US 20070079282A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2007/0079282 Al

Nachnani et al. 43) Pub. Date: Apr. 5, 2007
(54) BROWSER BASED DESIGNER AND PLAYER (22) Filed: Sep. 30, 2005
(76) Inventors: Pawan Nachnani, Newark, CA (US); Publication Classification
Jin Huang, Mountain House, CA (US);
Ramesh Kagoo, Pleasanton, CA (US); (51) Imt. Cl
Sampath Thasampalayam, Fremont, GO6F 9/44 (2006.01)
CA (US); Lawrence Lindsey, (52) US. CLooeeeeee e 717/106
Livermore, CA (US); Paul M. Tabet,
Danville, CA (US) 57 ABSTRACT
Correspondence Address: A system for designing, deploying, and executing enterprise
MORRISON & FOERSTER LLP applications is provided. The system allows for rapid devel-
755 PAGE MILL RD opment and deployment of Web-based data-oriented appli-
PALO ALTO, CA 94304-1018 (US) cations. Multiple versions of the applications can exist
simultaneously without conflicts. The applications may be
(21) Appl. No.: 11/241,073 web services enabled and process driven.
102 114
100 \ \ 118
Designer Ul Player UI
\ & 116~ y \
User |e > Application Definition / Application. Definition Y U
ser
/ X
/ Application Data N >
104 , 1 \
N\
106 120

\

Server / 122
108~ A : A /
~~] Application Definition Application Data
A
110
Database
A ' A
Application Definition | Application Data table
v table
4 N\
112 124
Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1006 Exhibit 1006

Page 01 of 49

phan_b
Text Box
Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1006

Patent Application Publication Apr. 5, 2007 Sheet 1 of 27 US 2007/0079282 A1
Figure la
102 114
100 \ \
\ Designer Ul L6~ Player Ul lis
User |e > Application Definition Application. Definition U .
/ - ser
/ Application Data N >
104 1 \
N\
106 120
Server / 122
108~ Y : ¥ /
] Application Definition Application Data
A
110
Database

Y

A

Application Definition

table

Application Data table

4

112

N\
124

Exhibit 1006
Page 02 of 49

Patent Application Publication Apr.5,2007 Sheet 2 of 27 US 2007/0079282 A1

ﬁqurc b Ufﬁf ™ 130
S / 132
Web Browser / 134
Player Ul / 135
Application / 136
QS Component / 140 / 146
Application
Name Properties /
1 .
\42 L 8
Data Value Link ~y > Web Page
N
™ 150
. 142
il PP] Wb service 7

14— Database

Exhibit 1006
Page 03 of 49

Patent Application Publication Apr. 5, 2007 Sheet 3 of 27

Exhibit 1006
Page 04 of 49

X

Figure 2a

250

Application 597
A\

StandardArea

204

240~
2057

Area Properties:
+- name, displayname, width,
rowcount, colcount

Component (at least 1), type is one of:
Label, TextBox, TextArca, RadioButton,
CheckBox, Select List, File Attachment,
Button, Image, Link.

208

20

Component
Properties:
name, type,
rowindex, colindex,,
hidden, dataset,
datalinkage,
datatvoe, required.

206

Value

255
,"' <Form name=application name>
e <Area ™~ 256

name=name property
label=displayname
rows=rowcount
cols=colcount>

757

US 2007/0079282 Al

<FormComponent
name=name propercy
type=type property
datatype=datatype property
required=required property
defaultvalue=defaultvalue prop
rowindex=rowindex property
colindex=colindex property
hidden=hidden property °
datacolumn=next available
column name

/>

Patent Application Publication Apr. 5, 2007 Sheet 4 of 27 US 2007/0079282 A1

261~
A : , <Form name=application name> 1+ 262
20 Fiue 2
. ."" <Area
Application 203 el name=name property, label=displayname,
\ -1 rows=rowcount, cols=colcount>
TableArea 240~ Area Properties: i 264
249 So5—T Pame, displayname, width, . - <TableComponent name=... />
4———\ rowcount, colcount A
TableComnonent 11 |
TTT | <TableHeadRow> J - 265
41 TableHeadRow (0 or 1) 752 R
24) 0 O O RO
ZQ Column (0 or morc)/ 242 I <TableColumn name=.../> l 266
Properties: name, width, ____-——-""'_
colindex i J 267

; 268
243—] TableDetailRow (0 or 1) | <TableDetailRow> |
? ™ Column (0 or more)] <TableColumn name=...> | 269
245~ S0 A S S A A SO
™ Component (Oormore; | | [| |} | 7T
same as in StandardArea) | <FormComponent 270
B I s s Y (same as in Standard
bl B e Area} />
T T 271
246~ TableFootRow (0 or more) e "‘*-.\J </TableColumn > J
27— Column (0 or more) ’ \"‘\‘f </TableDetailRow > J 272
248~ |
\‘ Component (0 or more; li /TableComponent>
same as in StandardArea T P 4}\ 273
[I 7V

A Lespoms P a5

Exhibit 1006
Page 05 of 49

Patent Application Publication Apr. 5, 2007 Sheet 5 of 27

Exhibit 1006
Page 06 of 49

Figure 3

US 2007/0079282 Al

300~

Request Information-

30K

3006

302

Date:| 4,/22/2005

| —" 308

Patient Name| John J. Smith

| —" 310

Patent Application Publication Apr. 5, 2007 Sheet 6 of 27 US 2007/0079282 A1

Figure 4a
410
AN

Form : { name, description, version, category, theme, subject }

Area (1 or more)

BehaviorList (Optional, 0 or more)

415
N

Area : { name, label, layout, rows, cols, visibility }

ComponentDefinition (1 or more)

FormComponent (if present, 1 or more)

or

TableComponent (if present, 1 or more)

alignment, allowedchars, rows, cols, size, allowmultiple, datalookup

420 \ name, displayname, type, datatype, required, keyfield, readonly,
FormComponent : {defaultvalue, rowindex, colindex, hidden, datacolumn, maxiength, }
formula, style, align, linkedcontrolname, attachtype

— FormComponentList (Optional, 0 or 1)

FormComponent (Optional, 0 or more)

—— BehaviorL.ist (Optional, 0 or 1)

430
AN BehaviorList

l— Behavior : {name, event, category} (Optional, O or more)

435 L
Code : string

Exhibit 1006
Page 07 of 49

Patent Application Publication Apr. 5, 2007 Sheet 7 of 27 US 2007/0079282 A1

Figure 4b

440 ,
\TabIeComponent : {name, type, rows, allow_more_rows, style, allow_row_delete}

—TableHeadRow

lvTabIeCOIumn (1 or more)
——TableDetailRow

|—Ta\bIeColumn (1 or more)
—TableFootRow (Optional, 0 or more)

TableColumn (1 or more)

—— BehaviorList

450 -
\TabIeColumn : {name, label, rowindex, colindex, width}

L FormComponent (Optional, 0 or more)

Exhibit 1006
Page 08 of 49

Patent Application Publication Apr. 5, 2007 Sheet 8 of 27 US 2007/0079282 A1

we 5
520~] Area Component -
name=area_0 .
label=Request Information 524
cols=4, rows=6
522~ Form Component Form Component
name=comp_arca_0_0_0 name=date_1
type=LABEL type=DATE
label=Date: dataset=process_master/dtcl
rowindex=0, colindex=0 rowindex=0, colindex=1
526_ Form Component Form Component
name=comp_area_0_1_0 name=select_3
type=LABEL type=SELECT
label=Patient Name: datalookup=CORE/$CID /USER
rowindex=1, colindex=0 dataset=process_master/scl
rowindex=0, colindex=1
/
/
528
Figure 5b
530~_

area_0, Label=Request Information, ...

532 Component Definition

534~ comp_area_0_0_0, label=Date:, ...

536— date_1, type=DATE, ...
538 comp_area_0_1_0, label=Paticnt Name:, ...

539/ select_3, type=SELET, ...

Exhibit 1006
Page 09 of 49

Patent Application Publication Apr. 5, 2007 Sheet 9 of 27 US 2007/0079282 A1

Figure 5c¢

540
\

\

<Area name="area_0" label="Request Information" cols="4" rows="6" layout="four">

2 ..
42~[<ComponentDefinition>

544 | <FormComponent name="comp_area_0_0_0" type="LABEL" required="false"

labe1="Date:"-datatype="0" maxlength="25" style="EditBox" rowindex="0"

colindex="0" datalookup="" dataset=""/>

546 ‘] <FormComponent name="date_1" type="DATE" required="false" label="date 1"
datatype="4" maxlength="25" style="EditBox" rowindex="0" colindex="1"
datalookup="" dataset="PROCESS MASTER/dtc1" />

<FormComponent name="comp_area 0 _1_0" type="LABEL" required="true"

548 ™ label="Patient Name:" datatype="0" maxlength="25" style="EditBox" ’

rowindex="1" colindex="0" datalookup="" dataset="" />

549 <FormComponent name="select_3" type="SELECT" required="false"
IS label="select_3" datatype="1" maxlength="25" style="EditBox" rowindex="1"
colindex="1" datalookup="CORE/S$CID/USER"

dataset="PROCESS_MASTER/sc1" />

</ComponentDefinition>

</Area> -

Exhibit 1006
Page 10 of 49

Patent Application Publication Apr.5,2007 Sheet 10 of 27

US 2007/0079282 Al

*ﬂu«c b

600
\
\
Application Data Application
Data: Client
Name=Value 1 602 Structure
Flgure 6b 604
\
Example
Application
date_1=4/22,2005 1 008 Data on
Client
select_3=John J. Smidtsf 619
Example
. Application
Figure 6¢ Data in
614 616 618 Database
61 \
A) \ \
id| dtcl dtc2 scl sc2
~ 1 hn J. Smith
620 | 7’22/2005 Iol J. Smi
I} 7
622 624

Exhibit 1006
Page 11 of 49

Patent Application Publication Apr.5,2007 Sheet 11 of 27 US 2007/0079282 A1

Figure 7a

709\ i "uon Header (1 [xf 1 L)g\‘ i l

711

Exhibit 1006
Page 12 of 49

Patent Application Publication Apr.5,2007 Sheet 12 of 27 US 2007/0079282 A1

Figure 7b

720 721 723

Exhibit 1006
Page 13 of 49

Patent Application Publication Apr.5,2007 Sheet 13 of 27 US 2007/0079282 A1

Figure 7c¢

Exhibit 1006
Page 14 of 49

Patent Application Publication Apr.5,2007 Sheet 14 of 27 US 2007/0079282 A1

Figure 7d

O setostlobgect Select Evant] snDoubleCiick v

-1 3
[S
@ satact Function customFunction lawrence & m STm

49 fout
witas plain T peRLE COpy (o gliboard ;7 / -

Zuncricn cusvazFuncticon lavTencei}{
f7¥cur code goes hera.

dmid);
¥ \

748

e bR

Exhibit 1006
Page 15 of 49

Patent Application Publication Apr.5,2007 Sheet 15 of 27 US 2007/0079282 A1

Figure 7¢

740

744 745

Setect Event| Seloct Event 1%

onBlur
onChange
_ 49 onClick
view plaia { print | copy to dlipbaard 1 H . .) X . oaDoubleClick X .
7/7Baild custem rouvines fox calcularicns, validations, er ejonMouseOver pg Javasceripe.

7/Seiact the ¢Piacs or Funcricn, Salect Zvent and click Add Zvent or Add Tunction.
#/¥ou can zisc click tha Dara Ilemsat or Funsticn on Tha lafv o help build the Astien.
//Edic Funcriong by clickicg in this area.

748

{__Addeventiondier]| Ad Function

ancel | I iow All | Close

T R Tocalnandt |
— -

3

Exhibit 1006
Page 16 of 49

Patent Application Publication Apr.5,2007 Sheet 16 of 27

US 2007/0079282 A1
Figure 7f

Scell.Qty * $cell.Unit Price

: ; - 753

752

B Add a group of elements: SUM(X, +x,+--+X)
T

Only data elements accessible to the target field are displayed in the Data Elements window. Within a table you may only work with
instances of that row of the table. In the Table Summary Footer Areas you may access columns of the table as well as data elements
from other areas. Table Summary Footer Areas can only get summary (SUM, Min, Max, etc) of data columns from the table.
EEE

Exhibit 1006
Page 17 of 49

Patent Application Publication Apr.5,2007 Sheet 17 of 27 US 2007/0079282 A1

‘Apitications

Cisplaying 1 to 5 of 15 applications.

- ,wn.

B Test Avplication 3 2 Y PROD 01/15/2004 Gany Undaplev

Tes Apolication 4 - Qld Yersion 1 N PROD 01/15/2004 Gopv Undeploy

ieation |, - Qid versi 2 [TEST 011572004 Geov Edit Deplov Delets

Test Appligation 4 - Cld Versicn 1 M TEST 01/15/2004 Qm Edi Replpy 12;1:1:
@ Test Application 2 2 Y PROD 01/28/2004 Goov Undeoloy
@ Test Application H Y 01/15/2004 Gepy initiate Deploy Delgte
& TesApelicationd 3 Y o1/35/3004 - Gepy Undeoley
@ YestApolication § 3 M 01/15/2004 Initiate Deploy Delste

o © 08/18/2005 X 08/01!'2005 08/18/2008
SelsctAction [Vl gy ﬁ Test Application 1 Active 2 WgJTAM Us¢ to route any file type, such... Sunny Yang DQgTAM Sunny Yang ugigsn‘rm
= — ; . 0772542005 T . 08/01/2005° oehelzoos
@ O teit Application 2 Adtive’ 1 09:00 AM Usetn o ety Sunny Yang 09:00 AM Sufiny Yang . 09i00.AM
- 53!05{2005 38101{2005 05!18/2005
Satecd Action 1V Test Applicatien 3 Test 1 0S:60 AM Use to route any file type, such... Sunny Yang 0$:00 AM Sunny Yang 09:00 AM
KST KST KST
g o - 0871572005 .. : : _08/01/2005 . 08/18/2005
- Seject Aclion [V Test Application & Inactive S 4 09100 AM Usa to route any me type, suth... Sunny Yang ~ 03:00AM Sunny Yeng 09:00 AM
e !39/01]2095 08/0’!2005 0B/18/2008
Ssiect Action \}} Test Application § Active 1 0S:00 8M Uss to route any file type, such... Sunny Yang 09:00 AM Sunny Yang 06:00 AN
KST KST KST

Hutisite ¢ Halp @ Loaows
Copyright 1998 - 2003, Nsite. A rights reverved.

