US 20070118844A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2007/0118844 A1l

(54)

(76)

(21) Appl. No.:

(22)

Exhibit 1005
Page 01 of 44

CA (US); Lawrence Lindsey,
Livermore, CA (US); Paul M. Tabet,
Danville, CA (US)

Correspondence Address:
MORRISON & FOERSTER LLP
755 PAGE MILL RD

PALO ALTO, CA 94304-1018 (US)

11/286,267

Huang et al. (43) Pub. Date: May 24, 2007
DESIGNER AND PLAYER FOR WEB Publication Classification
SERVICES APPLICATIONS
(51) Imt. CL
GO6F 9/46 (2006.01)
Inventors: Jin Huang, Mountain House, CA (US); GO6F 9/44 (2006.01)
Pawan Nachnani, Newark, CA (US); (52) US.CL . 719/330; 719/316
Sampath Thasampalayam, Fremont,
(57) ABSTRACT

In the computer field, method and apparatus for supporting
web services so as to allow use of web services across
organizations and allow use of the web services as a data
source for a software application. This allows access to the
database of another organization via web services with
access via a web browser. One may access a field of data, a
group of fields of data or a table of data or other types of
software objects including logic. The present system maps
or binds software object to software object between the
accessing system and the accessed system. The web service
access may be supported in a hosted manner by a server

Filed: Nov. 23, 2005 maintained by yet a third organization.
101~ 120
Browser Server WS Factory
170 130
N - "
R Generic WS Object
Application 171
Component 175 || TP/ Vendor 172
192 XML Web Service Object
N 191N Lookup 754
Value [F==———Tf{-———————— i Attribute
) 193 || Insert/
Update/ :: ~123
Delete WS Object Mapping
. A
196~y ki Lookup v 14
Script s AJAX Vendor-Specific
Englne Insert/ WS ObjeCt
[Update/ E
195 Delete
102
~ SOAP" 156
Binding Vendor Web Service
163
143 Application - f
N Component Web Service Object

144 | Web Service Object
Attribute

Attribute | 100

Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1005

phan_b
Text Box
Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1005

Patent Application Publication May 24, 2007 Sheet 1 of 28 US 2007/0118844 A1

101 \ °

104 \ Internet Browser 106 \
Application Desligner Application Player [Application - 111
108 \ 110 N\
112 WS Piayer Script I‘\\.
| Action Bullder ' I WS Builder J \i———J 115
A
A A 114 Ajax Engine
HTTP(SYXML HTTP
y
1 '20 130 \ - Application Server 118
YV | Generic ws Objsct ModelH
102 132 Invacation
WSF
SFactory AP{ XML
- 126 - WSObjectMapping -7 123 Document
Application XML
Definitions - WelookspBean 1™ 129 17 /
WS Objects - 127
XML Definitions | WSManager |’ Response
- ’ . Document
Siebe! Salesforce 119
124 Credential WS Adapter WS Adapter
Manager Apache Axis
A A
HITP(S)/SOAP
/ Y
140 Siebel 142 Salosforce
Web Services Web Services

FIG. 1A

Exhibit 1005
Page 02 of 44

Patent Application Publication May 24, 2007 Sheet 2 of 28 US 2007/0118844 A1

101~ 120
Browser Server WS Factofr31/30
170
= — Generic WS Object
Application 171
Component 475 || 1T/ Vendor T2
XML Web Service Object
192~ 191 || Lookup 173
Value [S===—tf{=======-1] 1] Attribute |~
T 1937 || Insert/ |13)
Update/ v 123
Delete WS Object Mapping
- 114 5
1968\‘,. : AJ\AX Lookup v 154
cr - _ i
P Engine Insert/ Ve\',’\?sorosbﬁ-f&'ﬁc
/ Update/ T
195 Delete
102~ | SOAP" 156
Binding Vendor Web Service
143 Application 193

: Attribute I 20

144 | Web Service Object
Attribute

FIG. 1B

Exhibit 1005
Page 03 of 44

Patent Application Publication May 24, 2007 Sheet 3 of 28 US 2007/0118844 A1
~120
107~ Server WS Factory
Browser ~130
Generic WS Object
170~ 176 - — :
Application Component 178 Vendor = Salesforce
"OppNameTextArea" H Object = Opportunity
180~
182~ | Attribute
181
"BigCorp" i___?____lf_o_kl{?_ { Name = OppName
V4 1757 ||| Value = BigCorp
185 | 123
¥ | [WS Object Mappin
183~ 114~ OQ& o e
Script .| AJAX V] v 164
Engine Opportunity Object
SYNC 'y
' 147
Salesforce Web Service
LHERN Object = Opportunity
172~ 1794,
. 4 Attribute
145 Binding Name = OppName
N OppNameTextArea | Value = BigCorp
146 Opportunity's
N OppName attribute
FIG. 1C

Exhibit 1005
Page 04 of 44

Patent Application Publication May 24, 2007 Sheet 4 of 28 US 2007/0118844 A1
120
101 Server WS Factory
Browser 130
Generic WS Object
170\ 176‘\ —
Application Component 178 Vendor = Salesforce
"OppNameTextArea"] Object = Opportunity
182 %0
~ 18 1 Attribute
"BigCorp e |-UPdate || T e = OppName
i 1757 | Value = BigCorp
A
186 !: /123
R [[wWS Object Mappin
187~ 114~ <4 Sl L
Script | AJAX ¥ v 154
<— Engine Opportunity Object
QUERY 5
| v 147
Salesforce Web Service
HERN Object = Opportunity
179 N
172~ Attribute
. Name = OppName
145 Binding Value = BigCorp
\[OppNameTextArea]
146 Opportunity's
™ OppName attribute

Exhibit 1005
Page 05 of 44

FIG. 1D

Patent Application Publication May 24, 2007 Sheet 5 of 28 US 2007/0118844 A1

/ 160
Establish Connection

|

161
Select a web service object v
and define binding(s) between
object’s attributes and application
components

Define Filters

|

163
Define Columns /

162
/

FIG. 1E

Exhibit 1005
Page 06 of 44

Patent Application Publication May 24, 2007 Sheet 6 of 28 US 2007/0118844 A1

164 ~

Display application |
165~ l
Wait for "lookup” button to be
pressed
166 l %
Query web service for data |
167 ~, l
Display selection lookup table |
168~ 1

User selects a row of data and
presses "submit" button

169~ l

Copy value(s) from selected row
to application component(s)
according to bindings

FIG. 1F

Exhibit 1005
Page 07 of 44

Patent Application Publication May 24, 2007 Sheet 7 of 28 US 2007/0118844 A1

202

T o o) () (Gt (k)

Opportunity Name]

FIG. 2A

FIG. 2B

Exhibit 1005
Page 08 of 44

Patent Application Publication May 24, 2007 Sheet 8 of 28 US 2007/0118844 A1

302

Building a web service data source for an applicstion control invol mapping attributes from the veb service object to the Nsite
application controts, Since there may be many data matches, the user will be raguired to plck the appropriste data at run tma.
This wizard assists In marking the connection with the web service object, pping the attributes ta the eontrols, and creating

the run-time data selection screen.

Data Selecilon Selection
Connection | % Manbin = | Lookup Table | # | Lookup Table
pping Configuration Review

Selact the vendor of the web sarvice to whom you wish to connect, anter your togin information, then dick Next
Web Service Vendor: * |Salesfores 304

Web Service URL: Ittpsivww.salesforcacom/zs E/ 208
ruieesiSoapAls.o

N User Nameg: * [Iscritame] - 308

Password: * o= }/ 310

FIG. 3

Vendor Name: [Salesforce] 416

Select Web Service Dbject: ™ |Oppoﬂ.unllv . . @

Map object sttbutes from the web sarvica objedt ta the controls KSR =)

. OpportunityContactRola
OpportuniiyHistory
i Opportuntiylineltem
- OpportunityLineflemSchedule

420

flaclnc Geppinp ok

FiG. 4A

Exhibit 1005
Page 09 of 44

Patent Application Publication May 24, 2007 Sheet 9 of 28 US 2007/0118844 A1

Exhibit 1005
Page 10 of 44

Vendor Name: Ewmu _______]

Select Web Service Object: * [Opportunty &3

Data Source

(m] 4 {Please seteet 3|
430 Please selact
ClosetCheskhox
DescriplionTexdArga 434

QpnitameTexlfrea

Application Control Data Source

K [OppNameTexiAren [l & APieass seledt

440 16
LasiModiftedByia
LeadSource
MainCompefitors__¢

444 NextBiep

OrderNumber__¢ i
Ownerld
Pricebook2id i
Pricebaokiy %)
|RecordTypeld

446

Patent Application Publication May 24, 2007 Sheet 10 of 28 US 2007/0118844 A1

Exhibit 1005
Page 11 of 44

vendor Name: [Saesfarce I

Select Web Service Ghject: * 'Opponunﬁy e _i}g
Map obfact attributes from tha web service object to the contrels from your NSite application
Select Application Control Data Source
n OppNameTextarea _ H [Neme =
3 450 - |DescriptionTerttves & 4 | Description _ B 459
£
O 450 A [SageName”_ "~ BN 44,
r: 454 el]isCicsed . ,E\ 455
456

FIG. 4D

Patent Application Publication May 24, 2007 Sheet 11 of 28 US 2007/0118844 A1

504
vendor Name: Ewedome i
- 506
Select web service Object: [oppartariy 1

The Selecion Lookup Table is hov the user vl selact specific Infarmation.
Tha Salaction Lookup Table is mada up of filtars io target the data snd
calumns of the data itself.

Selact the attributes to use u filters. You may saed the filtars vith dats

from the spplication comtrol, s ctiong will app in the
{ookup table upon launching of the screan.
Select Filter Type Filter Contrel to Seed Filter
O _{OrpdownE] [PFiease select E m
508 LasiModtedByld
LasiModifiedDate :

LaadBourcs

512 .
QOrderhumber__¢
Ownend
Pricabook2id
Pmabnokld

ifSetesforee |
Vendor Name: [Sslesforce] 506

| o

selact Web Service Objact:
Tha Salection Lookup Tabla is how the uzer will salact spedific information. 2
i)
[+]
]

The Selection Lookyp Table is made up of filters to target tha datas and
sclumns of the data Rseff,

Seled the atiributes to use as filbers, 'Y'ou may seed the filters with data
from the Heati wifi appaarin the
lookup table upon launching ofﬁ\e serean.

AEEEE
i
ARAGE

ele:t Filter Type Filter - Control to Seed Fiiter

FIG. 5B

Exhibit 1005
Page 12 of 44

Patent Application Publication May 24, 2007 Sheet 12 of 28 US 2007/0118844 A1

Vendor Name: @ j 605
Setsce| Yem | Procuct | Prodact D { Doty Type | Cador
Select Web Service Ghjact: T r
Selact the stiributas you vith to use as columns of deto. The columns do not | [| 2009 | viper Ov738e | Cormerstin | fnd
have to be the same as the filters for the data or the data vhich Is to be
used in the application. 0 {2005 | PTCriser | CROX | Convertitts | Red
3] 2008 | Ocete VERES | Coowesitty | flod

Object Attributes

IGNUNOE

Use the up and down anrows on the far right to define tha order th cnlums- Thae filter at the top of the
list will be the filter shown at the farthest left of the selaction lookup table. Enter the label you wish to
show at the top of the column.

vendor Name:
: = Seect] Your | Procict | Product o | Bty Type
Select Web Service Object: [opportumty | | roduEt D)

:ele:t th: a‘t’t‘ﬂbutes you g;\"hﬁ:: m:6 uﬁ col:xs of&da:’a..h Th‘in t:lumn: bdeo not | O
sua to be the sama as the filters for the or tha which is to
usad In the spplication. g 2005 | PTOntier | CPAS00 | Comoeridts

i
j
E
I
QBEEH

Gbject Attributes

Use the up and dovn arrows on the far right to define the arder of tha columns. Tha filtar at the top of the

fist will be tha filtar shown at the farthest laft of the selection lookup tabla. Entar the label you wish to
show ot the top of the column.

