
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ADOBE INC.,

Petitioner

v.

EXPRESS MOBILE, INC.,

Patent Owner

Case IPR2021-______

U.S. Patent No. 9,063,755

DECLARATION OF IAN CULLIMORE, PH.D. IN SUPPORT OF

PETITION FOR INTER PARTES REVIEW OF

U.S. PATENT NO. 9,063,755

Ex. 1002
Page 001 of 153

phan_b
Text Box
Adobe Inc. v.
Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1002

ii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. BACKGROUND AND QUALIFICATIONS ... 1

III. MATERIALS REVIEWED .. 5

IV. LEVEL OF ORDINARY SKILL IN THE ART ... 8

V. RELEVANT LEGAL STANDARDS ... 9

VI. OVERVIEW OF THE ’755 PATENT ..12

VII. CLAIM CONSTRUCTION ..19

VIII. STATE OF THE ART ...25

A. The Internet, Websites, and Web Browsers ..25

B. Web Services and Registries ...26

IX. OVERVIEW OF THE PRIOR ART ...31

A. Huang ..31

B. Shenfield ..47

X. THE PRIOR ART DISCLOSES OR SUGGESTS ALL OF THE
FEATURES OF THE CHALLENGED CLAIMS ..50

A. Grounds Challenging Claims 1, 3, 5-7, 11-12, 14, 16-18, and 22 of the
’755 patent ...50

B. Ground 1: Huang in View of Shenfield Render Claims 1, 3, 5-7, 11-
12, 14, 16-18, and 22 of the ’755 Patent Obvious50

1. Claim 1 ..51

2. Claim 3 ..130

Ex. 1002
Page 002 of 153

iii

3. Claim 5 ..134

4. Claim 6 ..135

5. Claim 7 ..137

6. Claim 11 ..138

7. Claim 12 ..141

8. Claim 14 ..147

9. Claim 16 ..147

10. Claim 17 ..148

11. Claim 18 ..148

12. Claim 22 ..149

XI. CONCLUSION ..150

Ex. 1002
Page 003 of 153

1

I, Ian Cullimore, declare as follows:

I. INTRODUCTION

1. I have been retained by Petitioner Adobe Inc. (“Adobe” or “Petitioner”)

as an independent expert consultant in this proceeding before the United States

Patent and Trademark Office (“PTO”).

2. I am being compensated at a rate of $500/hour for my services in this

proceeding, which is my regular and customary rate.

3. My compensation is in no way contingent on the nature of my findings,

the presentation of my findings in testimony or this declaration, or the outcome of

this or any other proceeding. I have no other interest in this proceeding.

4. I have been asked to consider whether certain references disclose and/or

suggest the features recited in claims 1, 3, 5-7, 11-12, 14, 16-18, and 22 of U.S.

Patent No. 9,063,755 (“the ’755 patent”) (Ex-1001).1 My opinions are set forth

below.

II. BACKGROUND AND QUALIFICATIONS

5. I am an independent consultant. All of my opinions stated in this

declaration are based on my own personal knowledge and professional judgment. In

forming my opinions, I have relied on my education, knowledge, and some 40 years

1 Where appropriate, I refer to exhibits I understand will be attached to the petition
for inter partes review of the ’755 patent (the “Petition”).

Ex. 1002
Page 004 of 153

2

of experience in the field of computer science and software engineering, including,

among other things, the development of interfaces for web services and programs

designed to operate across multiple devices.

6. I received a bachelor’s degree [B.Sc. (Hons)] in Mathematics from

King’s College, London, in 1981. Additionally, I received a Ph.D. in Cognitive and

Computer Science from the University of Sussex in 2000. I also attended an M.Sc.

course at Imperial College, London, in 1985. I was for a time an Honorary Senior

Research Fellow at the University of Birmingham, U.K. I am currently a Visiting

Lecturer at the University of Hereford, U.K. I have undertaken various other

Continuous Professional Development courses over the years.

7. For the majority of my working career, I have been self-employed as a

software, firmware, and hardware designer and developer, with a specialization in

operating system design and development for mobile devices, ultra-low power

management, IoT (“Internet of Things”) devices, and computer communications. I

remain a very “hands-on” developer for both software and hardware. I run my own

consulting company, Crushproof Ltd., and from time to time am involved in other

startups, as well as software and hardware, and business development, consulting

for other companies. I currently reside in the U.K., but I have lived and worked

extensively in the U.S., especially in Silicon Valley.

Ex. 1002
Page 005 of 153

3

8. I have been involved in the design and development of mobile and

wireless device software and hardware since 1984. From 2012 to 2015, I served as

Chief Technology Officer at Paqet Systems Corp., a startup I co-founded that

specializes in ultra-low power software operating systems for machine-to-machine,

sensor hubs, wearables, Internet of Things, and other cutting-edge mobile

technologies. Prior to that, from 2010 to 2012, I was Chief Technology Officer at

IOTA Computing, Inc., another startup I co-founded that focused on software

development for similar technology. Both companies were based in Silicon Valley.

Between 2008 and 2010, I was an independent consultant and provided software and

hardware development guidance for a series of technology companies. From 2006

to 2008, I worked as Chief Technology Officer at Martian Gaming Ltd., a London-

based online mobile gaming platform that I co-founded. Additionally, I led the

development of mobile server and client development in the course of serving as

Chief Technology Officer for Cibenix Ltd., a Dublin-based (Ireland) mobile

software developer, from 2004 to 2006. From 1997 to 2003, I served as Chief

Executive Officer and Chief Technology Officer at Informal Software, a company I

co-founded to implement an interface I had developed as part of my doctoral

research.

9. Additionally, I have extensive professional experience in computer

system design of many disciplines: software (from low-level embedded to high-level

Ex. 1002
Page 006 of 153

4

applications and User Interfaces), hardware and communications, as well as server

technologies. From 1996 to 1997, I worked as Chief Technology Officer and

consultant to Two Way TV, an innovative interactive television company that

developed user-interactive television and games. Between 1994 and 1996, I served

as Software Director at Xircom, Inc., where I created award-winning Ethernet and

modem installer software products and software for mobile Palm handheld devices

to enable receipt and transmission of text messages, as well as Local Area Network

connectivity for handhelds and laptops via innovative adapters and the first PC Card

(“PCMCIA”) LAN adapters. Prior to that, from 1992 to 1994, I developed DOS

power management systems and a secure-login software client at Digital Research

Inc., acquired by Novell Inc. From 1988 to 1991, I was Vice President of Software

Research and Development at Poqet Computer Corp., which I also co-founded; in

that role, I developed power-managing ROM BIOS and created other software and

hardware power management techniques to enhance battery life. Between 1986 and

1988, I served as Chief Technology Officer at D.I.P. Ltd., a company I co-founded

that developed the world’s first “pocket PC.” From 1984 to 1986, I was a Software

Engineer at Psion Ltd., a video game developer; there, I developed a PDA operating

system and communications software. From 1983 to 1984, I was a Video Games

Programmer at Thorn EMI, and from 1981 to 1983, I was a Software Programmer

Ex. 1002
Page 007 of 153

5

at British Aerospace, where I wrote various programs for mainframes (including for

the Concorde program).

10. I have served as a technical consultant in connection with intellectual

property relating to various computer and mobile device engineering technologies

since 1985. In just the past five years, I have been engaged as a consultant on ten

projects, many of which involved mobile software and hardware development.

11. My work has involved projects specifically including web services and

the development of software capable of operating on multiple devices, operating

systems, and/or platforms. For example, I have developed an interface for web

services for Toyota’s salesforce designed to operate on hand-held devices to connect

to back-end servers. I have also developed for a group at Sheffield University a

device-dependent program to run device-independent XML content to dynamically

present content to and obtain information from a user.

12. I am over 18 years of age and, if I am called upon to do so, I would be

competent to testify as to the matters set forth herein. I have provided a copy of my

curriculum vitae as Ex-1003, which contains additional details regarding my

background and experience.

III. MATERIALS REVIEWED

13. The opinions contained in this declaration are based on the documents

I reviewed, my professional judgment, as well as my education, experience, and

Ex. 1002
Page 008 of 153

6

knowledge regarding inventions, electrical engineering, computer science, web

services, registries, and efforts in the field to achieve cross-functionality on various

platforms, such as mobile phones.

14. In forming my opinions expressed in this declaration, I reviewed the

following materials:

 The ’755 patent (Ex-1001);

 Prosecution History of the ’755 patent (Ex-1004);

 U.S. Patent Application Publication No. 2007/0118844 to Jin Huang et al.

(“Huang”) (Ex-1005);

 U.S. Patent Application No. 2007/0079282 to Pawan Nachnani et al.

(“Nachnani”) (Ex-1006);

 U.S. Patent Application No. 2006/0200749 to Michael Shenfield

(“Shenfield”) (Ex-1007);

 Memorandum Opinion (Dkt. 121), Express Mobile, Inc. v.

GoDaddy.com, LLC, C.A. No. 19-1937-RGA (D. Del. June 1, 2021)

(Ex-1011);

 Memorandum Order (Dkt. 137), Shopify Inc. et al. v. Express Mobile,

Inc., C.A. No. 19-439-RGA (D. Del. June 23, 2020) (Ex-1012);

Ex. 1002
Page 009 of 153

7

 Joint Claim Construction Brief (Dkt. 117), Shopify Inc. et al. v. Express

Mobile, Inc., C.A. No. 19-439-RGA (lead case) (D. Del. May 8, 2020)

(Ex-1015);

 Alan Grosskurth and Michael W. Godfrey, A Reference Architecture for

Web Browsers, Journal of Software Maintenance & Evolution: Research

& Practices 2006; 00:1-7 (2006) (Ex-1016);

 Hypertext Markup Language - 2.0, IETF (Nov. 1997), available at

https://datatracker.ietf.org/doc/html/rfc1866 (Ex-1017);

 Francisco Curbera et al., Unraveling the Web Services Web, IEEE

Internet Computing Vol. 7, Issue 2 86-93 (Apr. 2002) (Ex-1018);

 U.S. Patent Application Publication No. 2007/0067421 (Ex-1019);

 Google Search WSDL Document, available at

https://cs.au.dk/~amoeller/WWW/webservices/GoogleSearch.wsdl

(Rev. Aug. 16, 2002) (Ex-1020);

 U.S. Patent Application Publication No. 2003/0009523 (Ex-1021);

 U.S. Patent Application Publication No. 2006/0034202 (Ex-1022);

 U.S. Patent Application Publication No. 2004/0186888 (Ex-1023);

 U.S. Patent Application Publication No. 2006/0221190 (Ex-1024);

Ex. 1002
Page 010 of 153

8

 U.S. Patent Application Publication No. 2007/0100836 (Ex-1025);

 U.S. Patent No. 7,191,160 (Ex-1026);

 Steven J. Vaughan-Nichols, Web Services: Beyond the Hype, Computer

35(2):18-21 (Feb. 2002) (Ex-1027);

 U.S. Patent No. 7,873,625 (Ex-1028); and

 U.S. Patent Application Publication No. 2006/0230462 (Ex-1029).

IV. LEVEL OF ORDINARY SKILL IN THE ART

15. I was asked to provide my opinion on the level of one of ordinary skill

in the art with respect to the alleged invention of the ’755 patent as of April 7, 2008.

Based on my review of the types of problems encountered in the art, prior solutions

to those problems, the rapidity with which innovations were made, the sophistication

of the technology, and the educational level of active workers in the field, I believe

a person of ordinary skill in the art would have had a Bachelor of Science degree in

Computer Science, Computer Engineering, or equivalent, plus two years working

experience. More education can supplement practical experience and vice versa.

16. All of my opinions in this declaration are from the perspective of one

of ordinary skill in the art as I have defined it here during the relevant timeframe

(i.e., mid-2008) (“POSITA”).

Ex. 1002
Page 011 of 153

9

V. RELEVANT LEGAL STANDARDS

17. I am not an attorney and offer no legal opinions, but in the course of

my work, I have had experience studying and analyzing patents and patent claims

from the perspective of a POSITA.

18. For the purposes of this declaration, I have been informed about certain

aspects of the law that are relevant to forming my opinions. My understanding of the

law is as follows:

19. Petitioner’s counsel has informed me that a patent claim is invalid as

“anticipated” if each and every limitation of the claim is found, either expressly or

inherently, in a single device or method that predates the claimed invention or is

described in a single publication or patent that predates the claimed invention.

Petitioner’s counsel has informed me that, in patent law, these previous devices,

methods, publications, or patents are called “prior art.”

20. Petitioner’s counsel has informed me that claim limitations that are not

expressly found in a prior art reference are inherent if the prior art necessarily

functions in accordance with, or includes, the claim limitations. I understand that,

for a claimed limitation to be inherently present, the prior art need not expressly

disclose the limitation, so long as the claimed limitation necessarily flows from a

disclosure in the prior art. I also understand that it is acceptable to examine evidence

outside the prior art reference (extrinsic evidence) in determining whether a feature,

Ex. 1002
Page 012 of 153

10

while not expressly discussed in the reference, is necessarily present in that

reference.

21. Petitioner’s counsel has informed me that a patent claim can be

considered to have been obvious to a POSITA at the time the application was filed.

I am informed this means that, even if all of the requirements of a claim are not found

in a single prior art reference, the claim is not patentable if the differences between

the subject matter in the prior art and the subject matter in the claim would have been

obvious to a POSITA at the time the of the invention.

22. Petitioner’s counsel has informed me that a determination of whether a

claim would have been obvious should be based upon several factors, including,

among others:

 the level of ordinary skill in the art at the time the application was filed;

 the scope and content of the prior art; and

 what differences, if any, existed between the claimed invention and the

prior art.

23. Petitioner’s counsel has informed me that a single reference can render

a patent claim obvious if any differences between that reference and the claims

would have been obvious to a POSITA. Alternatively, I understand that the

teachings of two or more references may be combined in the same way as disclosed

in the claims, if such a combination would have been obvious to one having ordinary

Ex. 1002
Page 013 of 153

11

skill in the art. In determining whether a combination based on either a single

reference or multiple references would have been obvious, it is appropriate to

consider, among other factors:

 whether the teachings of the prior art references disclose known concepts

combined in familiar ways, and when combined, would yield predictable

results;

 whether a POSITA could implement a predictable variation, and would see

the benefit of doing so;

 whether the claimed elements represent one of a limited number of known

design choices, and would have a reasonable expectation of success by those

skilled in the art;

 whether a person of ordinary skill would have recognized a reason to combine

known elements in the manner described in the claim;

 whether there is some teaching or suggestion in the prior art to make the

modification or combination of elements claimed in the patent; and

 whether the innovation applies a known technique that had been used to

improve a similar device or method in a similar way.

24. Petitioner’s counsel has informed me that a POSITA has ordinary

creativity and is not an automaton. Petitioner’s counsel has also informed me that,

Ex. 1002
Page 014 of 153

12

in considering obviousness, obviousness may not be determined using the benefit of

hindsight, including hindsight derived from the patent being considered.

VI. OVERVIEW OF THE ’755 PATENT

25. The ’755 patent is titled “Systems and Methods for Presenting

Information on Mobile Devices.” (Ex-1001, Cover.) It “generally relates to

providing software for mobile devices, and more particularly to a method and system

for authoring Applications for devices.” (Id., 1:8-10; see also Ex-1004, 1209-16

(applicant summary of ’755 patent during prosecution).)

26. The ’755 patent describes a “system” with “a database of web services

obtainable over a network and an authoring tool” that “generate[s] code to provide

content on a display of a platform.” (Ex-1001, 1:34–37.) The ’755 patent states that

“[t]he authoring tool is configured to define an object for presentation on the display,

select a component of a web service included in said database, associate said object

with said selected component, and produce code that, when executed on the

platform, provides said selected component on the display of the platform.” (Id.,

1:37-42.) One “mechanism for binding the outputs of the web service to the UI

components is through symbolic references that matches each output to the symbolic

name of the UI component.” (Id., 9:11-14.) The generated code includes a device-

independent “Application” and a device-dependent “Player.” (See id., Abstract,

1:59–2:3.)

Ex. 1002
Page 015 of 153

13

27. The ’755 patent explains that Figure 1A, reproduced below, shows “a

system including an authoring platform and a server for providing programming

instructions to a device over a network.” (Ex-1001, 2:14-17.)

(Ex-1001, Fig. 1A.)

Specifically, Figure 1A “is an illustrative schematic” of “a system 100 including an

authoring platform 110 and a server 120 for providing programming instructions to

a device 130 over a network N.” (Id., 2:65-3:3.) The ’755 patent explains that “[i]n

Ex. 1002
Page 016 of 153

14

general, a user of authoring platform 110 may produce programming instructions or

files that may be transmitted over network N to operate device 130, including

instructions or files that are sent to device 130 and/or server 120.” (Id., 3:5-9.)

28. The ’755 patent explains that “[i]n one embodiment, system 100

provides permits [sic] a user of authoring platform 110 to provide instructions to

each of the plurality of devices 130 in the form of a device- or device-platform

specific instructions for processor 135 of the device, referred to herein and without

limitation as a ‘Player,’ and a device-independent program, referred to herein and

without limitation as an ‘Application.’” (Ex-1001, 5:8-15.) “[D]evice 130 utilizes

a Player and an Application to execute programming from authoring platform 110”

and, because “[t]he programming is parsed into instructions used by different device

platforms and instructions that are independent of device platform,” “authoring

platform 110 may be used to generate programming for a plurality of devices 130

having one of several different device platforms.” (Id., 5:15-24.) Put differently,

one device-independent Application can run on multiple devices through the use of

multiple device-specific Players that translate the Application into instructions that

can be recognized by the specific device. (See id., 5:42-55, 6:4-17.) The ’755 patent

contemplates that the “Player” need not necessarily be a stand-alone executable, and

it can be “activated by a web browser or other software on device 130.” (Ex-1001,

5:27-28.)

Ex. 1002
Page 017 of 153

15

29. The ’755 patent explains that “code in a device-independent format,”

which the ’755 patent refers to as a “Portable Description Language (PDL),” is

“conceptionally viewed as a device, operating system and virtual machine agnostic

representation of Java serialized objects.” (Ex-1001, 6:4-6, 6:49-51.) As a result, a

device-independent Application coded in PDL “no longer ha[s] any dependencies

from the original programming language (Java) that they were defined in.” (Id.,

7:14-17.)

30. Figure 2A of the ’755 patent, reproduced below, “illustrat[es] the

communications between different system components.” (Id., 7:63-65.)

(Ex-1001, Fig. 2A.)

Ex. 1002
Page 018 of 153

16

31. The ’755 patent explains that “authoring platform 110 permits a user to

design desired displays for screen 137 and actions of device 130”—i.e., “authoring

platform 110 is used to program the operation of device 130.” (Ex-1001, 4:13-16.)

One aspect of the authoring system is that it allows “a user to assign actions to one

or more of an input object, an output object, or an action object,” and the user can

“bind one or more of [such objects] with web services or web components.” (Id.,

6:37-47.) The ’755 patent explains that “[w]eb service 230 is a plurality of services

obtainable over the Internet.” (Id., 8:18-19.)