Exhibit 1006
Page 18 of 49

Patent Application Publication Apr.5,2007 Sheet 18 of 27 US 2007/0079282 A1

/k‘f]wc /A

756 ‘\URL hetps: /) rocees nsite.com/Farcners. 13 ?

ide: 29%60ax? 27245 Eaxockes ?
757~
T~ 5G] Nsito Platform Options
758~ Link Type [Please Select B &3 save Login Cookde. s0 ony hova to
login ance per session
755 | Application &3 Show Nsita Platfor tabs 755
Select the inbound link you would Iike to creats. With o link that aunches an Nsito

screen V\ew (In Progress. Completed, Archives, or Drafts) you may fifter for a specific.
i Lcation you may populate application contrels,

UR : i 3
756 R el i sl e

URL https://process. nsite. com/Partrexs. sg?
HE fdmxxxxs s.
759~

Wi=???750a=77 77 &S L= 20000

763\
Nelte Piatform Options Msits Platiorm O
76 Link Type [Launch Application?] £ Save Login Cookie, 30 oty hava 1o Link Type a Smm;:c:::rmmlymh
0_ Annbont N % Bogin OnCe per sussion 764\n T login ange per session
o £2 Show Nsite Piatiorm tabs pp

Or\cemeuﬂhsbum youwmneedtoeopynndpas(euwmeamvaﬂvweh

Show Nsite Platform tabs
an

¢ Onca the URL is bullt, you will nead to copy & and paste it to the 3rd party wed
you can populate application controls by ; application, You may fitter for a specific application in the Nsite screen view, or
adding the vanaNe rarnes from the 3rd paﬂy appfication if they provide that Gapabillly setect Mo Application Filter {0 view ait applications.
Controls to Populate Copy Control Name Code
76—,
L TexiControiName | 4| \l\
TextCentroiName2 - ~
TextContraiName3 Double-click the data element from your 2
xtControiNames <urrent application, copy the Gontrol 76
hig N Name Code /¢ tng into the URL
TextControiName5 Soove of pastng ¥
TextControiName6

Exhibit 1006
Page 19 of 49

Exhibit 1006
Page 20 of 49

Patent Application Publication Apr.5,2007 Sheet 19 of 27

/’Fq wre

US 2007/0079282 Al

765 Link Builder

766~ T—————@®sStatic URL

O Nsite to Nsite (initiate and prepopulate another Nsite process)

767 —o

e Uk Bulider]

768 O Static URL
Nsite to Nsite (Initiate and prepopulate another Nsite process)
768~ | Nsite Application Variables Select Process Application to —

from Application Name

Drag and drop variables from your current
appiication to the mapping boxes

Current Application Mapping Boxes

Initiate {poeess App2 7

Select another process application, then Drag and Drop
controls to map to the controls from the current application

Application to Initiate Mapping Boxes

768—————i____[TextControiNamed | | 1 [AspztextConvalt
TextControlName2 App2TexiControl2
TextControiNarme3 J=b]] | App2TextControta
TextControlNamed Tu| 1 | Ar2rexContos
TextContraiName5 App2TextControi§
TextControlName6 App2TexiControl6
TextControiName7 App2TexiControl?

TextControlName8

App2TextControi8 K

— 769

—— 770

Patent Application Publication Apr.5,2007 Sheet 20 of 27

US 2007/0079282 Al

Figure 8 801 /831 ‘
i Client C
Client Computer | 802 ent Computer | 832
Web Browser Web Browser |
- 803 | _-833
Designer Client |11 PlayerClient | 1 _g3s
[omrwo
Client /,_.a—/ 807 Client //// 837
Components Components
Application | 1808 Application | L —+—T1 838
Definition Definltion
- - - | —-839
ot [
AJAX Engine 840
809\
L y 3 N —
850
Application Server
N\ _
i |~ 860
852 - App Player JSP e
[~ App Designer JSP — 862
. FormFactory 4]
FormProcessor sl

854 —

| ——1 DefinitionFactory

Exhibit 1006
Page 21 of 49

BusinessFactory

858

870—_ [~

Database

Patent Application Publication Apr.5,2007 Sheet 21 of 27 US 2007/0079282 A1

Figure 9
Gtart Save Application DeﬂnltloD 810
4 .
AppDesigner server | 914
page presents-user
JInterface
916 818 o 920
" Yes o oad an existing

D‘;;i?tﬁi‘,f :,"b';g;t <__Create New App? » application definition
into Definition object.

¢ |

928
User Clicked Save?

Yes

h 4

922

—» Wait for User Action

Component Added? '

Add neW component 926 Fransform Definition 930
to Definition Into XML according
to XML schema

]

Send XML to 932
AppDeslgner JSP for
storage in database

End) 934

Exhibit 1006
Page 22 of 49

Patent Application Publication Apr.5,2007 Sheet 22 of 27 US 2007/0079282 A1

Exhibit 1006
Page 23 of 49

Figure 10a

Start Load Application 1410
Definition and Data

I

Get XML application
definition
(ProcessDefinition) from
DefinitionFactory

1014

Get ProcessMaster from
ProcessService

r

BusinessFactory
traverses XML .

Call GetValues

y

Call RenderHTML

A

1020

1022

1023

1038

Return rendered HTML
"application as result

1040

h
C End) 1042

Start GetValues 1024
subroutine

For each application 1026
component in XML
application definition.

|

Compose component {1028
name

y
Look up dataset table 1030
and column names by
component name in XML

A

Get component value 1032

from ProcessMaster
property with dataset
table and column names

A

Set BusinessObjectValue {1034
property with component
name to component

value

More components?

(End) 1037

Patent Application Publication Apr.5,2007 Sheet 23 of 27

Exhibit 1006
Page 24 of 49

Figure 10b

US 2007/0079282 Al

Start RenderHTML
< subroutine)1 050

For each application
component in XML
application definition

1052

Compose component
name

1054

Create HTML element for
component

1056

A

Get component value
from
BusinessObjectValue
property with component
name

1058

Add component value to
HTML element.

1060

More components?

(End > 1064

Exhibit 1006
Page 25 of 49

Figure 11

Gart Save Application D@ 1110

A

FormProcessor decodes
incoming HTTP response
parameter values

FormProcessor creates
BusinessFactory

BusinessFactory
traverses XML

1118

1120

1122

Patent Application Publication Apr.5,2007 Sheet 24 of 27

No

US 2007/0079282 Al

Begin XML traversal to
- fill in ProcessMaster

1123

~ For each application
component in XML
application definition

1124

Compose component
name

1126

Find component value
with component name in
HTTP request

1128

Look up dataset table
and column names by
component name in XML

1130

4

Set ProcessMaster
property with dataset
table and column names
to component value

1132

Y

Store ProcessMaster in
database using
ProcessService

(End

1136

) 1138

1134

More components?

Yes

Patent Application Publication Apr.5,2007 Sheet 25 of 27 US 2007/0079282 A1

1201
Figure 12a N
1202\ Apph.catlon /1 203
Mode Version (V)
1204\{ Application Definition |
1205\{ Application Data |
Figure 12b Edit /1212
Copy Delete
/
1211 1213
1210
Copy
1221 \

N

|niitiateProcess

or Routing Active Mode

Undeploy
T~1223

Deploy

1231
Inactive Mode

Exhibit 1006
Page 26 of 49

Exhibit 1006
Page 27 of 49

Patent Application Publication Apr.5,2007 Sheet 26 of 27

)ﬁﬂw@ (>

process_definition

pk_process_definition_id: nurmeric(9,0)
fk_core_company_id: numeric(9,0)
fk_core_company_process_id: numeric(9,0)
process_xml: ntext

process_type: nvarchar(1)
version: numeric(9,0) ‘
is_active: nvarchar(1)\
mode: nvarchar(1)

effective_date: dateN
end_date: datetime
is_locked: nvarchar(1)

locked_by: numeric(9,0)
lock_date: datetime

US 2007/0079282 Al

/ 1301

1302

1303

1304
1305

Patent Application Publication Apr.5,2007 Sheet 27 of 27

Exhibit 1006
Page 28 of 49

/ 1401

process_master

pk_process_master_id: numeric(3,0)
routing_id: numeric(9,0)

fk_core_user_id: numeric(9,0)
fk_core_company_process_id: numeric(9,0)
fk_core_company_id: numeric(3,0)

subject: nvarchar(100)

status: nvarchar(1)

description: nvarchar(100)

sci: nvarchar(256) ™ 1404
sc2: nvarchar(256) —————wo—___
sc3: nvarchar(256)

Isci: ntext ™ 1407
Isc2: ntext

Isc3: ntext

nct: numeric{15,3)
nc2: numeric(15,3)
nc3; numeric(15,3)
be1: nvarchar(1)
be2: nvarchar(1)
bc3: nvarchar(1)
dtc1: datetime
dtc2: datetime
dtc3: datetime

1406

1405

- 1403

/ 1420

process_detail

process_attachment

pk_process_attachment_id: numeric(9,0)
pk_fk_core_company_id: numeric(9,0)

pk_process_master_id: numeric(9,0)
pk_process_detail_id: numeric(3,0)
file_name: nvarchar(128)

file_type: nvarchar(10)

file_size: numeric(9,0)
file_content_in_byte: varbinary
attachmenl_type: nvarchar(1)

\

1410

1430

pk_process_detail_id: numeric(9,0)
fk_process_master_id: numeric(9,0)
parent_id: numeric(9,0)~_
type_id: numeric(9.0)\ 1422
sc1: nvarchar(256)

sc2: nvarchar(256) 1421
sc3: nvarchar(256)

Isci: ntext

Isc2: ntext

Isc3: ntext

ncl: numeric(15,3)

nc2: numeric(15,3)

ne3: numeric{15,3)

be1: nvarchar(1)

bc2: nvarchar(1)

be3: nvarchar(1)

dtc1: datetime

dtc2: datetime

dte3: datetime

US 2007/0079282 Al

e

process_extension

pk_process_extension_id: numeric(9,0)
fk_process_master_id: numeric{9,0)
sc1: nvarchar(256)

s¢2: nvarchar(256)

sc3: nvarchar(256)

Isc1: ntext

Isc2: ntext

Isc3: ntext

nci: numeric(15,3)

nc2: numeric(15,3)

nc3: numeric(15,3)

bct: nvarchar(1)

bc2: nvarchar(1)

bc3: nvarchar(1)

dic1: datetime

dtc2: datetime

dtc3: datetime

US 2007/0079282 Al

BROWSER BASED DESIGNER AND PLAYER

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates generally to methods
for programming a machine to perform data processing, and
in one aspect to methods for programming a machine to
perform specific data processing tasks described in a sim-
plified manner.

[0003] 2. Description of the Related Art

[0004] Today, most types of software applications are
installed directly on a user’s computer. Examples of such
applications include the Microsofi™ Word™, Adobe™
Photoshop™, and Intuit™ Quicken™ computer programs.
A user of such an application generally is limited to using
that application on the computers on which it has been
installed. This limitation is problematic if a user is traveling
and does not have physical access to the computer on which
an application is installed. Furthermore, updating these
applications to add new features or fix defects requires
installation of updates directly on the user’s computer,
which is often a time-consuming process.

[0005] Web applications, also referred to herein as
browser-based applications, solve such usability and instal-
lation problems by using a web browser, e.g. Microsoft
Internet Explorer™ or Mozilla Firefox™, and a web server,
e.g. Apache™ or Microsoft™ Internet Information Ser-
vices™. An application can be divided into at least two main
parts: a user interface, which is presented to a user and
interacts with the user, and business logic, which performs
the tasks required of the application, in accordance with user
input received from the user interface. The web browser runs
the user interface. The web server provides the user interface
to the web browser and runs the business logic, possibly in
cooperation with other servers such as an application server,
e.g. JBoss™ or BEA™ WebLogic™, and a database server,
e.g. Oracle™. The web application need not be installed
directly on the user’s computer. The term server or web
server here refers to software executed on a computer, also
referred to generally in the field as a server platform.

[0006] A web browser is a type of specialized software
application, typically installed directly on the user’s com-
puter, which allows a user to view and interact with web
pages. Web pages are documents, typically in HyperText
Markup Language (HTML) format that the web browser
retrieves from a web server computer via a network, using
a protocol such as the HyperText Transfer Protocol (HTTP).
Web pages may include software code in a programming
language such as JavaScript™ which will be executed by the
web browser when the page is retrieved. A web application
includes a user-interface component that is loaded as part of
a web page by a browser via a network connection. A web
application’s user interface may be implemented as a web
page using HTML and JavaScript™. A browser-equipped
computer, therefore, uses a network connection to permit a
user to access a web application running on a remote server,
for example. Furthermore, web applications can be updated
at any time by installing the update on the server.

[0007] Computer software applications are often required
to perform operations that are specific to a particular user or
organization. For example, a software application may be

Exhibit 1006
Page 29 of 49

Apr. 5, 2007

used to in a hospital to request clinical tests. The software
application may include a set of data fields for which a user
provides data values, such as a patient name and a test name.
A particular hospital may also require a patient medical
record number in a format defined by that hospital. In
general, the set of data fields, and actions to be taken after
data values have been provided, are dependent on the needs
of the hospital, and may change over time. Therefore there
is a need for customization of software to meet specific
requirements. Customization of software may include devel-
oping new software or modifying existing software. Cus-
tomization can be done by a programmer using a program-
ming language such as C++, Java, or BASIC. However, the
use of such languages often requires substantial time and
effort, as well as specialized knowledge of the programming
language, so such customization by programming can be
expensive. Rapid Application Development (RAD) tools
address these problems by simplifying programming tasks.
Atypical RAD tool is software that includes a graphical user
interface for laying out application user interfaces and
defining application behaviors in terms of predefined actions
such as data entry and database access. A RAD tool may
present a list of predefined behaviors or actions from which
a user can choose when creating or extending an application.
RAD tools are generally easier to learn and use than con-
ventional programming-language based approaches for
developing applications, and can shorten the time required
to develop applications. Existing RAD tools include Borland
Delphi™, Microsoft Visual Basic™, and Macromedia/
Adobe ColdFusion™, which can be used to develop a wide
range of applications, but often require some programming.
RAD tools such as Intuit QuickBase and Microsoft InfoPath
can be used to develop applications that involve filling out
data forms and accessing databases.

[0008] There is a need for non-programmers to design,
develop, and deploy simple to complex, composite and
monolithic applications in the business world today. Appli-
cation development is a costly, time consuming, and risky
proposition for even capable engineering organizations, let
alone business analysts and other non-technical staff. Few
organizations have the resources to use complex develop-
ment tools and deployment environments to build and
deploy applications. This engineering capability void has
fostered a large and thriving software industry as known
today. Even so, packaged software applications are expen-
sive to purchase and even more expensive to install, con-
figure and maintain. A new breed of Software As A Service,
(SAAS,) vendors have evolved to deliver complex software
as a service to further eliminate complexity and reduce costs
to leverage software application benefits. Even with SAAS
vendors providing robust pre-built applications, only a small
percentage of business software application requirements
are met and hence, the need for both applications and
infrastructure that is aimed at business analysts and pro-
grammers to design, develop and deploy applications
quickly and efficiently.

[0009] Several of the RAD tools described above provide
support for creating web applications. Delphi™, Visual
Basic™, and ColdFusion™ simplify the development of
web applications created using programming languages.
That is, those tools simplify the creation of user interfaces by
providing graphical user interface builder tools that can be
easily connected to business logic implemented in a pro-
gramming language, but it is still necessary to write code in

US 2007/0079282 Al

a programming language for some portions of the applica-
tion, such as the business logic. QuickBase™ provides for
rapid development of forms-based web applications using a
graphical user interface. Furthermore, QuickBase itself is a
web application, which means that it allows web applica-
tions to be developed using the same web application model
in which the applications will be deployed. That is, users of
QuickBase can develop applications on any computer run-
ning a web browser, without directly installing QuickBase
software on their own computer. QuickBase applications
may also be hosted on web servers provided by a software
vendor, for example, Intuit, so that users are not required to
provide a web server to host QuickBase applications they
develop.

[0010] InfoPath™ from Microsoft™ provides for rapid
development of forms. InfoPath forms can optionally be
made available as web applications, but the InfoPath form
designer itself is not a web application and must be installed
directly on a user’s computer. Furthermore, InfoPath
depends on other Microsoft products such as Internet
Explorer™ and does not work with browsers from other
vendors, such as Mozilla Firefox™, Therefore InfoPath
forms can only be accessed from computers on which
InfoPath™ and related Microsoft™ products are installed.

[0011] Existing RAD tools do not combine the benefits of
web applications with features such as customizable pro-
cessing in a scripting language, linkage with external data
sources such as databases, and linkage to web services. We
have recognized that it would be desirable to have an
easy-to-use RAD tool which is itself a web application, and
which allows a user to quickly develop and customize
web-based data processing applications that can include data
input, validation, processing, and linkage with web services.
Such a RAD tool could be used to quickly and efficiently
develop and customize applications using any computer that
has a standard web browser and access to the Internet.
Furthermore, web applications typically require complex
business logic for their activities. This logic is typically
written in strongly typed languages and the logic requires
recompilation and redeployment. It would be desirable to
provide a RAD tool with a scripting language which can
change or extend the behavior of web applications without
the additional overhead of recompilation or redeployment.