Exhibit 1005
Page 13 of 44

Patent Application Publication May 24, 2007 Sheet 13 of 28 US 2007/0118844 A1

702
P Hendar
0 oL D e ar.ona
pportunity Namej B i Loslatp $Force Oppartundy
il escription e
LE]
) p fed ”
704 \
Al Userg
T G I AT TR Hls T O e) 7 M
7 T,
1
1 §

FIG.7

Map objact attributes from the web servica chiact to tha controls from ygur HSits application

Select Application Controf Data Source
[asivame_Jgl °° LastName "1
[Lead Boarce T

N\

810

aaanan

RA/DALA

805

|2l et BiErapilion) |

€,

Exhibit 1005
Page 14 of 44

Patent Application Publication May 24, 2007 Sheet 14 of 28 US 2007/0118844 A1

Select Web Service Object:

. m m— s m &
The Selaction Lookup Table is how the usar vifl salect spadfic information. = 0535
The Selection Lookup Table is made up of filters to target the data and 208 | Mamarg Corvertble | Red
calumns of the data itseif. 0 12005 { Ve OVINRE) | Comvexthis | e
Seleet the attributes to use as mem. You Ay sced the filters vith data T3 { 2005 | PTCrdeey | CPUSX0 | C Red
from the | ot will appear in the
lookup table upon launchlng of the saean. O {2003 | Geete VB3 | Commillie | Red

Selett Filter Type Coantrol to Seed Filter

910 Atenoo Tl IM
O g4 AbmndownE] | ;
816

vendor Name: 1008
Selsct] vepr | Produet | AroductiD | Bedy Typs | Color
Select Web Service Object:[Contact -~] S 12008 | o | Faeses | Comerts | et
Gelect the a&rlbutes you ;:sr}':o u:;g a:h eol:;mm o:hdasa: ‘ﬂ\; :::‘Iumns bdo not § €3 {2008 | waper VIS | Cormariits | Red
have t be the same as the filters for the data or the data which is to be P povieve r——
used In the application. g 208 PT :

Bhject Attributes Columns

OtherPhone = - - ;
Use the up and down anows on the far ﬂghtto deﬂns the order of the columns. The filtar at &\e top of the

list will be tha filter shown at the farthest left of the selecton lookup table, Entar the {abel you wish to
show at the top of tha column, .

FIG. 10

Exhibit 1005
Page 15 of 44

Patent Application Publication May 24, 2007 Sheet 15 of 28 US 2007/0118844 A1

1102

£ Formheader

,,,,,, e 5 e . Py D o i = s P |

Lonkip SFaTe Opportunty]

Opportunicy Mame [

i
Description I "
Stage I ‘k

Clozed & / 1104

g Details Area é:rﬂ]lonh}pﬁouetm‘k«ac{sl . . R . it N b e]
First Rame. ““‘A],loslANmr

Waidw | (#a<et | [Eanrat]

]“ZR‘.TE’E?!‘;I |EEE]

FIG. 11

Exhibit 1005
Page 16 of 44

Patent Application Publication May 24, 2007 Sheet 16 of 28 US 2007/0118844 A1

1220

FIG. 12A
1202
Loukug Opportunity fro1 Sales
Name: |Piease Seiect —_ E] closenate: [T 1

FIG. 12B

Exhibit 1005
Page 17 of 44

Patent Application Publication May 24, 2007 Sheet 17 of 28 US 2007/0118844 A1

1202

! 1210

; Name:[antest =] CloseDate: |]

i

[Ssiec oo oescripion | cinsepue | cromedanio | crotedomie T scioses |
:

!

00530000000dfOXAAQ 2005-09-02T17:19:21.0002 false

- Jin-test 200S-09-02

, _ = =]

Displaying 1 to1l o‘.f-I Af oaponunity. Page 1/1.

submit fl'¢ancel |8

1216

FIG. 12C

[£ d
7 Form Heades e
Opportunity "Im";{“ [l
Uum'vtionl]

3 Detalls Area é:! ﬂ; looklwsfvrq;(mtmgt

PURNIMO s R

FIG. 13

Exhibit 1005
Page 18 of 44

Patent Application Publication May 24, 2007

Exhibit 1005
Page 19 of 44

R % Lookup Contact from Salesforcd

Sheet 18 of 28

US 2007/0118844 A1

FirstName: I i LastName: IPlease Select IE!
e Tiease Setect

1405

1406

{UL4

anie ! AssistantName

| assistantPhone

(014) 427-4465

(303) 421-6782

FIG. 14A

Birthdate | Creatediyid
1956-09-08 -00S30000000¢F0XAAQ

g T e

1935-06-06 :00530000000JFOXAAQ)]

2004-10-31

S e

2004-19-11

'00330000000FONAAR

By
2094-;0-111’43

4]

:00330000000dFOXAAQ,

2004-10-11T45%

/003300000004FORAAQ

2004-10-11

1942-08-04 ‘bDSSOOOODOOdeKAAQ 2004-10-11

1944-07-15 -00330000000dfOKRAQ

£\

13

by
2004-10-11T{H

1925-08-15 ID0S3I0000000JFONAAQ!

2004-10-14T3

1936-12-09 EOOSSOOOGDUDMRMQ

1932-10-26 00530000000dFOXAAQ]

Patent Application Publication May 24, 2007 Sheet 19 of 28 US 2007/0118844 A1

1402

ALeokup Contact from Salestored

S S D e
SRR

1418

1420

FIG. 14B

ookup Canlack from Satesforc

FIG. 14C

Exhibit 1005
Page 20 of 44

Patent Application Publication May 24, 2007 Sheet 20 of 28 US 2007/0118844 A1

1502
:
|
Descrighon ™ ¢

Stage ﬁw'—m_——ﬁ_;;_ .'

Closod [

Cugedhod

FIG. 15

Exhibit 1005
Page 21 of 44

Patent Application Publication May 24, 2007 Sheet 21 of 28

1602
XML Schema

US 2007/0118844 A1

actory (WSO WS,
1604 ~
A< < 7N
| «uses» |
«usgs» «uSes»
1)
] P
1606 H H
\ WSObjectMapping
List g ping con, String vendorNama, String obji LV L
A el ion con, String , String obj)0
|+ String getXMLMapping(Connection con, String vendorName, String objectName)()
+WSObject mapWSObject(Connection con, String vendorName, String objectName, String xmiText, Object vendorOb;j)()
ms':,;.
1608 i rusas
___________ 1 ;
Y . +
1610 \\ Siebel WS Object Model ~ Sforce WS Object Model Generic WS Gbject Model !
N .
Product Opportunity Produci Opportunity 1612
WSObjeet
Account 1614 Account 1816 I
|
- 1 i
«uses» 1620
............ !
“uses»
)
Vendor Specific Objects i
1622 ;
| (1]
1632 s Designer (Including Web Service Bullder) Viper Player
WSManager
=uses~ 1626
1634 «interface~ «interface» 1624)
NSA !
WSFactory / 1628
1638 -us!es-
NSA andier] “Uses» fwsa Impl [ws «uzass fwen Jandier H
L}
A D D 3 1630
1640

Exhibit 1005
Page 22 of 44

'FIG. 16

Patent Application Publication May 24, 2007 Sheet 22 of 28 US 2007/0118844 A1

1702~ 1704 N 1706.\

Form Designer WS Player Authentication
| i)
| 1 |
| 1 |
| } |
1 1708 1 !
l : I
LaunchWSPlayen 1710
N yer() o \ _:_
Authenticate()

1712

LoginFailed()

1802 \ 1804 \ 1806 \ 1808 \
Form Designer WS Plaver FilterFields Lookup
) : : !
| : | -
E 1810 : : :
1
1]]
LaunchWSPlayer 1812 1
1 yer() i \ i _:_
sefFilterFields() / 1814
Search()
!
1818 WSData() 1816
AN PR e
SelectedRows() \

K~ —mm— = L]

Exhibit 1005
Page 23 of 44

Patent Application Publication May 24, 2007 Sheet 23 of 28 US 2007/0118844 A1

1902 \ 1904 \ 1906 \ 1907 \ 1908 \

Eorm Designer WS Player FilterFields Pagination Lookup
| i i i |
| s s | |
1910 | '
| N\ ' | l)
! LaunchWSPlayer) | 1912 \ | :)
. L ! i
setFilterFields()] 1914 \ ﬁ
getWSData()
WSData()
e ___________________________ e e — -
1916 NextRe/sultSet()
SelectedRows() WSData() 1918 7
____________ L e 1]
1922 1920
Figure 19

Exhibit 1005
Page 24 of 44

Patent Application Publication May 24, 2007 Sheet 24 of 28 US 2007/0118844 A1

2000~

Generate XML Request |

Data

2002~ l
Send XML Request Data I

2004 ~ l
Wait for Response I

2006\ l
Get XML response data |

2008~ l
Parse XML response data |

2010\ l

Fill In Application Components

End

FIG. 20

Exhibit 1005
Page 25 of 44

Patent Application Publication May 24, 2007 Sheet 25 of 28 US 2007/0118844 A1

2100~

Receive XML Request
Data

2102~ |
Parse XML Request Data

2104 ~ l
Generate Java Objects

2106 ,l,

Invoke WSManager queryObiject
for every Java Object

2108~ I
Convert resulting list of
WSODbjects to XML Response
Data
21 10\ l
Send XML Response Data to
client
End

FIG. 21

Exhibit 1005
Page 26 of 44

Patent Application Publication May 24, 2007 Sheet 26 of 28 US 2007/0118844 A1

|
2200~

Generate XML Request Data,
including values from
Application Components

2202~ l
Send XML Request Data

2204 ~ l
Wait for Response |

2206\ l
Get XML response data |

2208 ~ l
Parse XML response data |

2210\ l

Report any errors |

FIG. 22

Exhibit 1005
Page 27 of 44

Patent Application Publication May 24, 2007 Sheet 27 of 28 US 2007/0118844 A1

(Start)

2300~ |
Receive XML Request |

Data
2302~ |
Parse XML Request Data |

2304 ~ l
Generate Java Objects

2306~ l

Invoke WSManager
insertOrUpdateObject or
deleteObject for every Java
Object

2308~ I

Send XML Response to client.

End

FIG. 23

Exhibit 1005
Page 28 of 44

Patent Application Publication May 24, 2007 Sheet 28 of 28

US 2007/0118844 A1

©Help | Dlegend

portundy Descripticn:

orecast Categary

ﬂarne:ﬁ orce 0 14320829!

/i
24027

Actinom I;\:Iﬁ.\ﬂdnml £
v 4

7/
2404

FIG. 24

5 satmet Chymer

5 Gelact Function.

Selec: Funesicn '™

.
o text_sres 0. 1132002907
« button_srea 01133083 .)
o link_area_0 11320320166 w e piain | prind 3 coop e chebeard i 2
. op:-ic - U s] Bancrion liuk _area @ 113200215220 onflick{chjControl)
o forcerset sazagory 2] riTwer coas gosx Baxe.
com 3| syme = rav SymcMannger(-SYNCEROKTZEC::
« op3_typz M| N
* lzed_sourze

* stege_name

& opportunity Line Iteme
o wxt_srea_2 0
s text_area 2 1

25027

FIG. 25

Exhibit 1005
Page 29 of 44

US 2007/0118844 Al

DESIGNER AND PLAYER FOR WEB SERVICES
APPLICATIONS

[0001] The specification includes Appendixes A, B, C, and
D, which form part of the disclosure. Appendix A includes
a schema describing the structure of an XML data mapping.
Appendix B includes a format for XML-based invocations,
and Appendix C contains an example invocation XML
document. Appendix D contains an example XML descrip-
tion of attribute bindings, column bindings, and filters.

FIELD OF THE INVENTION

[0002] This invention relates to computers and the Inter-
net, and more specifically to web services.

BACKGROUND

[0003] Web services are well known in the computer
software field. Generally a web service is a computer
application (software) component accessible over open pro-
tocols. Web services are intended for purposes of interop-
erability, for instance for enterprise application integration
and business-to-business integration. This addresses the
problem that enterprises (i.e., organizations) face in inte-
grating their various software applications with one and
other. Typically, even inside one organization there may be
several computer systems even using different operating
systems. These need to communicate and exchange infor-
mation to serve the needs of the organization. This is
exacerbated with cross-enterprise collaboration. Hence the
need for interoperability. Web applications are also well
known and are a type of distributed application built around
web browsers. They typically use a computer language such
as XML.

[0004] More precisely a web service is an application
component that communicates via open protocols, processes
XML messages, describes the messages using XML schema,
and provides an endpoint description using WSDL. WSDL
is the Web Service Description Language. WSDL makes it
possible to describe an endpoint for a message and its
behavior. WSDL layers additional information over the
XML schema definitions that describe actual messages.
Hence WSDL provides meta-information about, for
instance, a computer file to be accessed.