32. The ’755 patent explains that “[a] user of authoring platform 110 of

system 200 may define associations with web services as WebComponent

Bindings,” such as “associat[ing] certain objects for display that provide input or

output to components of web service 230.” (Ex-1001, 8:48-52.) The ’755 patent

discloses the use of “web component registry 220,” which “may contain consumer

inputs related to each web service 230, environmental data such as PIM, time or

location values, persistent variable data, outputs related to the web service, and/or

optional hinting for improving the user’s productivity,” “so that a user of the

authoring platform may bind web services 230 to elements to be displayed on device

130. (Id., 8:22-26, 8:36-47.) In one embodiment of the ’755 patent, “the mechanism

for binding the outputs of the web service to the UI components is through symbolic

Ex. 1002
Page 019 of 153

17

references that match each output to the symbolic name of the UI component.” (Id.,

9:11-14.)

33. At a high level, the ’755 patent relates to systems and methods that

allow for designing cross-functional web pages, utilizing device-independent

Applications that define the content and a set of device-specific Players that translate

the Applications to run on various devices. The Applications contain user interface

objects that may be bound to web services through “symbolic references” or

“symbolic names.”

34. Exemplary claims 1 and 12 of the ’755 patent are representative of the

independent claims of the ’755 patent. They are reproduced below.

1. A system for generating code to provide content on
a display of a device, said system comprising:

computer memory storing a registry of:
a) symbolic names required for evoking one or

more web components each related to a set of
inputs and outputs of a web service obtainable
over a network, where the symbolic names are
character strings that do not contain either a
persistent address or pointer to an output value
accessible to the web service, and

b) the address of the web service;
an authoring tool configured to:
define a user interface (UI) object for presentation on

the display, where said UI object corresponds to the
web component included in said registry selected
from the group consisting of an input of the web
service and an output of the web service,

access said computer memory to select the symbolic
name corresponding to the web component of the
defined UI object,

Ex. 1002
Page 020 of 153

18

associate the selected symbolic name with the defined
UI object,

produce an Application including the selected
symbolic name of the defined UI object, where said
Application is a device-independent code, and

produce a Player, where said Player is a device-
dependent code;

such that, when the Application and Player are
provided to the device and executed on the device,
and when a user of the device provides one or more
input values associated with an input symbolic
name to an input of defined UI object,

1) the device provides the user provided one or more
input values and corresponding input symbolic
name to the web service,

2) the web service utilizes the input symbolic name
and the user provided one or more input values for
generating one or more output values having an
associated output symbolic name,

3) said Player receives the output symbolic name and
corresponding one or more output values and
provides instructions for a display of the device to
present an output value in the defined UI object.

12. A method of displaying content on a display of a
device utilizing a registry of one or more web components
related to inputs and outputs of a web service obtainable
over a network, where each web component includes a
plurality of symbolic names of inputs and outputs
associated with each web service, and where the registry
includes: a) symbolic names required for evoking one or
more web components each related to a set of inputs and
outputs of a web service obtainable over a network, where
the symbolic names are character strings that do not
contain either a persistent address or pointer to an output
value accessible to the web service, and

b) the address of the web service, said method
comprising:
defining a user interface (UI) object for presentation

on the display, where said UI object corresponds

Ex. 1002
Page 021 of 153

19

to a web component included in said registry
selected from the group consisting of an input of
the web service and an output of the web service;

selecting a symbolic name from said web
component corresponding to the defined UI
object;

associating the selected symbolic name with the
defined UI object;

producing an Application including the selected
symbolic name of the defined UI object, where
said Application is a device-dependent code; and

producing a Player, where said Player is a device-
dependent code;

such that, when the Application and Player are
provided to the device and executed on the
device, and when a user of the device provides
one or more input values associated with an
input symbolic name to an input of defined UI
object,

1) the device provides the user provided one or more
input values and corresponding input symbolic
name to the web service,

2) the web service utilizes the input symbolic name
and the user provided one or more input values
for generating one or more output values having
an associated output symbolic name,

3) said Player receives the output symbolic name
and corresponding one or more output values
and provides instructions for a display of the
device to present an output value in the defined
UI object.

VII. CLAIM CONSTRUCTION

35. I understand that claim terms are typically given their ordinary and

customary meanings, as would have been understood by a POSITA at the time of

the alleged invention. I have been asked to assume for purposes of this declaration

Ex. 1002
Page 022 of 153

20

that the time of the alleged invention is the filing date of the earliest provisional

application to which the ’755 patent claims priority, which is April 7, 2008. I also

understand that the meanings of claim terms are not determined in a vacuum but

rather in the context of the claims, the specification, and the prosecution history.

36. I also understand that the Board may correct an obvious error in a claim

if the correction is not subject to reasonable debate after considering the language of

the claims and the patent specification and the prosecution history does not suggest

a different interpretation of the claims.

37. I understand that Express Mobile has stipulated to the following claim

constructions, which district courts have adopted:

Term Stipulated Construction

“where said

Application is a device-

dependent code”

“where said Application is a device-independent code”

(Ex-1011, 10.)

“authoring tool” /

“authoring tool

configured to”

“a system, with a graphical interface, for generating code

to display content on a device screen” (Ex-1011, 10.)

Ex. 1002
Page 023 of 153

21

Term Stipulated Construction

“device-dependent

code”

“code that is specific to the operating system,

programming language, or platform of a device” (Ex-

1011, 10.)

“device-independent

code”

“code that is not specific to the operating system,

programming language, or platform of a device” (Ex-

1011, 10.)

“for evoking one or

more web components”

“for calling up one or more web components” (Ex-1011,

10.)

38. I understand that district courts have provided claim constructions for

the following terms:

Term Courts’ Construction
Exemplary Intrinsic

Evidence
“registry” “a database that is used for

computing functionality”

(Ex-1011, 17-19.)

Ex-1001, 1:34-42, 1:51-

58, 7:1-3, 7:63-66, 8:19-

22, 22:26-29.

“web component” “software objects that

provide functionalities of a

web service” (Ex-1011, 19-

20.)

Ex-1001, 8:18-22, 8:40-

42, Fig. 3F.

Ex. 1002
Page 024 of 153

22

Term Courts’ Construction
Exemplary Intrinsic

Evidence
“web service” “a software system that

supports interaction between

devices over a network” (Ex-

1011, 20-22.)

Ex-1001, 8:18-19; Ex-

1004, 1068.

“Application” /

“application”

“device-independent code

containing instructions for a

device and which is separate

from the Player” Ex-1011,

23-25.)

Ex-1001, 1:59-2:3, 5:8-

15; Ex-1004, 214, 1216.

“Player” / “player” “device-specific code which

contains instructions for a

device and which is separate

from the Application” (Ex-

1012, 9-14)

Ex-1001, 1:59-2:3, 5:8-

15; Ex-1004, 1214, 1216.

39. I have been asked to determine whether the district courts’

constructions are consistent with the intrinsic record. In my opinion, the district

courts’ constructions are consistent with the disclosures of the specification and

prosecution history. I have provided exemplary citations in the table above.

Ex. 1002
Page 025 of 153

23

40. I have been asked to determine if there are any particular claim terms

that should be construed for the Board to understand how the prior art references

read on the challenged claims. Other than to correct an obvious error in the phrase

“where said application is a device-dependent code” as used in claim 12, I have not

identified any such claim terms.

41. With regard to claim 12, it is my opinion that a POSITA would have

understood that the phrase “where said application is a device-dependent code” as

used in claim 12 of the ’755 patent is an obvious error that should be read to mean

“where said Application is a device-independent code.”2

42. First, it is my opinion that the correction is not subject to reasonable

debate in view of the claim language and prosecution history. For example, the

specification consistently describes the “Application” as “device-independent (Ex-

1001, Abstract (“Applications that are device independent”), 2:1-2 (“an Application

that is a device independent code”), 5:13-15 (“a device-independent program,

referred to herein and without limitation as an ‘Application’”), 5:57-59 (“the Player

transforms device-independent instructions of the Application into device-specific

instructions that are executable by device 130”), 6:4-5 (“The Application is

preferably code in a device-independent format”), 6:13-14 (“device-independent

Applications”), 13:49 (“device-independent Application”).

2 All emphases and color annotations added unless noted otherwise.

Ex. 1002
Page 026 of 153

24

43. Further supporting my opinion is that I understand that Express Mobile

has agreed to this correction in multiple district court litigations. (Ex-1011, 10; Ex-

1015, 2.)

44. Further, I am not aware of any evidence in the prosecution history that

would suggest a different interpretation of this phrase to a POSITA. Indeed, the

prosecution history confirms that “where said Application is a device-dependent

code” should mean “where said Application is a device-independent code.” For

example, the applicant repeatedly asserting during prosecution that the claimed

“Application” is device-independent code (e.g., Ex-1004, 1017 (“an Application

… that is device-independent”), 1067 (same), 1150 (same), 1214 (same) (emphases

in original)).

45. In my analysis below, I have applied the stipulated or district courts’

constructions of the terms in the table above. Otherwise, I have given all other claim

terms of the challenged claims their plain and ordinary meaning, as would have been

understood by a POSITA, at the time of the alleged invention, which I assume is

April 2008.

46. I note, however, that in my opinion, my conclusions would not change

even if I applied the plain meaning of the claim terms because the plain meaning

would be consistent with or subsume the constructions of the district courts.

Ex. 1002
Page 027 of 153

25

VIII. STATE OF THE ART

47. In this section, I discuss the state of the art with respect to technologies

relevant to the subject matter of the ’755 patent. Many of the technologies relevant

to the ’755 patent were well known and within the knowledge of a POSITA.

A. The Internet, Websites, and Web Browsers

48. A person of ordinary skill would have known in the relevant time frame

about computer networks, including the Internet, websites on the Internet, and web

browsers.

49. The Internet is a network of computers. The World Wide Web is a

“universal information space operating on top of the Internet.” (Ex-1016, 2.)

Resources on the Web are “identified by a unique Uniform Resource Identifier

(URI).” (Id.) Resources include, among other things, “documents, images, sound

clips, or video clips.” (Id.)

50. “Web pages are documents typically in HyperText Markup Language

(HTML) format that the web browser retrieves from a web server computer via a

network.” (Ex-1006, ¶[0006].) HTML documents are platform independent. (Ex-

1017, 1.) Put differently, any device can render HTML web pages with the

appropriate software, such as a web browser.

51. Web browsers “allows a user to view and interact with web pages.”

(E.g., Ex-1006, ¶[0006].) Specifically, web browsers “retrieve[] documents from

Ex. 1002
Page 028 of 153

26

remote servers and display[] them on screen,” requesting resources utilizing the URI.

(Ex-1016, 2.) Web browsers are generally installed directly on a device, such as a

computer, phone, or other web-accessible device; therefore, web browsers are

generally understood to be device-specific programs that visually display web pages

that may be written, for example, in device-independent HTTP. (See Ex-1006,

¶[0006].)

52. As of April 2008, a POSITA would have been well aware of the

Internet, the World Wide Web, Websites, and Web Browsers. Such technology was

well established by this date. For example, Version 2.0 of the HTML standard had

been established by November 1995 (Ex-1017, 1) and publications report numerous

web browsers had been released by April 2008 (e.g., Ex-1016, 4 (Fig. 1)).

B. Web Services and Registries

53. As of April 2008, a POSITA also would have been familiar with web

services. Web services allow users to access processes through a network-based

interface. Web services are Internet-based as early as April 2002, publications

reported that “Web services are emerging to provide a systematic and extensible

framework for application-to-application interaction, built on top of existing Web

protocols and based on open XML standards.” (Ex-1018, 86.) By April 2008, web

services had become a well-known way of achieving interoperability between

different computer systems. (Ex-1005, ¶[0003].) As noted in the prior art, web

Ex. 1002
Page 029 of 153

27

services were well known in the field and utilize open protocols and standards, such

as XML, to exchange data with calling clients. (Id., ¶¶[0003], [0005].)

54. Generally, three pieces of information are needed to access a web

service: (1) what communication protocol to use, (2) how to accomplish individual

service interactions over the protocol, and (3) where to terminate communication.

(Ex-1018, 89.) Thus, to access a web service, a user would need to know the

structure of messages for sending and receiving information, what information to

send or will be received and the vocabulary to use in the message, and where to send

the properly formatted message.

55. Because numerous web services were available and developed

independently, web service registries and a uniform language to describe web

services (the Web Services Description Language or WSDL) had been developed.

56. One well-known web service registry was the Uniform Discovery

Description and Integration (UDDI) services registry. The UDDI registry is

described as a “centralized registry of services that is roughly equivalent to an

automated online ‘phone directory’ of Web services.” (Ex-1018, 90.) Put

differently, the UDDI registry allowed users to locate web services without needing

to separately reach out to each web service vendor. The UDDI registry lists what

web services are available, the nature of the web service, and technical information,

Ex. 1002
Page 030 of 153

28

such as how to encode and provide data to the web service—i.e., how to interface

with the web service. (Id., 90-91.)

57. Among the information typically found in a UDDI services registry is

a WSDL description of the web service. (See, e.g., Ex-1007, ¶[0025]; Ex-1019,

¶¶[0006]-[0007]; Ex-1018, 91 (discussing registering a WSDL document to UDDI

registry).) A WSDL description of a web service provides an “abstract description

[of a web service] in terms of messages exchanged in a service interaction.” (Ex-

1018, 88.) Such information includes definitions of data types, the form of the

message, the content of a message, and where to send the message. (E.g., Ex-1019,

¶¶[0009]-[0015] & Fig. 2.)

58. For example, below are excerpts of a WSDL description for Google

Search, which is available at https://cs.au.dk/~amoeller/WWW/webservices/

GoogleSearch.wsdl. (Ex-1020.) The GoogleSearch WSDL defines the data types

used in its web service interface. (Id.) The GoogleSearch WSDL also defines the

structure and content of its messages, as shown in the excerpt below:

Ex. 1002
Page 031 of 153

29

(Ex-1020, 2.)

59. As can be seen in this excerpt from the GoogleSearch WSDL example,

each message is identified by name and has associated parts with identifiers and

specifying the type of data to be included. For example, the message

“doGetCachedPage” has a part named “key” that has data in the form of a string

(i.e., a sequence of characters) and “URL,” which also has string data. (Ex-1020,

2.) For another example, the message “doGoogleSearch” has data identified as, for

example, “start” and “maxResults.” (Id.)

60. Some data types are complex data types that are defined elsewhere in

the WSDL document. For example, the message “doGoogleSearchResponse” has a

single part named “return” that contains data of the type “GoogleSearchResult.”

Ex. 1002
Page 032 of 153

30

(Ex-1020, 2.) The WSDL document identifies this data type as having a set of

different types of data:

(Ex-1020, 1.)

Thus, the data type “GoogleSearchResult” has a number of elements of varying data

types, including “documentFiltering,” which is a Boolean data type (i.e., true or

false), “estimatedTotalResultsCount,” which is an integer (i.e., a whole number),

and two additional complex data types (“resultElements” and

“directoryCategories”), which are defined under the “types” section in the WSDL

document. (Ex-1020, 1-2)

61. As of April 2008, a POSITA would also have been well aware of Web

service registries and WSDL descriptions that could be found in Web service

registries.

62. Well-known web services as of April 2008 include text communication

or chat services (e.g., Ex-1021, ¶[0002] (“Chat services on the Internet provide for

real time communication between two users via a computer, wireless device, or any

Ex. 1002
Page 033 of 153

31

other text based communication apparatus…. Most networks and online services

offer some type of chat feature.”); Ex-1022, ¶[0004] (“Web service interface (WSI)

messaging”); Ex-1023, ¶[0005] (“Another popular feature of the Internet are so-

called ‘chat rooms’. Essentially, a chat room is a computer site that can be accessed

(i.e., ‘logged onto’) simultaneously by many users, with each user being able to input

text material intended to be conversational in nature.”)), image services (e.g., Ex-

1024, ¶[0006] (“a server hosting a media storage and display service”)), and RSS

feeds (e.g., Ex-1025, ¶[0003] (“Generally, RSS provides web content or summaries

of web content together with links to the full versions of the content, and other meta

data.”)).

IX. OVERVIEW OF THE PRIOR ART

A. Huang

63. U.S. Patent Application No. 2007/0118844 to Jin Huang et al.

(“Huang”) is titled “Designer and Player for Web Services Applications.” (Ex-1005,

Cover (54).) Huang relates to a system that generates browser-based applications

that execute in web browsers that utilize web services to allow for interoperability

between systems having different operating systems. (Id., ¶¶[0003], [0007].)

64. Huang discloses a “computer enabled system for developing and

executing browser-based software applications.” (Ex-1005, ¶[0040].) Huang’s

system includes a browser 101 running a designer 104, which generates an

Ex. 1002
Page 034 of 153

32

application 111 that will be executed on player 106, which also executes within

browser 101, and where the browser communicates with an application server

1203:

(Ex-1005, Fig. 1A; see also id., ¶¶[0040]–[0043].)

65. Huang discloses providing a player to an internet browser and

providing an application that is loaded into the player for execution. (Ex-1005,

¶¶[0040]-[0042].) Although Huang’s disclosures focus on a browser-based

embodiment, Huang explains that its system is “not so limited” to web browsers.

3 Where appropriate, I have color coded text and any corresponding aspects of
figures in the same color. Otherwise, I have annotated figures using yellow
highlighting.

Ex. 1002
Page 035 of 153

33

(Id., ¶[0008].) A POSITA would have understood that alternatives to browser-based

embodiments would include native applications designed to run within the runtime

environment of a device.

66. For the browser-based embodiment, Huang explains that the player

“execute[s] in a conventional internet browser” and “provides a user interface which

executes a browser based application.” (Id., ¶[0040].) More specifically, the

designer creates applications that “are stored in Extensible Markup Language

(XML) format as XML definitions 122 in a database 124, and loaded into Player 106

as the application 111.” (Id., ¶[0042].)

67. It is my opinion that a POSITA would have understood that XML is

device-independent code. In particular, a POSITA as of April 2008 would have

understood that XML is a data structure that uses markup language with tags to

specify the content and structure of the data and that XML is designed to operate

across platforms and devices. (Ex-1026, 4:3-8 (“[d]ata that complies with the XML

Standard is platform-independent because the data’s content and structure is

specified by the tags”); see also id., 3:64-4:3 (“[D]ata types 216 are platform-

independent because they comply with the XML Standard.”).)

68. Huang also explains that its Player includes a “WS Player 112

component,” which “allows applications executing in the Player 106 to interact with

web services by, for example, looking up a value from a web service and storing the

Ex. 1002
Page 036 of 153

34

value in an application component associated with the application 111, or inserting,

updating, or deleting a value in a web service object, where the value is specified by

an application component.” (Id., ¶[0054].) Thus, the Player allows the XML

applications to interact with web services.

