information of display 700, device 130 is
aware of the time and location of the device—in this example
the display is for a workday when a user wakes. Device 130
has been customized so that on a work day morning the user
wishes to receive the displayed information. Thus in the
morning, any messages received overnight would be flagged,
the user’s favorite RSS sports feeds would be visible, today’s
weather forecast would be available, and the current traffic
conditions between the user’s home and office would be
graphically depicted. User personalization settings may be

Exhibit 1001
Page 32 of 40

15

40

45

55

26

maintained as persistent storage on device 130 when appro-
priate, or in a user profile which is maintained and updated in
real-time in a server-side data base.

Push Capable Systems

In another embodiment system 100 or 200 is a push-ca-
pable system. As an example, of such systems, short codes
may be applied to cereal boxes and beverage containers, and
SMS text fields can be applied to promotional websites. In
either case, a user of device 130 can text the short code or text
field to an SMS server, which then serves the appropriate
Application link back to device 130.

FIG. 8 is a schematic of an embodiment of a push enabled
system 800. System 800 is generally similar to system 100 or
200. Device 130 is shown as part of a schematic of a push
capable system 800 in FIG. 8. System 800 includes a website
system 801 hosting a website 801, a server 803 and a content
server 805. System 801 is connected to servers 803 and/or 805
through the Internet. Server 803 is generally similar to server
120, servers 805 is generally similar to server 140.

In one embodiment, a user sets up a weekly SMS update
from website system 801. System 801 provides user informa-
tion to server 803, which is an SMS server, when an update is
ready for delivery. Server 803 provides device 130 with an
SMS indication that the subscribed information is available
and queries the user to see if they wish to receive the update.
Website 801 also provides content server 805 with the content
of'the update. When a user of device 130 responds to the SMS
query, the response is provided to content server 805, which
provides device 130 with updates including the subscribed
content.

In an alternative embodiment of system 800, server 803
broadcasts alerts to one or more devices 130, such as a logical
group of devices. The user is notified in real-time of the
pending alert, and can view and interact with the massage
without interrupting the current Application.

FIG. 9 is a schematic of an alternative embodiment of a
push enabled system 900. System 900 is generally similar to
system 100, 200, or 800. In system 900 a user requests infor-
mation using an SMS code, which is delivered to device 130.
System 900 includes a promotional code 901, a third-party
server 903, and content server 805. Server 803 is connected to
servers 803 and/or 805 through the Internet, and is generally
similar to server 120.

A promotional code 901 is provided to a user of device 130,
for example and without limitation, on print media, such as on
a cereal box. The use of device 130 sends the code server 903.
Server 903 then notifies server 805 to provide certain infor-
mation to device 130. Server 805 then provides device 130
with the requested information.

Device Routines

Device routines 114 may include, but are not limited to: an
authoring tool SDK for custom code development including
full set of Java APIs to make it easy to add extensions and
functionality to mobile Applications and tie Applications to
back-end databases through the content server 140; an
expanding set of web services 250 available through the
authoring tool SDK; a web services interface to SOAP/XML
enabled web services; and an RSS/Atom and RDF feed col-
lector 1010 and content gateway 1130.

Authoring Tool SDK for Custom Code Development Includ-
ing Full Set of Java APIs

In one embodiment, authoring platform 110 SDK is com-
patible for working with various integrated development
environments (IDE) and popular plug ins such as J2ME Pol-
ish. In one embodiment the SDK would be another plug in to
these IDEs. A large and powerful set of APIs and interfaces
are thus available through the SDK to permit the seamless

US 9,063,755 B2

27

extension of any Application to back end business logic, web
services, etc. These interfaces and APIs may also support
listeners and player-side object operations.

There is a large set of listeners that expose both player-side
events and dynamically linked server side data base events.
Some examples of player side events are: player-side time
based event, a page entry event, player-side user interactions
and player-side object status. Examples of server-side data
base events are when a particular set of linked data base field
values change, or some filed value exceeds a certain limit, etc.

A superset of all authoring tool functionality is available
through APIs for layer-side object operations. These include,
but are not limited to: page view level APIs for inserting,
replacing, and or modifying any page object; Object Level
APIs for modifying any attribute of existing objects, adding
definitions to attributes, and adding, hiding or replacing any
object.

Authoring Tool SDK Available Web Services

The APIs permit, without limit, respond, with or without
relying on back-end business logic, that is, logic that what an
enterprise has developed for their business, to any player-side
event or server-side dynamically linked data-base, incorpo-
rating any open 3rd party web service(s) into the response.
RSS/ATOM and RDF Feed Conversion Web Service

FIG. 10 is a schematic of one embodiment a system 1000
having a feed collector 1010. System 1000 is generally simi-
lar to system 100, 200, 800, or 900. Feed collector 1010 is a
server side component of system 100 that collects RSS,
ATOM and RDF format feeds from various sources 1001 and
aggregates them into a database 1022 for use by the Applica-
tions built using authoring platform 110.