[0012] Existing Web-based RAD tools do not provide a
single unified interface and environment for building a web
application that includes a user interface linked to persistent
data stored in a database. Existing Web-based RAD tools
disadvantageously use a multi-step process that starts at the
level of individual data elements, and expect the user to
perform a series of steps to define a user interface linked to
persistent data. These steps typically include defining a field,
defining an object, defining a container, linking the objects,
defining a user interface, and linking the user interface to the
objects and fields, all of which are complex and time-
consuming.

SUMMARY OF THE INVENTION

[0013] In general, in a first aspect, the invention features
a computer enabled method of creating a software applica-
tion. The method includes the acts of providing a user
interface for designing the software application on a web
browser, defining aspects of the application via the web

Exhibit 1006
Page 30 of 49

Apr. 5, 2007

browser using the user interface, and transmitting the
defined aspects to a server over a computer network to create
a web-based software application. Embodiments of the
invention may include one or more of the following features.
The method of creating a software application may include
the acts of providing a set of components on the web
browser and implementing aspects of the application using
the components. The method may include the steps of
providing a library on the browser and using the library as
an intermediary between the defined aspects at the browser
and the server. The computer network may include the
Internet. The method may include, at the server, the steps of
rendering a representation of the application from the trans-
mitted defined aspects, retrieving data associated with the
application from a storage, and transmitting the representa-
tion and retrieved data to a client. The method may include,
at the client, the act of executing the representation and data
on a web browser. The method may include the acts of
providing a library on the web browser of the client and
using the library as an intermediary between the web
browser of the client and the server. The method may include
the acts of tracking multiple versions of the software appli-
cation, maintaining each version as compatible with prior
versions of the software application, and allowing multiple
of the versions to be active at the same time.

[0014] In a second aspect, the invention features a com-
puter enabled method of providing a software application,
including the acts of receiving at a server over a computer
network from a first client web browser a software applica-
tion including defined aspects of the application, rendering
a representation of the application from the received defined
aspects, retrieving data associated with the application from
a storage, and transmitting the representation and retrieved
data to a second client. Embodiments of the invention may
include one or more of the following features. In the method
of providing a software application, the computer network
may include the Internet. The method of providing a soft-
ware application may include, at the second client, the steps
of providing a web browser and providing a user interface to
a user on the web browser from the received representation
and data. The method of providing a software application
may include, at the second client, the acts of: providing a
library on the browser and using the library as an interme-
diary between the browser and the server. The method of
providing a software application may include the acts of
providing a user interface on the web browser at the first
client for designing the software application, defining the
aspects of the application using the user interface, and
transmitting the defined aspects to the server over the
computer network. The method of providing a software
application may include the acts of tracking a plurality of
versions of the software application, maintaining each ver-
sion as compatible with prior versions of the software
application, and allowing a plurality of the versions to be
active at the same time.

[0015] In general, in a third aspect, the invention features
a computer enabled method of providing a software appli-
cation, including the acts of receiving over a computer
network aspects of an application from a server, executing
the application on a web browser, providing a user interface,
and allowing use of the application via the user interface.

[0016] In general, in a fourth aspect, the invention features
a client to be executed on a computer. The client includes a

US 2007/0079282 Al

user interface adapted for designing a software application
on a web browser and an application definition module
which defines aspects of the software application via the
web browser using the user interface. Furthermore, the web
browser may transmit the defined aspects to a server over a
computer network to create the software application.
Embodiments of the invention may include one or more of
the following features. Multiple components may be on the
web browser, and some of the aspects of the application may
be implemented using the components. The client may
include a library on the browser, and the library may be used
as an intermediary between the defined aspects at the
browser and the server. The computer network may include
the Internet.

[0017] In general, in a fifth aspect, the invention features
an application server to be executed on a computer. The
application server includes an application definition module
for receiving over a computer network from a first client web
browser a software application, including defined aspects of
the application, and rendering a representation of the appli-
cation from the received defined aspects. The application
server also includes a service for retrieving data associated
with the application from a storage, and an application
player module for transmitting the representation and
retrieved data to a second client. The application server may
include, at the server, a version control for tracking multiple
versions of the software application, maintaining each ver-
sion as compatible with prior versions of the software
application, and allowing multiple versions to be active at
the same time.

[0018] In general, in a sixth aspect, the invention features
a player client to be executed on a computer. The player
client includes a definition module for receiving over a
computer network aspects of an application from a server, a
data module for receiving over the computer network from
the server data relating to the application, and a user
interface for executing the application on a web browser.
Embodiments of the invention may include one or more of
the following features. The player client may use a library on
the browser as an intermediary between defined aspects of
the application and the server.

[0019] In general, in a seventh aspect, the invention fea-
tures a method of running an application program in a web
browser, including the acts of providing at least one client
computer and one server computer in communication with
the network, executing a web browser on the client com-
puter, executing a client portion of the application program
on the web browser, wherein the client portion presents a
runtime user interface according to an application definition.
The application definition includes a component described
by a component definition, the component includes a name
and a data value, and the client portion receives the data
value from a user. The method of running an application
program further includes the step of executing a server
portion of the application program on the server computer,
wherein the server portion receives the data value from the
client portion and stores the data value in a database, as
specified by the application definition. Embodiments of the
invention may include one or more of the following features.
The component may include a link, the link may refer to a
web service, and the client program may receive the data
value from the web service in response to a user action. The
component may include a script operable to execute in

Exhibit 1006
Page 31 of 49

Apr. 5, 2007

response to an application event, and the script may perform
calculations based on a data value associated with another
component. The script may set a data value associated with
another component. The component may be associated with
a row of a table component.

[0020] In general, in an eighth aspect, the invention fea-
tures a method for designing an application program in a
web browser, including the acts of providing at least one
client computer and one server computer in communication
with the network, executing a web browser on the client
computer, and executing a designer program on the web
browser. The the designer program presents a user interface
that includes a workspace upon which a user can place an
interface component at a specified location, the interface
component being associated with a component data value.
The designer program creates an application definition, the
application definition describing properties of the interface
component, including an association between the compo-
nent data value and a corresponding component data value
in a database.

[0021] Embodiments of the invention may include one or
more of the following features. The component may be
associated with a link, and the designer program may receive
a Uniform Resource Locator associated with the link from a
user. The component may be associated with a computer
program code script, the designer program may receive the
computer program code script from a user, and the computer
program code script may perform calculations based on the
value of another component. The computer program code
script may set the value of another component. The user may
place a table component upon the workspace. The table
component may include a table header row having at least
one column definition and a table detail row having at least
one column corresponding to the at least one column defi-
nition, and the column may be associated with a detail
component having a detail data value. The application
definition may describe the table component and an asso-
ciation between the at least one detail data value and a
corresponding detail column in a database.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1a is an illustrative drawing of an enterprise
application design and deployment system according to one
embodiment of the invention.

[0023] FIG. 154 is an illustrative drawing of a browser-
based application according to one embodiment of the
invention.

[0024] FIGS. 2a and 2b are illustrative drawings of appli-
cation definitions according to one embodiment of the
invention.

[0025] FIG. 3 is an illustrative drawing of an application
user interface according to one embodiment of the inven-
tion.

[0026] FIGS. 4a and 4b are illustrative drawings an appli-
cation definition format according to one embodiment of the
invention.

[0027] FIGS. Sa, 55, and 5S¢ are illustrative drawings of
application definitions according to one embodiment of the
invention.

US 2007/0079282 Al

[0028] FIGS. 6a, 65, and 6¢ are illustrative drawings of an
application data format and application data values accord-
ing to one embodiment of the invention.

[0029] FIGS. 7a-7i are illustrative drawings of an Appli-
cation Designer and Application Player user interfaces,
according to one embodiment of the invention.

[0030] FIG. 8is an illustrative drawing of client and server
components of an enterprise application design and deploy-
ment system according to one embodiment of the invention.

[0031] FIG. 9 is an illustrative drawing of a method of
creating or updating an application according to one
embodiment of the invention.

[0032] FIGS. 10a and 1056 are illustrative drawings of
flowcharts of a method of loading an existing application
according to one embodiment of the invention.

[0033] FIG. 11 is an illustrative drawing of a method of
saving application data according to one embodiment of the
invention.

[0034] FIG. 12a is an illustrative drawing of an applica-
tion including a mode and a version number according to
one embodiment of the invention.

[0035] FIG. 125 is an illustrative drawing of application
mode transitions according to one embedment of the inven-
tion.

[0036] FIG. 13 is an illustrative drawing of a database
schema for storing an application definition according to one
embedment of the invention.

[0037] FIG. 14 is an illustrative drawing of database
schemas for storing application data according to one
embedment of the invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

[0038] The following description is presented to enable
any person skilled in the art to make and use the invention,
and is provided in the context of particular applications and
their requirements. Various modifications to the preferred
embodiments will be readily apparent to those skilled in the
art, and the generic principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the invention. Moreover, in the
following description, numerous details are set forth for the
purpose of explanation. However, one of ordinary skill in the
art will realize that the invention might be practiced without
the use of these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order not to obscure the description of the invention
with unnecessary detail. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

[0039] FIG. 1a is an illustrative drawing of an enterprise
application design and deployment system according to one
embodiment of the invention. A user 100 interacts with the
Designer Ul (user interface) 102 to design an application,
e.g. a data input form, and a user 118, which may be the
same user as user 100, or may be a different user, interacts
with a Player Ul (user interface) 114 to execute the appli-
cation. The Designer Ul and Player Ul are software pro-

Exhibit 1006
Page 32 of 49

Apr. 5, 2007

grams that are executed by a web browser running on a
computer (shown in FIG. 8). Application Data 120 may be
provided by the user 118 when the Player Ul 114 executes
the application. The Application Data 120 may include, for
example, data entered by a user, such as data concerning a
particular person or transaction. An application may include
dynamic behavior, calculations, lookups, validations, and
linkages to other data via, for example, a Uniform Resource
Locator (URL) query string. The term application is used
herein to refer to applications designed by the Designer UI,
e.g. forms-based applications. The application is represented
by an Application Definition 104, which is a structured list
of components, e.g. text fields and logic, and other entities
included in the application. A server 106 receives the appli-
cation from the Designer Ul 102 as an Application Defini-
tion 108 and stores the application in an Application Defi-
nition table 112 of database 110. The server 106 also sends
the application to the Player UI 114 by retrieving an Appli-
cation Definition 108 and any associated Application Data
122, e.g. values for the data input form, from the Application
Definition table 112 and Application Data table 124, respec-
tively, of the database 110. The user 118 provides Applica-
tion Data 120 to the Player Ul 114, which sends the
Application Data 120 to the server 106, where the Applica-
tion Data is converted to an intermediate format Application
Data 122 and then stored in Application Data table 124. The
server 106 and database 110 are software programs that are
executed by computers (now shown).

[0040] FIG. 154 is an illustrative drawing of a browser-
based application according to one embodiment of the
invention. A web browser 132 executes a Player Ul 134,
which in turns executes an application 135. The Player Ul
134 presents the application 135 to a user 130 via the web
browser 132. The application 135 includes at least one
component 136, which represents a user interface element
such as a text box or a web link. The component 136
includes a name 138, which uniquely identifies the compo-
nent. The component 136 is accessible by the name 138 in
a Document Object Model associated with the web browser
132 in scripting languages, e.g. JavaScript™ or the like. The
user 130 can provide computer program code as a script 143,
which is associated with the component 136, for performing
calculations based on the data value 142 in response to
events, such as a user changing the data value 142. A script
143 can also set the data value 142. The component 136 also
includes properties 140, which describe the component, e.g.,
the location of the component on a web page, and the type
of component, e.g. a text box or link component. The
properties 140 may include the name 138. The component
136 also includes a data value 142, e.g. a text string or
numeric value, which can be specified by a user via the
Player UI 134. The data value 142 is stored in a database 144
in a database column specified in the properties 140. The
component 136 also includes a link 142, which has an
associated Uniform Resource Locator (URL) that can refer
to another application 146, or a web page 148, or a web
service 150. The link 142 may send or receive the data value
142 to or from the application 146, the web page 148, or the
web service 150, in response, for example, to input from the
user 130. A description of the component 136, including the
properties 140, is stored in the application definition 108 of
FIG. 1a.

[0041] FIG. 2a is an illustrative drawing of an application
definition according to one embodiment of the invention. An
application 200 may include at least one StandardArea 202.
A Standard Area 202 includes area properties 240 and at least

US 2007/0079282 Al

one component 204. There is a second type of area, called
a table area, which is shown as TableArea 203 in FIG. 2b.
Table areas are described in more detail below. An area
contains a grid of cells (nor shown) to allow users to place
the components of an area in specific locations within the
area. The locations are specified in terms of numeric row and
column numbers. More specifically, the location of a com-
ponent in a grid is specified by a row index value and column
index value, where row 0, column 0 is the top left corner of
the grid. The area properties 240 are a set of name-value
pairs that describe the area. The area properties 240 include

Apr. 5, 2007

a name property, which specifies the name of the standard
area 202, and width, rowindex, and colindex properties,
which specify the width, grid row, and grid column of the
area, respectively.

[0042] A component 204 is a user interface element of a
specific type. The component 204 may be a Label, Text Box,
Text Area, Radio Button, Check Box, Select List (e.g. a
drop-down list), File Attachment, Button, Image, or link.
Each component has associated properties. The component
types and the properties associated with each component
type are descrobed in the table below.

COMPONENT TYPE DESCRIPTION

PROPERTIES

Text Box

Text Area

Date Picker

Check Box

Radio Buttons

Combo Box

Label

Button

Attachment

Link

A text input fleld for
reading data of a specific
type, e.g. string or numeric
data. Contains a text
value.

A text edit box for editing
a text string. Can display
multiple rows of text and
allow the user to edit the
text. Contains a text value.

A data selector. Contains a
date value.

A check box with two
possible values (checked or
unchecked). Contains a
boolean value.

A set of buttons, one of
which can be selected.
Contains a value
representing a selected
button.

A drop-down box for
selecting one item from a
list of items.

A text label for displaying
information. Does not
contain a value.

A button that can be
selected by a user to cause
an event handler to be
called.

A file associated with the
application.

A web link that refers to a
web page, web service, or
other resource. When the
link is selected in the
Player UI, the web page,
web service, or other
resource will be accessed.

Name, Required, Readonly,
Keyword Field, Data Type,
Allowed Characters, Visibility
Privileges, Edit privileges,
Routing edits (enable or disable),
data type, data format, max
characters, default value, action
(event handler).

Name, required, read only,
keyword field, visibility and edit
privileges, routing edits (enable
or disable), allowed characters,
data format, max characters, max
rows, max chars, default value,
action (event handler).

Name, required, read only,
keyword field, visibility and edit
privilege, routing edits (enabled
or disabled), data format, default
value, action (event handler).
Label, name, edit and visibility
privileges, routing edits (enable
or disable), initial state (checked
or unchecked), action (event
handler).

Name, radio group, edit
privileges, routing edits, initial
state, checked value, action
(event handler).

Name, required, keyword field,
visibility and edit privileges,
routing edits (enable or disable),
data type, height, allow multiple
selections (yes or no), data
lookup source, action (event
handler).

Name, layout style, alignment.

Label, name, visibility and edit
privileges, action (event handler),
web service, link.

Name, attachment type, visibility
privileges, action privileges.
Label, name, visibility and edit
privileges, action (event handler),
web service, link (URL).