69. Huang explains that the application has “application components” that

are bound to web service object attributes. (Ex-1005, ¶[0042].) A POSITA would

have understood that Huang describes “application components” as visual elements

that may serve as user interfaces, both to input data and to display data. (E.g., Ex-

1005, ¶[0057] (“The application component includes a value 192, which is displayed

to a user and may be set by a user, e.g., as a value of a text box or of a drop-down

list.”).) These application components are “bound” to web service attributes—in

Figure 1B, application component 170 is bound to attribute 155 of web service 156.

(Id., ¶[0056].) Such “bindings,” such as binding 193, are “a two-way mapping which

specifies that a particular web service attribute 155 can be set to the value 192 of the

application component 170, and, conversely, that the value of the application

component 170 can be set to the value of the attribute 155.” (Id.) A POSITA would

have understood that these web service attributes correspond to the inputs and

outputs of a web service in view of Huang’s disclosure that these bindings allow the

application to “set and get values of the attribute 155 of the web service.” (Id.,

¶¶[0047], [0058], [0106]-[0107]; Figs. 4A-4C.)

Ex. 1002
Page 037 of 153

35

70. Figure 1B of Huang shows the relationship between the elements of

Huang’s system when interacting with a web service. As can be seen in the figure

below, application component 170 can get or send a data value (shown in the two-

way arrow) via server 120 to web service 156. More specifically, application

component 170 is bound to attribute 155 of web service object 153 and can send

an input to web service 156 (set the value of attribute 155 to the value of the

application component 170) or get an output from web service 156 (get the value

of attribute 155 and insert it into the value of application component 170):

(Ex-1005, Fig. 1B.)

Ex. 1002
Page 038 of 153

36

71. Huang implements an abstraction layer that allows applications to

directly interact with generic objects that are mapped to vendor-specific inputs and

outputs. (Ex-1005, ¶[0074].) By taking this approach, an application is not tied to

any particular web services vendor. (Id.; see also id., ¶[0057] (“To allow the

Designer 104 and Player 106 to be vendor-independent and work with multiple web

services without the need for vendor-specific code in the Designer 104, the Player

106, or the Internet Browser 101, a Generic WS Object 130 is provided in the server

120.”).) Huang explains that this enables applications to “build composite software

applications which draw objects from several different organizations.” (Id.,

¶[0008].) Huang further discloses “adapters” that relate the generic objects to the

vendor-specific objects needed to access a web service. (Id., ¶[0044].) Huang

explains that these relationships are stored as an XML definition or an XML

mapping file and is generated from, for example, a WSDL description of the web

service using known methods (such as the WSDL2Java command line tool). (Id.,

¶[0045].)

72. Huang further discloses that its generic objects for web components and

their attributes are assigned names that are used to relate application components to

the generic objects and the generic objects to the vendor-specific objects. For

example, Huang describes the “Opportunity object type” offered by an exemplary

Ex. 1002
Page 039 of 153

37

web-service vendor (Salesforce) and identifies attributes of that web object as

“OpportunityName” and “OpportunityId.” (Ex-1005, ¶¶[0044], [0047].)

73. Huang, through Figures 3 and 4A-4D and associated text, provides an

example of how a user may bind an application component to a web service. In

Figure 3, Huang shows that the user identifies the web-service vendor and provides

the location of the web service via a uniform resource locator:

(Ex-1005, Fig. 3.)

Huang explains that “FIG. 3 is an illustrative drawing of defining a web service

connection in an application Designer,” where “[a] Connection screen 302 of a web

services builder is shown, which allows a user to define parameters for

communication with a web service, including a vendor 304 of the web service, [and]

a URL 306 of the web service,” among other things. (Ex-1005, ¶[0105].)

74. Figure 4A of Huang shows a dropdown menu of the identifiers for

various web service objects located from the web service vendor and web service

Ex. 1002
Page 040 of 153

38

URL described in Figure 3. (Ex-1005, ¶[0106].) In Figure 4A, the user has selected

“[a]n Opportunity Object” from “web services object selection menu 420”:

(Ex-1005, Fig. 4A.)

75. Once a user has selected a web service object, the user then selects the

application component that will be bound to a web service attribute. (See Ex-1005,

¶[0107].) Huang explains that “[a] user can choose an application component 420

from the selector 436, which includes a list of components of the application” (Id.):

Ex. 1002
Page 041 of 153

39

(Ex-1005, Fig. 4B.)

76. The user then can choose the attribute of the web service object that

will be bound to the application component. (Ex-1005, ¶[0108].) Huang explains

that “FIG. 4C shows a web service attribute selector 446 of the data binding screen

402,” where “[a] binding is created by selecting an application component and a

web service attribute using the application component selector 430 and the web

service attribute selector 440, respectively” (Id.):

Ex. 1002
Page 042 of 153

40

(Ex-1005, Fig. 4C.)

77. Figure 4D of Huang shows multiple bindings that have been defined

between various application components (“OppNameTextArea,”

“DescriptionTextArea,” “StageTexArea,” and “ClosedCheckbox”) and attributes

(“Name,” “Description,” “StageName,” “IsClosed”) of the web service object

(“Opportunity”):

Ex. 1002
Page 043 of 153

41

(Ex-1005, Fig. 4D.)

78. Huang incorporates by reference U.S. Patent Application No.

11/241,073 to Pawan Nachnani et al., which provides additional details regarding

Huang’s system. (Ex-1005, ¶[0006] (“See commonly owned Patent Application

entitled ‘Browser Based Designer and Player,’ filed Sep. 30, 2005, inventors Pawan

Nachnani et al., Ser. No. 11/241,073, incorporated herein by reference in its

entirety, which describes a method of building software applications. The sort of

software applications disclosed in that Patent Application may also be used in the

system of the present disclosure.”).) Huang points to Nachnani as describing “[t]he

sort of software applications … [that] may also be used in the system of the present

disclosure [of Huang],” further explaining that Huang discloses the “use of web

services in software applications built using the methods described in [Nachnani]

Ex. 1002
Page 044 of 153

42

referenced above”; that “[t]he system [of Huang] includes a Designer 104 and a

Player 106, as described in [Nachnani,] referenced above”; and that Huang’s “XML

definitions are described in [Nachnani],” among other things. (Ex-1005, ¶¶[0006],

[0040], [0042].) In my opinion, a POSITA would have understood that Huang

incorporates by reference the entirety of the disclosures of Nachnani, including for

the reason that Huang expressly and unequivocally states that it is doing so and

makes specific reference to Nachnani regarding the descriptions of Huang’s

designer, player, applications, and the method of building Huang’s applications. To

the extent that Huang is deemed not to incorporate Nachnani in its entirety, a

POSITA would have understood that Huang incorporates at least the portions of

Nachnani describing the player, designer, application, and the method of building

the application. The ’073 application published as U.S. Patent Application

Publication No. 2007/0079282 (“Nachnani”).

79. Nachnani explains that the “Player UI … executes an application 135”

and “presents the application 135 to a user 130 via the web browser.” (Ex-1006,

¶[0040].) Figure 8 of Nachnani further shows that the “Player UI” operates on a

“Client Computer,” and operates to “present[] user interface portions of the clients

to a user.” (Id., ¶[0097] & Fig. 8.)

80. Nachnani further elaborates on the code and operation of the player and

application. Nachnani confirms that an application is specified or defined “using

Ex. 1002
Page 045 of 153

43

Extensible Markup Language (XML).” (Id., ¶[0045]; see also id., ¶¶[0052], [0056],

[0063], [0103]-[0104].) Nachnani also confirms that a “web browser 832 … run[s]

an Application Player client 833” and that “[a] user interacts with the Application

Player client 833 to provide data to an application and view data associated with the

application.” (Id., ¶[0097].) Nachnani further states that “[t]he Player Client 833

allows users to load and execute application definitions and save and load

application data.” (Id.) The Player Client 833 “presents user interface portions of

the clients to a user, executes any code associated with the clients, e.g. JavaScript

code, allows the user to interact with the client user interfaces, and sends any results

of the user interaction to the server.” (Id.)

81. Nachnani provides further details regarding the application

components utilized in Huang. Figure 2A from Nachnani is reproduced below:

Ex. 1002
Page 046 of 153

44

(Ex-1006, Fig. 2A.)

82. Nachnani explains that “[a]n application 200 may include at least one

StandardArea 202. A StandardArea 202 includes area properties 240 and at least

one component 204.” (Ex-1006, ¶[0041].) Nachnani further explains that

“component 204 is a user interface element of a specific type,” such as “a Label,

Text Box, Text Area, Radio Button, Check Box, Select List (e.g. a drop-down list),

File Attachment, button, Image, or link,” and “has associated properties,” which are

shown in the table below (Ex-1006, ¶[0042]):

Ex. 1002
Page 047 of 153

45

(Ex-1006, ¶[0042].)

Nachnani explains that “[t]he component properties 208 include a name property,

which uniquely identifies the component within the area 204, a type property, e.g.

label or text box, a label property, the value of which is displayed in the user interface

for some component types, such as the label component type.” (Ex-1006, ¶[0043].)

Nachnani continues that the “component properties 208 also include rowindex and

Ex. 1002
Page 048 of 153

46

colindex properties, which indicate the position of the component within the area, a

hidden property, which indicates whether the component is to be displayed or hidden

in the Player UI, and a datalinkage property, which indicates a source of values for

the component, e.g. a database column containing values for a selection list, a

datatype property, which indicates the permitted type of the value 206, and a required

property, which indicates whether a value is required for the component 204.” (Id.)

83. Nachnani also describes that these components “may include a link”

and that “the link may refer to a web service, and the client program may receive the

data value from the web service in response to a user action.” (Ex-1006, ¶[0019].)

Nachnani explains that “[t]he link 142 may send or receive the data value 142 to or

from the application 146, the web page 148, or the web service 150, in response, for

example, to input from the user 130.” (Id., ¶[0040]; see also id., ¶¶[0087]

(“Applications created using the Application Designer can invoke Web Services

when executed in the Application Player. In a typical Web services scenario, an

application sends a request to a service at a given URL using the Simple Object

Access Protocol (SOAP) over HTTP. The service receives the request, processes it,

and returns a response.”), [0088] (“The Web Service may provide a value for the

component, or, vice versa, the component may provide a value for the Web

Service.”).)

Ex. 1002
Page 049 of 153

47

B. Shenfield

84. U.S. Patent Application Publication No. 2006/0200749 to Michael

Shenfield (“Shenfield”) is titled “System and Method for Conversion of Generic

Services’ Applications into Component Based Applications for Devices.” (Ex-1007,

Cover (54).) Shenfield, in relevant part, addresses web applications capable of

providing access to web services to the then-emerging class of Internet-accessible

devices, such as mobile phones and other devices with wireless communication

capabilities. (Id., ¶[0002].)

85. Shenfield recognizes that devices like cell phones generally have

restricted resources and less computing power than, for example, personal

computers, creating a tension between resource intensive solutions that promote

interoperability (e.g., solutions that hinder data persistence and require rendering

screens at runtime) and device capabilities. (Ex-1007, ¶¶[0002]-[0003].) Shenfield

explains that certain solutions “have the advantage of being adaptable to operate on

a cross-platform basis for a variety of different devices, but have a disadvantage of

requesting pages (screen definitions in HTML) from the Web Service, which hinders

the persistence of data contained in screens” and that “screens are rendered in

runtime, which can be resource intensive.” (Ex-1007, ¶[0003].) On the other hand,

“[n]ative applications have the advantage of … providing a relatively optimized

Ex. 1002
Page 050 of 153

48

application program for each runtime environment” but “have disadvantages of not

being platform independent.” (Id.)

86. In relevant part, Shenfield discloses representing “a compiled web

application 107 into a series of descriptors using a selected structured definition

language (e.g. XML),” which the device receives as a “series of the interactively

defined components 400, 402, 404, 406,” and executes on a device “to operate as the

client application 105 for communication with the web service(s) through

messaging.” (Id., ¶¶[0022]-[0023].) Shenfield explains that “data components 400

define entities which are used by the component application program 302.” (Ex-

1007, ¶[0041].) Shenfield explains that presentation components “define the

appearance and behavior of the component applications 105 as it is displayed by the

user interface 202.” (Ex-1007, ¶[0043].) Shenfield also explains that workflow

components define “presentation workflow and message processing,” and are

“written as a series of instructions” that can “support[] a correlation between the

messages and defines application flow as a set of rules for operations on the other

components.” (Ex-1007, ¶[0045].) Shenfield further explains that its “component

applications 105 may be executed as native code or interpreted by another software

module or operating system on the device 100.” (Ex-1007, ¶[0029].)

87. Shenfield further explains that these components may be device-

independent and apply across different devices or platforms but may also utilize

Ex. 1002
Page 051 of 153

49

platform-specific elements suited for particular runtime environments. Shenfield

states that the above-described components “can be hosted in a Web Service 106

registry in a metadata repository 700 (see FIG. 1) as a bundle of platform-neutral

data 400, message 404, workflow 406 component descriptors with a set of platform-

specific presentation component 402 descriptors for various predefined client

runtimes (i.e. specific runtime environments 206—see FIG. 2).” (Id., ¶[0044].)

Shenfield also states that workflow components, “similar to the multiple presentation

components 403a, 403b, 403c, can define differing work flows based upon different

supported capabilities or feature of particular devices 100.” (Id., ¶[0045].)

88. By utilizing both device-independent and device-dependent elements,

Shenfield achieves its objective of “application programs, other than page-based

applications, that can be run on client devices having a wide variety of runtime

environments, as well as having a reduced consumption of device resources.” (Ex-

1007, ¶[0005].) Specifically, “the component application 105 model combines the

simplicity of browser-based applications with the efficiency of native application

execution.” (Id., ¶[0054].)

Ex. 1002
Page 052 of 153

50

X. THE PRIOR ART DISCLOSES OR SUGGESTS ALL OF THE
FEATURES OF THE CHALLENGED CLAIMS

A. Grounds Challenging Claims 1, 3, 5-7, 11-12, 14, 16-18, and 22 of
the ’755 Patent

89. I understand that the Petition is challenging claims 1, 3, 5-7, 11-12, 14,

16-18, and 22 of the ’755 patent on one ground.

90. In Ground 1, I explain how claims 1, 3, 5-7, 11-12, 14, 16-18, and 22

of the ’755 patent are obvious over the system in Huang disclosing a designer and

player for browser-based web services applications as modified by utilizing a web

services registry and implementing device-dependent components as a runtime

player, as disclosed in Shenfield. I further explain that a POSITA would have been

motivated to make such modifications, especially in view of the needs of emerging

Internet-accessible devices, and that a POSITA would have had a reasonable

expectation of success due to, among other things, the similarities in the underlying

technologies of Huang and Shenfield.

B. Ground 1: Huang in View of Shenfield Render Claims 1, 3, 5-7,
11-12, 14, 16-18, and 22 of the ’755 Patent Obvious

91. I have reviewed Huang and Shenfield, and it is my opinion that Huang

in view of Shenfield discloses or suggests, and therefore renders obvious, all of the

features recited in claims 1, 3, 5-7, 11-12, 14, 16-18, and 22 of the ’755 patent.

Ex. 1002
Page 053 of 153

51

1. Claim 1

a. [1.pre] “A system for generating code to provide content
on a display of a device, said system comprising:”

92. I understand that the phrase “[a] system for generating code to provide

content on a display of a device, said system comprising:” is the preamble to claim

1. I have been asked to assume that the preamble is a claim limitation. Under that

assumption, it is my opinion that Huang discloses this limitation.

93. Huang expressly discloses a system. Specifically, Huang states that

“FIG. 1A is an illustrative drawing of a computer enabled system for developing and

executing browser-based software applications.” Figure 1A of Huang, reproduced

below, shows a system that includes designer 104 (which executes within web

browser 101) that generates Application XML Definitions 122 which are loaded

into player 106 as application 111. Player 106 also executes within one or more

web browser[s] 101:

Ex. 1002
Page 054 of 153

52

(Ex-1005, Fig. 1A; see also id., ¶¶[0040]-[0043].)

94. It is my opinion that a POSITA would have understood that Huang

discloses that its system generates code. Huang explains that “[e]ach element or

component shown in FIG. 1A is a software computer program entity to be executed

on a computer” (Ex-1005, ¶[0040].) and that Designer 104 includes “a wizard …

which creates the binding or mapping of meta-information to generate composite or

other software applications.” (Ex-1005, ¶[0008].) From these disclosures that

Huang’s system generates application 111, which is a “software computer program

entity to be executed on a computer,” and that Designer 104 “generate[s] composite

or other software applications,” a POSITA would have understood that Huang’s

Ex. 1002
Page 055 of 153

53

designer generates computer code because software that executes on a computing

device is, at bottom, written in code.

95. Huang further discloses that Designer 104 generates applications in

XML format. (Ex-1005, ¶[0040].) A POSITA would have understood that XML is

a type of computer code and, therefore, Designer 104 generates computer code in

the form of XML applications.

96. It is also my opinion that Huang discloses that this code provides

content on a display of a device. As discussed below, Huang’s disclosures would

have been understood to demonstrate that Huang’s player presents a user interface

for content defined by Huang’s applications.

97. For example, and as discussed more fully below, Huang discloses that

“Player 106 is a computer program that provides a user interface which executes a

browser based application 111, which can receive values from web services, send

values to web service, and invoke other operations provided by web services.” (Ex-

1005, ¶[0040]) A POSITA would have understood that “provid[ing] a user

interface” involves displaying content. A “user interface” in the computing arts

generally refers to how a user and a computer system interact. In the context of

Huang, which relates to a “computer program that provides a user interface” as

previously mentioned, a POSITA would have understood that the software presents

Ex. 1002
Page 056 of 153

54

visual elements that present the user with data that application 111 obtains from a

web service or allow the user to input values which is sent to the web service.

98. Huang also discloses that “Player 106 execute[s] in a conventional

Internet Browser 101, which may be, for example, Microsoft Internet Explorer or

Mozilla FirefoxTM.” (Ex-1005, ¶[0040].) A POSITA would have understood that

an Internet Browser is a software component intended to visually display HTML

pages to a user. In the context of Huang’s Player, which as discussed above is a

“computer program that provides a user interface,” and applications, which are

“browser-based applications,” a POSITA would have understood that the fact the

Player is being executed in a web browser to provide a user interface for browser-

based applications means that it uses the browser and player to visually display the

user interface for the application.

99. Further, Nachnani, which Huang incorporates by reference (Ex-1005,

¶[0006]), further confirms that Huang discloses a method for displaying content on

a display of a device. Nachnani explains that the “Player UI … executes an

application 135” and “presents the application 135 to a user 130 via the web

browser.” (Ex-1006, ¶[0040].) Thus, a POSITA would have understood that

Nachnani confirms that the “Player UI” provides a visual display through the web

browser of the content defined in the application. Figure 8 of Nachnani further

Ex. 1002
Page 057 of 153

55

shows that the “Player UI” operates on a “Client Computer,” and operates to

“present[] user interface portions of the clients to a user.” (Id., ¶[0097] & Fig. 8.)

b. [1.a] “computer memory storing a registry of: a)
symbolic names required for evoking one or more web
components each related to a set of inputs and outputs of
a web service obtainable over a network, where the
symbolic names are character strings that do not contain
either a persistent address or pointer to an output value
accessible to the web service, and b) the address of the
web service”

100. It is also my opinion that, to the extent Huang does not expressly

disclose a registry, a POSITA would have found it obvious to modify the system of

Huang to include a computer memory storing a registry of symbolic names required

for evoking one or more web components each related to a set of inputs and outputs

of a web service obtainable over a network, where the symbolic names are character

strings that do not contain either a persistent address or pointer to an output value

accessible to the web service and the address of the web service.