Feed collector 1010 is a standard XML DOM data extrac-
tion process, and includes Atom Populator Rule 1012, RSS
Populator Rule 1013, RDF Populator Rule 1014, and Custom
Populator Rule 1016, DOM XML Parsers 1011, 1015, and
1017, Feed Processed Data Writer 1018, Custom Rule Based
Field Extraction 1019, Rule-based Field Extraction 1020,
Channel Data Controller 1021, and Database 1022.

The feed collector is primarily driven by two sets of param-
eters: one is the database schema (written as SQL DDL)
which defines the tables in the database, as well as parameters
for each of the feeds to be examined. The other is the feed
collection rules, written in XML, which can be used to cus-
tomize the information that is extracted from the feeds. Each
of the feeds is collected at intervals specified by the feed
parameter set in the SQL DDL.

Feed collector 1010 accepts information from ATOM,
RDF or RSS feed sources 1001. Using a rules-based popula-
tor, any of these feeds can be logically parsed, with any type
of data extraction methodology, either by using supplied
rules, or by the author defining their own custom extraction
rule. The rules are used by the parser to parse from the feed
sources, and the custom rule base field extraction replaces the
default rules and assembles the parsed information into the
database

In particular, Atom Populator Rule 1012, RSS Populator
Rule 1013, RDF Populator Rule 1014, Custom Populator
Rule 1016, and DOM XML Parsers 1011, 1015, and 1017 are
parse information from the feeds 1001, and Feed Processed
Data Writer 1018, Custom Rule Based Field Extraction 1019,
Rule-based Field Extraction 1020, and Channel Data Con-
troller 1021, supply the content of the feeds in Database 1022,
which is accessible through content server 140.

FIG. 11 is a schematic of an embodiment of a system 1100
having a Mobile Content Gateway 1130. System 1100 is
generally similar to system 100, 200, 800, 900, or 1000.
System 1100 includes an SDK 1131, feed collector 1010,

Exhibit 1001
Page 33 of 40

10

15

20

25

30

40

45

55

60

65

28
database listener 1133, transaction server 1134, custom code
1135 generated from the SDK, Java APIs, Web Services 1137,
and PDL snippets compacted objects 1139. System 1100
accepts input from Back End Java Code Developer 1120 and
SOAP XML from Web Services 1110, and provides dynamic
content to server 140 and Players to devices 130.

In one embodiment authoring platform 110 produces a
Server-side PDL (SPDL) at authoring time. The SPDL
resides in server 120 and provides a logical link between the
Application’s Ul attributes and dynamic content in database
1022. When a user of device 130 requests dynamic informa-
tion, server 120 uses the SPDL to determine the link required
to access the requested content.

In another embodiment Web Services 1137 interface
directly with 3rd party Web Services 1110, using SOAP,
REST, JAVA, JavaScript, or any other interface for dynami-
cally updating the attributes of the Application’s UI objects.
XSP Web Pages as a Web Service

In one embodiment, a PDL for a page is embedded within
an HTML shell, forming one XSP page. The process of form-
ing XSP includes compressing the description of the page and
then embedding the page within an HTML shell.

In another embodiment, a PDL, which contains many indi-
vidual page definitions, is split into separate library objects on
the server, so that each page can to presented as a PDL as part
of'a Web Service.

Prior to compression the code has already been trans-
formed so that there are no dependencies on the original
programming language (Java), and The code and data have
been reduced by 4 to 10 times.

Compression has two distinct phases. The first takes advan-
tage of how the primitive representations had been
assembled, while the second utilizes standard [.Z encoding.

The final result is an overall reduction of 40 to 100 times the
original size as represented by Java serialized objects.

One embodiment for compacting data that may be used is
described in Rempell. In that patent the compressed data is
described as being a database. The terminology used here is a
PDL, that is the “internal database” of Rempell is equivalent
to the PDL of the present Application.

In Rempell, a process for compacting a “database” (that is,
generating a compact PDL) is described, wherein data
objects, including but not limited to, multi media objects such
as colors, fonts, images, sound clips, URLs, threads, and
video, including multi level animation, transformation, and
time line are compacted. As an extension to Rempell in all
cases these objects are reduced and transformed to Boolean,
integer and string arrays.

The compression technique involves storing data in the
smallest arrays necessary to compactly store web page infor-
mation. The technique also includes an advanced form of
delta compression that reduces integers so that they can be
stored in a single byte, a as high water marks.

Thus, for example, the high water mark for different types
of data comprising specific web site settings are stored in a
header record as Boolean and integer variables and URL and
color objects. Data that defines web page, paragraph, text
button, and image style and text button, image and paragraph
high watermark settings can be stored in one-dimensional
arrays as Boolean, integer and string variables and URL, font,
image or thread objects at. The URL, color, font, image and
thread objects can also be created as required

Data that defines text button, image, paragraph, or other
parent objects and paragraph line high watermark settings can
be stored in two-dimensional arrays (by web page and by
object number) as Boolean, integer, string, floating point
variables and URLs. Again, the URL, color, font, image,

US 9,063,755 B2

29

audio clip, video clip, text area and thread objects can also be
created as required. Data that defines a paragraph line and
paragraph line segment high watermarks can be stored in
three-dimensional arrays (by web page, by paragraph num-
ber, and by line number) as Boolean, integer or string vari-
ables. Again, the URL, color or font objects can be created as
required. Data that defines a paragraph line segment can be
stored into four-dimensional arrays (by web page, by para-
graph number, by line number and by line number segment)
as Boolean, integer or string variables or URL, color and font
objects.