Exhibit 1006
Page 33 of 49

US 2007/0079282 Al

[0043] The component 204 has component properties 208.
If the component 204 is a data-holding component, e.g., a
TextBox, TextArea, Select List, RadioButton, CheckBox, or
File Attachment, then the component 204 has a value 206.
The component properties 208 include a name property,
which uniquely identifies the component within the area
204, a type property, e.g. label or text box, a label property,
the value of which is displayed in the user interface for some
component types, such as the label component type. The
component properties 208 also include rowindex and colin-
dex properties, which indicate the position of the component
within the area, a hidden property, which indicates whether
the component is to be displayed or hidden in the Player UI,
and a datalinkage property, which indicates a source of
values for the component, e.g. a database column containing
values for a selection list, a datatype property, which indi-
cates the permitted type of the value 206, and a required
property, which indicates whether a value is required for the
component 204.

[0044] The component properties 208 further include a
dataset property, which may specify a database column in
which the component’s value 206 is stored. Because of the
differences in data representations between the web brows-
er’s HTML-based data model, the Java object model used by
the server, and the relational database model in which data
is stored persistently, the XML application definition estab-
lishes a mapping between application data and database
data, based on a component naming convention in which a
unique name is assigned to each component. A DATASET
attribute is also assigned to each component. The DATASET
attribute specifies a database table and column name and
thereby binds the component’s value to a database column.
The application data value of the component is stored in the
specified database column. Multiple instances of application
data are stored as separate database rows, so that each
instance of application data, e.g. each Radiology Order
Request instance associated with a Radiology Order Request
application, is stored as a separate row in the database. The
unique component name is generated by concatenating the
names of enclosing components, such as areas and tables,
with the component name and numeric counter values as
described below.

[0045] Application definitions are specified using the
Extensible Markup Language (XML). An XML document
structure 250, shows how an application 200 that includes
the StandardArea 202 can be defined using XML. The XML
document structure has XML elements that correspond to
the elements of the Standard Area 202. Specifically, the XML
structure has a Form element 255, an Area element 256, and
at least one FormComponent 257.

[0046] The Area element 256 and the Form element 255
enclose the FormComponent(s) 257, as shown by an Area
element end marker 258 and a Form element end marker
259. The Form element 255 has a name attribute, which is
assigned a value such as the name of the application. The
Area element 256 includes four attributes: a name attribute,
and label, rows, and cols attributes. The name attribute
specifies a name for the area, and gets its value from an area
name property 205 of Area properties 240. The area name
property 205 is assigned a value, e.g. “area_ 07, by a string
concatenation method based a counter value, e.g. 0, for the
first area, that is incremented for each area in the Application
200. The value of the area name property 205 is assigned, for

Exhibit 1006
Page 34 of 49

Apr. 5, 2007

example, when the StandardArea 202 is added to the appli-
cation. The label attribute specifies a name to be displayed
for the area in the user interface, and gets its value from the
dispalyname property of Area properties 240. The rows and
cols attributes specify the number of rows and columns,
respectively, in the area, and get their values from the
rowcount and colcount properties, respectively, of Area
properties 240. The FormComponent element 257 is an
XML representation of the user interface component 204
and includes attributes, such as name and type attributes,
which are assigned values from corresponding component
properties 208 of the component 204, e.g. name and type
properties, respectively. A component name property 209 is
assigned a value, e.g. “comp_area_ 0_0_0”, by a string
concatenation method based on the type of component, e.g.
“comp_”, the name of the enclosing area, e.g. “area_ 0”, and
a counter value that is incremented for each component 204
in the application, e.g. 0 for the first component. The value
of the component name property 209 is assigned, for
example, when the StandardArea 202 is added to the appli-
cation. Generally, the name of a component in a Standard-
Area is generated by the following expression:
<ComponentType>+“_"+<AreaName>+*_"+<Coun-
terValue>

[0047] where ComponentType is a string that corresponds
to the type of the component, e.g. “comp” for data input
components such as selection boxes, or “lbl” for label
components, AreaName is the name of the enclosing Area,
and CounterValue is a number that uniquely identifies the
component within the enclosing Area. The counter values
are assigned based on the number of components of the same
type that have been previously processed in the enclosing
Area. All non-alphanumeric characters in the name are
replaced with underscores (_) when the component name is
generated.

[0048] FIG. 25 is an illustrative drawing of an application
definition according to one embodiment of the invention. An
application 200 may contain at least one table area 203,
which defines a table of rows and columns that will be
presented to a user in the Application Player. A table area
203 includes area properties 240 and at least one TableCom-
ponent 249. A TableComponent 249 includes a TableHead-
Row 241, a TableDetailRow 243, and zero or more Table-
FootRows 246. The TableHeadRow 241 describes the
names, sizes, and positions of columns in the table. The
TableHeadRow 241 includes zero or more column defini-
tions 251. Each column definition 251 has column properties
241, which include a column name property 252, a width
property that specifies the width of the column, and a
colindex property that specifies the position of the column in
the table.

[0049] A column name property 252 is assigned a value,
e.g. “tcol_hdr_table_area 1 07, by concatenating the type
of the table row, e.g. “tcol_hdr” for a table header row, with
the name of the enclosing TableComponent 249, e.g.
“table_area_ 1” and a counter value, e.g. 0, that is incre-
mented for each column 251 in the application. The value of
the component name property 209 is assigned, for example,
when the StandardArea 202 is added to the application.
Generally, the name of a component in a TableArea is
generated by the following concatenation expression:
<RowType>+“_"+<AreaName>+“_"+<TableName>+

“_+<TableColumnName>+*“_"+<FormComponent-
Name>+“_"+<CounterValue>

US 2007/0079282 Al

[0050] where RowType is a string based on the type of
row. Specifically, RowType is set to tcol_hdr for header
rows, dcol_dtl for detail rows, and fcol_ftr<counter> for
footer rows, which have an associated counter value because
there can be multiple footer rows), AreaName is the name of
the enclosing Area, and CounterValue is a number that
uniquely identifies the component within the enclosing Area.
The counter values are assigned based on the number of
components of the same type that have been previously
processed in the enclosing Area. All non-alphanumeric
characters in the name are replaced with underscores ()
when the component name is generated.

[0051] Table values are stored in detail rows, which are
described by a TableDetailRow 243 that has zero or more
columns 244. Each column has zero or more components
245 which store data values associated with column. The
TableDetailRow is associated with a database table, e.g., a
process_detail table (described below with reference to FIG.
14), The values of components 245 are stored in the database
table. A TableFootRow 246 is similar to the TableDetailRow,
except that the TableFootRow 246 is associated with a
different database table, e.g. a PM table. A TableFootRow
component 248 can include formulas that that specify a
value for the component 248 based on the values of one or
more TableDetailRow components 245.

[0052] An XML document structure 261 shows how an
application 200 that includes the TableArea 203 can be
described using XML. The XML document structure 261
has XML elements that correspond to the elements of the
TableArea 203. Specifically, the XML structure 261 has a
Form element 262, which corresponds to the Application
200. The Form element 262 encloses an Area element 263,
which corresponds to the TableArea 203 and encloses at
least one TableComponent 264. The Area element 263 has a
name property, which is assigned to the value of the name
property 205 of theTableArea 203. The name property 205
of the TableArea 203 is assigned a value based on a
concatenation method as described above. There is one
TableComponent 264 element for each TableComponent
249 object of the Application 200. Each TableComponent
264 element has attributes, which are assigned values from
corresponding column properties 242 of the column 251,
e.g. name, width, and colindex properties. The TableCom-
ponent element 264 encloses a TableHeadRow element 265,
a TableDetail row 268, and zero or more TableFootRows
(not shown). A TableHeadRow element 265 encloses zero or
more TableColumns 266, which correspond to the columns
251 of the application 200. Each TableColumn element 266
has XML attributes with the same names and values as the
properties 242 of the column 251. The TableDetailRow
element 268 similarly corresponds to the TableDetailRow
243 of the application 200 and encloses zero or more
TableColumn elements 269 corresponding to the columns
244 of the application. Table detail rows can contain com-
ponents such as text boxes, so the TableColumn elements
269 of the TableDetailRow 268 include zero or more Form-
Component elements 270 that describe components 245 of
the application 200. The FormComponent elements 270 are
of the same form as the FormComponent elements 257 of
FIG. 2a. Finally, each element has an end marker that closes
the element definition and completes the definition of the
elements scope in the XML document structure 261. There
is a TableHeadRow end marker 267, a TableColumn end

Exhibit 1006
Page 35 of 49

Apr. 5, 2007

marker 271, a TableDetailRow end marker 272, a Table-
Component end marker 273, an Area end marker 274, and a
Form end marker 275.

[0053] An application can be defined in a Web browser
using client components implemented in a programming
language, e.g. JavaScript, to create a representation of the
application in terms of an object model. The object model
includes objects such as an application object that has an
array of area objects with properties, an area object that has
an array of component objects, including basic components
such as labels and text boxes with their properties, as well
as table components. The table component object has an
array of row objects, including a table head row object and
a table detail row object that has an array of column objects,
each of which has an array of component objects. A table
foot row object would be similar to the table detail row
object. The client components are also able to traverse the
object in the object model to generate an XML application
definition.

[0054] An XML application definition is generated by
traversing the objects in the object model, e.g. by starting at
the application object, looping through the application’s area
objects, generating the appropriate XML element begin
marker for each area object, e.g. <Area> as shown in FIG.
24, and then looping through the area’s array of component
objects, generating an XML, FormComponent element for
each component object, and generating XML attributes for
the FormComponent, e.g. the name attribute, based on the
component object’s properties, e.g. the name property. A
table component is traversed in a similar manner to generate
an XML TableComponent element. The table head row,
table detail row, and table foot row objects of the table
component are each processed, and corresponding Table-
HeadRow, TableDetailRow, and TableFootRow XML ele-
ments are generated according to the XML structure 261
illustrated in FIG. 2b. Specifically, a table detail row object
is processed by generating a <TableDetailRow> XML ele-
ment and then looping through the table detail row’s array
of column objects. For each column object, a <TableCol-
umn> XML element is generated with attributes, such as the
column name, row index, and column index, taken from the
column object. After all columns have been processed, a
</TableHeadRow> end marker is generated. The table detail
row is processed in a similar manner, by generating a
<TableColumn> element before processing the columns,
except that each column object in a table detail row has an
array of components corresponding to the components that
a user can add to a table column. When the XML is
generated for a column in a table detail row, a <TableCol-
umn> element begin marker is generated, then a <Form-
Component > element is generated for each component in
the column, as described above, and a </TableColumn>
element end marker is generated after the last <FormCom-
ponent> element. For components that can contain data
values, such as text areas, text boxes, selection lists, radio
buttons, checkboxes, and attachments, a database column
name for the data value is generated according to a conven-
tion based on the type of the component and a numeric index
assigned to the component based on the number of compo-
nents of the same type that have been previously processed.
For example, the database column name for the first com-
ponent that has a value of type string would be “sc1”, and
the database column name for the third component that has

US 2007/0079282 Al

a value of type Boolean would be “bc3”. Other components
of the system use this same convention to locate the values
of components in a database.

[0055] FIG. 3 is an illustrative drawing of an application
user interface according to one embodiment of the inven-
tion. The application 300 has a name 302, “Request Infor-
mation”, and four components. The components include a
Date label component 304, a date input component 308 for
reading a date value from a user, a Patient Name label 306,
and a patient name input component 310, which may be, for
example, a text input box or a selection list that allows a user
to select a name from a list of names stored in a database.

[0056] FIGS. 4a and 4b illustrate a schema describing a
format for an application definition according to one
embodiment of the invention. The schema may be, for
example, an XML Schema describing the format of an XML
document that represents an application. An application is
stored, e.g. in a database, as an XML document that con-
forms to a Form schema 410. With reference to FIG. 4a, the
Form schema 410 describes the structure and types of data
in an application definition. A Form represents an applica-
tion and has attributes (also referred to herein as properties),
which are name-value pairs. The attributes of a Form include
a name that specifies a name for the form, e.g. name=
“Radiology Order Request”, a description that describes the
form, a category, a theme, and a subject. A Form 410
includes one or more Areas and 0 or more BehaviorLists. An
Area 415 provides for grouping and positional layout of
components within a region defined by the boundaries of the
Area and by cells arranged in rows and columns within the
Area. Each Area 415 has properties, including a name, a
label, a layout, a number of rows, a number of columns, and
a visibility indicator. Each Area 415 includes one or more
ComponentDefinitions. Each ComponentDefinition
includes either one or more FormComponents 420, or one or
more TableComponents 440.

[0057] A FormComponent 420 represents a component,
e.g. a Text Box, and has attributes, including a name, a
dispalyname, a type, a datatype, a required flag, a keyfield,
a readonly flag, a defaultvalue, a rowindex which specifies
the vertical position of the FormComponent 420 as a row
number on an enclosing Area’s grid, a colindex which
specifies the vertical position of the FormComponent 420 as
a column number on the enclosing Area’s grid, a hidden flag,
a datacolumn, which specifies a database column in which
the value of the FormComponent is stored, a datalookup
which specifies a database table from which a list of possible
values for the FormComponent can be retrieved. A Form-
Component 420 may include a FormComponentList, which
may include one or more FormComponents 420. Note that
the FormComponent definition is recursive and allows a
FormComponentList to include multiple FormComponents.
A FormComponent 420 may also include a BehaviorList
430.

[0058] A BehaviorList 430 may include Behaviors. A
Behavior 435 represents executable code and has properties,
including a name, an event, which may specify a type of
event for which the behavior will be invoked, e.g. onchange,
onClick, and the like, and a category. A Behavior 435
includes a Code element. The Code element includes code,
e.g., JavaScript, which implements an event handler. The
event handler will be called by the Player UI when a specific

Exhibit 1006
Page 36 of 49

Apr. 5, 2007

event occurs for the component, e.g. JavaScript code that is
called when the component’s value changes.

[0059] With reference to FIG. 4b, a TableComponent 440
represents a table and includes one TableHeadRow, one
TableDetailRow, one optional TableFootRow, and one
BehaviorList. A TableHeadRow, TableDetailRow, orTable-
FootRow includes at least one TableColumn 450. A Table-
Column 450 describes the contents of a table column. A
TableColumn has properties, including a name, a label, a
rowindex, which is 0 by convention, a colindex which
identifies the particular column described by the TableCol-
umn, e.g. colindex=1 for the first column, and colindex=1
for the second column. A TableColumn also has a width
property, which specifies the width of the column, e.g. as a
percentage of the entire width of the table, such as “20%”.
A TableColumn may include FormComponents. That is, a
table column may contain form components such as text
boxes.

[0060] FIGS. Sa, 55, and 5S¢ are illustrative drawings of
application definitions according to one embodiment of the
invention. FIG. 5a shows an application definition 520 that
corresponds to the application 300 illustrated in FIG. 3. The
application definition 520 includes properties such as a
name, area_0, and a label, “Request Information”. The,
application definition 520 also includes four Form Compo-
nent definitions corresponding to the four components of
FIG. 3. A Date Label Form Component 522 describes the
Date label, and has properties that include a name, com-
p_area_0_0_0, a type, “LABEL”, a label, “Date:”, and
rowindex and colindex positions, 0, 0, which position the
component at the top left of the area 520. A Date input form
component 524 has a name, date_1, a type, “DATE”, and a
dataset, “process_master/dtc1”, which indicates that a value
entered by the user will be stored in the “dtc” column of the
process_master database table. The rowindex and colindex
properties of the Form Component 524 indicate that the
component is to be placed in the second column of the first
row in the Area 520.

[0061] A Patient Name form component 526 describes the
Patient Name label, and has properties that include a name,
comp_area_0_1_0, a type, “LABEL”, and a label, “Patient
Name:”. A Patient Name input form component 528 has a
name, select_3, a type, “SELECT”, i.e. selection list, a
datalookup, “CORE/$CID/USER”, which indicates that the
list of values for the selection list will be loaded from the
USER column of the $CID database, a dataset, “process-
_master/sc1”, which indicates that a value selected by the
user will be stored in the “sc1” column of the process_mas-
ter database table. The rowindex and colindex properties of
the Form Component 528 indicate that the component is to
be placed in the second column of the second row in the Area
520.