101. As discussed above, I am informed that the district courts construed the

term “registry” to mean “a database that is used for computing functionality,” the

term “web component” to mean “software objects that provide functionalities of a

web service”, “web service” to mean “a software system that supports interaction

between devices over a network”, and “for evoking one or more web components”

to mean “for calling up one or more web components.” In my opinion, Huang in

Ex. 1002
Page 058 of 153

56

view of Shenfield renders limitation 1.a obvious under the district courts’

constructions of these terms.

102. For clarity, I have attempted to address each aspect of element 1.a

separately in my analysis below.

(i) “computer memory storing a registry of”

103. In my opinion, Huang in view of Shenfield render a computer memory

storing a registry obvious. As discussed below, to the extent Huang does not

expressly disclose a registry, a POSITA would have found it obvious to modify

Huang’s system to include a registry, such as the registry disclosed in Shenfield.

104. Huang discloses a computer memory. For example, Huang recites that

“[a]pplications created by the Designer 104 are stored in Extensible Markup

Language (XML) format as XML definitions 122 in a database 124, and loaded into

the Player 106 as the application 111.” (Ex-1005, ¶[0042].) Figure 1A is reproduced

below, showing database 124.

Ex. 1002
Page 059 of 153

57

(Ex-1005, Fig. 1A.)

105. A POSITA would have understood that Huang’s database 124 is a

computer memory. Huang’s disclosure that database 124 stores computer code in

the form of XML definitions of Huang’s applications (Ex-1005, ¶[0042]; see also

id. ¶[0040] (identifying all components in Figure 1A, including “applications,” as

“software computer program entit[ies]”)) indicates that database 124 serves as a

computer memory that is a repository of computer data, which in this case are the

XML definitions of Huang’s applications.

Ex. 1002
Page 060 of 153

58

106. Shenfield expressly discloses web services registries. Specifically,

Shenfield explains that “web service 106 can be defined as a software service, which

can implement an interface such as expressed using Web Services Description

Language (WSD) registered in a Universal Discovery Description and Integration

(UDDI) services registry.” (Ex-1007, ¶[0025].) The UDDI registry is a well-known

registry that provides listings of information necessary to connect a web service,

such as its network location, its capabilities, and communication semantics. (E.g.,

Ex-1019, ¶[0006].) Shenfield further states that “[t]he application definition of the

components 400, 402, 404, 406 of the component applications 105 can be hosted in

a Web Service 106 registry in a metadata repository 700 (see FIG. 1) as a bundle of

platform-neutral data 400, message 404, workflow 406 component descriptors with

a set of platform-specific presentation component 402 descriptors for various

predefined client runtimes (i.e. specific runtime environments 206—see FIG. 2).”

(Ex-1007, ¶[0044].) A POSITA would have understood that the “registr[ies]”

disclosed in Shenfield, such as the UDDI registry, are structured sets of data (i.e.,

databases) relating to computer functionality—in this case, accessing web services.

(See, e.g., Ex-1018, 90 (“The [UDDI] specifications offer users a unified and

systematic way to find service providers through a centralized registry of services

that is roughly equivalent to an automated online ‘phone directory’ of web

services.”).)

Ex. 1002
Page 061 of 153

59

107. It is also my opinion that Shenfield discloses a similar, analogous

computer memory, on which a registry is stored. Shenfield also explains that “[t]he

application definition of the components 400, 402, 404, 406 of the component

applications 105 can be hosted in a Web Service 106 registry in a metadata

repository 700 (see FIG. 1) as a bundle of platform-neutral data 400, message 404,

workflow 406 component descriptors with a set of platform-specific presentation

component 402 descriptors for various predefined client runtimes (i.e. specific

runtime environments 206—see FIG. 2).” (Ex-1007, ¶[0044].) Figure 1 from

Shenfield is reproduced below, identifying metadata repository 700, which is also

referred to as “Application Repository 700”:

Ex. 1002
Page 062 of 153

60

(Ex-1007, Fig. 1.)

108. Thus, Shenfield discloses that a registry can contain the information

necessary to access a web service and a POSITA would have understood that the

registry can be stored on a computer memory similar to Huang’s database 124

because Huang’s database 124 shares a number of parallels with Shenfield’s

application repository 700. Specifically, Shenfield discloses that its application

components are stored in application repository / metadata repository 700 much like

Huang stores the XML definitions of its applications in database 124 (Ex-1005,

¶[0042]; Ex-1007, ¶[0044]) and, therefore, store the same type of data. Both

Ex. 1002
Page 063 of 153

61

memory stores also function similarly, receiving data from the system (Huang’s

applications or Shenfield’s component applications) and provide them to the end-

user. (See Ex-1005, Fig. 1a; Ex-1007, Fig. 1.) Further, both computer memories are

arranged and connected within the system in a substantially similar manner—both

are identified as stand-alone components in communication with both the system

and end-user. (See Ex-1005, Fig. 1a; Ex-1007, Fig. 1.) Accordingly, these are

analogous computer memories where a POSITA would have found modifying

Huang’s system to store a registry within database 124 obvious. I refer to my

analysis below regarding the motivation to combine Shenfield’s registry with

Huang’s system for additional analysis. (Infra Section X.B.1.b(v).)

(ii) “[a registry of]: a) symbolic names required for
evoking one or more web components each related
to a set of inputs and outputs of a web service
obtainable over a network”

109. Element 1.a of claim 1 also requires that the registry include “symbolic

names required for evoking one or more web components each related to a set of

inputs and outputs of a web service obtainable over a network.” (Ex-1001, Claim

1.) As noted above, the district courts construed the term “web component” to mean

“software objects that provide functionalities of a web service,” “web service” to

mean “a software system that supports interaction between devices over a network,”

and the phrase “for evoking one or more web components” as “for calling up one or

more web components.” (Supra Section VII.) In my opinion, Huang in view of

Ex. 1002
Page 064 of 153

62

Shenfield renders a registry of symbolic names required for evoking one or more web

components each related to a set of inputs and outputs of a web service obtainable

over a network obvious under the district courts’ construction.

110. In my opinion, Huang discloses “web services” as construed by the

district courts (“a software system that supports interaction between devices over a

network”). Huang explains that “web services” are “computer application

(software) component[s] accessible over open protocols.” (Ex-1005, ¶[0003].) And

Huang continues that “[w]eb services are intended for purposes of interoperability,

for instance for enterprise application integration and business-to-business

integration.” (Id.) A POSITA would have understood that these disclosures indicate

that the “web services” disclosed in Huang are software systems that support

interaction between devices over a network. Huang confirms this understanding,

further stating that “[w]eb services are web-based enterprise applications that use

open XML standards and transport protocols to exchange data with calling clients

(programs).” (Id., ¶[0005].)

111. In my opinion, Huang discloses web components. For example, Huang

discloses a “list of selected web services object instances” (Ex-1005, ¶[0109]) and a

“list of objects provided by a web service” (id., ¶[0043]), which are the individual

services obtainable from a vendor. (See also id., ¶[0109].) Figure 4A, reproduced

Ex. 1002
Page 065 of 153

63

below, shows a list of web service objects from which a user may select a web

object.

(Ex-1005, Fig. 4A.)

In this example, the user has selected the “Opportunity” object from the Salesforce

web service. Figure 4A shows that the Salesforce web service, at least in this

example, contains multiple separate services and thus multiple web objects (web

components).

112. A POSITA would have understood that the “objects” disclosed in

Huang are web components. The list of “objects” obtained from a web service

“include data and operations (logic), in another organization’s computer system.”

Ex. 1002
Page 066 of 153

64

(Ex-1005, ¶[0007].) Accordingly, a POSITA would have understood that these

objects are individual functionalities offered by a web service that carry out specific

tasks within that web service.

113. Further, Figures 1B and 1C, reproduced below, further indicate that

Huang’s web objects are individual functionalities within a suite of web services

offered by a vendor.

(Ex-1005, Figs. 1B, 1C.)

As can be seen in the figures, web service object 153 and the “Opportunity” object

177 are an individual element of what is offered by the vendor web service 156 or

the Salesforce Web Service 147.

Ex. 1002
Page 067 of 153

65

114. It is also my opinion that Huang discloses that its web objects (which a

POSITA would have understood are the claimed web components) are each related

to inputs and outputs of the web service. Huang states that each web service object

has attributes. (Ex-1005, ¶[0047] (“[W]eb service data is represented as objects with

attributes.”).) Huang further explains that a user may “define bindings 102 between

components of the application, e.g. buttons and tables, and web service attributes,

e.g. values that can be stored in or retrieved from web services.” (Id., ¶[0055].)

More specifically, Huang explains that “[t]he binding 193 associates a value 192 of

an application component 170 with an attribute 155 of a web service 156” and

that “[t]he binding is a two-way mapping which specifies that a particular web

service attribute 155 can be set to the value 192 of the application component

170, and, conversely, that the value of the application component 170 can be set to

the value of the attribute 155”—i.e., application component 170 can be an input

that sends a value to web service 156 and sets the corresponding value of the web

service (attribute 155) equal to the value of the application component 170, or the

application component 170 can receive an output of the web service 156 by the

application component 170 being set to a value equal to what is in the

corresponding value of the web service (attribute 155). (Id., ¶[0056]; see also id.,

¶[0057] (“setting and getting the value of a web service attribute 155 associated

with a web service object 153”).) This two-way flow of data between value 192 of

Ex. 1002
Page 068 of 153

66

application component 170 and attribute 155 via server 120 can be seen in, for

example, Figure 1B reproduced below.

115. For example, Huang discloses in one example that “there could be an

object named Opportunity with attributes named OpportunityName and

OpportunityId.” (Ex-1005, ¶[0047].) Huang further explains that Figure 1C shows

that “binding 175 is represented as an association between a component 145, named

OppNameTextArea, and a web service attribute 146, named OppName,” which is

a part of the Salesforce web service 147. (Id., ¶[0068].)

Ex. 1002
Page 069 of 153

67

(Ex-1005, Fig. 1C.)

116. Huang also explains that Appendix D (Ex-1005, ¶[0139]) shows an

example XML element format for attribute bindings (Ex-1005, ¶[0059]):

Ex. 1002
Page 070 of 153

68

(Ex-1005, ¶[0139].)

117. In view of Huang’s discussion of attributes (which are the inputs and

outputs of a web service) being part of a web object (the claimed web component)

(Ex-1005, ¶[0047]) and that application components are bound to attributes such that

the application component can get or set a value of the web service (id., ¶¶[0055]-

[0057], [0059], [0068], [0139], Figs. 1B-1C), a POSITA would have understood that

Huang’s web objects (web components) are associated with and relate to inputs and

outputs of a web service in the form of attributes.

118. It is also my opinion that Huang discloses that the identifiers for its web

objects (which are the claimed web components) and their attributes (the claimed

Ex. 1002
Page 071 of 153

69

inputs and outputs of a web service) are identified by symbolic names. As discussed

above, Huang discloses that each web object (e.g., “Opportunity”) are web

components that are associated with a plurality of attributes (e.g.,

“OpportunityName” and “OpportunityId”), which are the inputs and outputs of the

web service. (E.g., Ex-1005, ¶[0047]; supra Section X.B.1.b.) Huang provides an

example describing the “Opportunity” web object from the Salesforce web service

as having a list of “Data Sources,” which Huang explains are its attributes. (Ex-

1005, ¶[0108] (“Note that the web service attribute is referred to as a Data Source in

FIG. 4C.”); see also id. ¶¶[0106] (“An Opportunity object 418 has been selected by

the user.”), [0107] (“FIG. 4B shows a data binding screen 402, which allows a user

to establish binding between application components (also referred to herein as

controls), and as attributes of the selected web service object 416 that was selected

in the screen of FIG. 4B.”).)

Ex. 1002
Page 072 of 153

70

(Ex-1005, Fig. 4C.)

119. It is my opinion that a POSITA would have understood that the names

of a web object, such as “Opportunity,” and the names of attributes (or “Data

Sources”), such as “Name” and “NextStep” shown in Fig. 4C, are symbolic names.

Each of these names are a series of symbols/character strings, which in these

examples are letters of the alphabet forming descriptors that can be understood by

humans.

120. It is also my opinion that Huang explains that these symbolic names are

required for evoking or calling up one or more web components each related to a

set of inputs and outputs of a web service. Huang discloses that application

components, which are bound to the symbolic names of Huang’s web objects (web

components) and attributes (inputs and outputs of a web service) (supra X.B.1.b),

Ex. 1002
Page 073 of 153

71

“can be configured to invoke a web service” (Ex-1005, ¶[0073]) and that Huang’s

system utilizes “generic web services object[s]” to “call vendor-specific objects”

(id., ¶[0074]). (See also id., ¶¶[0049] (explaining the system can “perform web

service invocations in response to user requests”), [0067] (a “script 115 [that] is

associated with a component … can also invoke web services”).) More specifically,

Huang explains that its symbolic names are elements of a generic object class and

that these generic objects serve as necessary intermediaries between Huang’s

application components and web service objects to transfer data and to evoke or call

up the web service functionality:

One approach to invoking web service object would be to

call vendor-specific objects directly from applications.

That approach requires the application to know details

about each vendor specific object, and ties the application

to a particular web services vendor. Therefore a generic

web services object is introduced. Each vendor specific

object is mapped to the generic web services object by a

definition stored in an XML mapping file. Applications

interact with the generic web services object and need not

contain hard-coded dependencies on vendor specific

objects.

Ex. 1002
Page 074 of 153

72

(Ex-1005, ¶[0074].) Huang continues that “[t]he WSObject class represent each

attribute of a vendor-specific Web Service object as a vendor-independent generic

object.” (Id., ¶[0075].)

121. Figure 1C of Huang depicts a “lookup” interaction (Ex-1005, ¶[0068])

and shows the necessity of these generic objects (symbolic names) as a bridge

between the application component 170 and the “Opportunity” web service object

177 and attribute 179 in Salesforce web service 147 for utilizing a web service

object:

(Ex-1005, Figs. 1C.)

As can be seen, the value 182 (“BigCorp”) of the application component 170

(“OppNameTextArea”) is connected to attribute 179 (“OppName”) of the

Ex. 1002
Page 075 of 153

73

“Opportunity” object 177 in Salesforce web service 147 via the generic objects

(symbolic names).

122. In my opinion, a POSITA would have understood from the above

disclosure of Huang that these symbolic names are necessary and required for

Huang’s system to call or evoke web services.

123. Huang also discloses that web service 156 is obtainable over a network.

Huang explains that its “server 120 communicates with the web services via a

network protocol.” (Ex-1005, ¶[0043].) Figure 1A of Huang also shows that web

services are accessed via a network protocol, in this case “HTTP(S)/SOAP.”

(Ex-1005, Fig. 1A.)

Ex. 1002
Page 076 of 153

74

124. Further, a POSITA would have understood that a web service is

obtainable over the World Wide Web, which is a network.

125. To the extent Huang does not explicitly disclose utilizing a registry as

recited in element 1.a, a POSITA would have found a computer memory storing a

registry of: a) symbolic names required for evoking one or more web components

each related to a set of inputs and outputs of a web service obtainable over a

network, where the symbolic names are character strings that do not contain either

a persistent address or pointer to an output value accessible to the web service, and

b) the address of the web service obvious over Huang in view of Shenfield.

126. As mentioned above, Shenfield discloses a web service registry. (Supra

Section X.B.1.b.) Indeed, Shenfield discloses that web services registries, such as

the UDDI registry, are used to obtain information regarding web service interfaces

and therefore can be used to provide the information required to bind user interface

components with the backend logic offered by web services. (Ex-1007, ¶¶[0024]-

[0025], [0042].)

127. Shenfield explains that its components may interact with web services

through communication protocols to “expos[e] relevant business logic (methods) of

the web services 106 to the component application(s) 105 provisioned on the device

100.” (Ex-1007, ¶[0024].) Shenfield also explains that “web service 106 can be

defined as a software service, which can implement an interface such as expressed

Ex. 1002
Page 077 of 153

75

using Web Services Description Language (WSDL) registered in a Universal

Discovery Description and Integration (UDDI) services registry, and can

communicate through messages with client devices 100 by being exposed over the

network 104 through an appropriate protocol such as but not limited to the Simple

Object Access Protocol (SOAP).” (Id., ¶[0025].) Shenfield further explains that

SOAP defines the format for messages that are used to call up a web service, stating

that the “SOAP request message can contain a callable function, and the parameters

to pass to the function, which is sent (according to the message and data format

described in the components 400, 404 of the component application 105) from the

client device 100, and the service 106 then returns the response message (also

according to the expected message and data format described in components 400,

404) with the results of the executed function.” (Id.; see also id., ¶[0042] (describing

message components and how message components can “uniquely represent (and

map to) WSDL messages”).) These parameters, data formats, and expected

messages are all generally described in the WSDL registered in the UDDI registry.

(Ex-1019, ¶[0006]; Ex-1018, 88-90; Ex-1020.)

128. Shenfield also identifies metadata or application repository 700 as a

location that can store a web service registry. (Ex-1007, ¶[0044] (“Web Service 106

registry in a metadata repository 700 (see FIG. 1) as a bundle of platform-neutral

data 400, message 404, workflow 406 component descriptors with a set of platform-

Ex. 1002
Page 078 of 153

76

specific presentation component 402 descriptors for various pre-defined client

runtimes (i.e. specific runtime environments 206—see FIG. 2).”).)

(Ex-1007, Fig. 1.)

129. A POSITA would have understood from Shenfield’s disclosures that a

web service registry provides the requisite information to interface with a web

service. As discussed above, well-known registries, such as the UDDI registry

explicitly referenced in Shenfield, provide information for, among other things, the

data formats, inputs, outputs, and communication structure to access a web service.

(Ex-1018, 89.) A POSITA also would have further understood that the registries

Ex. 1002
Page 079 of 153

77

disclosed in Shenfield provide the information necessary for Huang’s system to

identify vendor-specific objects and the generic object classes that correspond to

such objects. Indeed, Huang explains that “web service interface descriptions are

typically provided by the web service vendor in a format such as WSDL” (Ex-1005,

¶[0045]), which is the same description that Shenfield identifies is available in the

UDDI registry (Ex-1007, ¶[0025]).

130. In my opinion, a POSITA would have found it obvious to include a

registry containing Huang’s symbolic names. A POSITA would have recognized

and found it obvious (and in fact, likely necessary) that a web services registry

includes all the necessary information to interface with a web service and, in the

context of Huang’s system, the symbolic names would have been included as a part

of such necessary information. I refer to my discussion below for further discussion

of why a POSITA would have found combining Shenfield’s registry with Huang

obvious. (Infra Section X.B.1.b(v).)