[0005] Web services are web-based enterprise applications
that use open XML standards and transport protocols to
exchange data with calling clients (programs). The calling
client may be at the same organization or at a different
organization. Organization here does not necessarily refer to
a particular business or legal entity, but instead any organi-
zation that maintains a networked computer system.

SUMMARY

[0006] In accordance with this disclosure there is provided
aweb services framework to support existing and future web
service requirements. In one example the web services here
are used with software objects such as software applications
(i.e., programs) which carry out a business process. See
commonly owned Patent Application entitled “Browser
Based Designer and Player,” filed Sep. 30, 2005, inventors
Pawan Nachnani et al., Ser. No. 11/241,073, incorporated
herein by reference in its entirety, which describes a method
of building software applications. The sort of software

Exhibit 1005
Page 30 of 44

May 24, 2007

applications disclosed in that Patent Application may also be
used in the system of the present disclosure. The present
inventors have determined that it would be useful to support
web services in software applications, and other software
objects, and executing same. Hence the present method and
apparatus are directed to use of web services to make the
web service a data source for a software application, and in
one aspect to such use of web services in software applica-
tions built using the methods described in the “Browser
Based Designer and Player” patent application referenced
above. This use of web services may be in addition to
sourcing data from a database supported by the same orga-
nization as the software application in question.

[0007] A goal is to access databases and/or business logic
of other organizations via web services. Typically the web
service is used to access objects, which may include data and
operations (logic), in another organization’s computer sys-
tem. What is accessed is generally referred to herein as a
software object. A software object includes data and/or
operations from the other organization’s computer system.
The access is typically over the Internet but not so limited.
The data source accessed may be a single field of data, a
group of fields of data, or a table of data. Moreover there are
provided adapters which allow access to web services sup-
ported by each of a number of different organizations each
having a different type of computer system and/or database.
In one embodiment the present system is hosted by yet a
third organization which maintains a host server which
includes a routing engine, a multi-tenant database and a
process control module for web services.

[0008] By defining bindings between software objects
such as application user interface components to other
software objects such as web services or attributes of web
services, one can build composite software applications
which draw objects from several different organizations.
These bindings can be represented as, for example, data in
an Extensible Markup Language (XML) based format. Thus
one software application can have objects drawn from a
number of enterprises. In addition to the hosted server there
is a player module which operates at runtime to run the
application and a designer module which is the builder of the
application. The adapters are provided for each accessed
organization’s objects because of differences in the objects
and associated data. Typically there is at least one adapter for
each web service vendor. Examples of web service vendors
include Siebel® and Salesforce.com®. The present method
accesses a WSDL (Web Service Definition Language)
description for each vendor, this description being a standard
metadata type well known in the field for describing web
service interfaces. Typically there is one such WSDL
description for each object or entity (enterprise or organi-
zation). Also included is a wizard which is part of the web
services designer which creates the binding or mapping of
meta-information to generate composite or other software
applications. Typically the present system is coded in
Java™, but is not so limited and is intended to be used via
standard web browsers such as Microsoft Internet Explorer,
again not so limited.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1A is an illustrative drawing of a system for
developing and executing browser-based applications.

[0010] FIG. 1B is an illustrative drawing of a binding
between an application component and a web service.

US 2007/0118844 Al

[0011] FIGS. 1C and 1D are illustrative drawings of an
example binding between an application component and a
web service.

[0012] FIG. 1E is an illustrative drawing of a flowchart of
a process for defining a binding between an application and
a web service.

[0013] FIG. 1F is an illustrative drawing of a flowchart of
a process for defining a web service lookup in an application
player.

[0014] FIG. 2A is an illustrative drawing of defining an
application text input component in an Application
Designer.

[0015] FIG. 2B is an illustrative drawing of defining an
application button component in an Application Designer.

[0016] FIG. 3 is an illustrative drawing of defining a web
service connection in a web services Designer.

[0017] FIGS. 4A-4D are illustrative drawings of binding
an application component in a web services Designer.

[0018] FIGS. 5A-5B are illustrative drawings of adding
filters in a web services Designer.

[0019] FIGS. 6A-6B are illustrative drawings of adding
columns in a web services Designer.

[0020] FIG. 7 is an illustrative drawing of defining a table
area in an Application Designer.

[0021] FIG. 8 is an illustrative drawing of binding appli-
cation table columns in a web services Designer.

[0022] FIG. 9 is an illustrative drawing of adding filters in
a web services Designer.

[0023] FIG. 10 is an illustrative drawing of adding col-
umns in a web services Designer.

[0024] FIG. 11 is an illustrative drawing of an application
in an Application Player.

[0025] FIGS. 12A-12C are illustrative drawings of a selec-
tion lookup table in a web services Player.

[0026] FIG. 13 is an illustrative drawing of an application
in an Application Player with data retrieved from a web
service.

[0027] FIGS. 14A-14C are illustrative drawings of a selec-
tion lookup table in a web services Player.

[0028] FIG. 15 is an illustrative drawing of an application
in an Application Player with data retrieved from a web
service.

[0029] FIG. 16 is an illustrative drawing of implementa-
tion interfaces and objects.

[0030] FIG. 17 is an illustrative drawing of a process for
authenticating a user.

[0031] FIG. 18 is an illustrative drawing of a process for
invoking a lookup.

[0032] FIG. 19 is an illustrative drawing of a process for
processing multiple pages of results.

[0033] FIG. 20 is a flowchart of an exemplary portion of
a method to be executed by a Designer or a Player for
looking up web service objects.

Exhibit 1005
Page 31 of 44

May 24, 2007

[0034] FIG. 21 is a flowchart of an exemplary portion of
a method to be executed by a server for looking up web
service objects.

[0035] FIG. 22 is a flowchart of an exemplary portion of
a method to be executed by a Designer or a Player for
inserting, updating, or deleting web service objects.

[0036] FIG. 23 is a flowchart of an exemplary portion of
a method to be executed by a server for inserting, updating,
or deleting web service objects.

[0037] FIG. 24 is an illustrative drawing of a Designer
user interface.

[0038] FIG. 25 is an illustrative drawing of a user-defined
script in an action builder.

DETAILED DESCRIPTION

[0039] The following description is presented to enable
one skilled in the art to make and use the present invention,
and is provided in the context of particular uses and their
requirements. Various modifications to preferred embodi-
ments will be readily apparent to those skilled in the art, and
the generic principles defined herein and may be applied to
other embodiments and applications without departing from
the spirit and scope of the invention. Moreover, in the
following description, numerous details are set forth for the
purpose of explanation. However, one of ordinary skill in the
art will realize that the invention, might be practiced without
the use of these specific details. In other instances, structures
and devices are shown in block diagram form in order not to
obscure the description of the invention with unnecessary
detail. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the
widest scope consistent with the principles and features
disclosed herein.

[0040] FIG. 1A is an illustrative drawing of a computer
enabled system for developing and executing browser-based
software applications. The system includes a Designer 104
and a Player 106, as described in the commonly owned
Patent Application entitled “Browser Based Designer and
Player,” referenced above. The Player 106 is a computer
program that provides a user interface which executes a
browser based application 111, which can receive values
from web services, send values to web services, and invoke
other operations provided by web services. An exemplary
Siebel web service 140 and an exemplary Salesforce web
service 142 are shown. The Designer 104 is a computer
program that provides a user interface which allows a user
to create the application 111. The Designer 104 and Player
106 execute in a conventional Internet Browser 101, which
may be, for example, Microsoft Internet Explorer or Mozilla
Firefox™. Each element or component shown in FIG. 1A is
a software computer program entity to be executed on a
computer.

[0041] The Designer 104 and Player 106 are provided to
the Internet Browser 101 by a server 120 as web pages. The
web pages may be, for example, Java Server Pages (JSP) or
Java Server Faces (JSF) pages, and may include HTML and
JavaScript™ code that implements the Designer 104 and
Player 106. The server 120 may be, for example, an appli-
cation server computer program such as JBoss® or the like.
The server 120 communicates with the Internet Browser 101
via a network protocol, e.g., HyperText Transfer Protocol

US 2007/0118844 Al

(HTTP) or Secure HyperText Transfer Protocol (HTTPs).
The components shown in the server 120 typically share a
single address space and communicate with each other via
function calls. The components shown outside the server
120 typically communicate with the server via a network
protocol, such as HTTP for the Internet Browser 101. Note
that “server” here generally refers to software rather than to
a physical computer.

[0042] Applications created by the Designer 104 are
stored in Extensible Markup Language (XML) format as
XML definitions 122 in a database 124, and loaded into the
Player 106 as the application 111. The XML definitions are
described in the aforementioned commonly-assigned patent
application, and are described in more detail herein with
respect to web services-related portions of applications. For
the web services-based applications described herein, the
XML definitions include bindings 102 which associate
application components with web service object attributes.

[0043] The server 120 receives web service interaction
requests from the Designer 104, e.g., a request for a list of
objects provided by a web service, and interacts with web
services provided by specific vendors, such as the Siebel
Web Service 140 provided by Oracle Corporation of Red-
wood Shores, Calif., and the Salesforce Web Service 142
provided by Salesforce.com of San Francisco, Calif. The
server 120 communicates with the web services via a
network protocol, such as Simple Object Access Protocol
(SOAP), which may be based on the HTTP or HTTPs
protocol. The server 120 includes components implemented
in a computer programming language, e.g., Java™, C#™, or
the like.

[0044] The components of the server 120 include a
Generic Web Service Object Model 130 (also referred to
herein as a Genetic WS Object or a WSObject), and a Web
Service Factory Application Programming Interface 132
(also referred to herein as a WSFactory API). The WSFac-
tory API 132 includes a WSObjectMapping 123, which
maps, i.e., converts, the Generic WS Object Model 130
(WSObject) to vendor-specific Application Programming
Interfaces, such as a Siebel Web Service Adapter 134 for
interacting with the Siebel Web Service 140, and a Sales-
force Web Service Adapter 136 for interacting with the
Salesforce Web Service 142. More specifically, the WSOb-
jectMapping 123 generates the Generic WSObjects 130 for
substantially all object types provided by a web service (e.g.
an Opportunity object type that represents a sales opportu-
nity). The mapping between the Generic WS Object Model
130 and the vendor-specific adapters, such as the Siebel WS
(Web Services) Adapter 134, is represented as a WS Object
XML definition 126, which is stored in the database 124.
The WS Object XML definition 126 is also referred to herein
as an XML mapping file and is described in more detail
below.

[0045] The adapters, e.g., the Siebel WS Adapter 134,
interact with the vendor specific objects 138 generated by,
e.g., Apache Axis. Apache Axis is a programming tool
available from the Apache Software Foundation. The vendor
specific objects 138 are generated by a software tool, such
as the Axis WSDL2Java command line tool, from vendor
specific web service interface descriptions, as is known to
those skilled in the art. The web service interface descrip-
tions are typically provided by the web service vendor in a
format such as WSDL.

Exhibit 1005
Page 32 of 44

May 24, 2007

[0046] The WSFactory API 132 includes a WSManager
127, which has functions for querying, inserting, updating,
and deleting objects provided by web services. The func-
tions provided by the WSManager 127 are shown in Table
1.

TABLE 1
WSFactory Function Description
queryObject Get a list of instances of an object.
insertOrUpdateObject Inserts or updates a specified instance with

specified values.

deleteObject Deletes a specified object.

[0047] 1In the WSFactory API 132, web service data is
represented as objects with attributes. In the user interfaces
of the Designer 104 and Player 106, these objects are
presented to the user as rows in a table. Each row has one
or more columns, which correspond to the attributes of the
object. For example, there could be an object named Oppor-
tunity with attributes named OpportunityName and Oppor-
tunityld. There could be any number of Opportunity object
instances in the web service, and each Opportunity object
would have an OpportunityName and Opportunityld. These
objects can be retrieved by the queryObject method, created
or updated by the insertOrUpdateObject method, and
deleted by the deleteObject method.

[0048] The queryObject method supports filter and col-
umn restrictions. A user can specify a filter to reduce the
number of objects returned in the query, and a set of columns
to reduce the number of attributes in each object returned in
the query. For example, a filter restriction could indicate that
only Opportunity instances for which the name contains the
value “BigCo” are to be returned in query results. A column
restriction could indicate that only the OpportunityName
column is to be returned in query results. The filters and
column specifications can thereby reduce the quantity of
data retrieved from the web service.