[0062] FIG. 55 illustrates a tree-representation of an appli-
cation definition according to one embodiment of the inven-
tion. The tree shown in FIG. 55 corresponds to the appli-
cation definition shown in FIG. 5a. Each tree element
includes the same name, value, and properties as a corre-
sponding component of FIG. 5a. Specifically, the tree’s root
is an area_0 component, which has the same properties as
the Area Component 520, and a Component Definition 532,
which is an intermediate level that groups the components in
the area 530. The Component Definition 532 includes the

US 2007/0079282 Al

definitions of the Form Components of FIG. 5q, including a
Date label 534 with name comp_area_0_0_0, a date input
component 536 with name date_1, a Patient Name label 538
with name comp_area_0_1_0, and a patient name input
selection list 539 with name select_3.

[0063] FIG. 5¢ is an illustrative drawing of an application
definition according to one embodiment of the invention.
The application definition 540 is a text document in Exten-
sible Markup Language (XML) format and includes nested
elements definitions. An Area element 540 defines the area,
and corresponds to the Area component 520 of FIG. 5a. A
ComponentDefinition element 542 contained in the Area
element 540 corresponds to the Component Definition 532
of FIG. 54. The ComponentDefinition element 542 contains
four FormComponent elements 544-549, which correspond
to the Form Component elements 522-528 of FIG. 5a. The
FormComopnent elements 544-549 include XML attributes
that correspond to the properties shown in FIG. 54, such as
the name, type, and label.

[0064] FIG. 6a illustrates application data 600, which
includes a list of name-value pairs 602 corresponding to data
values provided a user for an application according to one
embodiment of the invention. With reference to FIG. 14, the
name-value pair format of application data 600 is used by
the Player UI 114 to provide Application Data 120 to the
Server 106.

[0065] FIG. 6b illustrates example application data
according to one embodiment of the invention. The example
application data 604 includes an example date value 608,
with the name date_1 and the value “4/33/2005”, and an
example selection list value 610, with the name “select 3”
and the value John J. Smith”. These application data values
correspond to the values provided in data input component
308 and patient name input component 310, respectively.

[0066] FIG. 6¢ illustrates an example database table con-
taining application data according to one embodiment of the
invention. Database table 512, e.g. a table named process-
_detail stored in the Database 110 of FIG. 1a, has an “id”
column 614, a “dtc1” column 616 for storage of the date
component’s value, and an “sc1” column 618 for storage of
the selection list component’s value. Database tables that
store application data according to one embedment are
described in more detail below with respect to FIG. 14.
Other columns may be present as well for storage of
additional component values, e.g. “dtc2” for a second date
component and sc2 for a second selection component, and so
on, up to an arbitrary number of columns One row of data
is shown, which includes a value “1” for the “id” column
614, a value “4/22/20057622 for the “dtc1” column 616, and
a value “John J. Smith”624 for the “sc1” column 618.

[0067] FIG. 7a is an illustrative drawing of an Application
Designer user interface (UI) according to one embodiment
of the invention. The Application Designer user interface
(UI) 701 corresponds to the Designer U1 102 of FIG. 1a. The
Application Designer Ul 701 includes a workspace 702,
which represents an application being designed, an area
properties interface 709, a control properties interface 710,
an areas palette 711, and a controls palette 712. The user can
select a tool or a control from the palette, and can use the tool
or control to place or drop areas, tables, and components,
e.g., text boxes on the workspace. Components can be
moved or dragged to alternate locations within the area as

Exhibit 1006
Page 37 of 49

Apr. 5, 2007

well after they are placed or dropped. The area palette 711
includes an Add Area tool 713 for adding a new area to the
workspace, and the controls palette 712 includes a Text Box
control 714 for adding text box components to the work-
space. An area 707 includes a grid of cells. A cell 715 is
empty when the area is added to the workspace, but a user
can add one or more components, such as a label 704, to
each cell by clicking on a control, such as label control 716
and dragging the control to the desired cell, such as the
empty cell 715. As a result, a component, such as the label
704, will be added to the application in the desired cell 715.
The cells allow the Designer Ul to assign row and column
positions to the components that a user adds to an area.

[0068] Once a component has been placed on the work-
space, the user can set properties of the component to define
specific behaviors, such as default values, table headings,
mappings between controls and a database, and mappings
between controls and web services. The workspace 702
includes a graphical representation of an example applica-
tion definition that is being constructed by a user. In one
embodiment, the application definition includes a data field
703 in which the user will enter data when the application is
run in the Player. The data field 703 is associated with a label
704, which provides a textual description of the data field to
a user. The workspace also includes an area 706 and a table
area 708. The area 706 provides for grouping and position-
ing the locations of other fields, and contains the field 703
and the label 704. The table 708 includes a header row and
five columns, named COL_0 through COL_4.

[0069] Palettes such as palette 712 shown in FIG. 7a
provide easy access to the tools without cluttering the
workspace. Palettes can include one or more tabs, each
containing common properties. For example, all standard
components are stored in the Components palette. Each
palette provides a special function based on the selection in
the designer workspace. Some palettes such as the Field
Properties and Area Properties allow users to specify prop-
erties for the selected field/area.

[0070] FIG. 7¢ is an illustrative drawing of an Application
Designer user interface (UI) according to one embodiment
of the invention. The Application Designer user interface
701 includes a Control Properties interface 730, which
allows a user to view and set properties of a selected
component 731, which is a table column in this example.
The table column’s properties shown in the Control Prop-
erties interface 730 include a column label, a column width,
and a component name. A user can change the values a
property by entering a new value for the property. The
Control Properties interface 730 also includes a Formula
Builder button 735 and an Action Builder button 736. All
Designer objects have unique properties. The properties for
anumeric field have possible calculations while a drop down
list may have a data source to populate the list of variables.
The Control Properties interface 730 displays the properties
available for the selected component type.

[0071] FIGS. 7d and 7e are illustrative drawings of an
Action Builder user interface according to one embodiment
of the invention. The Action Builder 740 allows a user to
associate one or more actions with each component of the
application. Actions include event handlers and custom
functions. Event handlers are functions implemented in a
programming language, e.g., JavaScript, which are called by

US 2007/0079282 Al

the Player Ul when associated events occur, e.g. when a user
changes a component’s value. Custom functions are func-
tions implemented in a programming language, e.g. JavaS-
cript, which can be called by event handlers and by other
custom functions.

[0072] The Action Builder 740 allows the user to imple-
ment event handlers and custom functions by writing code
in a programming language such as JavaScript The Action
Builder 740 is displayed by the Application Designer user
interface in response to a user request, e.g. in response to a
user pressing the Action Builder button 736 of FIG. 7c.

[0073] The Action Builder 740 has a Select Function
option 744 which a user can use to create create a custom
function. The user can provide a custom function name 746,
which will identify the custom function, and will also be the
name by which the custom function is invoked from Java-
Script. Then a user can then use a code editor 749 to write
JavaScript code 748 that will be called when the custom
function is invoked. In the example of FIG. 74, the custom
function simply increments the variable i.

[0074] The Player Ul executes actions and evaluates for-
mulas in response to events that are associated with user
interface components such as buttons and tables. Events
include user interface events, such as onClick, which occurs
when the user has clicked on a table, or onchange, which
occurs when a data value changes. The user interface event
types include onBlur, onchange, onClick, onDoubleClick,
and onMouseOver. Additional events are available for
tables, such as onRowAdded. The event types are described
in the table below.

EVENT TYPE DESCRIPTION
Form Components

onBlur Called when focus moves away from a control
onChange Called when data changes in a component..
onClick Called when a user clicks on a component.
onDoubleClick Called when a user double-clicks on a

component.
onMouseOver Called when mouse pointer is positioned over a

component.

Grid

Caled when a user enters a table cell.
onModified Called when a cell’s contents are modified.
onAfterInsert Called after a row is added to a grid.
onAfterDelete Called after a row is deleted from a grid.
onColumnResize Called when a column is resized.

onCellEnter

[0075] An event handler is a function implemented by
code in a programming language, e.g. JavaScript. A user
defines an event handler by providing implementation code
for an associated event type. The event handler is called by
the Player Ul when an event of the associated type occurs.
To define an event handler, a user first selects a component
of the application in an object selection box 745. In the
example of FIG. 7e, a component named text_area_3_2 has
been selected. The user then selects an event type, e.g.
onClick, from an event type menu 750 of event types
available for the selected component, and provides JavaS-
cript implementation code 748 using the code editor 749.
Thereafter, when the Player Ul is executing an application,
the user’s JavaScript code will be called whenever the
specified event occurs for the specified object.

Exhibit 1006
Page 38 of 49

Apr. 5, 2007

[0076] The Action Builder 740 includes a data element list
741, a function list 742, and a code editor 749. The data
element list 741 is a list of the application’s components.
The data element list 741 has an entry corresponding to each
area in the application, e.g. Area 1. Nested below each area
entry is a list of the components in that area entry, e.g.
text_area_1_1, text_area_1_3, and so on. The data element
list 741 corresponds to a Document Object Model (not
shown) associated with the application. The function list 742
includes user-defined functions, which are sometimes
referred to herein as custom functions, and a set of com-
monly-used functions such as validateZipCode and SUM.

[0077] The code editor 749 allows a user to create and
modify JavaScript implementation code 748 associated with
a specified event 747, e.g. onClick, of a specified object 745,
e.g., text_area_3_2, or with or a specified custom function
746, e.g. customFunction. The , JavaScript implementation
code 748 associated with an event 747 of a specified object
745 will be called by the Player Ul when the event occurs,
e.g. when the user clicks on the specified object.

[0078] The JavaScript implementation code 748 for event
handlers and custom functions can refer to any component
of the application using JavaScript variables that are pro-
vided by the Document Object Model. A JavaScript variable
is provided for each component of the application, and the
variable has a name of the $<component>, where <compo-
nent> is the name of the component. These component
variables allow user-provided JavaScript code to read, write,
and control other components. JavaScript code can get and
set the value of a data-holding component, e.g., a TextBox,
TextArea, Select List, Radio Button, CheckBox, or File
Attachment by referring to a variable named
$<component>.value.

[0079] The Action Builder 740 allows a user to select
components from the Data Elements list 741 using, for
example, a mouse pointer. When a component has been
selected, the Action Builder 740 inserts a JavaScript variable
name corresponding to the selected component into the code
editor 749 at a current cursor position (not shown), so that
the variable name becomes part of the JavaScript imple-
mentation code 748.

[0080] The JavaScript implementation code for custom
functions and event handlers is stored in the XML applica-
tion definition. In particular, the JavaScript code associated
with a component is stored in a Behavior XML element of
a BehaviorList element associated with the component. For
example, an the JavaScript code for an onRowAdded event
handler associated with a TableComponent would be stored
as a Code element associated with a Behavior element,
which is in turn associated with a BehaviorList element,
which is associated with the TableComponent.

[0081] A link is a component that refers to an object such
as an application or web page. The object may be located on
a server specified by the link. The reference may be, for
example, a Uniform Resource Locator (URL) that refers to
a value on a web server. A Link can be associated with a
Button component or a Link component.

[0082] FIG. 7h is an illustrative drawing of a Link Builder
according to one embodiment of the invention. The Appli-
cation Designer provides the Link Builder, which can be
used to add two types of links, inbound links and outbound

US 2007/0079282 Al

links, to an application. An inbound link is a reference that
can be used to start or access a particular application on a
server. The application may be, for example, with reference
to FIG. 1a, an application previously created on the server
106 by the Designer UI 102. An inbound link includes the
address or host name of a server, and parameters that
identify an application on the server and provide default
values for the application. An inbound link may appear on,
for example, any web page. When a user selects an inbound
link, for example, by clicking on the inbound link in a web
browser, a request, e.g. in the HTTP protocol, is sent to the
server specified in the inbound link along with the param-
eters specified in the inbound link. The server starts a Player
Ul, and loads the application specified by the inbound link
into the Player Ul using the parameters in the link to
identify the application and a user account under which to
run the application. The server also provides the application
with any data values, e.g., values for application compo-
nents, specified in the inbound link’s parameters. The server
responds to the request by sending the application as a
response, e.g. as an HTMI/JavaScript web page in an HT'TP
response.

[0083] Inbound links are used, for example, when the
originating web page or application is an external applica-
tion such as Siebel or SalesForce.com. The user will use the
Link Builder interface to build the link and then update the
foreign application by pasting this link into the foreign
application’s user interface. The parameter values in an
inbound link may be specified as attribute variables, for
which values will be substituted by the Player Ul when the
link is presented to the Player Ul. Attributes have the form
name=value, where name is an attribute name and value is
an attribute value. Attribute values are either literal values or
placeholders. Placeholders have the syntax {!x }, where x
specifies how to retrieve a value. An attribute variable
appears in a link as, for example, un={!User_Username },
where {!User_Username} is a URL string replacement
placeholder that will be replaced with actual values by the
Player Ul. For example, {!user_username} would be
replaced with “John Smith” when the link is embedded and
executed in another web page by a user named “John
Smith”. The Player UI will retrieve an actual value for each
attribute variable from the database and DefintionFactory,
substitute the actual values into the link in place of the
attribute variables, and pass the link with substituted values
to the application. An outbound link is a reference to an
object on a server, such as a web page on a web server.
Outbound links may be included in button and link compo-
nents of an application, and are displayed in the Player Ul
114 of FIG. 1a. An outbound link may include attribute
variables as described above. When a user selects an out-
bound link, the application substitutes the values into the
query string attributes and launches the link as defined by the
UT with the substituted query string values.

[0084] Links can be used to define actions such as launch-
ing a Business Object Lookup dialog. The link may define
properties related to launching the Business Object Lookup
dialog and may also include JavaScript code that will
populate application components with data from the Busi-
ness Object Lookup dialog. Links can refer directly to
business objects, in which case each instance of a business
object can be identified, displayed, and invoked via a URL.
The URL includes a generic server resource string and a
unique ID for the business object. The URL may also

Exhibit 1006
Page 39 of 49

Apr. 5, 2007

include an instance identifier to identify of the business
object. The business object will be invoked when the URL
is selected, e.g. by a user clicking the associated link in the
Player UL,

[0085] Table rows can also be populated by a link by
including a link to a business object in the table definition.
In this case, the Business Object Lookup dialog returns an
array of values, and a function loops through all the lookup
values and populates the table rows with the values.

[0086] The Application Designer supports Conditional
Sections, which provide the ability to conditionally hide or
show sections of the user interface. Each Conditional Sec-
tion can include multiple elements. A user of the Application
Player can insert or remove the components on a conditional
section when filling out a form, for example. Conditional
sections are hidden by default in the Form Player until an
associated condition becomes true. For example, a travel
request form could include a conditional Car Rental section
that is not shown by default. Users will see the Car Rental
section if they click on an associated button in the Form
Player user interface.

[0087] Applications created using the Application
Designer can invoke Web Services when executed in the
Application Player. In a typical Web services scenario, an
application sends a request to a service at a given URL using
the Simple Object Access Protocol (SOAP) over HTTP. The
service receives the request, processes it, and returns a
response.

[0088] The Application Designer provides a Web Services
Builder that can be used to select a Web Service for a button
or Link component. The Web Service may provide a value
for the component, or, vice versa, the component may
provide a value for the Web Service. The Web Services
Builder allows the user to select the web service to be
invoked for component. Specifically, the user can select a
web service vendor, an object, and a field. The user can also
specify the invocation type, which can be query, update,
insert, or delete. When the user selects a vendor, the Web
Services Builder displays a list of objects based on the
selected vendor. The user then selects an object, and the Web
Services Builder displays a table of fields. The user selects
a field and an operation to perform on the field. For example,
the vendor Siebel may have an object named Opportunity,
which has a number of fields, each of which corresponds to
a sales opportunity. The Web Services Builder is described
in more detail in application Ser. No. , filed one the
same date as the present application and incorporated herein
by reference.