(iii) “where the symbolic names are character strings
that do not contain either a persistent address or
pointer to an output value accessible to the web
service, and”

131. In my opinion, Huang discloses that its symbolic names are character

strings that do not contain either a persistent address or pointer to an output value

accessible to the web service. Huang’s names for its generic web object attributes,

such as “Opportunity,” “OpportunityName,” and “OpportunityId.” (Ex-1005,

Ex. 1002
Page 080 of 153

78

¶[0047]), are alphanumeric character strings that do not contain any address or

resource location information and, accordingly, do not include a persistent address

or a pointer to an output value accessible to the web service.

(iv) “[where the registry includes:] b) the address of the
web service”

132. In my opinion, a POSITA would have found including the address of

the web service in the registry that would be implemented in Huang’s system as

modified by Shenfield obvious.

133. Huang discloses that an address of a web service is used to locate the

web service. Specifically, Huang’s system calls for a user to input a “URL 306 of

the web service” (Ex-1005, ¶[0105]), and the system creates its generic objects

“based on [the] URL supplied” by the user (id., ¶[0077].) I reproduce Figure 3

below, showing the address of web service 156 that is used to locate a particular

web service provided by a particular vendor (Ex-1005, ¶[0077]):

Ex. 1002
Page 081 of 153

79

(Ex-1005, Fig. 3.)

Huang explains that “[t]he URL refers to a web service provided by a particular

vendor” and, once this URL is inputted, the system “retrieves objects from the web

service via a communication protocol such as SOAP (Simple Object Access

Protocol) over HTTP (HyperText Transfer Protocol).” (Id.)

134. Similarly, Shenfield also discloses that an address of a web service is

used to locate the web service through its reference of an “interface such as

expressed using Web Services Description Language (WSDL) registered in a

Universal Discovery Description and Integration (UDDI) services registry.” (Ex-

1007, ¶[0025].) A POSITA would have understood that the WSDL description of a

web service would include the web address of where to access the web service. (E.g.,

Ex-1018, 89 (listing “the network address” as a necessary piece of information”);

Ex-1019, ¶[0006] (UDDI may provide “the location of the web service (e.g., its URI

specified by a specific network destination address or name)”).)

135. In my opinion, a POSITA would have found including the address of

the web service in the registry of the modified Huang-Shenfield system obvious

because a POSITA would have been motivated to—and, in fact, recognized that it

would have been necessary to—include this information in the registry and would

have had a reasonable expectation of success because this is standard information

included in registries and would not be expected to interfere with the operation of a

Ex. 1002
Page 082 of 153

80

system. I also refer to my analysis below as to why a POSITA would have found

modifying Huang’s system to include a registry obvious. (Infra Section X.B.1.b(v).)

(v) A POSITA Would Have Been Motivated to
Modify Huang with Shenfield’s Registry with a
Reasonable Expectation of Success

136. It is my opinion that Shenfield and Huang are in the same field and

share objectives such that a POSITA would have been motivated to look to Shenfield

when seeking to implement the system of Huang. Shenfield, like Huang, relates to

accessing network-accessible web services. (Ex-1007, ¶[0001] (“communication of

services over a network”); Ex-1005, ¶[0002] (“This invention relates to … web

services.”).) Both also address the problem of cross-functionality across multiple

platforms. (See Ex-1007, ¶[0003] (stating need for programs “that can be run on

client devices having a wide variety of runtime environments”), ¶[0005] (same); Ex-

1005, Abstract (“allow use of web services across organizations”), ¶[0003]

(“integrating [] various software applications with one [an]other”).)

137. In my opinion, a POSITA would have found Shenfield’s disclosures of

utilizing a registry of web services to be relevant to and compatible with

implementing Huang’s system. For example, Huang discloses generating mapping

files (or adaptors) that relate its “Generic WS Object Model 130” to vendor-specific

objects by “access[ing] a WSDL (Web Service Definition Language) description for

each vendor” via, for example, SOAP. (Ex-1005, ¶¶[0008], [0044]-[0045], [0077].)

Ex. 1002
Page 083 of 153

81

Shenfield discloses accessing the same information “in a Universal Discovery

Description and Integration (UDDI) services registry” and utilizing the same

protocol “Simple Object Access Protocol (SOAP)” to allow “client devices 100” to

communicate with the web service. (Ex-1007, ¶[0025].) It is my opinion that a

POSITA would have understood that both Huang and Shenfield contemplate

utilizing the same binding information (WSDL) and interfacing with web services

using the same protocol (SOAP) and, therefore, Huang’s system could be readily

modified to utilize a web services registry, such as the UDDI registry, as disclosed

in Shenfield.

138. A POSITA would have also found it obvious to store the registry in the

modified Huang-Shenfield system in Huang’s database 124. Shenfield discloses that

a “web services 106 registry” can be stored in “application” or “metadata repository

700” of Shenfield’s system. (Ex-1007, ¶[0044] & Fig. 1.) A POSITA would have

understood that Huang’s database 124 and Shenfield’s metadata repository 700 are

analogous computer memories because, for example, both store similar types of data,

both receive applications generated by the system and deliver them to end-users, and

both are stand-alone components in communication with the system and end users

over a network. (Ex-1005, ¶[0024] & Fig. 1A (XML definitions of Huang’s

applications provided to browser-based players over a network); Ex-1007, ¶[0044]

Ex. 1002
Page 084 of 153

82

& Fig. 1 (Shenfield’s registry and bundles of component applications provided to

devices over a network).)

139. In my opinion, a POSITA would have understood that the resulting

system of Huang, as modified by Shenfield, would include Huang’s web

components, such as the “Opportunity” object in the “Generic WS Object Model

130,” which I discuss in Section X.B.1.b(ii); the symbolic names of the attributes

(which are the inputs and outputs) of a web service, such as Huang’s

“OpportunityName” and “OpportunityId” attributes for the “Opportunity” web

object, which I also discuss in Section X.B.1.b(ii); and the addresses of the web

services. As discussed above, Huang explains that its symbolic names for web

service objects (web components), and their attributes (inputs and outputs of web

services) are necessary intermediaries to interact with web services. (Supra Section

X.B.1.b(ii).) Further, a POSITA would also have recognized that the addresses of

web services, such as their URLs, would be required to access the specified web

service. (Supra Section X.B.1.b(iv); Ex-1018, 89 (listing “the network address” as

a necessary piece of information”).)

140. A POSITA would have understood that these components are necessary

for the applications of Huang’s system to interact with web services and therefore

would be necessary pieces of information that should be included within the web

service registry of the Huang-Shenfield system. Indeed, Huang confirms that such

Ex. 1002
Page 085 of 153

83

information is necessary. For example, Huang’s exemplary mapping and binding

files include the symbolic names of the web object and attributes and the web address

of a web service. (Ex-1005, ¶¶[0136], [0139].):

(Ex-1005, ¶[0139]; see also id., ¶[0059].)

141. In another example, Huang’s system requires a user to input a URL and

credentials to access a web service. (Ex-1005, ¶[0105], Fig. 3.) Huang further

discloses that its system “accesses a WSDL (Web Service Definition Language)

description for each vendor” to generate the generic objects and the mapping of the

generic objects to vendor-specific objects. (Id., ¶¶[0008], [0045].) Huang further

discloses that its “WSManager 127 may be invoked by the Designer 104, e.g., to get

a list of web service objects,” among other things. (Ex-1005, ¶[0049].) Thus, a

POSITA would have understood that Huang contemplates accessing a WSDL

Ex. 1002
Page 086 of 153

84

document and obtaining web service, web component, and web service input and

output information each time a user identified a relevant web service to generate its

generic objects, such as the “Opportunity” web service object.

142. In my opinion, a POSITA would have understood that the registry of

the Huang-Shenfield system must contain all necessary information, such as the

mapping, binding, and address information disclosed in Huang, to access a web

service because a POSITA would have understood that the registry of the Huang-

Shenfield system must provide all necessary information to access a web service to

serve its purpose as a data store of binding information. Put differently, the registry

would be unable to serve this function if it were missing critical information.

Accordingly, a POSITA would have found including the symbolic names and

address of a web service in a web services registry of the modified Huang-Shenfield

system both obvious and necessary.

143. In my opinion, a POSITA would have been motivated to implement a

registry of web services, their web components, and the symbolic names

corresponding to the inputs and outputs of the web services that relate to each web

component because utilizing a registry would improve system performance and

minimize the burdens on system resources. For example, utilizing a registry

containing the necessary information to access a web service would eliminate the

need to analyze each web service for its web components and the associated inputs

Ex. 1002
Page 087 of 153

85

and outputs every time a user attempts to locate a web service because the registry

would already contain such information. (Ex-1005, ¶[0049] (“The WSManager 127

may be invoked by the Designer 104, e.g., to get a list of web service objects.”).)

Further, a registry incorporating the address of a web service would eliminate the

need for a user to have preexisting knowledge of web service addresses. Instead, a

registry would enable a search functionality that could simplify the identification of

proper vendors that provide web services appropriate for certain criteria. Further,

because the web addresses would also be included in the registry, Huang’s system

could maintain its original functionality of using a web address as the relevant

identifier for a known web service. (Ex-1005, ¶¶[0077], [0105], Fig. 3.) A POSITA

would have been motivated to implement a registry to Huang’s system to realize

these benefits in data-processing efficiency and record-keeping relating to Huang’s

web services.

144. It is also my opinion that a POSITA would have been motivated to

implement a registry in the system of Huang because it would have been a

straightforward and conventional way to implement a system that interfaces with or

accesses a web service. For example, POSITAs were aware that symbolic names

were used for accessing various types of data and services. (Ex-1028, Abstract,

1:10-11, 1:39-40; Ex-1029, ¶¶[0005], [0032], [0035].) Therefore, a POSITA would

Ex. 1002
Page 088 of 153

86

have found implementing a registry of web components an obvious option that could

simplify and streamline data processing.

145. It is also my opinion that a POSITA would have been motivated to store

the registry in Huang’s database 124 to leverage already-existing data stores in

Huang’s system. Indeed, Shenfield’s disclosures of storing a web services registry

in application repository 700 (Ex-1007, ¶[0044]) would have directed a POSITA to

identify corresponding data stores in Huang, with database 124 being a primary

candidate that had the same relevant characteristics. At a minimum, database 124 is

a recognized computer memory that could store a registry and would have been one

of a finite number of options that could be utilized by a POSITA. Accordingly, a

POSITA would have found storing registry in database 124 obvious to try.

146. It is also my opinion that a POSITA would have reasonably expected

modifying Huang to implement a web component registry containing the symbolic

names of web components and their attributes, as well as the addresses of web

services, in database 124 to succeed. As discussed above, web service registries

were well known (e.g., Ex-1019, ¶¶[0005]-[0007], Figs. 1-2; Ex-1007, ¶¶[0025],

[0044]; see also Ex-1004, 1068-69 (explaining WSDL provides symbolic names for

web services)), such as the UDDI registry, and implementing the use of a web

component registry would have been easy in view of the knowledge of a POSITA

and unlikely to interfere with system function because the registry would provide

Ex. 1002
Page 089 of 153

87

the same information as what would be provided by Huang’s system analyzing each

vendor’s WSDL on a per request basis. Relatedly, a POSITA would have

understood that symbolic names and addresses were commonly used in registries

(Ex-1019, ¶¶[0005]-[0007], Figs. 1-2; see also Ex-1004, 1068-69 (explaining

WSDL provides symbolic names for web services)) and, therefore, a POSITA would

have understood how to implement registries and would not expect the inclusion of

a registry to interfere with the function of the system. Also, Huang’s system and

Shenfield’s system both utilize the same type of information and communication

protocol to obtain information regarding how to interface with a web component—

specifically, both utilize information in a WSDL description of the web service and

access this information using SOAP communications. (Compare Ex-1005,

¶¶[0008], [0044]-[0045], [0077] with Ex-1007, ¶[0025].) Accordingly, modifying

Huang’s system to utilize the registry disclosed in Shenfield would have been

technically compatible and easy to implement. Further, storing the registry in

database 124 would have been easy to implement because database 124 is

sufficiently analogous to application repository 700 of Shenfield’s system in terms

of relevant characteristics such that there would have been no reason for a POSITA

to believe that this would meaningfully impact the functioning of the system. It is

my opinion that, at a minimum, this modification would have been a simple

substitution of known elements to achieve predictable results.

Ex. 1002
Page 090 of 153

88

c. [1.b] “an authoring tool configured to: define a user
interface (UI) object for presentation on the display,
where said UI object corresponds to the web component
included in said registry selected from the group
consisting of an input of the web service and an output of
the web service,”

147. It is my opinion that Huang in view of Shenfield discloses or suggests

element 1b. I understand that the district courts adopted the construction of

“authoring tool” and “authoring tool configured to” to mean “a system, with a

graphical interface, for generating code to display content on a device screen,” which

is a construction to which Express Mobile agreed. (Ex-1011, 10.) Based on the

analysis below, it is my opinion that Huang in view of Shenfield renders element 1.b

obvious under the construction the district courts adopted. I address portions of

element 1.b separately for purposes of clarity.

(i) “an authoring tool configured to: define a user
interface (UI) object for presentation on the
display,”

148. In my opinion, a POSITA would have understood that Huang discloses

an authoring tool for defining a user interface (UI) object for presentation on the

display. For example, Huang discloses “defining an application component in

[Huang’s] application designer.” (Ex-1005, ¶[0103].) Huang explains that its

designer 104 (authoring tool) is a part of its system and “is a computer program that

provides a user interface which allows a user to create the application 111,” and that

these applications are stored as “XML definitions 122 in a database 124” until they

Ex. 1002
Page 091 of 153

89

are “loaded into Player 106 as the application 111” when executed. (Ex-1005,

¶¶[0040], [0042].)

(Ex-1005, Fig. 1A.)

Thus, a POSITA would have understood that Huang describes Designer 104 as a

software tool that allows a user to generate code in the form of Huang’s applications,

such as application 111 and application XML definitions 122, which are code

(XML) used to display content on the display of a device.

149. It is also my opinion that Huang’s designer 104 allows a user to define

user interface (UI) objects for presentation on the display through a graphical user

interface. Huang explains that designer 104 “provides a user interface for defining

Ex. 1002
Page 092 of 153

90

web services interactions in browser-based applications.” (Ex-1005, ¶[0054]; see

also id., ¶[0040].) For example, Huang explains that Figure 2A “is an illustrative

drawing of defining an application component in an application Designer. … The

application component 206 is a text input component and has an associated name,

204, OppNameTextArea.” (Id., ¶][0103].)

(Ex-1005, Fig. 2A.)

150. Huang also discloses that that these application components allow for

users to interact with, for example, bound web services by inputting data or display

information, such as values retrieved from a web service. (E.g., Ex-1005, ¶¶[0103]

(“The application component 206 is a text input component and has an associated

name, 204, OppNameTextArea.”), [0118] (“The application 1102 includes a Lookup

SForce Contact button 1104, which was defined using the application Designer ….

A user of the application 1102 can press the Lookup SForce Contact button 1104 to

Ex. 1002
Page 093 of 153

91

display a Selection Lookup Table for retrieving values for the application

components.”); see also id., ¶¶[0067] (describing “application component[s]”

allowing for, e.g., “lookup, insert, modify or delete” interactions), [0070] (describing

exemplary “lookup interactions”), [0073] (discussing “button” components

“configured to invoke a web service”).) Nachnani, which discloses “[t]he sort of

software applications … [that] may also be used in the system of [Huang]” (Ex-

1005, ¶[0006]), explains that each component is defined by “properties associated

with each component type” and that “the component is displayed” unless set to be

hidden (Ex-1006, ¶¶[0042]-[0043]). Accordingly, a POSITA would have

understood that Huang’s application component is a user interface (UI) object that

is defined and is presented to a user on a display.

151. A POSITA would have also understood that Huang’s designer is a

graphical user interface. The designer allows a user to generate code in the form of

Huang’s applications and does so through interactive graphical elements presented

to the user, such as what is shown in Figure 2A. As shown in Figure 2A, Huang’s

designer displays interactive graphical elements that allows a user to generate code

that defines the behavior and functionality of, for example, the “OppNameTextArea”

text input field and butts, which are elements to be displayed to a user to allow for

interaction, such as inputting text or clicking.

Ex. 1002
Page 094 of 153

92

(Ex-1005, Fig. 2A.)

(ii) “where said UI object corresponds to the web
component included in said registry selected from
the group consisting of an input of the web service
and an output of the web service,”

152. In my opinion, a POSITA would have found an application component,

which is the UI object, corresponding to the web component included in the registry

selected from the group consisting of an input of the web service and an output of

the web service obvious over Huang in view of Shenfield. As previously discussed,

a POSITA would have found modifying Huang’s system in view of Shenfield to

utilize a registry including symbolic names for Huang’s attributes, which are

identifiers for the inputs and outputs of the web service, such as “OpportunityName”

and “OpportunityId” attributes) obvious. (Supra Section X.B.1.b.)

153. It is further my opinion that Huang discloses that the UI object

corresponds to the web component. I note again that in the modified Huang-

Ex. 1002
Page 095 of 153

93

Shenfield system, this web component would have been included in the web services

registry.

154. For example, Huang discloses the “OppNameTextArea” application

component is bound to the “OppName” attribute of the “Opportunity” web service

object. (E.g., Ex-1005, ¶[0060] (“[T]he OppNameTextArea application component

is bound to the OppName web service attribute.”).) The “OppNameTextArea”

application component is an example of a UI object because Huang describes this as

“a text input component” with which a user can interact. (Id., Ex-1005, ¶[0103].)

155. The “OppNameTextArea” UI object corresponds to the “OppName”

attribute of the “Opportunity” web object, which is a web component. Specifically,

Huang explains that “[t]he binding 193 … specifies that a particular web service

attribute 155 can be set to the value of the application component 170, and,

conversely, that the value of the application component 170 can be set to the value

of the attribute 155 … as part of a web service interaction such as a lookup, insert,

update, delete, or user-defined interaction.” (Id., ¶[0056].) Put differently, the

binding allows the application component to set or input its value to the

corresponding attribute of the web service object or the application component to

get or receive the output value of the corresponding attribute.

156. For example, the correspondence between the “OppNameTextArea”

text input application component 170 (UI object) and the “OppName attribute 179

Ex. 1002
Page 096 of 153

94

(input and output of a web service) of the “Opportunity” web object 177 (web

component) from the Salesforce web service 147 can be seen in Figure 1C below,

which shows a “lookup” operation where, through binding 172 between

“OppNameTextArea” and “Opportunity’s OppName attribute,” the value of

“OppNameTextArea” is set to the value of the “OppName” attribute.

From these disclosures, a POSITA would have understood that Huang discloses that

the UI objects correspond to a web component selected from the group consisting of

an input or output of a web service.