[0049] The WSFactory API 132 creates an instance of the
WSManager 127 for each type of adapter. The WSManager
127 invokes the adapters, e.g., the Siebel Adapter 134 and
the Salesforce adapter 136, to perform web service invoca-
tions in response to user requests. For example, when a user
submits data values in an application, the WSManager 127
inserts into or updates the web service using the new values.
As another example, when a user requests data in an
application, the WS Manager 127 performs a lookup opera-
tion to query the web service for the data. The WSManager
127 may be invoked by the Designer 104, e.g., to get a list
of web service objects, or by the Player 106, e.g., to submit
or lookup data values. The WSManager 127 may also be
invoked by a WSAjaxEventManager 118 to process requests
from scripts, as described below with reference to AJAX.

[0050] The server 120 also includes a web services Cre-
dential Manager 128, which manages security information
such as user names and passwords. The security information
is provided by a user and is in turn provided by the server
120 to the web services, e.g. the Siebel Web Service 140, to
authenticate the user.

[0051] A Web Services AJTAX API and associated methods
are provided for allowing scripts executed by the Internet
Browser 101 to invoke server-side computer program code,

US 2007/0118844 Al

such as the WSFactory API. The Web Services AJAX APl is
provided because the commonly-used HTTP request/re-
sponse communication model for retrieving web pages does
not allow a client, e.g., a script or web page executing in the
Internet Browser 101, to invoke server-side logic at arbitrary
times, without reloading the web page. However, such client
invocations are useful because they allow a user to write
scripts in a language such as JavaScript™ to customize the
behavior of applications. The Web Services AJAX API
allows users to write such scripts to customize application
behavior by interacting with web services.

[0052] The Web Services AJAX API is based on the ATAX
technique, which is known to those skilled in the art, for
making asynchronous JavaScript invocations using XML
between a browser and a web server. The asynchronous
JavaScript invocations can be made at arbitrary times with-
out requiring the web page displayed in the browser to be
reloaded. In the AJAX-based invocation method, a script
associated with an application component of the Application
Player 106 can call programming interfaces of the server
120, such as the WSFactory API 132. For example, a
user-defined script that is called when a button component is
pressed can call the WSFactory API 132 to interact with web
services, such as the Siebel web service 140 and the Sales-
force web service 142. The Web Services AJAX API uses an
AJAX Engine 114, which, as known to those skilled in the
art, includes an XmlHttpRequest interface (not shown) that
allows JavaScript code to send requests to and receive
responses from a web server such as the server 120 without
reloading, or changing the appearance of, the web page
displayed in the Internet Browser 101. The AJAX Engine
114 communicates with an NsiteAjaxManager 116 by send-
ing and receiving an invocation XML document 117 con-
taining interaction requests and responses via an HTTP
connection. The NsiteAjaxManager 116 receives and
responds to HTTP requests and may be, for example, a
Java™ servlet. The NsiteAjaxManager 116 invokes a WSA-
jaxEventManager 118 of the server 120 via in-process
procedure calls to perform web service invocations such as
lookups, inserts, updates, and deletions as specified in HT'TP
request messages received by the NsiteAjaxManager 116
from the AJAX Engine 114. The WS AjaxEventManager 118
in turn invokes the WSFactory API 132 to perform the
requested web service interactions, and the WSFactory API
132 invokes the appropriate lookup, insert, update, or delete
methods of the WSManager 127.

[0053] The invocation XML document 117 is an XML-
format representation of a web service interaction, such as a
lookup, insert, update, or delete of data in a web service
object. The invocation XML document includes a method
name and parameters, encoded in XML format, which are
extracted by a servlet in the NsiteAjaxManager 116, and the
NsiteAjaxManager 116 invokes the corresponding method
of the WSManager 127 to perform the web service interac-
tion specified in the invocation XML document 117. Upon
completion of the interaction, the WSManager 127 returns a
result to the NsiteAjaxManager 116, which encodes the
results in a reply XML document 119. The reply XML
document 119 is sent back to the AJAX Engine 114 as a
reply. The XML documents are transmitted between the
NsiteAj axMAnager 116 and the AJAX Engine 114 using an
XmlHttpRequest component (not shown), which is provided
by the Internet Browser 101.

Exhibit 1005
Page 33 of 44

May 24, 2007

[0054] The Designer 104 includes a web services builder
110, which is a computer program that provides a user
interface for defining web services interactions in browser-
based applications 111. The Player 106 executes browser-
based applications 111, which have application user inter-
face components, such as text fields, for receiving data
values from a user. Examples of applications 111 include
forms-based applications for entering information about a
sales opportunity or, as another example, for scheduling a
medical procedure in a hospital. A WS Player 112 compo-
nent of the Player 106 allows applications executing in the
Player 106 to interact with web services by, for example,
looking up a value from a web service and storing the value
in an application component associated with the application
111, or inserting, updating, or deleting a value in a web
service object, where the value is specified by an application
component. These web services interactions are performed
according to bindings 102 defined by a user using the web
services builder 110.

[0055] The web services builder 110 allows a user to
define bindings 102 between components of the application,
e.g. buttons and tables, and web service attributes, e.g.
values that can be stored in or retrieved from web services.
Note that this application-to-web-service binding is essen-
tially a mapping between objects and so is conceptually
similar to the WSObject-to-vendor-object mappings
described above as WS Object XML definitions 126, but the
two types of mappings are described separately herein for
clarity. There is no requirement that the bindings 102 be
represented using-the structures described herein. Other
structures that represent the information contained in the
bindings 102 could also be used. For example, the bindings
102 could all be represented by a single data structure.

[0056] FIG. 1B is an illustrative drawing of a binding
between an application component and a web service
according to one example. The binding 193 associates a
value 192 of an application component 170 with an attribute
155 of a web service 156. The binding 193 is a two-way
mapping which specifies that a particular web service
attribute 155 can be set to the value 192 of the application
component 170, and, conversely, that the value of the
application component 170 can be set to the value of the
attribute 155. The actual setting of these values occurs as
part of a web service interaction such as a lookup, insert,
update, delete, or user-defined interaction. The lookup inter-
action, which retrieves data from the web service 156,
causes the value 192 of the application component 170 to be
set to the value of the attribute 155. The insert and update
operations, which send data to the web service 156, cause
the value of the attribute 155 to be set to the value 192 of the
application component. The delete interaction causes a
specified web service object to be deleted from the web
service. User-defined interactions, such as invocation of web
service methods, can be performed by the script 196.

[0057] FIG. 1B illustrates the flow of data between an
application component 170 and the web service 156 via the
WS Factory 120 according to one example. As described
above with reference to FIG. 1A, an application running in
an Application Player 106, which is in turn running in the
browser 101, interacts with the WS Factory 120 running in
a server 120. The application includes at least one applica-
tion component 170. The application component includes a
value 192, which is displayed to a user and may be set by a

US 2007/0118844 Al

user, e.g., as a value of a text box or of a drop-down list. The
application component 170 may be associated with a script
196, which is part of the application. The script 196 includes
user-defined computer program code in a programming
language such[]as JavaScript™ or the like. The script
196 can access, i.e., set and get, the value 192, as shown by
the arrow between the script 196 and the value 192. The
script can invoke the AJAX Engine 114 to perform web
service interactions, such as setting and getting the value of
a web service attribute 155 associated with a web service
object 153 provided by a vendor web service 156. The
vendor web service as stated above may be, for example, a
web service provided by Siebel Systems Inc., an entity of
Oracle Corporation of Redwood Shores, Calif., or by Sales-
force.com of San Francisco, Calif. Each vendor web service
156 typically has a vendor-specific data model, e.g., a model
based on sales opportunities in the Salesforce web service,
but it is desirable to allow the Designer 104 and Player 106
applications to work with multiple web services, typically
provided by different vendors, that have different data mod-
els. To allow the Designer 104 and Player 106 to be
vendor-independent and work with multiple web services
without the need for vendor-specific code in the Designer
104, the Player 106, or the Internet Browser 101, a Generic
WS Object 130 is provided in the server 120. The Designer
104 and Player 106 use the Generic WS Object 130 to
interact with the vendor web service 156, e.g., to set and get
values of the vendor-specific attribute 155. The WS Factory
120 maps the generic WS Object interface 130 to a vendor-
specific object 154, e.g., an Opportunity object generated by
Axis from WSDL via a WSObjectMaping 123.

[0058] The bindings 102 can be defined and associated
with an application by a user using the web services builder
110 to enable the application to set and get values of the
attribute 155 of the web service object 153. Multiple bind-
ings 102 can be associated with an application. In one
aspect, a set of bindings 102 is associated with a user
interface component, such as button or link, that, when
selected by a user, causes a web service interaction such as
a lookup or insert. A user defined script in a programming
language such as JavaScript™ can also be associated with a
user interface component. The user defined script can
dynamically create bindings 102 while the application is
running in the Player 106, and can invoke any type of web
service interaction, including lookups, inserts, updates, and
deletes. Data values will be transferred between the appli-
cation components and web service attributes specified in
the bindings 102, and the direction of data transfer will be
determined by the user interface component or script that
initiated the interaction.

[0059] The bindings 102 are represented in XML A bind-
ing between an application component and a web services
object attribute is specified using XML: The XML element
format for attribute bindings, column bindings, and filters is
shown in Appendix D.

[0060] An attribute binding can be specified using a
WS AttributeMapping XML element, which includes a for-
mentity value that identifies the application component, and
a wsattribute value that identifies the web service attribute
bound to the application component. For example, Appendix
D shows a WSAttributeMapping with a formentity=Opp-
NameTextArea and a wsattribute=OppName, which means
that the OppNameTextArea application component is bound

Exhibit 1005
Page 34 of 44

May 24, 2007

to the OppName web service attribute. A list of multiple
bindings can be specified as an XML WSAttributeBind-
inglist, which is a list of WSAttributeMapping elements,
each defining a binding.

[0061] A binding between a column of an application table
and a web services object can be specified using a WSLook-
upTableColumn XML element, which includes a wsobjat-
tribute that identifies the web service attribute bound to a
table column, and a label that specifies a name for the
column. For example, Appendix D shows a WSLookupT-
ableColumn element with a wsobjattribute=OppName and a
label=Name, which means that the OppName attribute is
bound to a table column that corresponds to the WSLook-
upTableColumn element, and the table column’s name is
Name. A list of multiple column bindings can be specified as
a WSTableBindingl.ist, which is a list of WSLookupTable-
Column elements, each defining a binding.

[0062] As introduced above with reference to the WSFac-
tory API 132, a filter can be defined to reduce the quantity
of data to be retrieved from a web service. A filter can be
specified as a WSFilterField element, which includes a
filterfieldwsattribute that specifies a web service attribute, an
optional formentity that specifies an associated application
component, and a filterfieldtype that specifies the type of
filter, e.g., attribute-based or condition-based. Condition-
based filters are specified using logical conditions similar to
those used in where clauses in the well-known Structured
Query Language (SQL). An attribute-based filter specifies
an attribute of the web service for which filtering can be
performed by a user of the WS Player 112. For example,
Appendix D shows a WSFilterFeild element which includes
a filterfieldwsattribute=OppName, which means that filter-
ing is to be applied to lookups so that a user of the WS Player
112 can restrict the web services objects that will be
retrieved to those for which the OppName attribute has a
specified filtering value. The WSFilterField element also
includes a filterfieldtype=Dropdown, which means that the
attribute filter will appear as a drop-down menu in the WS
Player 112. The drop-down menu will include a list of
possible values for the OppName attribute, and the user will
be able to select a value from the drop-down menu to use as
the filtering value. A user of the WS Player 112 can then
select a value from the drop-down menu to cause the WS
Player 112 to retrieve objects for which the corresponding
attribute is equal to the selected value from the web service.

[0063] The bindings 102 are used by the WS Player 112
when a web service interaction is performed, e.g., in
response to a user selecting a web services trigger compo-
nent, such as a button, in the WS Player 112, as follows.
When a lookup interaction is performed, e.g., in response to
a user of an application 111 running in the WS Player 112
pressing a button for which bindings 102 have been defined
using the WS Builder 110, the bindings 102 associated with
the application component are executed by setting the value
of each bound application component to the value of the
corresponding attribute., where the corresponding attribute
is specified in the binding.

[0064] When an insert or update interaction is performed,
e.g., when a user submits an application page that includes
data to be saved to the web service, the bindings 102 of the
application are executed by setting the value of each bound

US 2007/0118844 Al

attribute the value of the corresponding application compo-
nent., where the corresponding application component is
specified in the binding.