[0089] FIG. 74 is an illustrative drawing of an application
displayed in an Application Player user interface according
to one embodiment of the invention. An Application Player
user interface, e.g. the Player UI 114 of FIG. 1a, presents the
application to a user and receives application data from the
user. FIG. 76 shows an example Radiology Order Request
application 721 displayed in an Application Player Ul 720.
The radiology order request application 721 includes an area
724, which contains data fields that allow a user to enter
application data. The input fields shown in FIG. 76 are a
Date field 725, a Patient Name field 726, and a Patient Phone
Number field 727. The application data values associated
with the Date and Patient Name fields are “08/11/2005” and
“Jane Doe”, respectively. Multiple different application data

US 2007/0079282 Al

sets, sometimes referred to herein as instances of application
data, may be associated with an application and stored using
distinct identifying numbers or names. For example, the data
values shown in FIG. 74, including “08/11/2005”, could be
saved as a first Radiology Order Request application data
set, and another set of data values, for example, “8/12/2005”
and “John Smith”, could be saved as a second Radiology
Order Request application data set.

[0090] FIG. 7f is an illustrative drawing of a Formula
Builder user interface according to one embodiment of the
invention. The Formula Builder 751 allows a user to define
component values in terms of a formula 752. The formula
752 is an expression that can include the values of other
components. The formula 752 is $cell.Qty*$cell.UnitPrice,
which sets the value of the component associated with the
formula to the product of a Qty and an ItemPrice, which are
values in of a ProductDetails component. A user can enter
the formula in a Formula Area 753. A data element list 754
shows a list of data elements. Each data element corresponds
to a data-holding component of the application. When a user
selects a data element from the list 754, e.g. by using a
mouse, the name of the selected data element will be
inserted into the formula. A formula can be based on the
value of any component, including components that are in
tables.

[0091] In one embodiment, an application also includes
the ability to route data, e.g., by sending a copy of the
application and associated data to another user. Routing may
be performed, by example, by sending a link to the appli-
cation in an email message. A routing is a specification of
how an application is to be routed, e.g. via email to a
particular email address. The radiology order request appli-
cation 721 has been routed to a recipient user via email. The
recipient user can approve the routing by selecting the
Approve Routing button 722, or reject the routing by select-
ing the Reject Routing button 723.

[0092] FIG. 7g is an illustrative drawing of an Application
List user interface according to one embodiment of the
invention. The Application List user interface 780 lists
applications, templates, and lookups that have previously
been created using the Application Designer. A user can
select an application displayed on the Application List 780
for modification in the Application Designer or execution in
the Application Player.

[0093] Each application has a name and a version number.
The name is a string, such as “Radiology Order Request”,
that identifies the application, and the version number is a
number that is incremented when an application is modified
in the Application Designer. Applications can be saved as
templates. An application can be in one of three modes:
design mode, test mode, or production mode.

[0094] FIG. 7# is an illustrative drawing of an Inbound
Link Builder user interface according to one embodiment of
the invention. A user can start the Inbound Link Builder 755
from the Designer Ul, e.g., by selecting a Create Inbound
Link option from an Application menu (not shown). A user
can use the Inbound Link Builder 755 to create an inbound
link 756, e.g. a URL, by specifying a link type 757 and an
application 758. An inbound link 756 is a web link, e.g., a
URL, which can be exported to an external document, e.g.
a web page, or an external application. Subsequently, select-
ing the inbound link from a web application can create a new

Exhibit 1006
Page 40 of 49

Apr. 5, 2007

application and open a Player Ul for the new application, or
can open an application list showing applications of a
specified type.

[0095] In particular, FIG. 7k shows three views of the
Inbound Link Builder 755, each with a selected link type
757. The user can set the link type 757 to one of the
following: Launch Application, In Progress, Completed,
Archives, or Drafts. If the user sets the Link Type 759 to
Launch Application, then the link will start an application in
the Player Ul, and the user can also specify an application
name 760 and controls to populate 761, and the link will
cause the specified application 760 to be started in a Player
Ul The Copy Control Name Code 762 displays a control
name code for an associated data element selected in the
control list 761. The user can copy the Control Name Code
762 to the link 756. Values such as the Control Name Code
762 are copied to the link as placeholders. Actual values will
be substituted for the placeholders by the Player UI when the
application is executed. The user can alternatively set the
Link Type 763 to In Progress, which means that the link will
open an application list showing all applications that are in
progress. Similarly, setting the Link Type 763 to Completed,
Archives, or Drafts, would configure the link to open an
application list showing applications that are completed,
archived, or drafts, respectively.

[0096] FIG. 7i is an illustrative drawing of an Outbound
Link Builder user interface according to one embodiment of
the invention. An outbound link, e.g. a URL, may be
associated with a Button or a Link component of the
application. An outbound link can open a web page specified
by a static URL, or can initiate execution of another appli-
cation. A user can use the Outbound Link Builder 765 to
create an outbound link, e.g. a URL. A user can start the
Outbound Link Builder 765 from the Designer U], e.g., by
clicking on a Link Builder button (not shown) that is present
on the Control Properties panel 710 of the Designer Ul 701
of FIG. 7a. The user can select either Static URL 766 or
Nsite to Nsite 768 to indicate whether the link is a static link,
e.g. to an arbitrary web page, or a link to another application.
If the user selects Static URL 766, then the user can provide
the link, e.g., as a URL, in the link box 767. If the user
selects Nsite to Nsite 768, then the user can select an
application to initiate 770. The user can define an input data
mapping for the application to initiate 770 by selecting
controls from a current application control list 768 and, for
each selected control, selecting a corresponding control of
the application to initiate from a control list 771 for the
application to initiate 770. Subsequently, when the link is
followed, e.g. when a user clicks on an associated Link
component in the Player Ul, the application to initiate 770
will be started, and the controls of the application to initiate
770 will be initialized with values from the controls of the
current application as defined by the input data mapping. For
example, if TextControlNamel is selected from the current
application control list 768, and App2TextControl3 is
selected from the control list 771 for the application to
initiate, then the value of TextControlNamel would be
copied to App2TextControl3 when the link is followed in the
Player UL

[0097] FIG. 8is an illustrative drawing of client and server
components of an enterprise application design and deploy-
ment system according to one embodiment of the invention.
FIG. 8 is a more detailed view of the components illustrated

US 2007/0079282 Al

in FIG. 1a. Client computers 801 and 831 are running web
browsers 802 and 832, respectively. A web browser 802 is
shown running an Application Designer client 803. A user
interacts with the Application Designer client 803 to create
an application. In one embodiment, the Designer client 803
saves the application as an application definition 808, which
is a description of the application in a format such as XML.
A second web browser 832 is shown running an Application
Player client 833. A user interacts with the Application
Player client 833 to provide data to an application and view
data associated with the application. The Player client 833
allows users to load and execute application definitions and
save and load application data. Note that the arrangement of
the two clients on two different computers as shown is one
of many possible arrangements. The Player client can, for
example, alternatively be run on the same client computer
801 in the same web browser 802 as the Designer client. The
web browser, e.g., Microsoft Internet Explorer™, Mozilla
Firefox™, or the like, is able to load and display a web page
specified by a Uniform Resource Locator (URL) from a
server 850 running on a server computer (not shown) via a
computer network 809. The web browser allows the clients
803 and 833 to run on client computers 801 and 831 without
being installed directly on the client computers 801 and 831.
The web browser downloads the clients 803 and 833 from
the server 850 via the computer network 809, presents user
interface portions of the clients to a user, executes any code
associated with the clients, e.g. JavaScript code, allows the
user to interact with the client user interfaces, and sends any
results of the user interaction to the server. The web browser
also includes an AJAX Engine 830, which is a software
library that is loaded into the web browser from the server
850. The AJAX Engine improves the user experience by
maintaining information so that the client need not send a
request to the server in certain situations, so that there is no
delay between a user’s action and the client’s response in
these situations. The AJAX Engine 830 also provides ser-
vices used by the clients 803 and 833.

[0098] The Designer client 803 includes client compo-
nents 807, and the Player Client 833 includes client com-
ponents 837. The client components include JavaScript
Definition object that implement a hierarchy of forms, areas,
components, tables, properties, behaviors, methods,
requests, responses, and parameters.

[0099] The Designer Ul 805 and Player UI 835 are pre-
sented to a user as web pages. The web pages are provided
by the server 850 to the web browsers 802 and 832 via the
network 809 when a user enters a corresponding URL into
the web browser. On the server, these web pages are App
Designer JSP 852 and App Player JSP 860, for the designer
and player, respectively. The web browser presents clients
803 and 833 to the user by displaying web pages generated
by the App Designer JSP 852 and App Player JSP 860,
respectively. These generated web pages include JavaScript
code that uses JavaScript Client Components 807 and 837 to
implement the Designer and Player user interfaces.

[0100] The App Designer JSP 852 is a page controller JSP
that implements several action commands, including get-
Definition, saveDefinition, saveDefinitionAsTemplate, cre-
ateNew Version, and lockdefinition, as described in the table
below. These operations are invoked in response to corre-
sponding user requests from the Designer UI 805 and Player
UI 835.

Exhibit 1006
Page 41 of 49

Apr. 5, 2007

COMMAND DESCRIPTION

getDefinition
saveDefinition

Returns a Definition Javascript object.

Saves a Definition to the database and
unlocks the Definition for edits by

other users.

Saves a Definition to the database and marks
it as a template.

Creates a new version of a Definition.
Marks a Definition as locked before a user
edits the Definition.

saveDefinition AsTemplate

createNew Version
lockDefinition

[0101] The application server 850 may be JBoss™ from
JBoss Inc. of Atlanta, Ga., or the like, and may include a
container framework, e.g. the Spring Application Frame-
work from Interface21 of London, United Kingdom, or the
like, and provides services for executing the App Designer
JSP 852 and the App Player JSP 860. These services may
include a web server, HTTP network communication, fault
tolerance, load balancing, application management, transac-
tion management, dependency injection, and international-
ization. The database 870 may be a relational database, e.g.
Oracle™ or the like, and runs on a database server computer
(not shown).

[0102] The application server 850 may be run by a service
provider to provide the App Designer and App Player as
hosted applications.

[0103] The application server 850 also includes a Defini-
tionFactory 854 a FormFactory 862 and a BusinessFactory
858. The DefinitionFactory 854 is a Java object that uses an
object-relational mapping tool to create ProcessDefinition
objects that correspond to rows in a process_definition
database table. A ProcessDefiniton object contains an appli-
cation definition in the form of an XML document. The
DefinitionFactory 854 can generate a new empty application
definition, or can load an existing application definition from
the database 870, in which case the application is retrieved
from the database 870 using an application identifier as a
key. The application definition is used to render user inter-
face portions of the App Designer JSP 852 and FormPlayer
JSP 860. The ProcessService 856 provides an object-rela-
tional mapping for saving and loading the application defi-
nition and application data o and from the database 535.

[0104] The FormFactory 862 uses an XML application
definition to render an HTML representation of the appli-
cation, which may include application data retrieved from
the database 870 if application data has previously been
saved. The HTML representation is sent to a browser 832
running a Player Client 833 by the FormPlayer JSP 860. The
FormPlayer JSP 860 uses a FormProcessor 864 to process
incoming requests, e.g. HTTP messages, received from the
Player Client 833 by extracting applicaton data, e.g. in the
form of HTTP parameters, from the request and passing the
application data to a BusinessFactory 858 for storage in the
database 870. The ProcessService 856 uses an object-rela-
tional mapping tool, e.g. Hibernate from JBoss Inc., to
convert the application definition from the server program-
ming language, e.g. Java, to and from a relational table
format such as that shown in FIG. 6c¢ for persistent storage
in the database 870. In particular, the application definition
is represented in Java as a ProcessDefinition object, which

US 2007/0079282 Al

is stored in a process_definition table, and the application
data is represented in the Java programming language as
ProcessMaster, ProcessDetail, ProcessAttchment, and Pro-
cessExtension Java objects, which are stored in a corre-
sponding process_master table and related process_detail,
process_attachment, and process_extension tables, respec-
tively. These tables are described below with respect to
FIGS. 13 and 14.

[0105] With reference to FIG. 1a, after a user 100 has
provided an Application Definition 104, e.g., a definition of
an application for collecting data or executing a transaction,
to Player UI 102, the user 100 may invoke a save command
in the Designer Ul 102 to cause the Application Definition
104 to be saved to persistent storage such as a database 110.

[0106] FIG.9 is a flowchart illustrating a method of saving
a specified application definition to persistent storage, e.g. to
a database, according to one embodiment of the invention.
This method saves an application to a database by creating
an XML application definition from user interface compo-
nents created by a user in the Designer UI 102 of FIG. 1a and
sending the application definition to the Server 106 of FIG.
1a. This method is executed by a web browser running the
Designer Ul when a user requests that an application be
saved, e.g. by clicking a save button in the Designer Ul. The
method begins at block 914, in which the App Designer Ul
presents the user interface. Next, block 918 checks whether
a new application is being created or an existing application
is being modified. If a new application is being created, an
empty Definition JavaScript object is created at block 916.
If an existing application is being modified, the existing
application is loaded at block 920 into a Definition object. In
either case, the method now waits for the user to add
components to the form. When a new component such as a
text field is added, the Definition is updated to include the
new component, e.g. a JavaScript object representing the
text field is added to the Definition. A loop starting at block
922 waits for a user action, such as the addition of a
component to an area, or a mouse click on a control button
such as a save button. After such a user action is received,
block 924 determines if a component has been added to an
area by the user, in which case the component is added to the
Definition at block 926, and the loop returns to block 922 to
wait for another user action. If block 924 instead determines
that the user has not added a component, then block 928
determines if the user has clicked save. If the user did click
save, then block 930 transforms the Definition into an XML
document according to the XML schema, and block 932
sends the XML document to the App Designer JSP via HTTP
for storage in database tables. The App Designer JSP
receives the XML document, creates a ProcessDefinition
object containing the XML document, and passes the Pro-
cessDefinition object to the ProcessService, which stores the
XML document in the process_xml column of the process-
_definition table. Note that although only two types of user
actions are shown in FIG. 9, adding a component and
clicking save, the application designer includes support for
additional user actions that are not shown in FIG. 9, such as
deleting, moving, or editing a component, loading a form,
and so on. When the method of FIG. 9 is complete, the
specified application has been saved to persistent storage as
an XML document.

[0107] With reference to FIG. 1a, a user 100 of the
Designer Ul may invoke a command to load a previously-

Exhibit 1006
Page 42 of 49

Apr. 5, 2007

saved application definition from the database 110 into the
Designer Ul. After the application definition has been
loaded, the Designer Ul can be used to modify the applica-
tion and subsequently save any changes. When the modified
application is saved, it will be saved with an associated
version identifier that uniquely identifies the application.
The previous version of the application definition will not be
deleted. Any references to the previous application defini-
tion, e.g. a reference in an email message that includes the
application as an attachment, will include the version num-
ber of the previous application definition, and will continue
use the previous application definition.

[0108] A user 118 of the Player Ul 114 may invoke a
command to load a previously-saved application, including
application data, such as data concerting a particular person
or transaction, data from the database 110 into the Player Ul
114. After the Application Data 120 has been loaded, the
Player Ul 114 can be used to modify the Application Data
120 and save the modifications by invoking the save com-
mand as described above with reference to FIG. 9.