157. Because the combined Huang-Shenfield system would utilize a registry

that includes the symbolic names of the web service object (web component) and its

attributes (inputs and outputs of a web service), the combined Huang-Shenfield

Ex. 1002
Page 097 of 153

95

system discloses and renders obvious that the application component (UI object)

corresponds to the web component included in the registry selected from the group

consisting of an input and an output of the web service.

d. [1.c] “[authoring tool configured to:] access said
computer memory to select the symbolic name
corresponding to the web component of the defined UI
object,”

158. In my opinion, Huang in view of Shenfield renders element 1.c obvious.

Huang discloses that a user, through Huang’s designer (authoring tool), selects a

symbolic name of a web object (web component) and an attribute of that web object

(input and output of the web service) that will be bound to, and thus correspond to,

the application component (the defined UI object). (Supra Section X.B.1.c.)

Further, a POSITA would have understood that the modified Huang-Shenfield

system would access the registry stored in Huang’s database 124 (computer

memory) to access the symbolic names of the relevant web service to allow for

selecting the symbolic name corresponding to the web component of the defined UI

object.

159. Huang discloses selecting the symbolic name corresponding to the web

component of the defined UI object through its authoring tool in Figures 4A-4C.

160. In Figure 4A, Huang depicts a user of designer 104 “choos[ing] a

selected web service object 416.” (Ex-1005, ¶[0106].) “[W]eb service object 416”

is a web component for the reasons discussed above. (Supra Section X.B.1.b(ii).)

Ex. 1002
Page 098 of 153

96

The user selects the symbolic names representing web components from “selection

menu 420” (Ex-1005, ¶[0106]):

(Ex-1005, Fig. 4A.)

161. The user then “choose[s] an application component 420 from the

selector 436.” (Ex-1005, ¶[0107].) In this example, the options include the

“OppNameTextArea” text input user interface (defined UI object) previously

discussed.

Ex. 1002
Page 099 of 153

97

(Ex-1005, Fig. 4B.)

162. Huang explains that “[a] binding is created by selecting an application

component and a web service attribute using the application component selector

430 and the web service attribute selector 440, respectively.” (Ex-1005, ¶[0108].)

Figure 4C shows the process of selecting the web service attribute from a list of

web service attributes shown in web service attribute selector 440. In this example,

the attribute having the symbolic name “Name” has been selected.

Ex. 1002
Page 100 of 153

98

(Ex-1005, Fig. 4C.)

163. Thus, in this example, the user of the designer selected the “Name”

(symbolic name) attribute (input and output of a web service) from the

“Opportunity” web service object (web component), which is bound to and thus

corresponds to the “OppNameTextArea” application component (defined UI

object), as can be seen in Figures 4C and 1C below.

Ex. 1002
Page 101 of 153

99

(Ex-1005, Fig. 4C.)

(Ex-1005, Fig. 1C.)

Ex. 1002
Page 102 of 153

100

164. Based on the foregoing, it is my opinion that a POSITA would have

understood that Huang discloses selecting a symbolic name from said web

component corresponding to the defined UI object.

165. As previously discussed, a POSITA would have found it obvious to

modify Huang’s system to use the registry disclosed in Shenfield and store the

registry in Huang’s database 124. (Supra Section X.B.1.b(i).) I refer to and

incorporate by reference by discussion above as if set forth herein. A POSITA would

have understood that Huang’s designer, which is the authoring tool, would access

the registry stored in the computer memory for a list of web objects and attributes in

the modified Huang-Shenfield system rather than access each vendor web service to

identify web objects and attributes.

e. [1.d] “[authoring tool configured to:] associate the
selected symbolic name with the defined UI object,”

166. It is my opinion that Huang discloses element 1.d. Huang discloses

that its designer 104, which is the authoring tool, enables a user to generate bindings

that link (and thus, associate) application components (defined UI object) with the

symbolic names of web attributes (inputs and outputs of a web service) of a web

object (web component). The establishment of a binding associates an application

component (UI object) and the symbolic name of an attribute (input and output of

a web service) of a web object (web component) to allow for the flow of data

between the web service and the UI object, as can be seen in Figure 1C below.

Ex. 1002
Page 103 of 153

101

(Ex-1005, Fig. 1C.)

f. [1.e] “[authoring tool configured to:] produce an
Application including the selected symbolic name of the
defined UI object, where said Application is a device-
independent code”

167. In my opinion, Huang discloses element 1.e. As discussed above, the

district courts construed “Application” to mean “device-independent code

containing instructions for a device and which is separate from the Player” and

“device-independent code” to mean “code that is not specific to the operating

system, programming language, or platform of a device.” (Supra Section VII.) As

discussed below, Huang discloses element 1.e under the district courts’

constructions of these terms.

Ex. 1002
Page 104 of 153

102

168. Huang discloses that its designer produces an application and that the

application is separate from a player and is a device-independent code. For

example, Figure 1A depicts the Designer 104 generating application 111 (as XML

definition 122), which is separate from and ultimately executed in player 106:

Huang discloses that the designer creates an application and that the above-discussed

associations between application components and web service attributes are “added”

to the application. (Ex-1005, ¶¶[0040], [0108].)

169. More specifically, Huang explains that its “Designer 104 is a computer

program that provides a user interface which allows a user to create the application

111.” (Ex-1005, ¶[0040].) Huang further states that the designer includes “a

Ex. 1002
Page 105 of 153

103

wizard” that “creates the binding or mapping of meta-information to generate

composite or other software applications.” (Id., ¶[0008].) A POSITA would have

understood that Huang’s references to “creat[ing]” and “generating” applications to

mean that Huang’s system produces an application.

170. In my opinion, a POSITA would have understood that Huang discloses

that its application, such as “application 111,” is written in device-independent code.

Huang identifies that its applications “are stored in Extensible Markup Language

(SML) format as XML definitions 122 in a database 124.” (Ex-1005, ¶[0042].)

171. Huang also incorporates by reference Nachnani, which provides

additional details regarding the XML code. (Ex-1005, ¶¶[0006], [0042].) Nachnani

explains that “[a]pplication definitions are specified using the Extensible Markup

Language (XML).” (Ex-1006, ¶[0045].) Nachnani contains numerous additional

disclosures that identify the application as a definition written in XML format. (Id.,

¶¶[0056] (“FIGS. 4a and 4b illustrate a schema describing a format for an application

definition according to one embodiment of the invention. The schema may be, for

example, an XML Schema describing the format of an XML document that

represents an application. An application is stored, e.g. in a database, as an XML

document that conforms to a Form schema 410.”), [0063] (“The application

definition 540 is a text document in Extensible Markup Language (SML) format and

includes nested elements definitions.”), [0097] (“In one embodiment, the Designer

Ex. 1002
Page 106 of 153

104

client 803 saves the application as an application definition 808, which is a

description of the application in a format such as XML.”), [0103] (“an application

definition in the form of an XML document”), [0104] (“uses an XML application

definition”), [0106] (“creating an XML application definition”).) Nachnani further

explains that Figure 2B shows “an XML document structure 261 [that] shows how

an application 200 … can be described using XML” and that the elements within the

application, such as the “FormComponent element 257” is also defined in XML.

(Id., ¶¶[0048], [0052].)

172. A POSITA would have understood that Huang’s disclosures (including

the disclosures of Nachnani) that its applications are XML representations disclose

that the application is written in device-independent code under the district courts’

construction that “device-independent code” is “code that is not specific to the

operating system, programming language, or platform of a device”. (Supra Section

VII.) A POSITA would have known that XML is a markup language that utilizes

metadata tags to specify the content and structure of data, and such XML

descriptions are platform independent. (Ex-1026, 4:3-8; see also id., 3:64-4:3

(“[D]ata types 216 are platform-independent because they comply with the XML

Standard.”).) Further, a POSITA would have been well aware that XML is an

important aspect of web services because it “permits cross-platform

communications,” further confirming its platform independence. (See Ex-1027, 19.)

Ex. 1002
Page 107 of 153

105

173. It is further my opinion that Huang’s application 111 provides

instructions for a device. As discussed above, Huang and Nachnani’s applications

include application components (UI objects) that interact with web services to input

or obtain values for display. (Supra Sections X.B.1.a, X.B.1.c.) A POSITA would

have understood that Huang’s applications, which contain the information for

display on a device must therefore provide instructions to the device regarding what

to display. Indeed, software components dictate the functions of hardware

components, such as a display, through the provision of instructions.

174. It is also my opinion that Huang discloses that the application contains

the selected symbolic name. In describing the process by which the bindings

between application components and selected web service attributes are established,

Huang explains that these bindings are “added to the application by pressing an Add

Data Mapping button.” (Ex-1005, ¶[0108].) Huang further explains that the

“Applications created by the Designer 104 are stored in Extensible Markup

Language (XML) format as XML definitions 122” (Id., ¶[0042]) and the XML

definitions include “bindings 102 which associate application components with web

service object attributes.” (Id.)

175. Further, Huang explains that its “[a]pplications interact with the generic

web services object” and that “each vendor-specific object is mapped to the generic

web services object by a definition stored in an XML mapping file.” (Ex-1005,

Ex. 1002
Page 108 of 153

106

¶[0074].) The relationship between Huang’s applications, the generic web services

objects, and vendor-specific objects, can be seen in, for example, Figures 1B and

1C, reproduced below, which show that the application component

“OppNameTextArea” (UI object) is bound to the symbolic names of the attribute

(input and output) (“OppName”) of a web object (web component) (“Opportunity”):

(Ex-1005, Figs. 1B-1C.)

176. In my opinion, a POSITA would have understood from Huang’s

disclosures that the symbolic name associated with defined UI object is included in

Huang’s application. A POSITA would have understood from Huang’s disclosures

that its system “add[s] to the application” the bindings between an application

component (the UI object) and a web service object attribute and that the XML

Ex. 1002
Page 109 of 153

107

definitions of the application “include bindings 102 which associate application

components with web service object attributes” as requiring that the application

contain the symbolic names of the web service object and attributes. (Ex-1005,

¶¶[0042], [0108].) Huang’s disclosures indicate that the code of the application

contains the defined relationships between an application component and the generic

web services object that maps to a vendor-specific input or output and, therefore,

must contain the identity of the generic web services object, which, as discussed

above, is represented by symbolic names in Huang’s system.

177. Further, a POSITA would have understood that Huang’s application

must contain the symbolic names of Huang’s web service objects and attributes.

Huang’s disclosure that its application interacts with the generic web services

objects would indicate to a POSITA that Huang’s application must necessarily

contain the relevant identifier (in the context of Huang, the symbolic name) of the

user-selected generic object attribute to which it must interact.

g. [1.f] “and [authoring tool configured to:] produce a
Player, where said Player is a device-dependent code;”

178. It is my opinion that Huang in view of Shenfield renders element 1.f

obvious. The district courts construed “Player” to mean “device-specific code which

contains instructions for a device and which is separate from the Application” and

that “device-dependent code” means “code that is specific to the operating system,

programming language, or platform of a device.” (Supra Section VII.)

Ex. 1002
Page 110 of 153

108

(i) Huang and Shenfield Discloses Element 1.f

179. In my opinion, Huang suggests that its designer 104 generates its

“player 106.” As explained in Huang, its system is designed such that “Player 106”

is necessary to render the application (e.g., Ex-1005, ¶[0042]; Ex-1006, ¶[0040]);

therefore, a POSITA would have understood that Huang’s system components that

generate code, such as designer 104, likewise generates its “Player 106.”

180. Shenfield expressly discloses that its system produces component

applications, which include components written in platform-independent code that

define content and platform-dependent presentation and workflow components.

(Ex-1007, ¶[0057] (“the conversion tools 12 are executed on a computer 14 and are

used to generate component applications 105”).) A POSITA would have understood

that the platform-independent content corresponds to the applications of Huang

(e.g., Ex-1005, ¶[0040] (“application 111, which can receive values from web

services, send values to web services, and invoke other operations provided by web

services” when executed in a player) and the application recited in the claims of the

’755 patent because these components define data structures and interactions. (Ex-

1007, ¶¶[0041] (“the data components 400 define data entities which are used by the

component application program 302”), [0042] (“the message components 404 define

the format of messages used by the component applications 105 to communicate

with external systems such as the web service 106”).) The platform-dependent

Ex. 1002
Page 111 of 153

109

presentation and workflow components correspond to Huang’s player (e.g., Ex-

1005, ¶[0040] (“The Player 106 is a computer program that provides a user interface

which executes a browser based application 111…. Player 106 execute[s] in a

conventional Internet Browser 1010….”) and the player recited in the claims of the

’755 patent because they present the applications to the user and are used to execute

the functionality defined by the platform-independent components. (Ex-1007,

¶¶[0043] (“presentation components 402 define the appearance and behavior of the

component applications 105 as it [is] displayed by the user interface 202”), [0045]

(“workflow components 406 of the component application 105 define processing

that occurs when an action is to be performed”).)

181. For example, Shenfield discloses that its component applications can

“be executed on native code” to display content “in the terminal runtime

environment 206 provided by [a number of] device[s] 100.” (Ex-1007, ¶¶[0026],

[0029]). Shenfield explains that one way to achieve this interoperability is to tailor

components to the platform of particular devices, stating that its “presentation

components 402 [of component applications 105] may vary depending on the client

platform and environment of the device 100” and that it provides “bundle[s] of

platform-neutral … component descriptors” and “platform-specific presentation

component 402 descriptors for various predefined client runtimes (i.e., specific

runtime environments 206—see FIG.2).” (Id., ¶[0044]; see also id. (“different sets

Ex. 1002
Page 112 of 153

110

of presentation components 403a, 403b, 403c, representing the different supported

user interfaces 202 of the devices 100.”).) Shenfield further discloses that “workflow

components 406 are written as a series of instructions” that operate “as a set of rules

for operations on the other components” and discloses “defin[ing] differing work

flows based upon different supported capabilities or feature of particular devices.”

(Id., ¶[0045].) Shenfield shows that each of its data 400, presentation 402, message

404, and workflow 406 components are separate sets of code in Figure 4a:

Based on the above disclosures, a POSITA would have understood that Shenfield’s

platform-specific presentation and workflow components are computer code that is

written to operate specifically in a particular device platform and, when executed,

Ex. 1002
Page 113 of 153

111

provides instructions to the device. A POSITA would have further understood that

these components are separate from the platform-neutral components.

(ii) A POSITA Would Have Been Motivated to
Modify Huang’s System with Shenfield’s Device-
Specific Components with a Reasonable
Expectation of Success

182. It is further my opinion that a POSITA would have looked to Shenfield

to improve Huang’s system, would have been motivated to modify the system of

Huang in view of the disclosures of Shenfield, and would have had a reasonable

expectation of success to make such modifications.

183. A POSITA would have looked to Shenfield when considering the

implementation of Huang’s system as of the invention date. For example, a POSITA

would have been aware that many less-powerful devices that were capable of

accessing the internet, such as cellular telephones and PDAs, had become popular

technologies that presented issues regarding computing resources that made other

more resource-intensive solutions insufficient for such devices. (Ex-1007, ¶¶[0002]-

[0003].) When paired with Huang’s suggestion to explore alternative configurations

of Huang’s system (e.g., Ex-1005, ¶[0008]), a POSITA would have looked to other

teachings that maintain interoperability but allow for more efficient processing on

such smaller devices. A POSITA therefore would have looked to Shenfield in

particular because it offers a solution to this specific problem of addressing the

Ex. 1002
Page 114 of 153

112

resource constraints of myriad, less-powerful, internet-accessible devices. (E.g., Ex-

1007, ¶¶[0002]-[0003], [0054]-[0056].)

184. A POSITA would have sought to identify options that preserve the

ability of Huang’s browser-based applications to operate on a wide array of devices

without relying on web browsers. A POSITA would have recognized that Shenfield

discloses such a configuration, providing “the efficiency of native application

execution” (Ex-1007, ¶[0054]), “an effective data storage and persistence model”

(Ex-1007, ¶[0055]), and “a platform neutral model” as in Huang that allows for “the

principle ‘write once run everywhere’” (Ex-1007, ¶[0056]). Thus, a POSITA would

have looked to Shenfield in particular because it offers a solution to the exact issues

presented by the proliferation of less-powerful, internet-accessible devices,

including greater efficiency and data persistence to address these resource

constraints, while maintaining the advantage of Huang’s system that allows its

applications to run across various devices.

185. A POSITA would have also been motivated to modify Huang’s

designer 104 with Shenfield’s solution of “platform-specific” presentation and

workflow components. To implement such components would optimize Huang’s

applications to avoid the efficiency and data persistence issues that strain the

computing resources in smaller Internet-accessible devices. (Ex-1007, ¶¶[0002]-

[0003].) Further, Shenfield’s disclosures that native applications “provid[e] a

Ex. 1002
Page 115 of 153

113

relatively optimized application program for each runtime environment” over

“resource intensive” solutions would have motivated a POSITA to implement

Shenfield’s solution. (Ex-1007, ¶[0005].) Shenfield further discloses that its

“component applications 105 may be executed as native code or interpreted by

another software module,” which a POSITA would have understood includes the

ability to operate within web browsers, without sacrificing the “write once run

everywhere” characteristic of Huang’s applications. (Ex-1007, ¶¶[0029], [0056].)

Accordingly, a POSITA would have been motivated to implement Shenfield’s

device-specific components, which are the Player that is a device-dependent code,

in Huang’s system to achieve these benefits that would allow for optimizing the

performance of Huang’s applications on a wider range of devices. Specifically, a

POSITA would have been motivated to substitute Huang’s players with Shenfield’s

players written in device-specific code that can provide instructions tailored to

optimize the display of content specified in Huang’s device-independent

applications for each runtime environment, thereby optimizing performance and

improving user experience for a wider audience of end users. (Ex-1007, ¶¶[0005],

[0029], [0056]; see also id., ¶[0054].)

186. In my opinion, a POSITA would have had a reasonable expectation of

success in modifying the system of Huang with Shenfield’s device-dependent

components. Exemplary reasons are set forth below.

Ex. 1002
Page 116 of 153

114

187. For example, Shenfield’s device-specific components are designed to

operate with Shenfield’s device-independent components, which are written in a

similar code to Huang’s applications (Huang’s XML definitions (Ex-1005,

¶¶[0008], [0042], [0059]) versus Shenfield’s “structured definition language” (Ex-

1007, ¶[0040]), including XML (id., ¶[0046])). Put differently, Shenfield’s device-

specific components (player) would have been compatible with Huang’s device-

independent applications because Shenfield’s device-independent components

utilize similar code as Huang’s applications such that modifying Huang’s system to

use Shenfield’s player would have been relatively straightforward to apply.