[0065] There is also a synchronize interaction, which is a
combination of the insert or update interaction and a delete
interaction. When a synchronize interaction is performed,
e.g., when a user clicks a button that is associated with a
script that invokes a synchronize operation, the bindings 102
of the application 111 are executed as shown by the pseudo
code representation in Table 2.

TABLE 2

for each binding in the application,
if the binding is for an application table then
for each row in the application table
if the current row is bound to an existing
web service object and the attributes have been changed in the
application table then
update the existing web service object
with the new attributes
end if
if the current row is new then
insert a new web service object with
the column values in the application table
end if
if a row has been deleted from the
application table then
delete the corresponding web service
object
end if
end if
if the binding is for a group of components then
update the corresponding web service object with the
new attributes from the group of components
end if
end for

[0066] FIG. 1B shows how data is transferred between the
application component 170 and the vendor web service 156.
A value 192 of the application component 170 can be
retrieved from the web service 156 by a lookup interaction,
as shown by the arrow 191 from the attribute 174 of the
Generic WS Object 130. The mapping 175 specifies that the
value of the attribute 174 can be transferred or copied to the
application component value 192 when a lookup operation
is performed. The lookup operation can be invoked by the
WS Player 112 in response to a user request. The lookup
operation can also be invoked by a user-defined script 196
at any time during execution of the application. Conversely,
the mapping 175 also specifies that the value 192 can be
copied to the attribute 174 when an insert or update opera-
tion is performed. As with the lookup operation, the insert or
update operation can be invoked by the WS Player 112 in
response to a user request. The insert or update operation can
also be invoked by the user-defined script 196 at any time
during execution of the application.

[0067] A binding 175 associates a text area component of
an application with a Name attribute of a Sales Opportunity
web service object. A user of the application player 106 can
lookup values for the application component (e.g., the text
area), from the associated web service attribute, as well as
insert the application component’s value into the web ser-
vice attribute and delete a value from the web service. Those
web services interactions can be defined using the web
services builder 110 of the application designer 104, typi-
cally by using the web service builder 110 to associate web
service bindings 175 with a button component of the appli-

Exhibit 1005
Page 35 of 44

May 24, 2007

cation 111. The web services builder 110 can be used to bind
an application component to an attribute of a web service,
and specify whether the interaction type is lookup, insert,
modify, or delete. Users can define additional types of
interactions by providing a script 115 to be executed as a
computer program as part of the application 111. The script
may include, for example, code in the JavaScript™ lan-
guage. The script 115 is associated with a component (not
shown), e.g., a user interface component, of the application
111, and can access the values of application components.
The script can also invoke web services, as described
elsewhere herein.

[0068] FIG. 1C is an illustrative drawing of an example
binding 175 and interactions between an application com-
ponent and a web service. A lookup 181 is performed in
response to a user’s request, e.g., a user pressing a Search
button, followed by an update 185 performed by a script 183
which invokes a SyncManager(“SYNCHRONIZE”) call.
Note that other combinations are possible. This combination
is shown as an illustration. In general, as shown in FIG. 1B,
a lookup can be invoked by either a user action or a script,
and an insert or update can be invoked by either a user action
or a script. This figure shows a lookup 181 invoked by a user
action, followed by an update 185 invoked by a script 183.
The lookup 181 transfers data from the web service 147 to
the application component 170, and the update 185 transfers
data in the opposite direction. A binding description 172 is
also shown. The binding description 172 illustrates that the
binding 175 is represented as an association between a
component 145, named OppNameTextArea, and a web
service attribute 146, named OppName.

[0069] FIG. 1D is an illustrative drawing of an example
binding and interactions between an application component
and a web service. FIG. 1D shows the combination of a
lookup 186 performed by a script 187 which invokes a
SyncManager(“QUERY™) call, and an update 189 per-
formed in response to a user action, e.g., a user pressing a
Submit button. The lookup 186 retrieves the value 182 of the
application component 170 from the Generic WS Object 130
identified by the binding 175. The update 189 sets the value
of the attribute 180 of the Generic WS Object 130 to the
value of the value 182 of the application component 170.

[0070] For lookup interactions, when an application is
executed in the Player 106, a user may press a button
component previously associated with a web service binding
to query the web service and display a list of one or more
values returned by the web service according to the binding.
The user can then select a value from the list, and the
selected value will appear in the corresponding application
component. The list of values is referred to herein as a
Selection Lookup Table.

[0071] A web service object, such as the Sales Opportu-
nity object, may have multiple instances, e.g., multiple sales
opportunities, in which case a user may select one or more
instances in the application player 106 as the values to be
used for the application. Filters can be defined in the web
services builder (typically after defining the bindings), to
restrict the displayed instances of a web service object to a
subset of all instances according to a condition. For
example, a filter may restrict the sales opportunities to be
displayed to those in a specific country by specifying a
specific value for a country attribute. The set of attributes to

US 2007/0118844 Al

be displayed in the Selection Lookup Table can also be
restricted to a subset of all attributes by defining specific
columns to be displayed. For example, the country attribute
could be excluded from the attributes displayed by exclud-
ing the country column in the web services builder.

[0072] The WS Player 112 uses binding information that
establishes a mapping between WS object attributes and
application components to display a Web Service lookup
user interface for storing or retrieving the values of those
components to or from web services. The binding informa-
tion is stored in the Application XML Definitions 122.

[0073] The web services player 112 is launched by the
application player 106 when a user clicks on a component
that has been configured to invoke a web service by the web
services builder 110. Components that can be configured to
invoke a web service include button components and area
components. The WS Player 112 uses the information stored
in the WSBuilderObject to render its own user interface
components. The WS Player 112 presents a Selection
Lookup Table user interface component, which allows a user
to select any number of data rows returned from a Web
Service. The selected rows will be passed to the WS Player
112, and, in one example, included in application user
interface components which have been previously bound to
the Web Service.

[0074] One approach to invoking the web service object
would be to call vendor-specific objects directly from appli-
cations. That approach requires the application to know
details about each vendor specific object, and ties the
application to a particular web services vendor. Therefore a
generic web services object is introduced. Each vendor-
specific object is mapped to the generic web services object
by a definition stored in an XML mapping file. Applications
interact with the generic web services object and need not
contain hard-coded dependencies on vendor specific objects.

[0075] The generic web services object is represented in
the Java™ programming language by the WSObject class.
Note that although the Java™ language is used in this
description, any programming language may be used to
implement the features described herein. The WSObject
class represents each attribute of a vendor-specific Web
Service object as a vendor-independent generic object. An
instance of the WSObject class can includes an arbitrary
number of fields, which are stored in a list. A pseudocode
definition of the structure of the WSObject class is shown in
Table 3.

TABLE 3

public class WSObject {
public String Vendor;
public String objectName;

/I Web Service vendor name

// Web Service object name
public String xmlMapping; // xml mapping for WS object
public ArrayList object; // list of object fields
public Object getFieldValue(String fieldName) {......}

[0076] The getFieldValue method returns the value of a
field (also referred to herein as an attribute), where the field
is specified by a field name. The WSObject’s Vendor
attribute is set to the vendor name, and the WSObject’s
objectName attribute is set to the vendor-specific object
name. Each vendor-specific object is mapped to a corre-

Exhibit 1005
Page 36 of 44

May 24, 2007

sponding generic web services object by defining a mapping
(also referred to herein as a binding) which maps each
attribute in the vendor specific object to a corresponding
field in the generic web services object. The binding is
represented as an XML mapping document. The xmlMap-
ping attribute of a WSObject contains the XML mapping
document for that WSObject. A WSObject has all the
information needed to represent a vendor specific object’s
attribute names and values.

[0077] A Generic WS Objects 130 is created by a WSFac-
tory 132 based on a URL supplied to the WS Factory 132.
The URL refers to a web service provided by a particular
vendor, such as a Siebel Web Service 140 or a Salesforce
Web Service 142. The WSFactory 132 retrieves objects from
the web service via a communication protocol such as SOAP
(Simple Object Access Protocol) over HTTP (HyperText
Transfer Protocol). The WSFactory 132 uses an Apache Axis
interface library or the like to read the objects, and uses-a
vendor-specific adapter such as a Siebel WS Adapter 134 or
a Salesforce WS Adapter 136 to create the Generic WSOb-
ject(s) 130 that corresponds to the objects read from the web
service, e.g. the Siebel Web Service 140. The Adapter
objects include vendor-specific types and functions for
accessing the vendor-specific web services. The Generic WS
Objects 130 provide a generic object model which does not
have any vendor-specific types or functions. Instead, the
names and types of vendor-specific web services attributes
are represented in the WS as data, particularly as XML data.
Therefore, applications such as the Designer 104 and the
Player 106 can interact with a web service from any vendor
without modification of the applications themselves. For
example, if a third vendor Web Service, e.g., an Oracle Web
Service (not shown) were available, then the existing
Designer 104 and Player 106 would be able to interact with
the Oracle Web Service if an Oracle WS Adapter (not
shown) were added between the WSFactory 132 and the
Apache Axis 138.

[0078] The most common form of interactions between
applications in the browser 101 and web services such as
Siebel web services 140 is the interaction through the
Generic WSObjects 130 and the WSFactory 132 as
described above. Those interactions can be implemented for
common uses of application components, e.g. getting and
setting data values, by the Designer 104 and Player 106, in
which case the user defines the interactions using the Appli-
cation Designer 104. However, it is also desirable to allow
users to define program scripts, i.e., code logic, as part of the
applications to perform custom behavior, and to allow that
logic to invoke web services. User-defined scripts can
invoke web services using an AJAX-based API (application
programming interface). The user defines such scripts by
associating script code with application components using
an action builder portion (not shown) of the Designer 104.
As introduced above, the AJAX-based API passes web
services invocations from the browser 101 to the WSFactory
API 132 via an AJAX Engine 114 embedded in the browser
101, an NsiteAjaxManager 116 that communicates with the
AJAX Engirie 114, and a WSAj axEventManager 118 which
is included in the WSFactory 120 and communicates with
the NsiteAjaxManager 116. The AJAX-based API also
receives responses from web services invocations from the
WSFactory. These web services invocations and responses
are passed between the AJAX-based API and the WSFactory
as data in an XML format. The XML format is shown in

US 2007/0118844 Al

Appendix B, and an example of an XML document passed
via AJAX is shown in Appendix C.

[0079] A web service invocation can also be made from
the Internet Browser 101 by a call embedded in the web
page, e.g. a Java™ language call embedded in a Java™
Server Page (JSP) that provides the application player 106.
Such an invocation is included in the web page sent by the
server to the Internet Browser 101

[0080] For example, consider a mapping between an
exemplary vendor specific Account object and a generic
WSObject. The exemplary vendor-specific Account object
has a Name attribute and a LastModifiedDate attribute. A
Java™ class definition representing the exemplary vendor-
specific Account object is shown in Table 4.

TABLE 4

public class Account {
java.lang.String Name;
java.util.Calendar LastModifiedDate;

[0081] The XML mapping file defines a mapping between
each attribute of a generic class such as the Account class
shown above, and a class or classes in the specific web
service vendor’s interface. For example, for the Account
class shown above, the XML mapping file defines a mapping
between the generic Account class and a vendor-specific
class named com.aspecificvendor.soap.enter-
prise.object. Account. The XML mapping file also defines a
mapping between each attribute of the generic class and an
attribute of the vendor specific class or classes. For example,
the Name attribute of the generic Account class is mapped
to an attribute named object0 of the vendor specific class.
The XML Mapping for the Account object is shown in Table
5.

TABLE 5

<?xml version="1.0" encoding="“UTF-8"7>
<WSObjectMapping xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-
instance” xsi:noNamespaceSchemal.ocation="WSMapping.xsd”
wsvendorname="ASpecificVendor”
wsobjectname="“com.aspecificvendor.soap.enterprise.object. Account” >
<WSAttributeMapping wsattributename="“Name”
wsattributetype="java.lang,. String” wsobjectattributename="“object0”
/>
<WSAttributeMapping wsattributename=“LastModifiedDate”
wsattributetype="java.util.Calendar”
wsobjectattributename="object3” />
</WSObjectMapping>

[0082] The Designer 104 uses the XML file to decide the
meaning of attributes for the generic WS object. The XML
mapping file can be generated automatically from the vendor
specific WS object and WSDL definition by using a program
named WSFactory.