As a data field is added, changed or deleted, a determina-
tion is made at on whether a value for a given high watermark
needs to be changed. If'so, it is updated. As a specific method
in the build engine is called, a determination is made on
whether a feature flag needs to be set. For example, if a
particular JAVA method is called, which requires an instance
of'a certain JAVA Class to be executed by the run time engine,
then that JAVA Class is flagged, as well as any supporting
methods, variables and/or object definitions.

In one implementation, the header record, the style record,
the web page record, and the object records, are carefully
defined in a specific order, written in that order, and explicitly
cast by object type when read by the run time engine. Excep-
tion handling can be implemented to recover from any errors.
This helps assure that data integrity is maintained throughout
the build and run time processes.

Also described in Rempell is the “run generation process.”
This is equivalent generating a Player in the present applica-
tion. This process starts when the build process detects that
the user is finished defining the web site (user has saved the
web site and invokes the run generation process), and con-
cludes with the actual uploading of all the necessary web site
run time files to the user’s server.

In one embodiment, the PDL includes a first record, a
“Header” record, which contains can include the following
information:

1: A file format version number, used for upgrading data-
base in future releases.

2: The default screen resolution, in virtual pixels, for both
the screen width and height. This is usually set to the web
designer’s screen resolution, unless overwritten by the user.

3: Whether the Application is a web site.

4: Virtual web page size settings. A calculation is per-
formed by the build engine method, in order to calculate what
the maximum web page length is, after reformatting all para-
graphs on all internal web pages, based on the default screen
resolution.

5: Web page and styles high watermarks.

6: The Websitename.

As new web pages or new objects are created by the user, or
as text is added to or deleted from a paragraph, or as new
styles are created or deleted, appropriate high watermarks are
set, in order to show the current number of each of these
entities. Thus, the values for the number of active web pages
and the number of text button, image, paragraph or other
styles are written as high watermarks in the header. The high
watermarks for the number of text button, image, paragraph
or other objects that exist for each web page, the number of
lines for each paragraph object, and the number of line seg-
ments for each paragraph line are written within the body of
the PDL, and used as settings for each of the loops in the
four-dimensional data structure. Because no structural limits
are set on the number of web pages, objects per web page,
styles, or paragraph size, these high watermarks greatly
reduce the external database file size, and the time it takes for
the run time engine to process the data stored in its database.

Exhibit 1001
Page 34 of 40

20

25

30

40

45

50

55

30

The settings for all paragraph, text button and image styles
are then written as a style record based on their high water-
mark. This data includes Boolean and integer variables, and
font and color objects, written as a one-dimensional array,
based on the high watermark values for the number of styles
that exist.

Thebody ofthe PDL is then written. All Boolean values are
written inside a four-dimensional loop. The outside loop con-
tains the Boolean values used to define web pages (i.e. a
one-dimensional array definition) as well as the high water-
marks for the number of text button, image, paragraph or
other objects per web page, with the loop set at the high
watermark which defines the number of existing web pages
for this web site structure. The second level consists of three
or more two dimensional loops with the loops set to the high
watermarks defining the actual number of text button, image,
and paragraph or other objects that appear on any given web
page and contains the values used to define web page objects
((i.e. a two-dimensional array definition; web page number
by object number). Included within the loop for paragraph
objects are the high watermarks for the number of lines for
each paragraph object. The third loop is set by the high water-
mark defining the actual number of paragraph lines that for all
paragraphs on any web page and contains the values used to
define paragraph lines (i.e. a three-dimensional array defini-
tion; web page number by object number by paragraph line.)
Included within the loop for paragraph lines are the high
watermarks for the number of line segments for each para-
graph line. The inner most loop is set by the high watermarks
defining the number of line segments per paragraph line and
contains the values used to define paragraph line segments
(i.e. afour-dimensional array definition; web page number by
object number by paragraph line by paragraph line segment).

All integer values are written inside a four-dimensional
loop. Their four loops are controlled by the same high water-
mark settings as used for the Boolean records, and they
describe the same logical entities.

Multimedia objects are written inside a two-dimensional
loop. They include URL, color, and font objects, and can
include other types of objects. A URL object is the encoded
form of a URL Address, used by a web browser or a JAVA
method to access files and web addresses. All multimedia
objects must be serialized before they can be written. This
means that the objects are converted into a common external
definition format that can be understood by the appropriate
deserialization technique when they are read back in and cast
into their original object structure. The outside loop contains
web page related objects, and the inner loop contains image,
text button, paragraph, etc. related URL, color, and font
objects. The outer loop is defined by the web page high
watermark and the inner loops by the high watermarks for the
actual number of text button, image, paragraph or other
objects on a web page.