[0109] FIG. 10a is a flowchart illustrating a method of
loading an application according to one embodiment of the
invention. This method loads a specified application defini-
tion and a specified instance of application data, if such an
instance exists, into the Application Player. This method is
executed on an application server by the App Player JSP
page. The method produces a web page that includes HTML
and JavaScript elements. The web page can be displayed in
a web browser to provide the Application Player UIl. The
method of FIG. 10 is executed, for example, when a user
selects a specific application and application data instance to
execute in the Application Player. The method is described
in terms of objects, such as a DefinitionFactory that pro-
duces a ProcessDefinition, which represents an application.
These objects are instances of corresponding classes that
include code and data. The method and its associated objects
may be implemented in an object-oriented programming
language, e.g., Java™, C++, C#™, or the like. The method
starts at block 1014 by retrieving an XML application
definition for a specific application. The XM application
definition is represented as a ProcessDefinition Java object,
which is retrieved from a DefinitionFactory. The Definition-
Factory retrieves the ProcessDefinition from a database via
a ProcessService (not shown). The ProcessService reads the
data values necessary to construct the ProcessDefinition,
including the XML document describing the application,
from the database. At block 1020, a ProcessMaster object
containing a previously-saved application data instance is
loaded from the database via the ProcessService. If no
application data instance has previously been saved, block
1020 has no effect. Application data may have been previ-
ously-saved by, for example, a previous execution of the
Application Player in which the user saved the application
data. Block 1022 calls a GetValues subroutine to load the
application data from the process_master table into a Busi-
nessObjectValue object. Block 1038 calls a RenderHTML
subroutine to create an HTML web page that includes any
loaded application data and can be used by a web browser
to provide the App Player Ul. Finally, block 1040 returns the
HTML web page as a result, e.g. by sending the HTML to
a browser as an HTTP response. The HTML web page then
be displayed in a browser by the application player.

US 2007/0079282 Al

[0110] The GetValues and RenderHTML subroutines both
traverse the XML application description. These subroutines
process an XML application definition data structure.

[0111] To load application data from the Database 110 of
FIG. 1a, the GetValues subroutine traverses the XML appli-
cation definition to create a BusinessObjectValue object that
contains the application data values retrieved from the
database for a particular instance. These data values are
loaded from a database row that corresponds to a specified
application data instance. The GetValues subroutine begins
at block 1026 by starting a loop to process each component
in the XML application definition. The components are
processed using a traversal that visits each component in the
tree formed by the XML nodes. For each component, the
subroutine gets the associated data value from the process-
_master table and stores the data value in the BusinessOb-
jectValue. Specifically, for each component, block 1028
composes a unique component name using the same con-
catenation method that is used when components are ini-
tially added to the application by a user, as described above
with reference to FIGS. 24 and 25.

[0112] Block 1030 uses the unique component name to
look up dataset table and column names in the XML
application definition. The dataset table and column names
identify the database column in which the data value for the
component is stored. At block 1032, the component’s data
value is retrieved from the database by requesting the value
of the database column from the process_master table. At
block 1034, the component’s data value is stored in the
BusinessObjectValue as a name-value pair, with the unique
component name as the name portion of the pair, and the
component’s data value as the value portion of the pair.
Finally, block 1036 checks if there are more components in
the XML document to process. If so, the loop repeats for the
next component.

[0113] The RenderHTML subroutine illustrated in FIG.
105 traverses an XML application definition to generate an
HTML document according to one embodiment of the
invention. The App Player client displays the HTML docu-
ment to provide the App Player Ul. The RenderHTML
subroutine begins at block 1052 by starting a loop to process
each component in the XML application definition. The
components are processed by the recursive-bypass method
described for the GetValues subroutine above. For each
component, the RenderHTML subroutine generates a cor-
responding HTML element, gets an associated data value
from the BusinessObjectValue, and sets the value of the
HTML element to the associated data value. Specifically, for
each component, block 1054 composes a unique component
name and HTML ID by concatenating parent component
names, such as an Area name, with the component name and
a numeric counter value, as described for the GetValues
subroutine above. The unique HTML name and ID are
embedded in the HTML produced by the RenderHTML
subroutine. The unique HTML name is used for request
processing when application data to be saved is received
from a browser, and the HTML ID is used in the JavaScript
code. At block 1056, an HTML element is generated for the
application component. An Area XML component can be
rendered into a <TABLE> or <DIV> HMTL element. A
CheckBox XML component is converted to an EDITBOX of
type CHECKBOX in HTML. The XML attributes, e.g.
DATASET, of a component are copied to HTML element

Exhibit 1006
Page 43 of 49

Apr. 5, 2007

generated for that component. At block 1058, the compo-
nent’s data value is retrieved from the application data, and
at block 1060 the data value is added to the HTML element.
If there is no data value associated with the component, e.g.
because no data has been saved, then blocks 1058 and 1060
do nothing. Finally, block 1060 checks if there are more
components to process. If so, the loop repeats. Otherwise,
the subroutine returns the generated HTML elements as a
result value and ends.

[0114] With reference to FIG. 1a, after a user 118 has
provided Application Data 120, e.g. data concerning a
particular person or transaction, to Player Ul 114, the user
118 may. invoke a save command in the Player Ul 114 to
cause the Application Data 120 to be saved to persistent
storage such as a database 110.

[0115] FIG. 11 is a flowchart illustrating a method of
saving application data according to one embodiment of the
invention. This method is invoked by the Player JSP server
page when a user invokes a save command in the Player Ul
The data values are submitted by the Player Ul as HTTP
parameters in an HTTP response message sent from a
browser. The method saves the data values to a database.
Specifically, the method begins when an HTTP response
message containing application data is received from an
Application Player client. At block 1118, a FormProcessor
object decodes the HTTP-format parameters from the HT'TP
response message. At block 1120, the FormProcessor creates
a BusinessFactory object. At blocks 1124-1134, the Busi-
nessFactory traverses the XML application definition, which
is available in the Player UI’s memory. The traversal begins
at block 1124, which starts a loop iteration for each com-
ponent in the XML application definition. The components
are processed by the recursive bypass method described for
the GetValues subroutine above. For each component, the
method writes the corresponding value from the HTTP
response to the database. Specifically, for each component,
block 1126 composes a unique component name by concat-
enating parent component names, such as an Area name,
with the component name and a numeric counter value, as
described for the GetValues subroutine above. At block
1128, the unique component name is used as a lookup key
to retrieve from the HTTP response a parameter that has a
name equal to the component name. The retrieved parameter
is the application data value for the component. The value is
then stored in the database by looking up the database table
and column names at block 1130 and setting a property of
the ProcessMaster, ProcessDetail or ProcessExtension
object, for which the property’s name is equal to the column
name, to the retrieved parameter.

[0116] FIG. 12a s an illustrative drawing of an application
1201 including a mode 1202 and a version number 1202
according to one embodiment of the invention. The appli-
cation 1201 also includes an application definition 1203 and
a set of application values 1204. These values may be
included in a data structure that represents the application, or
may be referred to by reference from such a data structure.
Once an application has been defined, it can be used as part
of a complex process, e.g. a procurement process that
involves multiple steps. An application can also be routed to
one or more users, e.g. via email, and the users must access
the application in sequence. In both cases, users run the
application in the Player UI and provide input data. Since an
application’s definition may be loaded multiple times in

US 2007/0079282 Al

these processes or routings, it is important that application
definitions not be modified, e.g. by the Designer Ul, while
such processes or routings are in progress. To prevent
applications from being modified while processes or rout-
ings are in progress, the application mode 1202 is associated
with each application, and the actions that a user may
perform on an application are restricted based on the mode.
The mode has one of the following values: Test, Active, or
Inactive.

[0117] Furthermore, when an application is modified by
the Designer Ul, it is possible that the modification will
remove or change components of the application. Any
processes or routings that use the application and are in
progress at the time of modification will become invalid if
the application is saved with modifications to a component
used by those in-progress processes or routings. To allow
users to continue to modify applications in the Designer Ul
while processes or routings are in progress, the version
number 1203 is associated with each application, and the
version number is incremented every time the application is
placed in active mode as described below.

[0118] FIG. 125 is an illustrative drawing of application
mode transitions according to one embedment of the inven-
tion. FIG. 1256 shows three states that correspond to the three
modes: a Test Mode 1210, in which the application can be
modified by the Designer UI, an Active mode 1220, in which
the application can be executed by the Player Ul, and an
Inactive mode 1230, in which the application can be neither
modified nor executed. The mode of an application is
displayed in a browser, e.g. as part of an Application List
user interface as shown in FIG. 7g, in which the Test mode
is shown in a Mode column 781 as PROD, and the Active
mode is shown as PROD. As shown in FIG. 125, only certain
actions can be taken in each mode. In Test Mode 1210, it is
possible to perform a Copy action 1211, an Edit action 1212,
which opens a Designer Ul, a Delete action 1213, and a
Deploy action 1214. In Active Mode 1220, it is possible to
perform an Initiate Process or Routing action 1221, a Copy
action 1222, or a Deactive action 1223. In Inactive Mode
1230, it is possible to perform an Active action 1231.

[0119] The effects of each action will now be described.
With reference to the Application List of FIG. 7¢, a user can
change the mode to one of the allowed modes by clicking a
link in an Actions column 782 to perform an action such as
Copy, Edit, Deploy, Undeploy, Initiate, or Delete. As shown
in FIG. 124, the Copy action 1211 creates a new application,
which is a copy of an original application, except the new
application is in Test Mode 1210. The Edit action 1212
opens a Designer Ul for the application, and does not change
the application’s mode. In Test Mode 1210, the Deploy
action 1214 changes the mode to Active and increments the
version number. In Active Mode 1220, the Initiate Process or
Routing Action 1221 initiates execution of a process or
routing, which causes the application to be sent or displayed
to a user in a Player Ul The Copy action 1222 changes the
mode to Test Mode and creates a copy of the application.
The copy can be modified by the Designer U, but the
application in active mode cannot be modified. The Unde-
ploy action 1223 changes the mode to Inactive. The mode
can be returned to Active by the Deploy action 1231, which
increments the version number and sets the mode to active.

Exhibit 1006
Page 44 of 49

Apr. 5, 2007

[0120] The allowed actions for an application for display
in the Actions column 782 can be determined from the
application’s current mode as illustrated by the following
pseudocode.

GetAllowedActions:
If mode == Test then
Allowed actions = (Copy, Edit, Delete, Deploy)
Else if mode == Active then
Allowed actions = (Initiate, Undeploy)
Else if (mode == Inactive) then
Allowed actions = Deploy
End if
End of GetAllowedActions

[0121] When an action is selected, the mode and version
number are incremented as shown by the following
pseudocode:

HandleAction:
If mode == Test Mode then
If action == Deploy then
mode = Active
version = version + 1
Else if mode == Active then
If action == Initiate then
Initiate process or routing
Else if Action = Copy then
mode = Test
Else if Action = Undeploy then
mode = Inactive
End if
Else if mode == Inactive then
If Action = Actiate then
mode = Active
version= version + 1
End if
End if
End of HandleAction

[0122] Components can never be removed from an appli-
cation, so backward compatibility is assured. Processes or
routings that are executing with a version will always have
access to all components of that version. There is no need to
merge different versions together or lock an application
definition to prevent modifications. An application definition
can always be modified by creating a copy with a new
version number. When a new version is created, all subse-
quent processes and routings will use the new version.
Components can be hidden in the user interface by setting
their hidden property to true, so that users will not see or
interact with the components in future versions, but the
components will be available for existing processes or
routings that use those components. Multiple versions of an
application can be active at any given time.

[0123] FIG. 13 is an illustrative drawing of a database
table schema for storing an application definition according
to one embedment of the invention. The tables of FIG. 14
together correspond to the application data table 124 stored
in the database 110 of FIG. 1a. A process_definition schema
1301 describes the content of data in the application defi-
nition table 112 stored in the database 110 of FIG. 1a. The
database 110 may be, for example, a relational database
storing data records as rows in a table, where individual

US 2007/0079282 Al

items in a data record are accessible as columns of a row.
The process_definition schema 1301 includes a primary key
column 1302 (named pk_process_definition_id), which has
a unique value for each row of data in the process_definition
table 1301. The process_definition schema 1301 also
includes a process_xml column 1303, which stores an appli-
cation definition as an XML string, a version column 1304,
which stores the application version number, and a mode
1305, which stores the application mode.

[0124] FIG. 14 is an illustrative drawing of database table
schemas for storing application data according to one
embedment of the invention. The tables of FIG. 14 together
correspond to the application data table 124 stored in the
database 110 of FIG. 1a. A process_master table 1401 stores
application data associated with application components and
table footer rows, a process_attachment table 1410 stores
attachment data associated with application components,
and a process_detail table 1420 stores application data
associated with table rows of table components of an appli-
cation. The process_master table 1401 includes a primary
key value, which uniquely identifies each row in the table.
Each row in the table corresponds to a single set of data
values for an application. The mapping between the appli-
cation components and the tables of FIG. 14 is specified by
the application definition 108 of FIG. 1a. For example, if an
application has a single text box component that has a string
value, then that text box component will be automatically
associated with an sc1 field 1404 of the process_master table
1401, and the string value will be stored in the sc11404 field.
If the application has two text boxes, the first text box will
be associated with the sc11404 field, and the second text box
will be associated with an sc2 field 1406. A third text box
would be associated with an sc3 field 1407. Values of other
types are stored similarly, but in columns with different
names. For example, a numeric values for the first numeric
text boxes added to an application would be stored in the ncl
field 1405. Although only three fields of each type are shown
in FIG. 14, e.g. sc11404, sc21406, and sc31407, any number
of fields could be included in the schema, e.g. 15 fields,
named scl through scl5, to support 15 compnents with
string values, and ncl-ncl5 to support 15 fields with
numeric values. In general, the tables of FIG. 14 include a
set of fields for each type of data, including string, numeric,
single character, and datetime. The Designer UI 102 of FIG.
1a, the App Designer JSP 852, and the App Player JSP 860
of FIG. 8 all use the a predefined convention for mapping
components to database columns. The convention is that the
components in an application definition are assigned to
database fields of corresponding type in the database schema
(e.g. a text box is assigned to a string field such as scl, and
a date field is assigned to a datetime field such as dtc1 of the
process_master table 1401), and the components are
assigned to database fields in the order that they appear in
the application definition, e.g. the order that the XML
elements representing the components occur in the applica-
tion definition, where the database fields are ordered by the
numbers appended to their names. A process_extension table
1430 stores application data for components that exceed the
maximum number of components of a typeor table footer
rows that can be represented in the process_master 1401
(e.g. a maximum of three string components, scl, sc2, and
sc3, can be stored in process_master table 1401), proces-
s_attachment 1410, or process_detail 1420 tables.

Exhibit 1006
Page 45 of 49

Apr. 5, 2007

[0125] With reference to FIG. 15, association of the data
value 142 with a particular column of the database 144 and
with the script 143 is established by the Designer Ul based
on minimal input from a user. When a user adds a compo-
nent to an application using the Designer Ul, the data type
of'the component’s value is determined automatically based
on the component. The database table in which the compo-
nent’s value is to be stored is also determined automatically
by the Designer Ul. For example, if a user adds a date
component to an application, the Designer UI determines the
database column to be associated with the date component.
Referring to FIG. 14, that database column is the next
available date column in the process_master table 1401. If
the process_master table 1401 is full, e.g. the dtc1-dtc3
columns have been already been assigned to three previ-
ously-added date components, the Designer Ul associates
the date component with a column of the process_extension
table 1430, e.g. dtcl in the process_extension table 1430. If
a user adds a date component to a table area, the Designer
UI associates the date component with a corresponding
column of the process_detail table 1420, based on the
component type. A user can change the data type of a
component. Furthermore, a user can provide values for the
formatting, required, readonly, allowed characters, allowed
data format, and formula component properties in the
Designer Ul and the Designer Ul will generate the corre-
sponding code to handle validations, formatting, and calcu-
lations.