[0083] The mapping between generic objects and specific
web service vendor objects allows the Player 106 to query
a vendor specific object for records, i.e., rows of data, or
object instances. A function named getWSMapping is
defined internally for querying vendor specific objects for all
records. The getWSMapping function takes a vendor name,
an object name, and a WSManager as parameters, as fol-
lows:

Exhibit 1005
Page 37 of 44

May 24, 2007

[0084] public List getWSMapping(Connection con, String
vendorName, String objectName, WSManager wsMan-

ager)

[0085] The getWSMapping function returns a list of
WSObject objects. Each vendor specific object returned
from the web service call is mapped into a WSObject and put
in a list and returned to the caller. If an attribute in a vendor
specific object is another vendor specific object then the
child vendor specific object is mapped into a generic WSOb-
ject and assigned to the corresponding attribute in the parent
WSObject to form a nested WSObject.

[0086] Now consider the vendor-specific Account object
mentioned above. A vendor-specific Account object returned
by a web service call will be mapped to a WSObject object
that contains values as shown in Table 6.

TABLE 6

Data Member Value

Vendor A vendor name.

objectName A name for the object. For example,
com.aspecificvendor.soap.enterprise.object. Account

xmlIMapping the xml mapping file for the object

object[0] A String object with the value of the Name

attribute from Account object
A calendar object with the value of the
LastModifiedDate attribute from Account object

object[1]

[0087] The structure of the XML mapping file is described
by the XML schema shown in Appendix A. As specified by
the schema, the WSObject definition includes a set of
WSObjectMapping and WSAttributeMapping XML ele-
ments.

[0088] The WS Player 106 has four user interface sections,
which are an Authentication Section, a Filter Fields section,
a Lookup Table section, and a Pagination section.

[0089] In the Authentication section, the user enters login
credentials such as username, password and the Web Service
URL, which is an Internet address of a web service. The user
will be authenticated against the Web Service vendor with
the login credentials. The filter fields and the lookup col-
umns will be displayed only if the authentication is success-
ful, i.e. the Web Service vendor accepts the logic credentials
as valid.

[0090] The Filter Fields section defines filter fields based
on which Web Service objects will be queried. Filter Fields
allow the user to narrow the result set if the number of web
services objects is too large. The filter fields also include
custom fields.

[0091] The Filter Fields section is constructed from values
selected by the user. The user can select values for filter
fields from a list of values, or alternatively enter filter values
in text boxes. The lookup data retrieved from the Web
Service will be filtered so that only data matching the filter
fields is displayed in the Selection Lookup Table of the
Player 106. If multiple filter fields are selected, the query
string will be an AND expression of the selected filter fields.
It the user does not select any value for a filter field, that field
will not be included in the search query.

[0092] The lookup table section will be constructed from
the values selected by the user in step 4 in the WSBuilder.

US 2007/0118844 Al

The first column in the table will be a checkbox which will
allow the user to select the rows to be inserted into the
application. Then all the columns selected by the user in the
WSBuilder are displayed. If all the columns do not fit into
the page then horizontal scrolling is used. If the WS Player
112 is launched from a Button or Link then the user can
select only ibe row from the table and the data from that row
will be used to populate the fields in application. If WS
Player 112 is launched from a table then the user can select
multiple rows and the table in the application will be
populated with the values from selected rows. If a lookup
column is selected as sortable in the WSBuilder then the
result set can be sorted by that column.

[0093] When the query is complete we will be returning a
generic a list of WSObject to the WS Player 112. The WS
Player 112 will use the WSObject and the XMI.Mapping file
for the corresponding object to populate the lookup table.

[0094] In the web service lookup table, a number of
records will be displayed per page. After the lookup table the
page numbers and page navigation links are displayed.
Information about the current rows and the current page
number are displayed on the left side. For example the string
will be “Displaying 1 to 10 of 20 Products. Page 1/2”. The
navigation links are displayed on the right side such as “First
Previous 1 2 3 n Next Last”. A lazy fetch method is used to
retrieve the data from the WS server so that performance is
not affected. When the last page of the current result set is
reached a new web service call is made to get the next batch
of result set data.

[0095] A web service vendor may have a size attribute
which indicates the total number of records that will be
returned by the query. This attribute can be used to find out
the total number of pages that the result set will occupy. For
example if the query returns 125 records and the display size
is 10 records per page, then there will be 13 pages. The
number of records returned by the query can be controlled
by the attribute batchsize. After the end of the current result
set, a subsequent call to a query method returns the next
result set.

[0096] Ifthe web service vendor does not have an attribute
which indicates the total number of records that will be
returned by the query, then the WS Player 112 will not
display a “Last” link in the navigation section for that
vendor. The query method has a parameter called star-
tRowNum which determines which result set will be
fetched.

[0097] There are two types of Web service lookups. The
first type of lookup retrieves, updates, or inserts at most one
row of data from a web service, e.g. a set of attributes for a
single object instance. The first type of lookup is referred to
herein as a header lookup and is typically associated with a
component, such as a Button, in the application. In the
Player 106, a Selection Lookup Table for a header lookup
can be displayed by clicking a Web Service builder link that
appears in the component properties panel. In the Selection
Lookup Table of the Player 106, only a single row of data
can be selected for a header lookup.

[0098] The second type of lookup retrieves, updates, or
inserts any number of rows of data from a web service, e.g.
sets of attributes for multiple object instances. The second
type of lookup is referred to herein as a table lookup and is

Exhibit 1005
Page 38 of 44

May 24, 2007

typically associated with an area that has a table. In the
Player 106, a Selection Lookup Table for a table lookup can
be displayed by clicking on a Web Service builder link that
appears in the area properties panel.

[0099] FIG. 1E is an illustrative drawing of a flowchart of
a process for defining a binding and a lookup between an
application and a web service. The web services builder 110
of FIG. 1A leads a user through this process. The process
begins at block 160 by establishing a connection to a web
service, e.g. to a Siebel or SAP web service. Next, at block
161, the user selects a particular web service object and
defines bindings. When a user selects an object, the web
services builder 110 displays a list of attributes for the object
and allows the user to define bindings between the attributes
and components of the application. The binding specifies
how an application interacts with the web service as
described elsewhere herein. At block 162, the web services
builder 110 allows the user to define filters which restrict the
data that will be displayed when the lookup is performed in
the WS Player 112. A web service object,may have a large
quantity of data, and the filters reduce the quantity of data
presented to a user to simplify the task of selecting an
appropriate data value for an application component in the
WS Player 112. Finally, at block 163, the web services
builder 110 allows the user to define which columns, i.e.,
attributes of web service objects, will be retrieved when a
lookup is performed in the WS Player 112.

[0100] The steps of the process of establishing a binding
are described individually in more detail below.

[0101] FIG. 1F is an illustrative drawing of a flowchart of
a process for defining a web service lookup in an application
player. The WS Player 112 of FIG. 1A leads a user through
this process. The process begins at block 164 by displaying
the application, which corresponds to the application 111 of
FIG. 1A. At block 165, the process waits for the user to press
a lookup button to retrieve data from a web service. The
lookup button, bindings, data filter conditions, and specific
columns of interest that will be used to retrieve data were
previously added to the application by the user (or by a
different user) using the Designer 104. After the lookup
button has been pressed, block 166 queries the web service
for data as specified by the bindings, filters, and columns. At
block 167, a Selection Lookup Table is displayed. The
Selection Lookup Table displays the data returned from the
web service query as a set of rows and columns. Each
column corresponds to an attribute of the web service object
specified in the bindings and included in the columns of
interest, and each row corresponds to an instance of the web
service object, where the attributes of the instance meet the
filter conditions, if filter conditions are present. At block
168, the user selects one or more rows of data and presses
a submit button. At block 169, the selected row or rows are
transferred to corresponding application components
according to the bindings to fill in the application fields with
data from the web service.

[0102] FIGS. 2A-15 illustrate user interface screens dis-
played in a web browser defining a header lookup. These
screens, like all exemplary screens shown herein, are pre-
sented to the user on a computer display that allows the user
to interact with the screens.

[0103] FIG. 2A is an illustrative drawing of defining an
application component in an application Designer. The

US 2007/0118844 Al

Designer 202 corresponds to the Designer 104 of FIG. 1A.
The Designer 202 includes a web services builder interface,
which corresponds to the web services builder 110 of FIG.
1A. The Designer 202 is being used to create an application
component 206 of an application. The application compo-
nent 206 is a text input component and has an associated
name 204, OppNameTextArea.

[0104] FIG. 2B is an illustrative drawing of defining an
application button component in an application Designer.
The button component 212 is labeled Lookup SForce
Opportunity. When the button 212 is pressed by a user in the
application Player, a script associated with the button by an
action builder is executed. The script may perform a web
services interaction, such as a lookup, insert, update, or
delete.

[0105] FIG. 3 is an illustrative drawing of defining a web
service connection in an application Designer. A Connection
screen 302 of a web services builder is shown, which allows
a user to define parameters for communicating with a web
service, including a vendor 304 of the web service, a URL
306 of the web service, and a user name 308 and a password
310 for logging in to the web service.

[0106] FIGS. 4A-4D are illustrative drawings of binding
an application component in a web services builder. With
reference to FIG. 4A, the application can bind an application
component to a web service to perform any type of operation
provided by the web service. In particular, an application
component can perform Query, Update, Insert, Delete, and
other types of operations on web services. Query, Update,
Insert, and Delete operations can be specified using the web
services builder. The Data Source Mappings screen 402
shows a vendor name 414, which is the vendor selected in
the previous screen (i.e., the vendor 304 of FIG. 3), and also
includes a web services object selection menu 420, which
allows auser to choose a selected web service object 416. An
Opportunity object 418 has been selected by the user. The
selected object 416 will be used in the next screen to
establish bindings.

[0107] FIG. 4B shows a data binding screen 402, which
allows a user to establish bindings between application
components (also referred to herein as controls), and
attributes of the selected web service object 416 that was
selected in the screen of FIG. 4B. The bindings correspond
to the bindings 102 of FIG. 1A. The data binding screen 402
includes a set of application component-to-data source bind-
ings. An application component selector 436 is displayed for
each application component. A user can choose an applica-
tion component 420 from the selector 436, which includes a
list of components of the application.

[0108] FIG. 4C shows a web service attribute selector 446
of the data binding screen 402. The web service attribute
selector is associated with the application component selec-
tor 436. A binding is created by selecting an application
component and a web service attribute using the application
component selector 430 and the web service attribute selec-
tor 440, respectively. Note that the web service attribute is
referred to as a Data Source in FIG. 4C. Once an application
component and web service attribute have been selected, a
binding that links the component to the attribute can be
added to the application by pressing an Add Data Mapping
button. After the Add Data Mapping button has been
pressed, another row having another application component

Exhibit 1005
Page 39 of 44

May 24, 2007

selector and corresponding attribute selector will appear in
the data binding screen 402 to allow the user to define
another binding. In this way, a set of bindings 102 can be
associated with an application XML definition 122.

[0109] The bindings can be executed in a web services
Player 112. For Query operations, the web services Player
112 includes a “Vendor Selection” field, which allows a user
of to select a vendor from a pull down list (e.g. Siebel® or
Salesforce.com®), and an “Object Selection” field, which
allows a user to select a WS object from a list of WS objects
based on the selected vendor. The web services Player 112
then displays a Selection Lookup Table showing a list of
selected web services object instances. The table typically
contains at least three columns (e.g., object_id, meaningful-
_columnl, meaningful_column2). The user can select two
meaningful columns for a given web services object to
display, and supply values for those columns to form key/
value pairs. By default, if the key/value pairs are empty, all
instances of the selected web services object will be
retrieved from the web service. If the user specifies one or
more key/value pairs, a subset of all instances of the selected
web services object will be retrieved from the web service
and presented in the Selection Lookup Table by the Player
106.

[0110] For Update operations, the user can start with an
existing Selection Lookup Table presented as a query result.
The name and/or description fields can be made editable,
and new columns can be added at the end of the Selection
Lookup Table by pressing an update button. In this way, the
user can query a web service to generate a list of objects,
make changes to the name and/or description fields in the
list, and then click the update button to store and commit the
changes to the web service. A subsequent query will return
the updated values.

[0111] For Insert operations, there is an Insert button in the
user interface of the web services Player 112. When the
Insert button clicked, the user interface will display required
fields as editable for the selected objects in one row, and the
last field will be an Insert button which can be pressed to
actually insert the current values of the fields in the appro-
priate web service object.