188. Further, Shenfield’s platform-specific presentation and workflow

components operate similarly to the functionality of Huang’s player. Shenfield

explains that its components that can be designed to be platform dependent include

(1) presentation components that “define the appearance and behavior of the

component application 105 as it [is] displayed by the user interface 202,” such as

“specify[ing] GUT screens and controls, and actions to be executed when the user

interacts with the component application 105 using the user interface 202” (Ex-1007,

¶[0043]); and (2) workflow components that “define processing that occurs when an

action is to be performed, such as an action specified by a presentation component

402,” are “a series of instructions in the selected programming/scripting language

… [that] can be compiled into native code and executed by the runtime

Ex. 1002
Page 117 of 153

115

environment,” and “supports a correlation between the messages and defines

application flow as a set of rules for operations on the other components” (id.,

¶[0045]). Put differently, the platform specific components relate to the presentation

of a user interface and the instructions for executing the actions necessary to operate

within a runtime environment. Thus, Shenfield’s platform specific components

correspond to Huang’s player that executes in a browser, as explained in Nachnani,

which states that “[a]n application can be divided into at least two main parts: a user

interface, which is presented to a user and interacts with the user, and business logic,

which performs the tasks required of the application, in accordance with user input

received from the user interface. The web browser runs the user interface.” (Ex-

1006, ¶[0005].) Thus, Shenfield’s platform-specific components would have been

able to execute Huang’s application in the runtime environment of a device and

provide instructions relating to the display and other necessary functionalities.

189. Further, a POSITA would have been able to modify Huang’s designer,

which already is a program that generates code, to generate these platform-specific

components. This would have been an obvious choice because it would offer the

benefit of efficiently leveraging an already existing resource in Huang’s system that

performs essentially the same function of generating code. (See, e.g., Ex-1005,

¶[0042].) Indeed, a POSITA would have understood that Huang suggests that its

designer already generates a player because Huang’s system requires a player and

Ex. 1002
Page 118 of 153

116

the designer already generated code in the form of applications, thus indicating that

it can also produce code in the form of players. Further, Shenfield expressly

discloses that its system generates all components. (See Ex-1007, ¶[0057].) Altering

Huang’s system to generate device-specific players, as disclosed in Shenfield, that

allow for the presentation of Huang’s application would have been a simple

substitution of known elements to achieve predictable results.

190. Thus, it is my opinion that a POSITA would have found producing a

Player, where said Player is a device-dependent code obvious over Huang in view

of Shenfield.

h. [1.g] “such that, when the Application and Player are
provided to the device and executed on the device, and
when a user of the device provides one or more input
values associated with an input symbolic name to an
input of defined UI object, 1) the device provides the user
provided one or more input values and corresponding
input symbolic name to the web service, 2) the web
service utilizes the input symbolic name and the user
provided one or more input values for generating one or
more output values having an associated output symbolic
name, 3) said Player receives the output symbolic name
and corresponding one or more output values and
provides instructions for a display of the device to
present an output value in the defined UI object.”

191. It is my opinion that a POSITA would have found this element obvious

over Huang in view of Shenfield. The district courts construed the terms

“Application” (“device-independent code containing instructions for a device and

which is separate from the Player”), “Player” (“device-specific code which contains

Ex. 1002
Page 119 of 153

117

instructions for a device and which is separate from the Application”), “device-

dependent code” (“code that specific to the operating system, programming

language, or platform of a device”), and “device-independent code” (“code that is

not specific to the operating system, programming language, or platform of a

device”). (Supra Section VII.) As discussed below, Huang and Shenfield together

disclose or suggest each aspect of element [1.g] and thus renders it obvious.

(i) “such that, when the Application and Player are
provided to the device and executed on the device,
and when a user of the device provides one or
more input values associated with an input
symbolic name to an input of defined UI object,

192. In my opinion, Huang, as modified by Shenfield, discloses that the

application and player are provided to a device and executed on that device. Huang

states that its player is provided to the Internet browser on a device and the

application is loaded into the player and executed. (E.g., Ex-1005, ¶¶[0040] (“The

Player 106 is a computer program that provides a user interface which executes a

browser based application.”), [0041] (“Player 106 [is] provided to the Internet

Browser 101 by a server 120 as web pages.”), [0042] (“Applications created by the

Designer 104 are … loaded into the Player 106 as the application 111.”); see also

Ex-1006, ¶[0014] (“providing a software application” and “providing a web browser

and providing a user interface to a user on the web browser from the received

representation and data”).) Huang also explains that “each element or component

Ex. 1002
Page 120 of 153

118

shown in FIG. 1A is a software computer program entity to be executed on a

computer” (Ex-1005, ¶[0040]), and Figure 1A of Huang shows that both the

application and player are provided to the same Internet browser:

Huang explains that “Player 106 [is] provided to the Internet Browser 101 by a

server 120 as web pages” and that “Applications created by the Designer 104 are …

loaded into the Player 106 as the application 111.” (Ex-1005, ¶¶[0041]-[0042]; see

also Ex-1006, ¶¶[0014], [0097].) Huang also explains that “[e]ach element or

component shown in FIG. 1A is a software computer program entity to be executed

on a computer”; that “Player 106 execute[s] in a conventional Internet Browser 101”;

and that “Player 106 is a computer program that provides a user interface which

Ex. 1002
Page 121 of 153

119

executes a browser based application.” (Ex-1005, ¶[0040].) A POSITA would have

understood that Huang’s application and player are provided to the device for

execution because the player is provided to and executes in a browser that runs on a

device and the application is “loaded into the Player 106” in order to run.

193. Shenfield similarly discloses providing both platform-neutral data,

which are analogous to Huang’s applications, and platform-specific components,

which are analogous to Huang’s player. The platform-neutral components include

the data components, which define the content much like Huang’s applications, and

the platform-specific components include the presentation and workflow

components, which present the content on a display like Huang’s player. (Ex-1007,

¶¶[0039]-[0045].)

194. From the above disclosures, a POSITA would have understood that

both the application and player of the modified Huang-Shenfield system are

provided to the device for execution.

195. It is also my opinion that Huang discloses that when the device executes

the player and application, the device presents a user interface containing objects

that allows a user of the device to input one or more values of a defined UI object.

Specifically, Huang discloses that “Player 106 executes browser-based applications

111, which have application user interface components, such as text fields, for

receiving data values from a user.” (Ex-1005, ¶[0054].) Huang identifies an

Ex. 1002
Page 122 of 153

120

example of a “text input component”—the “OppNameTextArea” application

component. (Ex-1005, ¶[0103].) Huang further states that applications are able to

interact with web services and exchange data values through various interactions.

(Id., ¶[0054] (“[A]pplications executing in the Player 106 [are able to] interact with

web services by, for example, looking up a value from a web service and storing the

value in an application component associated with the application 111, or inserting,

updating, or deleting a value in a web service object, where the value is specified by

an application component.”); see also id., ¶[0058] (“[A] set of bindings 102 is

associated with a user interface component, such as button or link, that, when

selected by a user, causes a web service interaction such as a lookup or insert. …

Player 106 … can invoke any type of web service interaction, including lookups,

inserts, updates, and deletes. Data values will be transferred between the application

components and web service attributes specified in the bindings 102.”).) Huang

further explains that “[w]hen a user submits data values in an application, the

WSManager 127 inserts into or updates the web service using the new values” or if

a “user requests data in an application, the WS Manager 127 performs a lookup

operation to query the web service for the data.” (Ex-1005, ¶[0049].) Huang further

explains that the value of a presentation component “is displayed to a user and may

be set by a user, e.g., as a value of a text box or of a drop-down list.” (Ex-1005,

¶[0057].) A POSITA would have understood from these disclosures that when the

Ex. 1002
Page 123 of 153

121

player and application execute on a device, the user is presented a display that

includes defined user interface objects that allow a user to input values.

196. Nachnani further confirms that the executed player and application

allows a user to provide an input value to an input of a defined UI object.

Specifically, Nachnani explains that, when “[a] web browser 132 executes a Player

UI 134, which in turn[] executes an application 135,” “[t]he Player UI 134 presents

the application 135 to a user 130 via the web browser 132.” (Ex-1006, ¶[0040].)

Nachnani continues that “[t]he application 135 includes at least one component 136,

which represents a user interface element such as a text box or a web link” and that

“[t]he component 136 also includes a data value 142, e.g. a text string or numeric

value, which can be specified by a user via the Player UI 134.” (Id.) Nachnani

also states that “Application Data 120 may be provided by the user 118 when the

Player UI 114 executes the application.” (Id., ¶[0039].) These disclosures further

confirm that a user may provide an input value to an input of a defined UI object

when the player and application are executed.

197. Likewise, Shenfield also discloses that its presentation components

allow for user input, such as enabling a user to “type[] in an edit box or push[] a

button.” (Ex-1007, ¶[0043].) Accordingly, Shenfield discloses that a user may

provide one or more input values to an input of a defined UI object.

Ex. 1002
Page 124 of 153

122

(ii) 1) the device provides the user provided one or
more input values and corresponding input
symbolic name to the web service,”

198. It is also my opinion that Huang discloses that, when a user provides

one or more input values, the input value is associated with a symbolic name and

that the device provides user provided one or more input values and corresponding

input symbolic name to a web service. As discussed above, Huang discloses that its

application components, which may be a text area such as the “OppNameTextArea”

in Figure 4B, are bound to a web service attributes identified by symbolic names

(such as those listed under “Data Source in Figure 4C). (Supra Sections X.B.1.c(ii),

X.B.1.e.) As previously discussed, Huang explains the bindings between the

application components and web service attributes allow for the exchange of data to

and from a web service, stating that web service attributes are “values that can be

stored in or retrieved from web services” and that bound application components can

“set and get values of the vendor-specific attribute 155.” (Ex-1005, ¶¶[0055],

[0057]-[0058], [0106]-[0107], Figs. 4B-4C; see also id., ¶[0107] (“establish

bindings between application components (also referred to herein as controls), and

attributes of the selected web service object 416”).) A POSITA would have

understood from Huang’s disclosures that Huang’s system associates the input value

to the bound symbolic name, and both are sent to the web service because a POSITA

would understood that raw data without any identifying information could not be

Ex. 1002
Page 125 of 153

123

used by a web service because the web service would have been unable to identify

to what attribute the value relates.

199. Figure 1D of Huang confirms this understanding, depicting that the

input value and the associated symbolic name are sent to the web service:

(Ex-1005, Fig. 1D.)

As can be seen in the above figure, the symbolic name of the web service object

(“Opportunity”), the symbolic name of the web service attribute (“OppName”), and

the associated input value (“BigCorp”) is sent to the web service.

(iii) “2) the web service utilizes the input symbolic
name and the user provided one or more input
values for generating one or more output values
having an associated output symbolic name,”

Ex. 1002
Page 126 of 153

124

200. In my opinion, Huang discloses or suggests that the web service utilizes

the input symbolic name and the user provided one or more input values for

generating one or more output values having an associated output symbolic name.

As discussed in the immediately preceding section above, Huang discloses a user

inputting a value for an attribute of a web service object, and this input value is

associated with a symbolic name and both the input value and symbolic name are

sent to the web service. As will be discussed below, Huang discloses that the web

service utilizes both the input value and the input symbolic name to generate one or

more output values having an associated output symbolic name.

201. In my opinion, Huang discloses that the web service utilizes the input

value and associated input symbolic name to generate an output value having an

associated output symbolic name. Huang discloses that an output of a web service

may be dependent on an input value—i.e., that the input is a factor that determines

the relevant output. (Id., ¶[0062] (“A user of the WS Player 112 can then select a

value from the drop-down menu to cause the WS Player 112 to retrieve objects for

which the corresponding attribute is equal to the selected value from the web

service.”).) A POSITA would have understood that, in this example, an input value

is provided to the web service and this value is associated with an input symbolic

name, and the web service utilizes the input symbolic value and the associated input

symbolic name because the output from the web service that is returned to the player

Ex. 1002
Page 127 of 153

125

are those “objects for which the corresponding attribute is equal to the selected value

from the web service.” (Id.) Huang further discloses that its system, when

processing a request, “extract[s] the input data for the lookup,” which includes the

“web service object name.” (Ex-1005, ¶[0129].) A POSITA would have understood

that Huang’s system thus passes along the input data and the web service object

name, which would be the symbolic name, to the web service, which uses this

information to generate an output.

202. Further, a POSITA would have understood that a web service would

necessarily require and utilize data inputs that both include a value and an identifier,

which in the case of Huang is a symbolic name. A web service would be unable to

have understood how to process or account for input data if the incoming message

did not specify, for example, the specific web component that was being invoked or

an identifier indicating that a data value relates to a particular required input. Put

differently, if Huang’s system provided data without its input symbolic name, the

web service would be unable to understand what the data means or how to utilize

the data in executing its functions.

(iv) “3) said Player receives the output symbolic name
and corresponding one or more output values and
provides instructions for a display of the device to
present an output value in the defined UI object.”

203. It is also my opinion that Huang discloses that its player receives the

output symbolic name and associated output values from a web service and, in turn,

Ex. 1002
Page 128 of 153

126

provides instructions for a display of the device to present that output value in the

defined UI object. As discussed above, a POSITA would have understood that

Huang’s system displays content to a user utilizing web components that can receive

user inputs or output data. (Supra Section X.B.1.a.) For example, Huang discloses

that the values of its application components, which include the outputs from web

services, are displayed to the user. (Ex-1005, ¶¶[0057] (“The application component

includes a value 192, which is displayed to a user”), [0070] (“query the web service

and display a list of one or more values returned by the web service according to

the binding”).) As discussed below, Huang discloses that its player receives the

output from the web service and provides the instructions to display this output.

204. For example, Huang discloses that its player is what enables

“applications executing in the Player 106 to interact with web services by, for

example, looking up a value from a web service and storing the value in an

application component associated with the application 111, or inserting, updating,

or deleting a value in a web service object, where the value is specified by an

application component.” (Ex-1105, ¶[0054].) Huang contains numerous

disclosures that state that its player is responsible for executing the communication

with web services. (Id., ¶¶[0049] (“The WSManager 127 may be invoked … by the

Player 106, e.g., to submit or lookup data values.”), [0057] (“Player 106 use[s] the

Generic WS Object 130 to interact with the vendor web service 156, e.g., to set and

Ex. 1002
Page 129 of 153

127

get values of the vendor-specific attribute 155.”), [0062] (“A user of the WS Player

112 can then select a value from the drop-down menu to cause the WS Player 112

to retrieve objects for which the corresponding attribute is equal to the selected value

from the web service.”); see also id., ¶[0040] (“Player 106 is a computer program

that provides a user interface which executes a browser based application 111”),

[0063] (“The bindings 102 are used by the WS Player 112 when a web service

interaction is performed”), [0072] (“the WS Player 112 uses binding information

that establishes a mapping between WS object attributes and application components

to display a Web Service lookup user interface for storing or retrieving the values of

those components to or from web services.”).)

205. Huang also states that its systems “sends the XML data as a response,

e.g., to a client such as the Internet Browser 101 of FIG. 1A, or to software running

in the browser, such as … the Player 106 of FIG. 1A, which delivers the data to the

application.” (Ex-1005, ¶[0129].) Because the modified Huang-Shenfield system

would utilize a player that operates in the native runtime environment and would not

rely on a web browser, a POSITA would have understood that the runtime player in

the modified Huang-Shenfield system would receive the output of the web service.

206. Huang further confirms that its player interacts with web services in

Figure 1A, which depicts the WS Player component of Huang’s player interfacing

with web services:

Ex. 1002
Page 130 of 153

128

(Ex-1005, Fig. 1A.)

207. From these disclosures, a POSITA would have understood that

Huang’s player mediates the communications between the application component

and the web service and, therefore, Huang’s player receives the outputs of a web

service. From these disclosures, a POSITA would have understood that Huang’s

player also displays the output from these web services. (E.g., Ex-1005, ¶[0072]

(“the WS Player 112 uses binding information that establishes a mapping between

WS object attributes and application components to display a Web Service lookup

Ex. 1002
Page 131 of 153

129

user interface for storing or retrieving the values of those components to or from

web services”).)

208. Nachnani, which as discussed above Huang incorporates by reference,

confirms that Huang’s player “presents the application 135 to a user 130 via the web

browser.” (Ex-1006, ¶[0040].)

209. Accordingly, a POSITA would have understood that Huang’s player

displays the output of a web service. A POSITA would further have understood that

Huang’s player accomplishes this by providing instructions to the web browser

because a computer program is a set of instructions and providing instructions is the

only way to cause a device to perform any functionality.

210. Huang further discloses “text fields” (Ex-1005, ¶[0054]), “text box[es]”

(id., ¶[0058]) and “text area component[s]” (id., ¶[0067]). In my opinion, a POSITA

would have understood that these components were capable of both receiving input

text and displaying output text. At a minimum, a POSITA would have found it

predictable to use the same application component for input and output to leverage

existing resources in an efficient manner. Using these components for both input

and output would have been a predictable design choice.

211. To the extent Huang does not explicitly disclose that Huang’s player

receives the output symbolic name and output value from a web service and provide

instructions to present the output value on a display of a device, a POSITA would

Ex. 1002
Page 132 of 153

130

have found this obvious over Huang in view of Shenfield. Shenfield explains that

its “workflow components” are “a series of instructions in the selected

programming/scripting language” and can be “based upon different supported

capabilities or feature of particular devices.” (Ex-1007, ¶[0045].) Shenfield further

explains that its “workflow components” define “[p]resentation workflow and

message processing.” (Id.) A POSITA would have understood that the workflow

components of Shenfield, in operation, would provide instructions for carrying out

messaging between its component application and a web service and provide

instructions to display data to a user, such as data obtained from a web service. Put

differently, the workflow component would have been understood as processing

messaging—i.e., both sending and receiving messages from a web service—and

processing the data for presentation on a display. I refer to my prior discussion

regarding the motivation to combine Huang and Shenfield with a reasonable

expectation of success, and I incorporate it by reference as if set forth herein. (Supra

Section X.B.1.b.)

2. Claim 3

a. “The system of claim 1, where said web component is a
text chat, a video chat, an image, a slideshow, a video, or
an RSS feed.”

212. In my opinion, Huang in view of Shenfield renders this claim obvious.

As discussed above, it is my opinion that Huang in view of Shenfield renders claim

Ex. 1002
Page 133 of 153

131

1 obvious. (Supra Section X.B.1.) It is further my opinion that the modified Huang-

Shenfield system renders obvious a web component that is a text chat, a video chat,

an image, a slideshow, a video, or an RSS feed. I understand that these elements are

stated in the alternative and, therefore, satisfying one of a text chat, a video chat, an

image, a slideshow, a video, or an RSS feed would render this claim obvious.

213. In my opinion, Shenfield discloses that a web component is an RSS feed.

Shenfield discloses that “[t]he implementation of mappings 804 facilitates building

the wireless applications 302 based on server-to-device notifications.” (Ex-1007,

¶[0071].) Shenfield continues that “[t]hese mappings 800 can be applicable for a

variety of wireless applications 105 such as stock trading, news updates, alerts,

[and/or] weather updates.” (Id.) A POSITA would have understood that such

updates can be implemented as RSS feeds, which is a well-known format for sending

XML-formatted plain text as updates.