[0126] The process_master table 1401 is related to the
process_detail table 1420 by a process_master_id value,
which is stored in the fk_process_master_id field 1403 of the
process_master table 1401, and in the fk_process_master_id
field of the process_detail table 1420. The process_master
table 1401 and the process_extension table 1430 are simi-
larly related by a process_master_id value. This process-
_master_id relation allows additional rows to be used for
storing information about an application, e.g. additional
application data values, which may be stored in the proces-
s_extension table. In particular, if an application contains
more components than can be represented in the process-
_master table (more than 3 components of the same type, in
the example of FIG. 14), then the values for components
beyond the limit (e.g. beyond the third component) can be
stored in the process_extension table 1420 by inserting or
updating a row in the process_extension table with the same
process_master_id value as the row for the component in the
process_master table 1401. The values for components
beyond the limit can subsequently be retrieved from the
process_extension table by selecting a row that has the same
process_master_id value (stored in the fk_process_mas-
ter_id column of the process_extension table 1420) as the
corresponding row for the component in the process_master
table 1401.

[0127] The process_attachment table 1410 is related to the
process_master table 1401 by a process_master_id value,
which allows attachments to be stored in the process_at-
tachment table 1410 and retrieved by selecting a row from
the process_attachment table that has the same process_mas-
ter_id value as a corresponding row of the process mater
table 1401.

US 2007/0079282 Al

[0128] The process_detail table 1420 has a TYPE_ID
column 1421 and a PARENT_ID column 1422 for repre-
senting complex, hierarchical data relationships. A unique
TYPE_ID 1421 is associated with each table area. All data
rows of a table area will have the same value for the
TYPE_ID 1421. Different tables will have different values
for the TYPE_ID 1421. The TYPE_ID 1421 is used for
applications whose data relationships are of type Master-(n)
Detail, i.e. a single set of components with an associated
table of rows, such as most web applications of medium
complexity. Each data row in the process_detail table also
Parent_ID 1422, which is associated with each data row in
a table area. The Parent_ID 1422 is used for applications
whose data relationships are of type Master-(n) Detail-(n)
Detail, i.e., a single set of components with an associated
table of rows, which in turn has another table of rows.
Examples of the latter type of application include Bill of
Materials applications used in manufacturing and Enterprise
Resource Planning systems to represent hierarchical product
configurations.

[0129] Specific examples of how an application design
and deployment system is used will now be described. Each
example includes a set of steps to be performed by the user
and the system. The examples include creating an applica-
tion, saving an application, saving an application as a
template, editing an application in test mode, previewing an
application in design mode, initiating test routings in test
mode, editing saved routings in test mode, saving a new
application version in test mode, deploying an application to
production mode, deactivating an application from produc-
tion mode, copying an application from production mode to
test mode, and deleting an application in test mode. A
routing is, for example, a message that transmits an appli-
cation between users, such as an email message that contains
a URL link to an application.

[0130] Creating a new application involves the following
steps:

CREATE NEW APPLICATION

1. A user launches the Application Designer UL

2. The user drags and drops components, tables, and the like from the
palette to the workspace.

3. The user updates component properties, selects data types, adds
formulas, and the like.

4. The system stores the new application definition in the database,
updates the application mode to test, sets the version to 1, and
displays the Application List screen. An application name, either
provided by the user or generated by the system, is determined at
or before this step and associated with the application.

[0131] When these steps are complete, the new application
screen has been saved in test mode and is available for
initiating test routings and deployment to production. Cre-
ating a new application from a template involves the same
steps, except step 1 includes launching the Application
Designer Ul with a selected template Ul displayed in the
workspace.

Exhibit 1006
Page 46 of 49

Apr. 5, 2007

[0132] Editing an application in test mode involves the
following steps:

EDIT EXISTING APPLICATION

1. A user launches the Application Designer UI with a selected
application.

2. The system loads the selected application from the database
and displays the application in the Application Designer
UI workspace.

3. The system locks the application definition record in the
database and updates the lock columns with the user name
and current time.

4. The user drags and drops components, tables, and the like
from the palette to the workspace.

5. The user updates component properties, selects data types,
adds formulas, and the like.

6. The user clicks save.

7. The system updates the application definition in the database,
resets the lock flags, updates the application mode to test mode,
and displays the Application List screen.

[0133] When these steps are complete, the application
definition has been updated and saved in test mode. The
application definition is available for initiating test routings
and for deployment to production mode.

[0134] Initiating test routings in test mode involves the
following steps:

INITIATE TEST ROUTINGS

1. A user launches the Application Player Ul with a selected applica-
tion
Ul displayed in the browser.
2. The system displays a Test background image to visually differenti-
ate
test routings from production routings.

3. The user updates the user interface, adds data, adds rows to tables,
selects lookup data from lookup dialogs, adds attachments, and
clicks save.

4. The system stores the new application data in the database.

[0135] Editing saved routings in test mode involves the
same steps listed above for initiating test routings in test
mode, except that in step 2, the system also populates the
existing application data in the user interface.

[0136] Deploying an application to production mode
involves the following steps:

DEPLOY APPLICATION TO PRODUCTION MODE

1. A user clicks the Deploy link in the Application List screen. The
Deploy Link is only shown for applications that are in test mode.
2. The system displays a Deploy Applications dialog with the
selected application name, and sets the application’s effective
date to the current date.
3. The user clicks submit.
4. If an existing application has been deployed to production, one
of the following two actions can be taken:
a. Automatically deactivate the existing production application.
b. Display an alert dialog that notifies the user that the existing
application will be deactivated. The dialog can also indicate
the number of in-progress routings for this application. The
user can click OK or Cancel. Clicking

US 2007/0079282 Al

-continued

DEPLOY APPLICATION TO PRODUCTION MODE

Cancel will cancel the current operation. If the user clicks OK,
then the existing application is un-deployed, i.e. made inactive.
5. The system creates a new application record in the database,
copies the XML definition from the selected application, updates
the application mode to production, sets the version number of the
new application to 1 or updates the existing version number if the
application has been deployed previously.
6. Finally, the system displays the Application List screen with the
new application in production.

[0137] When these steps are complete, a new application
definition has been created with a new version number and
saved in production mode. The effective date of the appli-
cation is set to the current date or whatever date the user
specifies in the deployment dialog.

[0138] An application may be deactivated, for example,
when an application administrator wants to un-deploy a
production application to make modifications to the appli-
cation. Deactivating from production mode involves the
following steps:

DEACTIVATE FROM PRODUCTION

1. A user clicks the UnDeploy link in the Application List screen. The
UnDeploy Link is only shown for applications that are active and in
production mode. Only one version of an application can be active
and in production at any given point in time.

2. The system displays an UnDeploy Applications dialog with the

selected application name.

. The user clicks submit.

4. The system updates the record in the database by marking the
selected definition as inactive.

5. Finally, the system displays the Application List screen.

w

[0139] When these steps are complete, the selected pro-
duction application is inactivated.

[0140] Copying an application from production mode
involves the following steps:

COPY APPLICATION FROM PRODUCTION TO TEST MODE

1. A user clicks the Copy link in the Application List screen.

2. The system creates a new application record in the database,
copies the XML definition from the selected application,
updates the application mode to “test”, and sets the version
number of the new application to max(test_ version_ number) + 1.
The system also sets the “Copy from Production” flag to Y. When
this flag is set to Y, existing controls cannot be deleted from the
application; instead, they can be hidden from the UL

3. Finally, the system displays the Application List screen with
the new application in test.

[0141] When these steps are complete, a new application
definition has been created with a new version number and
saved in test mode.

Exhibit 1006
Page 47 of 49

Apr. 5, 2007

[0142] Copying from an application in test mode involves
the following steps:

COPY APPLICATION IN TEST MODE

1. A user clicks the Copy link in the Application List screen.
2. The system creates a new application record in the database,
copies the XML definition from the selected application,
updates the application mode to “test”, and sets the version
number of the new application to max(test_ version_ number) + 1.
. The user clicks the Edit link in the Application List screen.
4. The App Designer Ul is displayed with the selected application.
The user can add new controls, including fields, tables, and the
like, and can delete existing controls and tables from the UL

w

[0143] When these steps are complete, a new application
definition has been created with a new version number and
saved in test mode.

[0144] Deleting an application in test mode is accom-
plished by setting a delete indicator for the application’s
definition in the database and hiding the definition from the
UL All test routings based on the definition will still work
with the existing definition.

[0145] Initiating routings in production is accomplished
by initializing the Player Ul with the latest application
version in production that is marked as active. Previous
versions of the application are only used for in-progress
routings.

[0146] The Application Designer and Player meet the need
for an easy-to-use tool for developing Web-based data
processing applications that allow for data input, validation,
processing, and linkage with Web services, and enable the
creation of applications by the non-technical user commu-
nity. Since the Designer and Player are Web-based, they can
be used by any user who is familiar with a web browser. The
Designer’s user interface allows a user to create Web-based
applications that include forms for accepting data input. A
web application’s user interface can be defined in terms of
a user interface and data values. Linkage between the data
values, a database, and scripts are determined by the
Designer based on minimal input from a user.

[0147] The Designer’s action builder adds processing in
scripting language, the link builder adds input and output of
data from and to external sources, and the Web Services
builder adds interaction with Web Services. The combina-
tion of these features provides a comprehensive, easy-to-use,
application development tool.

[0148] The above description is exemplary only and it will
be apparent to those of ordinary skill in the art that numerous
modifications and variations are possible. For example,
various exemplary methods and systems described herein
may be used alone or in combination with various other
computer and computer peripheral systems and methods.
Additionally, particular examples have been discussed and
how these examples are thought to address certain disad-
vantages in related art. This discussion is not meant, how-
ever, to restrict the various examples to methods and/or
systems that actually address or solve the disadvantages.

US 2007/0079282 Al

1. A computer enabled method of creating a software
application, comprising the acts of:

providing a user interface for designing the software
application on a web browser;

defining aspects of the application via the web browser
using the user interface; and

transmitting the defined aspects to a server over a com-
puter network thereby to create a web-based software
application.

2. The method of claim 1, further comprising the acts of:

providing a plurality of components on the web browser;
and

implementing some of the aspects of the application using
the components.
3. The method of claim 1, further comprising the acts of:

providing a library on the browser; and

using the library as an intermediary between the defined
aspects at the browser and the server.
4. The method of claim 1, wherein the computer network
includes the Internet.
5. The method of claim 1, further comprising, at the
server, the acts of:

rendering a representation of the application from the
transmitted defined aspects;

retrieving data associated with the application from a
storage; and

transmitting the representation and retrieved data to a
client.
6. The method of claim 5, further comprising, at the
server, the acts of:

tracking a plurality of versions of the software applica-
tion;

maintaining each version as compatible with prior ver-
sions of the software application; and

allowing a plurality of the versions to be active at the
same time.
7. The method of claim 5, further comprising, at the client,
the act of:

executing the representation and data on a web browser.
8. The method of claim 7, further comprising the acts of:

providing a library on the web browser of the client; and

using the library as an intermediary between the web
browser of the client and the server.
9. A computer enabled method of providing a software
application, comprising the acts of:

receiving at a server over a computer network from a first
client web browser a software application including
defined aspects of the application;

rendering a representation of the application from the
received defined aspects;

retrieving data associated with the application from a
storage; and

transmitting the representation and retrieved data to a
second client.

Exhibit 1006
Page 48 of 49

Apr. 5, 2007

10. The method of claim 9, further comprising the acts of:

providing a user interface on the web browser at the first
client for designing the software application;

defining the aspects of the application using the user
interface; and

transmitting the defined aspects to the server over the
computer network.
11. The method of claim 9, further comprising the acts of:

tracking a plurality of versions of the software applica-
tion;

maintaining each version as compatible with prior ver-
sions of the software application; and

allowing a plurality of the versions to be active at the
same time.
12. The method of claim 9, wherein the computer network
includes the Internet.
13. The method of claim 10, further comprising, at the
second client, the acts of:

providing a web browser; and

providing a user interface to a user on the web browser
from the received representation and data.
14. The method of claim 13, further comprising, at the
second client, the acts of:

providing a library on the browser; and

using the library as an intermediary between the browser
and the server.
15. A computer enabled method of providing a software
application, comprising the acts of:

receiving over a computer network aspects of an appli-
cation from a server;

executing the application on a web browser;
providing a user interface; and

allowing use of the application via the user interface.
16. A client to be executed on a computer, comprising:

a user interface adapted for designing a software appli-
cation on a web browser; and

an application definition module which defines aspects of
the software application via the web browser using the
user interface;

wherein the web browser transmits the defined aspects to
a server over a computer network thereby to create the
software application.
17. The client of claim 16, wherein a plurality of com-
ponents are on the web browser; and

some of the aspects of the application are implemented
using the components.
18. The client of claim 16, further comprising

a library on the browser, wherein

the library being used as an intermediary between the
defined aspects at the browser and the server.
19. The client of claim 16, wherein the computer network
includes the Internet.

US 2007/0079282 Al

20. An application server to be executed on a computer,
comprising:

an application definition module for receiving over a
computer network from a first client web browser a
software application including defined aspects of the
application and rendering a representation of the appli-
cation from the received defined aspects;

a service for retrieving data associated with the applica-
tion from a storage; and

an application player module for transmitting the repre-
sentation and retrieved data to a second client.
21. The server of claim 20, further comprising:

a version control for tracking a plurality of versions of the
software application, maintaining each version as com-
patible with prior versions of the software application,
and allowing a plurality of the versions to be active at
the same time.

22. A player client to be executed on a computer, com-

prising:

a definition module for receiving over a computer net-
work aspects of an application from a server;

a data module for receiving over the computer network
from the server data relating to the application; and

a user interface for executing the application on a web

browser.

23. The client of claim 22, further comprising using a
library on the browser as an intermediary between defined
aspects of the application and the server.

24. A method of running an application program in a web
browser, comprising the acts of:

providing at least one client computer and one server
computer in communication with the network,

executing a web browser on the client computer;

executing a client portion of the application program on
the web browser, wherein the client portion presents a
runtime user interface according to an application defi-
nition, the application definition includes a component
described by a component definition, the component
includes a name and a data value, and the client portion
receives the data value from a user; and

executing a server portion of the application program on
the server computer, wherein the server portion
receives the data value from the client portion and
stores the data value in a database, as specified by the
application definition.

25. The method of claim 24, wherein the component
further includes a link, the link refers to a web service, and
the client program receives the data value from the web
service in response to a user action.

26. The method of claim 24, wherein the component
further includes a script operable to execute in response to

Exhibit 1006
Page 49 of 49

21

Apr. 5, 2007

an application event, the script further operable to perform
calculations based on a data value associated with another
component.

27. The method of claim 24, wherein the component
further includes a script operable to execute in response to
an application event, the script further operable to set a data
value associated with another component.

28. The method of claim 24, wherein the component is
associated with a row of a table component.

29. A method of designing an application program in a
web browser, comprising the acts of:

providing at least one client computer and one server
computer in communication with the network,

executing a web browser on the client computer;

executing a designer program on the web browser,
wherein the designer program presents a user interface
that includes a workspace upon which a user can place
an interface component at a specified location, the
interface component being associated with a compo-
nent data value, and the designer program creates an
application definition, the application definition
describing properties of the interface component, the
application definition including an association between
the component data value and a corresponding column
of a table in a database.

30. The method of claim 29, wherein the component is
associated with a link, the designer program receives from
a user a Uniform Resource Locator associated with the link
and the program adds the link to the application definition in
association with the interface component.

31. The method of claim 29, wherein the component is
associated with a computer program code script, the
designer program receives from a user the computer pro-
gram code script, the computer program code script is
operable to perform calculations based on the value of
another component, and the designer program adds the
computer program code script to the application definition in
association with the interface component.

32. The method of claim 29, wherein the computer
program code script is operable to set the value of another
component.

33. The method of claim 29, wherein the user can further
place a table component upon the workspace, the table
component comprising:

a table header row, comprising at least one column

definition; and

a table detail row, comprising at least one column corre-
sponding to the at least one column definition, wherein
the at least one column is associated with at least one
detail component having a detail data value; wherein

the application definition describes the table component
and an association between the at least one detail data
value and a corresponding detail column in a database.

#* #* #* #* #*