[0112] FIGS. 5A-5B are illustrative drawings of adding
filters in a web services Designer when defining a Selection
Lookup Table. FIG. 5A shows a web services builder filter
definition screen 502 with a single filter definition, which
includes a filter type 508 (Dropdown) and a filter value 512
(Name). A Dropdown filter with the value Name allows a
user of the web services Player 112 to restrict the results of
a web services lookup (as displayed in a Selection Lookup
Table) to include only web services objects that have a Name
attribute equal to a value that the user selects from a list of
choices presented in a Dropdown list in the web services
Player 112. FIG. 5B shows a second filter definition being
added, with a filter type 516 (TextBox) and a filter value 520
(CloseDate). A TextBox filter with the value CloseDate
allows a user of the web services player 112 to restrict the
results of a web services lookup to include only objects that
have a CloseDate attribute equal to a value that the user
specifies in a text box in the web services Player 112.

[0113] FIGS. 6A-6B are illustrative drawings of adding
columns in a web services Designer when defining a Selec-
tion Lookup Table. FIG. 6A shows a web services builder

US 2007/0118844 Al

column definition screen 602. The screen 602 allows a user
to select columns from the column list 607 by pressing a
button 606. FIG. 6B shows a list of selected columns 610,
which includes the columns Name, Description, CloseDate,
CreatedByld, CreatedDate, and IsClosed. Each column has
an associated label, which is a text string that will be
displayed for the column in the Selection Lookup Table.
Only values for web services attributes that are associated
with the selected columns will be retrieved from the web
service when a web service lookup is performed-in the
Selection Lookup Screen.

[0114] FIG. 7 is an illustrative drawing of defining a table
area in an Application Designer. The application Designer
702 includes a table area 704, in which each column can be
associated with a web service attribute.

[0115] FIG. 8 is an illustrative drawing of binding appli-
cation table columns in a web services Designer. A data
source mappings screen 802 of the web services builder is
shown. The Data Source Mappings screen 802 is similar to
the Data Source Mappings screen 402 of FIGS. 4A-4D. The
screen 402 is used for defining bindings to individual
application components, whereas the screen 802 is used for
defining bindings to columns of a table. The first binding
shown in FIG. 8 is between a First Name table column 808
and a FirstName web services object attribute 810.

[0116] FIG.9is an illustrative drawing of adding filters for
a table lookup in a web services Designer. The filter defi-
nition screen 902 of FIG. 9 is similar to the screen 502 of
FIG. 5A and displays a list 920 of attributes that can be used
to filter results.

[0117] FIG. 10 is an illustrative drawing of adding col-
umns in a web services Designer. The column definition
screen 1002 of FIG. 10 is similar to the screen of FIG. 6B
and displays a list 1007 of object attributes that can be
selected as the attributes that are to be retrieved from the
web service when a lookup interaction is performed.

[0118] FIG. 11 is an illustrative drawing of an application
in an Application Player. The application 1102 includes a
Lookup SForce Contact button 1104, which was defined
using the application Designer user interface shown in FIG.
2B. A user of the application 1102 can press the Lookup
SForce Contact button 1104 to display a Selection Lookup
Table for retrieving values for the application components,
e.g., a Opportunity Name and a Description, from a web
service according to the bindings.

[0119] FIGS. 12A-12C are illustrative drawings of a
Selection Lookup Table in a web services Player. FIG. 12A
shows a Selection Lookup Table 1202 which includes an
object name selector 1204 and a search button 1220. The
object name selector 1204 can be used-to choose a particular
web services object. FIG. 12B shows a list of web services
objects, which is displayed as a menu 1208 when the object
name selector 1204 is activated by a user, e.g., by clicking
a mouse on the object name selector 1204. The menu 1208
includes a selected web services object 1208, which has
been selected by a user. In FIG. 12C, a web services object
1210 has been selected, and the search button 1220 has been
pressed. As a result of pressing the search button 1220, a list
of web service object instances has been generated. The list
includes a single instance 1214, which includes values for
Name, ClassDate, CreatedByld, CreatedDate, and IsClosed

Exhibit 1005
Page 40 of 44

May 24, 2007

attributes. When a user clicks the submit button 1216, those
values will be copied to a table in the web services Player
112 as specified by the bindings.

[0120] FIG. 13 is an illustrative drawing of an application
in an Application Player with data retrieved from a web
service. An Opportunity Name component 1304, a Stage
component 1306, and a Closed component 1308 have
received values from corresponding web service attributes
according to the bindings.

[0121] FIGS. 14A-14C are illustrative drawings of a selec-
tion lookup table in a web services Player. In FIG. 14A, a
search button 1404 has been pressed, and as a result,
multiple rows of data have been retrieved into a table 1406
from a web service according to the bindings. FIG. 14B
shows filtering by an attribute (LastName) 1405 using a
Dropdown list 1418. A user has selected a value 1420 (Levy)
from the last name list. As a result, the table 1406 is
restricted to displaying only the rows for which the Last-
Name attribute is equal to Levy. In this example, there is
only one such row 1422. Finally, in FIG. 14C, the user can
click the submit button 1432 to transfer the values of all
selected rows to the corresponding components of the appli-
cation, according to the mappings.

[0122] FIG. 15 is an illustrative drawing of an application
in an Application Player with data retrieved from a web
service. The application 1502 includes a table 1506, which
has a single row of data 1508 transferred from the Selection
Lookup Table 1402 of FIG. 14C. The row of data 1508
includes the LastName Levy 1430 and other values as
shown in FIG. 14C.

[0123] FIG. 16 is an illustrative drawing of implementa-
tion interfaces and objects. FIG. 16 shows a WSObjectMap-
ping class 1606, which corresponds to the WSObjectMap-
ping 123 of FIG. 1A. The WSObjectMapping class 1606
maps vendor specific objects 1608, including a Siebel
Opportunity 1614 and a Salesforce Opportunity 1616, to a
Generic-web services object model 1620, which is used by
a Designer 1624 and a Player 1626. The WSObjectMapping
class 1606 includes a getWSMapping method for retrieving
existing mappings, a createMapping method for creating
mappings, and a getXMLMapping method for getting an
XML representation of the mappings.

[0124] Details of the implementation of the WS Player 112
will now be described with reference to the features shown
in the preceding figures and the components shown in FIG.
1A. The WS Player 112 calls the WS Credential Manager
128 authenticate the user credentials. The WS Player 112
displays the Selection Lookup Table and the results list 1402
of FIG. 14A. The WS Player 112 uses a Pagination com-
ponent (not shown) to display the page numbers and navi-
gation links in the results list 1402. When the end of the
current result set returned from the server 120 is reached, the
Pagination component calls the WSLookupBean 125 to get
the next result set. The WS Player 112 calls the WSLook-
upBean 125 whenever the user clicks the Selection Lookup
Table Search button 1220 shown in FIG. 12A. The WS
Player 112 passes the filter field values and lookup table
columns to the WSLookupBean 125. The WSLookupBean
125 creates a query string based on the filter fields and
lookup table columns and passes the query string to the
WSFactory 132, which receives the query string and makes
the underlying web service call to the web service, e.g., the

US 2007/0118844 Al

Siebel web service 140, via the Siebel WS adapter 134. The
WSFactory 132 then returns the result set of the web service
call to the WSLookupBean 125. The WSLookupBean 125
calls the WSObjectMapping 123 with the result set to
convert the vendor specific object into a generic WSObject
130. The WSObjectMapping 123 returns the WSObject 130
to the WSLookupBean 125, which returns the WSObject
130 to the WS Player 112, which displays the result set data
in the Selection Lookup Table, e.g., as the result list 1402 of
FIG. 14A. The user then selects the required rows and clicks
a Submit button. Then the WS Player 112 populates the
application components of the Player 106 according to the
bindings 102.

[0125] FIG. 17 is an illustrative drawing of a process for
authenticating a user. The user must authenticate himself to
the WS Vendor. If the authentication fails then the user will
not be able to see the filter columns and the lookup table.

[0126] FIG. 18 is an illustrative drawing of a process for
invoking a lookup. The WS Player 112 first be
started[]and p resented to a user. The user will then select
the filter fields and click a submit button. The WS Player 112
will call the lookup component, which makes a web service
call and displays web service data in the lookup table.

[0127] FIG. 19 is an illustrative drawing of a process for
processing multiple pages of results. The WS Player 112 is
first started and presented to a user. The user will then select
the filter fields and then click submit. The WS Player 112
will then call the lookup component which makes a corre-
sponding web service call and displays the web service data
in the lookup table. When the end of the current result set is
reached the pagination component will request the next
result set from the Lookup component.

[0128] FIG. 20 is a flowchart of an exemplary portion of
a method to be executed by a Designer or a Player for
looking up web service objects. The method can be used to
lookup web service objects via AJAX. The method begins at
block 2000 by generating an XML representation of the
request data, which corresponds to the invocation XML
document 117 of FIG. 1A. The request data is sent to a server
(e.g., an application server or web server) at block 2002, and
the method waits for a response from the server at block
2004. After receiving a response, the method gets the XML
data from the response at block 2006. The XML response
data corresponds to the response XML document 119 of
FIG. 1A. Next, the XML response data is parsed at block
2008 into a format suitable for processing in the program-
ming language in use (e.g., JavaScript™). Finally, at block
2010, the response data is used to fill in the application
components with values.

[0129] FIG. 21 is a flowchart of an exemplary portion of
a method to be executed by a server for looking up web
service objects. The method can be used by a server to
process requests to lookup web service objects. The method
begins at block 2100 by receiving a request, e.g., from an
AJAX component of a browser. The request includes XML
data in the format of the invocation XML document 117 of
FIG. 1A (and Appendixes B and C). At block 2102, the
method parses the data in the XML request to extract the
input data for the lookup, e.g., a web service object name,
filters, and columns. At block 2104, the method generates
Java objects which represent the data in the XML request. At
block 2106, the method invokes the WSManager’s query-

Exhibit 1005
Page 41 of 44

May 24, 2007

Object method for every Java object generated in block 2104
to retrieve objects from the web service. The queryObject
method returns a list of WSObjects that represent the web
service object instances retrieved from the web service by
queryObject. At block 2108, the method converts the
WSObjects to XML data in the format of the response XML
document 119 of FIG. 1A (and Appendixes B and C). At
block 2110, the method sends the XML data as a response,
e.g., to a client such as the Internet Browser 101 of FIG. 1A,
or to software running in the browser, such as the Designer
104 or the Player 106 of FIG. 1A, which delivers the data to
the application.

[0130] FIG. 22 is a flowchart of an exemplary portion of
a method to be executed by a Designer or a Player for
inserting, updating, or deleting web service objects. The
method can be used to insert, update, or delete web service
objects via AJAX. The method begins at block 2200 by
generating an XML representation of the request data, which
corresponds to the invocation XML document 117 of FIG.
1A. The request data is sent to a server at block 2202, and
the method waits for a response from the server at block
2204. After receiving a response, the method gets the XML
data from the response at block 2206. The XML response
data corresponds to the response XML document 119 of
FIG. 1A. Next, the XML response data is parsed at block
2208 to check for any errors that may have occurred on the
server. The server sends error indications as part of the XML
response data. Any errors that occur can then be reported to
the user.

[0131] FIG. 23 is a flowchart of an exemplary portion of
a method to be executed by a server for inserting, updating,
or deleting web service objects. The method can be used by
a server to process requests to insert, update, or delete web
service objects. The method begins at block 2300 by receiv-
ing a request, e.g., from an AJAX component of a browser
such as the Internet Browser 101 of FIG. 1A. The request
includes XML data in the format of the invocation XML
document 117 of FIG. 1A (and Appendixes B and C). At
block 2302, the method parses the data in the XML request
to extract an operation type (e.g., insert, update, or delete),
a web service object name, and data that is to be inserted,
updated, or deleted from the web service object. At block
2304, the method generates Java objects which represent the
data in the XML request. At block 2306, the method invokes
the WSManager’s insertOrUpdateObject method if the
operation to be performed is an insert or update, or the
WSManager’s deleteObject method if the operation is a
delete. The WSManager method is invoked for every object
specified in the XML request data. At block 2308, the
method sends the XML data as a response, e.g., to the AJAX
client, which delivers the data to the application.

[0132] FIG. 24 is an illustrative drawing of a Designer
user interface. The Designer interface 2400 is being used to
design an application. The application includes a link 2402
named Synchronize with Salesforce. A user can create a
script to be associated with the button 2402 by clicking an
action builder button 2404.