214. It is further my opinion that Shenfield discloses or suggests web

components that are text chats and images. Shenfield discloses that its workflow

component can render “objects that represent … pop-ups, dialog boxes, [and] text

areas”; that it can also provide for “image loading”; and that its system “combines

user interface elements and fixed and computed text and images, and is reactive to

user interaction on the user interface 202.” (Ex-1007, ¶[0078].) A POSITA would

have understood that pop-ups, dialog boxes, and text areas” are elements useful for

Ex. 1002
Page 134 of 153

132

and appropriate to a text-chat interface. (See, e.g., Ex-1023, ¶[0005] (“[E]ach user

being able to input text material intended to be conversational in nature. The

conversational input from, e.g., a first user is relayed to the computers of the other

users who also happen to be logged onto the chat room, such that the text from the

first user is presented to the other users. Then, the other users can respond if they

like by inputting text material of their own, and their text material is likewise related

to the other ‘occupants’ of the chat room, including the first user.”).) A POSITA

would have also understood that “image loading” would mean that Shenfield’s

system obtains and renders images from third-party sources, such as those provided

through web services. (E.g., Ex-1024, ¶[0006] (“a server hosting a media storage

and display service”).) A POSITA would further have understood the disclosures of

“combin[ing] user interface elements” with “images” discloses an image obtained

from a web component because user interface elements are the elements identified

as bound to web components, thereby indicating that the user interface elements here

are used to obtain images from a web component and render them on the display.

215. At a minimum, a POSITA would have found binding the application

components in the system of Huang, as modified by Shenfield, to a text chat, image

or RSS feed web service obvious. Web components for text chat, images, and RSS

feeds were well known in the art and were among the finite set of web-service

options that were available to a POSITA. Well-known web services as of April 2008

Ex. 1002
Page 135 of 153

133

include text communication or chat services (e.g., Ex-1021, ¶[0002] (“Chat services

on the Internet provide for real time communication between two users via a

computer, wireless device, or any other text based communication apparatus….

Most networks and online services offer some type of chat feature.”); Ex-1022,

¶[0004] (“Web service interface (WSI) messaging”); Ex-1023, ¶[0005] (“Another

popular feature of the Internet are so-called ‘chat rooms’. Essentially, a chat room

is a computer site that can be accessed (i.e., ‘logged onto’) simultaneously by many

users, with each user being able to input text material intended to be conversational

in nature.”)), image services (e.g., Ex-1024, ¶[0006] (“a server hosting a media

storage and display service”)), and RSS feeds (e.g., Ex-1025, ¶[0003] (“Generally,

RSS provides web content or summaries of web content together with links to the

full versions of the content, and other meta data.”)). Because web services are

designed to be accessed, binding an application to such web services would have

been a simple implementation of known technologies via standard means to achieve

predictable results. Indeed, Huang and Nachnani contain disclosures that would

have been understood as identifying components and functions that are readily suited

for text chat, image, or RSS feed web services, such as text input fields, text output

fields, and image application components that can be bound to web service inputs

and outputs. (E.g., Ex-1005, ¶¶[0057], [0068]; Ex-1006, ¶[0042], Fig. 2a.)

Ex. 1002
Page 136 of 153

134

216. Accordingly, it is my opinion that Huang in view of Shenfield discloses,

suggests, and renders obvious claim 3.

3. Claim 5

a. “The system of claim 1, where said UI object is an input
field for a web service.”

217. In my opinion, Huang in view of Shenfield renders claim 5 obvious. As

discussed above, it is my opinion that Huang in view of Shenfield renders claim 1

obvious. (Supra Section X.B.1.) Huang discloses the requirement that the UI object

is an input field for a web service for the reasons discussed above.

218. Specifically, Huang discloses a text input field for a web service in the

form of the “OppNameTextArea” application component. (Ex-1005, ¶¶[0054],

[0103].) Huang explains that application components, such as

“OppNameTextArea” may be used to “insert or update” web service attributes.

(Id., ¶¶[0056], [0064], [0067].)

Ex. 1002
Page 137 of 153

135

(Ex-1005, Figs. 1B, 1D.)

219. Thus, Huang explains that its application components can be input

fields field for a web service, providing at least one specific example (the

“OppNameTextArea” application component) that is a text input field for a web

service.

4. Claim 6

a. “The system of claim 1, where said UI object is an input
field usable to obtain said web component, where said
input field includes a text field, a scrolling text box, a
check box, a drop down-menu, a list menu, or a submit
button.”

220. In my opinion, Huang in view of Shenfield renders claim 6 obvious. As

discussed above, it is my opinion that Huang in view of Shenfield renders claim 1

Ex. 1002
Page 138 of 153

136

obvious. (Supra Section X.B.1.) Huang discloses the requirement that the UI object

is an input field usable to obtain said web component, where said input field includes

a text field, a scrolling text box, a check box, a drop down-menu, a list menu, or a

submit button, for the reasons discussed above. I understand that a text field, a

scrolling text box, a check box, a drop down-menu, a list menu, or a submit button

are stated in the alternative and so long as one element is rendered obvious, the claim

is rendered obvious.

221. Huang discloses text fields and submit buttons, as discussed in detail

above. X.B.1.c (discussing the “OppNameTextArea” text input field and “button”

components for invoking web services).) Huang further discloses that a UI object

can be a “drop-down menu that includes a list of possible values for [an] attribute,”

which, in this example, is an input to a web service used to “retrieve [only] objects

for which the corresponding attribute is equal to the selected value,” thereby

disclosing the additional requirement of claim 6. (Ex-1005, ¶[0062].) Thus, Huang

expressly discloses at least a drop-down menu, text input fields, and submit buttons.

222. I further note that Nachnani further confirms that Huang discloses such

input fields. For example, Nachnani states that the component may be, among other

things, a “Text Box, Text Area, Radio Button, Check Box, Select List (e.g. a drop-

down list), … [or] Button,” describing such components in the table below (Ex-

1006, ¶[0042]):

Ex. 1002
Page 139 of 153

137

5. Claim 7

a. “The system of claim 1, where said web component is an
output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video
chat session, is a video, an image, a slideshow, an RSS
display, or an advertisement.”

223. In my opinion, Huang in view of Shenfield renders claim 7 obvious. As

discussed above, it is my opinion that Huang in view of Shenfield renders claim 1

obvious. (Supra Section X.B.1.) Also discussed above for claim 3, it is also my

opinion that Huang in view of Shenfield renders obvious a web component that is a

Ex. 1002
Page 140 of 153

138

text chat, a video chat, an image, a slideshow, a video, or an RSS feed. (Supra

Section X.B.2.) Accordingly, it is my opinion that Huang in view of Shenfield

renders obvious that said web component is an output of a web service, is the text

provided by one or more simultaneous chat sessions, is the video of a video chat

session, is a video, an image, a slideshow, an RSS display, or an advertisement for

the same reasons that Huang in view of Shenfield renders claim 3 obvious.

6. Claim 11

a. “The system of claim 1, where said code is provided over
said network.”

224. In my opinion, Huang in view of Shenfield renders claim 11 obvious.

As discussed above, it is my opinion that Huang in view of Shenfield renders claim

1 obvious. (Supra Section X.B.1.) I am informed that “said code” may refer to the

code that is generated by the system (i.e., “A system for generating code”), the

“device-independent code” of the “Application,” and/or the “device-dependent

code” of the “Player” recited in claim 1. (See Ex-1001, Claim 1.) In my opinion,

the code generated by the modified Huang-Shenfield system, including both the

application and player, are provide over a network because both Huang and

Shenfield disclose providing its application and player over a network.

225. Huang discloses that “Player 106 [is] provided to the Internet Browser

101 by a server as web pages” (Ex-1005, ¶[0041]) and that applications “are stored

Ex. 1002
Page 141 of 153

139

… in a database 124, and loaded into the Player 106 as the application 111” (id.,

¶[0042]).

(Ex-1005, Fig. 1A.)

226. A POSITA would have understood that Huang provides its code in the

form of applications and players over a network in view of Figure 1A identifying an

“HTTP(S)/XML HTTP” protocol between the browser 120 and database

124/server 120.

227. Shenfield also discloses providing its code in the form of its component

applications (which include both its platform-neutral and platform specific

components) over a network. Shenfield states that “application definitions can be

Ex. 1002
Page 142 of 153

140

hosted in the repository 700 as a bundle of platform-neutral component definitions

linked with different sets of presentation components 403a, 403b, 403c, representing

the different supported user interfaces 202 of the devices 100” and that a user “makes

a … download request message to the server 112” to download these components

via a network. (Ex-1007, ¶[0044].)

(Ex-1007, Fig. 1.)

228. A POSITA would have understood that Shenfield provides its code to

devices over “wireless network 102” and, therefore, expressly discloses that it

provides its code over a network. (Ex-1007, ¶[0021].)

Ex. 1002
Page 143 of 153

141

229. In view of both Huang and Shenfield disclosing that they provide their

code over networks to the device of the user, it is my opinion that the modified

Huang-Shenfield system would do the same.

7. Claim 12

a. [12.pre] “A method of displaying content on a display of
a device utilizing a registry of one or more web
components related to inputs and outputs of a web
service obtainable over a network, where each web
component includes a plurality of symbolic names of
inputs and outputs associated with each web service, and
where the registry includes: a) symbolic names required
for evoking one or more web components each related to
a set of inputs and outputs of a web service obtainable
over a network, where the symbolic names are character
strings that do not contain either a persistent address or
pointer to an output value accessible to the web service,
and b) the address of the web service, said method
comprising:”

230. I understand that the phrase “A method of displaying content on a

display of a device utilizing a registry of one or more web components related to

inputs and outputs of a web service obtainable over a network, where each web

component includes a plurality of symbolic names of inputs and outputs associated

with each web service, and where the registry includes: a) symbolic names required

for evoking one or more web components each related to a set of inputs and outputs

of a web service obtainable over a network, where the symbolic names are character

strings that do not contain either a persistent address or pointer to an output value

accessible to the web service, and b) the address of the web service, said method

Ex. 1002
Page 144 of 153

142

comprising:” is the preamble to claim 12 of the ’755 patent. I have been asked to

assume that the preamble is a claim limitation. Under that assumption, in my opinion

Huang in view of Shenfield renders these features obvious for many of the same

reasons that claim 1 is obvious. (Supra Section X.B.1.)

231. For clarity, I separately address each aspect of the preamble of claim

12.

(i) “A method of displaying content on a display of a
device”

232. The preamble of claim 12 of the ’755 recites, in part, “[a] method of

displaying content on a display of a device.” It is my opinion that Huang discloses

this aspect of element 12.pre for the same reasons discussed above. (Supra Section

X.B.1.a.) As discussed above, Huang’s disclosures would have been understood to

demonstrate that Huang’s player presents a user interface for content defined by

Huang’s applications. (Id.)

(ii) “utilizing a registry of one or more web
components related to inputs and outputs of a web
service obtainable over a network, where each web
component includes a plurality of symbolic names
of inputs and outputs associated with each web
service and where the registry includes a) symbolic
names required for evoking one or more web
components each related to a set of inputs and
outputs of a web service obtainable over a
network”

Ex. 1002
Page 145 of 153

143

233. In my opinion, Huang in view of Shenfield renders this aspect of

element 12.pre obvious for the same reasons discussed above. (Supra Sections

X.B.1.b.) To summarize, a POSITA would have been motivated to modify the

system of Huang to implement a registry as disclosed in Shenfield, and the registry

would contain Huang’s identifiers—symbolic names that are character strings of

alphanumeric symbols—for its generic objects (including symbolic names for web

objects, which are web components, and their attributes, which are the inputs and

outputs of a web service), which are required to call up and evoke the functionality

of web services that are obtainable over the World Wide Web, which is a network.

(Id.)

(iii) “where the symbolic names are character strings
that do not contain either a persistent address or
pointer to an output value accessible to the web
service”

234. It is my opinion that Huang discloses this aspect of element 12.pre for

the same reasons discussed above. (Supra Section X.B.1.b(iii).) As stated above,

Huang’s names for its generic web object attributes are character strings that do not

contain any address or resource location information and, accordingly, do not

include a persistent address or a pointer to an output value accessible to the web

service. (Id.)

(iv) “[where the registry includes:] b) the address of the
web service”

Ex. 1002
Page 146 of 153

144

235. It is my opinion that Huang in view of Shenfield renders this aspect of

element 12.pre obvious for the same reasons discussed above. (Supra Section

X.B.1.b(iv).) To summarize, a POSITA would have been motivated to combine the

registry of Shenfield with the system of Huang and the registry would include the

address of the web service because this is information necessary to access a web

service. (Id.)

b. [12.a] “defining a user interface (UI) object for
presentation on the display, where said UI object
corresponds to a web component included in said
registry selected from the group consisting of an input of
the web service and an output of the web service;”

236. It is my opinion that Huang in view of Shenfield renders element 12.a

obvious for the same reasons discussed above. (Supra Section X.B.1.c.) To

summarize, the Huang-Shenfield system would contain Huang’s designer, which

allows for defining application components, which are user interface (UI) objects

for presentation on the display, and the designer would establish bindings between

these application components and the attributes (inputs and outputs of a web service)

of web objects (web components) through symbolic names that are included in a

registry. (Id.)

c. [12.b] “selecting a symbolic name from said web
component corresponding to the defined UI object;”

237. It is my opinion that Huang discloses this element 12.b for the same

reasons discussed above. (Supra Section X.B.1.d.) To summarize, Huang discloses

Ex. 1002
Page 147 of 153

145

that its designer can be used to select a symbolic name of a web component that

corresponds to the defined UI object. (Id.)

d. [12.c] “associating the selected symbolic name with the
defined UI object;”

238. It is my opinion that Huang discloses element 12.c for the same reasons

discussed above. (Supra Section X.B.1.e.) As discussed above, Huang discloses

that its system allows to generate bindings that associate the selected symbolic name

of a web object attribute to the application component (defined UI object). (Id.)

e. [12.d] “producing an Application including the selected
symbolic name of the defined UI object, where said
Application is a device-dependent [sic] code; and”

239. I understand that this limitation contains an error. As discussed above,

in my opinion, the phrase “is a device-dependent code” should be read as “is a

device-independent code” in view of the specification and prosecution history.

(Supra Section VII.) Specifically, this correction is not subject to reasonable dispute

and the prosecution history does not contain any indication of an alternative

construction. (Id.)

240. For purposes of this analysis, I have been asked to assume that this

claim limitation reads “producing an Application including the selected symbolic

name of the defined UI object, where said Application is a device-independent

code.”

Ex. 1002
Page 148 of 153

146

241. In my opinion, it is my opinion that Huang discloses element 12.d for

the same reasons discussed above. (Supra Section X.B.1.f.) To summarize, Huang

discloses producing XML applications (application in a device-independent code)

that contain code that includes the symbolic names of the selected attribute that

corresponds to the application component (defined UI object). (Id.)

f. [12.e] “producing a Player, where said Player is a device-
dependent code;”

242. It is my opinion that Huang in view of Shenfield renders element 12.e

obvious for the same reasons discussed above. (Supra Section X.B.1.g.) To

summarize, the modified Huang-Shenfield system renders obvious producing

device-specific runtime players (a Player written in device-dependent code).

g. [12.f] “such that, when the Application and Player are
provided to the device and executed on the device, and
when a user of the device provides one or more input
values associated with an input symbolic name to an
input of defined UI object, 1) the device provides the user
provided one or more input values and corresponding
input symbolic name to the web service, 2) the web
service utilizes the input symbolic name and the user
provided one or more input values for generating one or
more output values having an associated output symbolic
name, 3) said Player receives the output symbolic name
and corresponding one or more output values and
provides instructions for a display of the device to
present an output value in the defined UI object.”

243. It is my opinion that Huang in view of Shenfield renders element 12.f

obvious for the same reasons discussed above. (Supra Section X.B.1.h.) As

Ex. 1002
Page 149 of 153

147

discussed above, the modified Huang-Shenfield system renders obvious each aspect

of this limitation.

8. Claim 14

a. “The method of claim 12, where said web component is a
text chat, a video chat, an image, a slideshow, a video, or
an RSS feed.”

244. Claim 14 is identical to claim 3, except that claim 14 is a method claim

that depends on claim 12. In my opinion, claim 12 is obvious for the reasons stated

above. (Supra Section X.B.7.) It is further my opinion that claim 14 is obvious over

Huang in view of Shenfield for the same reasons that this rendered claim 3 obvious.

(Supra Section X.B.2.)

9. Claim 16

a. “The method of claim 12, where said UI object is an
input field for a web service.”

245. Claim 16 is identical to claim 5, except that claim 16 is a method claim

that depends on claim 12. In my opinion, claim 12 is obvious for the reasons stated

above. (Supra Section X.B.7.) It is further my opinion that claim 16 is obvious over

Huang in view of Shenfield for the same reasons that this rendered claim 5 obvious.

(Supra Section X.B.3.)

Ex. 1002
Page 150 of 153

148

10. Claim 17

a. “The method of claim 12, where said UI object is an
input field usable to obtain said web component, where
said input field includes a text field, a scrolling text box,
a check box, a drop down-menu, a list menu, or a submit
button.”

246. Claim 17 is identical to claim 6, except that claim 17 is a method claim

that depends on claim 12. In my opinion, claim 12 is obvious for the reasons stated

above. (Supra Section X.B.7.) It is further my opinion that claim 17 is obvious over

Huang in view of Shenfield for the same reasons that this rendered claim 6 obvious.

(Supra Section X.B.4.)

11. Claim 18

a. “The method of claim 12, where said web component is
an output of a web service, is the text provided by one or
more simultaneous chat sessions, is the video of a video
chat session, is a video, an image, a slideshow, an RSS
display, or an advertisement.”

247. Claim 18 is identical to claim 7, except that claim 18 is a method claim

that depends on claim 12. In my opinion, claim 12 is obvious for the reasons stated

above. (Supra Section X.B.7.) It is further my opinion that claim 18 is obvious over

Huang in view of Shenfield for the same reasons that this rendered claim 7 obvious.

(Supra Section X.B.5.)

Ex. 1002
Page 151 of 153

149

12. Claim 22

a. “The method of claim 12, further comprising: providing
said Application and Player over said network.”

248. In my opinion, claim 22 is substantially similar to claim 11, except that

it is a method claim that depends on claim 12. The primary difference in the

language of the claim is that claim 22 recites “providing said Application and Player

over said network,” whereas claim 11 recites “where said code is provided over said

network.” (Ex-100, Claims 11, 22.)

249. In my opinion, the Huang-Shenfield system renders this limitation

obvious. As discussed previously, the Huang-Shenfield system provides code over

the network in the form of an Application and Player and, therefore, provides the

Application and Player over the network. (Supra Section X.B.6.) Accordingly,

claim 22 is obvious over Huang and Shenfield for the same reasons as claim 11. (Id.)

Ex. 1002
Page 152 of 153

XI. CONCLUSION

250. I declare that all statements made herein of my knowledge are true, and

that all statements made on information and belief are believed to be true, and that

these statements were made with the knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under Section 1001 of

Title 18 of the United States Code. I declare under penalty of perjury under the laws

of the United States of America that the foregoing is true and correct.

� Date: July�, 2021

150

Ex. 1002
Page 153 of 153