String records are written inside a four-dimensional loop.
The outer loop may be empty. The second loop can include
the string values for text button objects, audio and video
filenames, and audio and video channel names. The third loop
contains values for paragraph line related data, and the inner-
most loop contains the values for paragraph line segment
definitions. The string records are controlled by the same high
watermarks as those used for Boolean and integer records.
String records are stored utilizing an appropriate field delim-
iter technology. In one implementation, a UTF encoding tech-
nology that is supported by JAVA is utilized.

Single and double floating-point, and long integer records
are written inside a two-dimensional loop. The outer loop
may be empty. The inner loop contains mathematical values

US 9,063,755 B2

31

required for certain animations and image processing algo-
rithms. The single and double floating-point, and long integer
records are controlled by the same high watermarks as those
used for Boolean and integer records.

In one embodiment, a versionizing program analyzes the
feature flags, and only those variable definitions, defined in
the “Main” object class, relating to the object classes and
methods that will be executed at run time, are extracted. All
references to object classes that will be called at run time are
extracted, creating the source code for the run engine “Main”
object class that is ready for compilation.

All external image, video and audio files are resolved. The
external references can be copied to designated directories,
either on the user’s local disk or file server. The file Path-
names can be changed to reflect these new locations. During
the installation of the build tools, the necessary class libraries
are either installed on the local system or made available on
the server where the build tools can be optionally located. The
necessary environmental variables are set to permit normal
access to the required class libraries.

The customized run engine and a library of the referenced
run time classes are compiled and converted into byte code.
Finally, the run time engine for the web site is created. The
required set of class objects required at run time is flagged for
inclusion into the CAB/JAR file.

Next, an HTML Shell File (HSF) is constructed. The first
step of this process is to determine whether the dynamic web
page and object resizing is desired by testing the Application
setting. If the Application was a web page, and thus requiring
dynamic web page and object resizing, virtual screen resolu-
tion settings are placed in an appropriate HTML compliant
string. If the Application is a banner or other customized
Application, the absolute values for the run time object (ap-
plet size) height and width are placed in an appropriate
HTML compliant string as absolute width and height values.

An analysis is made for the background definition for the
first internal web page. If a background pattern is defined, an
appropriate HTML compliant string for setting the HTML
“background” to the same background image is generated. If
the first web page definition is a color instead, then the RGB
values from those colors are converted to hexadecimal and an
appropriate HTML compliant String is generated setting the
“bgcolor” to the required hexadecimal value. This process
synchronizes the web page background with the background
that will be drawn by the web browser when it first interprets
the HSF.

Thereafter, a JAVA method generates HTML and JavaS-
cript compliant strings, that when executed by a web browser,
generate additional sets of HTML and JavaScript compliant
strings that are again executed by the web browser. More
specifically, if the Application required dynamic web page
and object resizing then JavaScript and HTML compliant
strings are generated so that, when interpreted by the web
browser at the time the HTML Shell File is initialized, the
screen resolution sensing JAVA applet (SRS) will be
executed. JavaScript code is generated in order to enable
JavaScript to SRS applet communication. In one implemen-
tation, the code is generated by performing the following
functions:

1: Determine the current web browser type.

2: Load the SRS from either a JAR or CAB File, based on
web browser type.

3: Enter a timing loop, interrogating when the SRS is
loaded.

4: When the SRS returns an “available” status, interrogate
the SRS, which will return the current screen and window’s
actual height and width.

Exhibit 1001
Page 35 of 40

20

25

35

40

45

50

60

32

5: Convert the virtual screen resolution settings into appro-
priate absolute screen width and height values.

Strings defining additional JavaScript code are generated
that perform the following steps at the time the HSF is ini-
tialized by the web browser:

1: Generate HTML compliant strings that set the run time
engine’s applet size to the appropriate values.

2: Generate an HTML complaint string that contains a
“param” definition for linking the run time engine to the PDL.

3: Generate an HTML complaint string, dependent upon
the type of web browser, which causes the current web
browser to load either the JAR or the CAB File(s).

4: Generate JavaScript Code compliant strings that create
and dynamically write the applet size defining HTML strings
utilizing the JavaScript “document.write” function. This
dynamically created code causes the web browser to execute
the run time engine, in the correctly sized window, from the
correct JAR or CAB file, and linked to the external database.

The writing out the above-generated HTML and JavaScript
compliant strings creates the HSF. The necessary security
policy permissions are asserted, and a “Websitename” . html
file is created.