[0133] FIG. 25 is an illustrative drawing of a user-defined
script in an action builder. An action builder 2500 is a user
interface component of the Application Designer 104. The
action builder appears when a user clicks the action builder
button 2404 for an application component such as the link

US 2007/0118844 Al

2402 of FIG. 24. The action builder 2500 allows a user to
write a script 2502 associated with an event 2504. The action
builder is described in more detail in commonly owned
Patent Application entitled “Browser Based Designer and
Player,” filed Sep. 30, 2005, inventors Pawan Nachnani et
al., incorporated by reference above. The script 2502
includes a SyncManager SYNCHRONIZE call, which
causes data values in application components (e.g., text
fields and other components) to be stored in associated web
service according to the bindings present in the application.
The SYNCHRONIZE call also updates application compo-
nents with values from the web service according to the
bindings.

[0134] In addition to the SYNCHRONIZE call, the script
can also call the SyncManager to insert, update, delete, or
query objects in the web service according to the bindings,
as shown in Table 7.

TABLE 7

Script Call Description

SyncManager(“INSERTUPDATE”) Inserts new (or updates existing)
values from the application into
object(s) in the web service.
Deletes object(s) from the web
service.

Looks up and retrieves objects
from the web service.

Performs INSERTUPDATE
followed by DELETE to

delete web service objects that
no longer exist in the
application.

SyncManager(“DELETE”)
SyncManager(“QUERY™)

SyncManager(“SYNCHRONIZE”)

[0135] The SyncManager calls automatically extract data
from the application based on the bindings. The bindings can
be either those created by a web services builder or bindings
created programmatically in the script prior to calling the
SyncManager.

[0136] This disclosure is illustrative and not limiting;
further modifications will be apparent to those skilled in the
art in light of this disclosure and are intended to fall within
the scope of the appended claims.

APPENDIX A

<?xml version="1.0" encoding="“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”>
<xs:elementname=“WSObjectMapping”>
<xs:complex Type>
<xs:sequence maxOccurs=“unbounded”>
<xs:element ref="WSAttributeMapping”/>
</Xs:sequence>
<xs:attribute name=“wsvendorname” type="xs:string”
use="required”/>
<xs:attribute name="“wsobjectname” type="xs:string”
use="required”/>
</xs : complexType>
</xs:element>
<!--Attribute has properties-->
<xs:elementname="“WSAttributeMapping”>
<xs:complex Type>
<xs:attribute name="“wsattributename” type="xs:string”
use="required”/>
<xs:attribute name="“wsattributetype” type="“xs:string”
use="required”/>
<xs:attribute name="“wsobjectattributename”
type="“xs:string”

Exhibit 1005
Page 42 of 44

13

May 24, 2007

APPENDIX A-continued

use=“required”/>
</xs:complexType>
</xs:element>

</xs:schema>

[0137]

APPENDIX B

<document pid=‘some_ number’ ppid=‘some_ number’>
<object name="some__object’ vendor=‘vendor_ name’
action="INSERTUPDATE’>
<record>
<field name="attribute_namel’><!{{CDATA[some
text]]></field>
<field name="attribute_ name2’><!{{CDATA[some
text]]></field>
<field name="attribute_ name3’> <![CDATA[some
text]]></field>
<field name="attribute_ name4’> <![CDATA[some
text]]> </field>
</record>
</object>
<object name="some__object’ vendor=‘vendor_ name’
action="DELETE’>
<record>
<field name="wsAttributeID’><![CDATA[some
id value]]>
</field>
</field>
</record>
<record>
<field name="wsAttributeID’><![CDATA[some
id value]]>
</field>
</field>
</record>
</object>
</document>

[0138]

APPENDIX C

<?xml version=1.0" encoding="UTF-8°?>

<document pid="5124" ppid="441">

<object name="Account’ vendor=*Salesforce’
action="INSERTUPDATE">

<record>

<field name="Fax’>(212) 555-1212</field>

<field name="Name’>http://www.uos.com</field>
<field name="Website’>http://www.uos.com</field>
</record>

<record><field name="Fax’>+44 555 1234567 </field>
<field name="Name’>http://www.uos.com</field>
<field name="Website’>http://www.uos.com</field>
</record>

<record>

<field name="Fax’>(555) 551-1234</field>

<field name="Name’>www.universityofarizona.com</field>
<field name="Website’>www.universityofarizona.com</field>
</record>

</object>

<object name="Account’ vendor=*Salesforce’
action="INSERTUPDATE">

</object>

</document>

US 2007/0118844 Al

[0139]

APPENDIX D

<WebServiceBinding vendormame="“Salesforce”
objectname=“Opportunity”
username=""" wsurl="https://www.salesforce.com/services/Soap/w/6.0 >
<WSAttributeBindingList>
<WSAttributeMapping formentity="OppNameTextArea”
wsattribute=“OppName”/>
<WSAttributeMapping formentity="DescriptionTextArea”
wsattribute="Description”/>
<WSAttributeMapping formentity="StageTexArea”
wsattribute="“StageName”/>
<WSAttributeMapping formentity="ClosedCheckbox”
wsattribute="IsClosed”/>
</WSAttributeBindingList>
<WSFilterBindingList>
<WSFilterField filterfieldwsattribute=“OppName”
formentity=""
filterfieldtype="Dropdown”/>
<WSFilterField filterfieldwsattribute="CloseDate”
formentity=""
filterfieldtype="TextBox™/>
</WSFilterBindingList>
<WSTableBindingList>
<WSLookupTableColumn wsobjattribute="OppName”
label="Name” sortable="false/>
<WSLookupTableColumn wsobjattribute=“Description”
label="Description” sortable="false”/>
<WSLookupTableColumn wsobjattribute=“CloseDate”
label="CloseDate” sortable="false”/>
<WSLookupTableColumn wsobjattribute="CreatedById”
label=“CreatedByld” sortable="false™/>
<WSLookupTableColumn wsobjattribute="CreatedDate”
label="CreatedDate” sortable="false”/>
<WSLookupTableColumn wsobjattribute=“IsClosed”
label="IsClosed” sortable="false/>
</WSTableBindingList>
</WebServiceBinding>

What is claimed as new and desired to be protected by
Letters Patent of the United States is:
1. A computer enabled method for using a web service,
comprising the acts of:

a first organization accessing a web services object of a
second organization, wherein the accessing is via a web
browser and over a computer network; and

binding at least a portion of the accessed web services
object to a software object of the first organization,
wherein the web services object is operable to interact
with the software object.
2. The method of claim 1, wherein the software object is
an application component, further comprising the acts of:

receiving a request for the accessed web services object,
wherein the request is associated with the software
object; and

executing the accessed web services object using a por-
tion of the application component bound to the soft-
ware object.
3. A computer enabled method for using a web service
which supports a web services object, comprising the acts
of:

identifying the web services object;

receiving a request for the web services object, wherein
the request is associated with an application compo-
nent; and

Exhibit 1005
Page 43 of 44

May 24, 2007
14

executing the web services object in response to the

request.

4. The method of claim 1, wherein the accessed web
services object has an associated description, and the act of
accessing includes accessing the description.

5. The method of claim 4, wherein the description is in
Web Services Description Language format.

6. The method of claim 1, further comprising the act of
providing an adapter associated with the web services
object.

7. The method of claim 1, wherein the act of binding binds
a first software object to a second software object.

8. The method of claim 2, further comprising the act of
providing a builder adapted to carry out the acts of accessing
and binding thereby to enable the subsequent act of execut-
ing.

9. The method of claim 8, further comprising the act of
providing a player adapted to carry out the act of executing.

10. The method of claim 8, wherein the builder is embod-
ied in a web page executed on a web browser.

11. The method of claim 9, wherein the player is embod-
ied in a web page executed on a web browser.

12. The method of claim 1, wherein the act of accessing
includes making a web service call.

13. The method of claim 2, wherein the act of executing
includes making a web service call.

14. The method of claim 1, further comprising the acts of:

accessing a software object of the first organization; and

combining the object of the first organization with the
accessed web services object of the second organiza-
tion.

15. The method of claim 14, wherein the software object
of the first organization includes data.

16. The method of claim 1, wherein the web services
object is accessible via an open protocol.

17. The method of claim 1, further comprising the act of
binding at least a portion of the web services object to the
software object of the first organization.

18. The method of claim 1, further comprising the act of
enabling the method by a server of a third organization.

19. A computer enabled method for using a web service,
comprising the acts of:

a second organization allowing a first organization access
to a web services object of the second organization,
wherein the accessing is via a web browser and over a
computer network; and

binding at least a portion of the accessed web services
object to a software object of the first organization,
wherein the software object is operable to interact with
the bound portion of the web services object.

20. The method of claim 19, wherein the accessed web
services object has an associated description, and the act of
accessing includes accessing the description.

21. The method of claim 20, wherein the description is in
Web Services Description Language format.

22. The method of claim 19, further comprising the act of
providing an adapter associated with the web services
object.

23. The method of claim 19, wherein the act of binding
binds a first software object to a second software object.

US 2007/0118844 Al

24. The method of claim 19, further comprising the act of
providing a builder adapted to carry out the acts of accessing
and binding.

25. The method of claim 19, further comprising the act of
providing a player adapted to execute the web services
object.

26. The method of claim 24, wherein the builder is
embodied in a web page executed on a web browser.

27. The method of claim 25, wherein the player is
embodied in a web page executed on a web browser.

28. The method of claim 19, wherein the act of accessing
includes making a web service call.

29. The method of claim 19, wherein the software object
is operable to interact with the bound portion of the web
services object by making a web service call.

30. The method of claim 19, further comprising the acts
of:

accessing the software object of the first organization; and

combining the software object of the first organization
with the accessed web services object of the second
organization.
31. The method of claim 30, wherein the software object
includes data.
32. The method of claim 19, wherein the web services
object is accessible via an open protocol.
33. The method of claim 19, further comprising the act of
enabling the method by a server of a third organization.
34. A computer enabled apparatus for using a web service,
comprising:

a factory module which creates instances of a web ser-
vices object;

a credentials manager coupled to the factory module and
which verifies a web services object accessed via a web
browser and over a computer network;

a web services manager coupled to the factory module
and which manages web service sessions;

an event manager which manages access to the accessed
web services object; and

an adapter coupled to the web services manager and
which maps the accessed web services object to the
created instance of the web services object.

35. The apparatus of claim 34, wherein the factory module
binds software objects in the accessed web services object to
software objects in the created instance.

36. The apparatus of claim 34, further comprising a
software application that accesses data using the web ser-
vices object.

37. The apparatus of claim 34, further comprising an
access handler coupled to the adapter.

38. The apparatus of claim 34, wherein the accessed
application component has an associated description, and
the accessing accesses the description.

39. The apparatus of claim 38, wherein the description is
in Web Services Description Language format.

40. The apparatus of claim 34, wherein the accessing
includes making a web service call.

41. The apparatus of claim 34, wherein the web services
object is accessible via an open protocol.

42. A computer enabled method for generating a generic
object which represents a web service, comprising the acts
of:

Exhibit 1005
Page 44 of 44

May 24, 2007

identifying the generic object representing the web ser-
vice, the web service having a plurality of attributes;
and

creating a field in the generic object for each attribute of
the web service, wherein the field has a name, a type,
and a value based upon a corresponding attribute of the

web service.
43. A computer enabled method for generating a descrip-
tion of a web service in XML format, comprising the acts of:

identifying a plurality of fields of the web service object;
and

creating an XML element for each identified field of the
web service object.
44. A computer enabled method for invoking a web
service, comprising the acts of:

generating a request according to a predefined format;
sending the request to a web service by using AJAX;
waiting for a response from the web service;

receiving a response from the web service, wherein the
response is in a predefined format; and

updating application components based on the response.

45. The method of claim 44, wherein the method is
performed by a computer program code script executed by
an application player in response to a user’s selection of an
application component associated with the script.

46. The method of claim 44, wherein the predefined
format is XML.

47. A computer enabled method for invoking a web
service, comprising the acts of:

receiving a request from a client , wherein the request
includes request data in a predefined format;

generating objects based on the request data;

invoking a web service by using AJAX, wherein invoking
is based on the objects;

converting at least one result of invoking the web service
to at least one generic object;

converting the at least one generic object to response data
in a predefined format; and

sending the response data to the client.
48. A method of designing an application program in a
web browser, comprising the acts of:

executing a designer program on a web browser, wherein
the designer program presents a user interface that
includes a workspace upon which a user can place an
interface component at a specified location,

the interface component associated with a component data
value; and

associating the component with a computer program code
script received from a user, wherein the computer
program code script includes a web service call.

49. The method of claim 48, wherein the computer
program code script is operable to set the value of another
component based on a value received from a web service
call.