In one embodiment, the processes for creating the CAB
and JAR Files is as follows. The image objects, if any, which
were defined on the first internal web page are analyzed. If
they are set to draw immediately upon the loading of the first
web page, then they are flagged for compression and inclu-
sion in the CAB and JAR Files. The feature flags are analyzed
to determine which JAVA classes have been compiled. These
class files are flagged for compression and inclusion in the
library CAB and JAR Files. Strings that are BAT compliant
definitions are created that will, when executed in DOS, cre-
ate compressed CAB and JAR Files. These CAB and JAR
Files contain the compressed versions of all necessary JAVA
class files, image files, the “Websitename”.class, customized
run time engine file, and the “Websitename”.dta database file.
In one implementation of the invention, two BAT files are
created. The first, when executed, will create a CAB/JAR file
with the “Websitename”.dta database file and the customized
“main” run time engine, excluding all the image and button
object animation, transformation, and image processing
code. The second BAT file, when executed, will create a
CAB/JAR file with all the library of all the referenced image
and button object animation, transformation, and image pro-
cessing code.

The necessary security policy permissions for file creation
are then asserted, and “Websitename” bat and “Website-
namelib” bat files are written. The “Websitename”.bat and
“Websitename”.bat files are then executed under DOS, cre-
ating compressed “Websitename”.cab and “Website-
namelib”.cab files and compressed “Websitename” jar and
“Websitenamelib” jar files. The HTML Shell File and the JAR
and CAB files are then, either as an automatic process, or
manually, uploaded to the user’s web site. This completes the
production of an XSP page that may be accessed through a
web browser.

Displaying Content on a Device
Decompression Management

Authoring platform 110 uses compaction to transform the
code and data in an intelligent way while preserving all of the
original classes, methods and attributes. This requires both an
intelligent server engine and client (handset) Player, both of
which fully understand what the data means and how it will be
used.

The compaction technology described above includes
transformation algorithms that deconstruct the logic and data
into their most primitive representations, and then reas-

US 9,063,755 B2

33

sembles them in a way that can be optimally digested by
further compression processing. This reassembled set of
primitive representations defines the PDL of authoring plat-
form 110.

Prior to compression the code has already been trans-
formed so that there are no dependencies on the original
programming language (Java). The data is then compressed
by first taking advantage of how the primitive representations
had been assembled, and then by utilizing standard [.Z encod-
ing. The final result is an overall reduction of 40 to 100 times
the original size as represented by Java serialized objects.

The Player, when preparing a page view for execution,
decompresses and then regenerate the original objects, but
this time in compliance with the programming APIs of device
130. Specifically, device 130 operates on compacted image
pages, one at a time. The cache manager retrieves, decom-
presses, and reassembles the compacted page images into
device objects, which are then interpreted by device 130 for
display on screen 137.

Response Director

In one embodiment, system 100 includes a Response
Director, which determines a user’s handset, fetches the cor-
rect Application from different databases, and delivers a
respective highly compressed Application in a PDL format
over the air (OTA).

In one embodiment, the Response Director operates on a
network connected computer to provide the correct Player to
a given device based on the information the device sent to it.
As an example, this may occur when a device user enters their
phone number into some call-to-action web page. The
response director is called and sends an SMS message to the
device, which responds, beginning the recognition process.

FIG. 12 illustrates one embodiment of a system 1200 that
includes a response director 210, a user agent database 1201,
an IP address database 1203, and a file database 1205. System
1200 is generally similar to system 100, 200, 800, 900, 1000,
or 1100.

Databases 1201, 1203, and 1205 may reside on server 120,
210, or any computer system in communication with
response director 210. System 1200, any mobile device can
be serviced, and the most appropriate Application for the
device will be delivered to the device, based on the charac-
teristics of the device.

User agent database 1201 includes user agent information
regarding individual devices 130 that are used to identify the
operating system on the device. IP address database 1203
identifies the carrier/operator of each device 130. File data-
base 1205 includes data files that may operate on each device
130.

The following is an illustrative example of the operation of
response director 210. First, a device 1300 generates an SMS
message, which automatically sends an http://stream that
includes handset information and its phone number to
response director 210. Response director 210 then looks at a
field in the http header (which includes the user agent and IP
address) that identifies the web browser (i.e., the “User
Agent”). The User Agent prompts a database lookup in user
agent database 1201 which returns data including, but not
limited to, make, model, attributes, MIDP 1.0 MIDP 2.0,
WAP and distinguishes the same models from different coun-
tries. A lookup of the IP address in IP address 1203 identifies
the carrier/operator.

File database 1205 contains data types, which may include
as jadl, jad2, html, wml/wap2, or other data types, appropri-
ate for each device 130. A list of available Applications are
returned to a decision tree, which then returns, to device 130,
the Application that is appropriate for the respective device.

Exhibit 1001
Page 36 of 40

10

15

20

25

30

35

40

45

50

55

60

65

34

For each file type, there is an attributes list (e.g., streaming
video, embedded video, streaming audio, etc.) to provide
enough information to determine what to send to the handset.

Response director 210 generates or updates an html or jad
file populating this text file with the necessary device and
network dependent parameters, including the Application
dependent parameters, and then generate, for example, a
CAB or JAD file which contains the necessary Player for that
device. For example, the jad file could contain the operator or
device type or extended device-specific functions that the
player would then become aware of.

Ifthereis an Application that has a data type that device 130
cannot support, for example, video, response director 210
sends an alternative Application to the handset, for example
one that has a slide show instead. Ifthe device cannot support
a slide show, an Application might have text and images and
display a message that indicates it does not support video.

Another powerful feature of response director 210 is its
exposed API from the decision tree that permits the overrid-
ing of the default output of the decision tree by solution
providers. These solution providers are often licensees who
want to further refine the fulfillment of Applications and
Players to specific devices beyond what the default algo-
rithms provide. Solution providers may be given a choice of
Applications and then can decide to use the defaults or force
other Applications.

Authoring platform 110 automatically scales Applications
at publishing time to various form factors to reduce the
amount of fragmentation among devices, and the Response
Director serves the appropriately scaled version to the device.
For example, a QVGA Application will automatically scale to
the QCIF form factor. This is important because one of the
most visible forms of fragmentation resides in the various
form factors of wireless, and particularly mobile, devices,
which range from 128x128, 176x208, 240x260, 220x220,
and many other customized sizes in between.

FIG. 13 is a schematic of an embodiment of a system 1300.
System 1300 is generally similar to system 1200. System
1300 is an overview of the entire Player fulfillment process,
starting with the generation of players during the player build
process.

System 1300 includes response director 210, a device char-
acteristics operator and local database 1301, a player profile
database 1303 and a player build process 1305, which may be
authoring platform 110.

As anexample of system 1300, when response director 210
receives an SMS message from device 130, the response
director identifies the device characteristics operator and
locale from database 1301 and a Player URL from database
1303 and provides the appropriate Player to the device.

In another embodiment, Player P extend the power of
response director 210 by adapting the Application to the
resources and limitations of any particular device. Some of
these areas of adaptation include the speed of the device’s
microprocessor, the presence of device resources such as
cameras and touch screens. Another area of adaptation is
directed to heap, record store and file system memory con-
straints. In one embodiment, the Player will automatically
throttle down an animation to the frame rate that the device
can handle so that the best possible user experience is pre-
served. Other extensions include device specific facilities
such as location awareness, advanced touch screen interac-
tions, push extensions, access to advanced phone facilities,
and many others
Memory Management

Inone embodiment, Player P includes a logical page virtual
memory manager. This architecture requires no supporting

US 9,063,755 B2

35

hardware and works efficiently with constrained devices. All
page view images, which could span multiple Applications,
are placed in a table as highly compacted and compressed
code. A typical page view will range from 500 bytes up to
about 1,500 bytes. (See, for example, the Rempell patent)
When rolled into the heap and instantiated this code increases
to the more typical 50,000 up to 250,000 bytes. Additional
alert pages may also be rolled into the heap and superimposed
on the current page view. Any changes to any page currently
downloaded are placed in a highly compact change vector for
each page, and rolled out when the page is discarded. Note
that whenever an Application is visited that had previously
been placed in virtual memory the Server is interrogated to
see if a more current version is available, and, if so, down-
loads it. This means that Application logic can be changed in
real-time and the results immediately available to mobile
devices.

To operate efficiently with the bandwidth constraints of
mobile devices, authoring platform 110 may also utilize
anticipatory streaming and multi-level caching. Anticipatory
streaming includes multiple asynchronous threads and 10
request queues. In this process, the current Application is
scanned to determine if there is content that is likely to be
required in as-yet untouched page views. Anticipatory
streaming also looks for mapping Applications, where the
user may zoom or pan next so that map content is retrieved
prior to the user requesting it. For mapping applications,
anticipatory streaming downloads a map whose size is greater
than the map portal size on the device and centered within the
portal. Any pan operation will anticipatory stream a section of
the map to extend the view in the direction of the pan while,
as alower priority, bring down the next and prior zoom levels
for this new geography. Zooming will always anticipatory
stream the next zoom level up and down.

Multi-level caching determines the handset’s heap through
an API, and also looks at the record store to see how much
memory is resident. This content is placed in record store
and/or the file system, and may, if there is available heap, also
place the content there as well. Multi-level caching permits
the management of memory such that mobile systems best
use limited memory resources. Multi-level caching is a
memory management system with results similar to embed-
ding, without the overhead of instantiating the content. In
other words, with multi-level caching, handset users get an
“embedded” performance without the embedded download.
Note that when content is flagged as cacheable and is placed
in persistent storage, a digital rights management (DRM)
solution will be used.

One embodiment of each of the methods described herein
is in the form of a computer program that executes on a
processing system. Thus, as will be appreciated by those
skilled in the art, embodiments of the present invention may
be embodied as a method, an apparatus such as a special
purpose apparatus, an apparatus such as a data processing
system, or a carrier medium, e.g., a computer program prod-
uct. The carrier medium carries one or more computer read-
able code segments for controlling a processing system to
implement a method. Accordingly, aspects of the present
invention may take the form ofamethod, an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment combining software and hardware aspects. Further-
more, the present invention may take the form of carrier
medium (e.g., a computer program product on a computer-
readable storage medium) carrying computer-readable pro-
gram code segments embodied in the medium. Any suitable
computer readable medium may be used including a mag-

Exhibit 1001
Page 37 of 40

35

40

45

36

netic storage device such as a diskette or a hard disk, or an
optical storage device such as a CD-ROM.

It will be understood that the steps of methods discussed
are performed in one embodiment by an appropriate proces-
sor (or processors) of a processing (i.e., computer) system
executing instructions (code segments) stored in storage. It
will also be understood that the invention is not limited to any
particular implementation or programming technique and
that the invention may be implemented using any appropriate
techniques for implementing the functionality described
herein. The invention is not limited to any particular program-
ming language or operating system. It should thus be appre-
ciated that although the coding for programming devices has
not be discussed in detail, the invention is not limited to a
specific coding method. Furthermore, the invention is not
limited to any one type of network architecture and method of
encapsulation, and thus may be utilized in conjunction with
one or a combination of other network architectures/proto-
cols.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or “certain embodiments” means
that a particular feature, structure or characteristic described
in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” or “in
certain embodiments™ in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures
or characteristics may be combined in any suitable manner, as
would be apparent to one of ordinary skill in the art from this
disclosure, in one or more embodiments.

Throughout this specification, the term “comprising” shall
be synonymous with “including,” “containing,” or “charac-
terized by,” is inclusive or open-ended and does not exclude
additional, unrecited elements or method steps. “Compris-
ing” is a term of art which means that the named elements are
essential, but other elements may be added and still form a
construct within the scope of the statement. “Comprising”
leaves open for the inclusion of unspecified ingredients even
in major amounts.

Similarly, it should be appreciated that in the above
description of exemplary embodiments, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
one or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the claimed invention requires more features
than are expressly recited in each claim. Rather, as the fol-
lowing claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment, and the
invention may include any of the different combinations
embodied herein. Thus, the following claims are hereby
expressly incorporated into this Mode(s) for Carrying Out the
Invention, with each claim standing on its own as a separate
embodiment of this invention.

Thus, while there has been described what is believed to be
the preferred embodiments of the invention, those skilled in
the art will recognize that other and further modifications may
be made thereto without departing from the spirit of the
invention, and it is intended to claim all such changes and
modifications as fall within the scope of the invention. For
example, any formulas given above are merely representative
of procedures that may be used. Functionality may be added
or deleted from the block diagrams and operations may be

US 9,063,755 B2

37

interchanged among functional blocks. Steps may be added
or deleted to methods described within the scope of the
present invention.

We claim:

1. A system for generating code to provide content on a
display of a device, said system comprising:

computer memory storing a registry of:

a) symbolic names required for evoking one or more
web components each related to a set of inputs and
outputs of a web service obtainable over a network,
where the symbolic names are character strings that
do not contain either a persistent address or pointer to
an output value accessible to the web service, and

b) the address of the web service;

an authoring tool configured to:

define a user interface (UI) object for presentation on the
display, where said Ul object corresponds to the web
component included in said registry selected from the
group consisting of an input of the web service and an
output of the web service,

access said computer memory to select the symbolic name
corresponding to the web component of the defined Ul
object,

associate the selected symbolic name with the defined Ul
object,

produce an Application including the selected symbolic
name of the defined UI object, where said Application is
a device-independent code, and

produce a Player, where said Player is a device-dependent
code;

such that, when the Application and Player are provided to
the device and executed on the device, and when a user
of'the device provides one or more input values associ-
ated with an input symbolic name to an input of defined
UT object,

1) the device provides the user provided one or more input
values and corresponding input symbolic name to the
web service,

2) the web service utilizes the input symbolic name and the
user provided one or more input values for generating
one or more output values having an associated output
symbolic name,

3) said Player receives the output symbolic name and cor-
responding one or more output values and provides
instructions for a display of the device to present an
output value in the defined Ul object.

2. The system of claim 1, where said registry includes

definitions of input and output related to said web service.

3. The system of claim 1, where said web component is a
text chat, a video chat, an image, a slideshow, a video, or an
RSS feed.

4. The system of claim 1, where said Ul object is an input
field for a chat.

5. The system of claim 1, where said Ul object is an input
field for a web service.

6. The system of claim 1, where said Ul object is an input
field usable to obtain said web component, where said input
field includes a text field, a scrolling text box, a check box, a
drop down-menu, a list menu, or a submit button.

7. The system of claim 1, where said web component is an
output of a web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses-
sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

8. The system of claim 1, where said authoring tool is
further configured to:

define a phone field or list; and

Exhibit 1001
Page 38 of 40

5

10

20

25

30

35

40

45

50

55

60

65

38

generate code that, when executed on the device, allows a

user to supply a phone number to said phone field or list.

9. The system of claim 1, where said authoring tool is
further configured to:

define a SMS field or list; and

generate code that, when executed on the device, allows a

user to supply an SMS address to said SMS field or list.

10. The system of claim 1,

where said code includes three or more codes, where one of

said three or more codes is device specific, and where

two of said three or more codes is device independent.

11. The system of claim 1, where said code is provided over
said network.

12. A method of displaying content on a display of a device
utilizing a registry of one or more web components related to
inputs and outputs of a web service obtainable over a network,
where each web component includes a plurality of symbolic
names of inputs and outputs associated with each web ser-
vice, and where the registry includes: a) symbolic names
required for evoking one or more web components each
related to a set of inputs and outputs of a web service obtain-
able over a network, where the symbolic names are character
strings that do not contain either a persistent address or
pointer to an output value accessible to the web service, and

b) the address of the web service, said method comprising:

defining a user interface (UI) object for presentation on
the display, where said Ul object corresponds to a web
component included in said registry selected from the
group consisting of an input of the web service and an
output of the web service;

selecting a symbolic name from said web component
corresponding to the defined Ul object;

associating the selected symbolic name with the defined
UT object;

producing an Application including the selected sym-
bolic name of the defined UT object, where said Appli-
cation is a device-dependent code; and

producing a Player, where said Player is a device-depen-
dent code;

such that, when the Application and Player are provided
to the device and executed on the device, and when a
user of the device provides one or more input values
associated with an input symbolic name to an input of
defined UI object,

1) the device provides the user provided one or more
input values and corresponding input symbolic name
to the web service,

2) the web service utilizes the input symbolic name and
the user provided one or more input values for gener-
ating one or more output values having an associated
output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and pro-
vides instructions for a display of the device to present
an output value in the defined Ul object.

13. The method of claim 12, where said registry includes
definitions of input and output related to said web service.

14. The method of claim 12, where said web component is
atext chat, a video chat, an image, a slideshow, a video, or an
RSS feed.

15. The method of claim 12, where said Ul object is an
input field for a chat.

16. The method of claim 12, where said Ul object is an
input field for a web service.

17. The method of claim 12, where said Ul object is an
input field usable to obtain said web component, where said

US 9,063,755 B2

39

input field includes a text field, a scrolling text box, a check
box, a drop down-menu, a list menu, or a submit button.

18. The method of claim 12, where said web component is
an output ofa web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses-
sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

19. The method of claim 12, further comprising:

defining a phone field or list; and

generating code that, when executed on the device, allows

a user to supply a phone number to said phone field or
list.

20. The method of claim 12, further comprising:

defining a SMS field or list; and

generating code that, when executed on the device, allows

auser to supply an SMS address to said SMS field or list.

21. Previously Presented The method of claim 12, and such
that said Player interprets dynamically received, device-inde-
pendent values of the web component defined in the Appli-
cation.

22. The method of claim 12, further comprising:

providing said Application and Player over said network.

23. A method of providing information to a device having
a display from a web component of a web service to a device
on a network, said method comprising:

accepting, on the device, a first code over the network,

where said first code is device-dependent;

accepting, on the device, a second code over the network,

where said second code is device-independent and
includes a plurality of symbolic names of inputs and
outputs associated with the web service; and

executing said first code on the device,

where the symbolic names are provided from a registry of

one or more web components related to inputs and out-
puts of a web service obtainable over a network,

Exhibit 1001
Page 39 of 40

10

20

40

where the web service requires both an input symbolic
name and one or more associated input values and
returns one or more output values having an associated
output symbolic name, and

where the registry includes

a) symbolic names required for evoking one or more web

components each related to a set of inputs and outputs of
a web service obtainable over a network, where the
symbolic names are character strings that do not contain
either a persistent address or pointer to an output value
accessible to the web service, and

b) the address of the web service;

where said executing includes:

processing said symbolic names of the second code on
the device,

transmitting processed instructions from the device to
the web service, and

accepting a third code on the device over the network,
where said third code is a device-independent third
code including the output of the web component pro-
vided by the web service over the network and in
response to the second code.

24. The method of claim 23, where said third code is a text
chat, a video chat, an image, a slideshow, a video, or an RSS
feed.

25. The method of claim 23, where said third code is an
output of a web service, is the text provided by one or more
simultaneous chat sessions, is the video of a video chat ses-
sion, is a video, an image, a slideshow, an RSS display, or an
advertisement.

26. The method of claim 23, where said first code and said
second code are generated using an authoring tool.

27. The method of claim 23, where said first code is a
Player.

28. The method of claim 23, where said second code is an
Application which includes one or more web components.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,063,755 B2 Page 1 of 1
APPLICATION NO. : 12/936395

DATED : June 23, 2015

INVENTORC(S) : Rempell et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Title page, item 73, Assignee: Express Mobile, inc.,Novato, CA (US) - the “inc.” should be -- Inc. --.
In the claims

Column 39, line 18, Claim 21, delete the text reading “Previously Presented™.

Signed and Sealed this
Twentieth Day of October, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

Exhibit 1001
Page 40 of 40

