
11111111111111011111101011111111)111,110111111111171I1111111111111111111111111110111111
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0200749 Al

Shenfield (43) Pub. Date: Sep. 7, 2006

(54) SYSTEM AND METHOD FOR CONVERSION
OF GENERIC SERVICES' APPLICATIONS
INTO COMPONENT BASED APPLICATIONS
FOR DEVICES

(76) Inventor: Michael Shenfield, Milton (CA)

Correspondence Address:
Gowling Lafleur Henderson LLP
Suite 4900
Commerce Court West
Toronto, ON M5L 1J3 (CA)

(21) Appl. No.:

(22) Filed:

11/069,971

Mar. 3, 2005

Publication Classification

(51) Int. Cl.
G06F 17/00 (2006.01)
G06F 15/00 (2006.01)

(52) U.S. Cl. 715/501.1

(57) ABSTRACT

A system and method for converting a page-based applica-
tion to a component based application configured for execu-

select
application

assemble
metadata 706

704

store
definitions

716

optimize
components

718

tion on a device, the device configured for communication
over a network with a schema-defined service of a data
source, the page-based application expressed as a series of
presentation pages having embedded data and messaging
elements for interaction with a user interface. The system
and method comprise an analyzer module for assembling a
set of page metadata representing at least a portion of a
selected page from the series of pages of the page-based
application, the page metadata expressed in a first structured
definition language. Also included is a data conversion
module for converting the embedded data elements into a
data component, the data component containing data
descriptors expressed in a selected structured definition
language of the component based application. Also included
is a message conversion module for converting the embed-
ded messaging elements into a message component, the
message component containing message descriptors
expressed in the selected structured definition language of
the component based application, the message component
operatively coupled to the data component. Also included is
a dependency module for generating a dependency link
associated with an event corresponding to the embedded
elements, the dependency link for describing a workflow of
the components in respect to operation of the component
based application when executed on a user interface of the
device.

scale page
metadata 708

create links

714

generate

workflow 720

702

translate
metadata 710

V

generate
Components

712

request
application

726

I

assemble
components

722

send
application

724

Exhibit 1007
Page 01 of 27

phan_b
Text Box
Adobe Inc. v.
Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1007

Patent Application Publication Sep. 7, 2006 Sheet 1 of 10

14

coraral process tr:11 13

126
/12

124

Admin User

16

e011V

HTML Convener

JSP Convener

ASP Converter

Page Analyzer
110

retneve

Wcb Sever

106

128

Trrrrnrinn

Web Application Converter

retiese

store

XML Depot

Component Analyzer

US 2006/0200749 Al

100

ry

tie components

Workflow Builder

build application

Bastion Builder

120

download

105

107

122' Publish 105 deploy

114 C- 7 —)
Application 112

700 Repository

105

Figure 1

104

106

obil c Gatcvra

WAN

106

102

Exhibit 1007
Page 02 of 27

Patent Application Publication Sep. 7, 2006 Sheet 2 of 10 US 2006/0200749 Al

To wireless
network

102

200 -- Network
Connection

Interface

218

204

206

208

202 — User
Interface

/ 222

210

 vovv

212

device infrastructure
A

220

302

214

/16
304

component framework

300

Figure 2

Exhibit 1007
Page 03 of 27

Patent Application Publication Sep. 7, 2006 Sheet 3 of 10 US 2006/0200749 Al

204
----16

Device Infrastructure

300
1

application container

302
1

component
application

I

component framework

304
1

framework services

communication
service

screen service

persistence
service

access service

provisioning
service

utility service

306

308

310

312

314

316

i

Figure 3
206

Exhibit 1007
Page 04 of 27

Patent Application Publication Sep. 7, 2006 Sheet 4 of 10 US 2006/0200749 Al

302

Data

400

214

406 Workflow

404 AZ I ,k

Message
402

Presentation

206

Figure 4

Exhibit 1007
Page 05 of 27

Patent Application Publication Sep. 7, 2006 Sheet 5 of 10 US 2006/0200749 Al

02

Script
Interpreter

load

interpre

#3

302

Client Runtime
Environment

Script

#1

2

00

Metadata
402 404

Fill templates

406

#4

edirect

/04

Redirector

#5
/ 500 invoke

invoke

Native
Runtime
Engine

—506

Figure 4a

Exhibit 1007
Page 06 of 27

Patent Application Publication Sep. 7, 2006 Sheet 6 of 10 US 2006/0200749 Al

700

100

E
I I I

105

105

105

105

400

404
40

Int7M

403c

e

403

Metadata
Repository

sr

403b

Figure 4b

Exhibit 1007
Page 07 of 27

Patent Application Publication Sep. 7, 2006 Sheet 7 of 10 US 2006/0200749 Al

To
network

104

500 - 502 — Network User
Connection Interface

Interface
______Ik

518 --,,

504

508

It
/ 522

510

i_.21) ,.....„

512

device infrastructure

 520

tool runtime environment 506

14
1

Figure 5

Exhibit 1007
Page 08 of 27

Patent Application Publication Sep. 7, 2006 Sheet 8 of 10 US 2006/0200749 Al

/ tools 12

converter tool

126

600

602 604

10

component
storage

114
--►

606

workflow

tool 124

builder

tool

122

Figure 6

Exhibit 1007
Page 09 of 27

Patent Application Publication Sep. 7, 2006 Sheet 9 of 10 US 2006/0200749 Al

select
application

assemble
metadata 706

704

store
definitions

716

 0.1 scale page
metadata 708

V

optimize
components

718

create links
714

702

translate
metadata 710

generate
workflow 720

V

generate
Components

712

request
application

726

assemble
components

722

Figure 7

send
application

724

Exhibit 1007
Page 10 of 27

Patent Application Publication Sep. 7, 2006 Sheet 10 of 10 US 2006/0200749 Al

202

802

804

800

800

800

Figure 8

210

Exhibit 1007
Page 11 of 27

US 2006/0200749 Al Sep. 7, 2006
1

SYSTEM AND METHOD FOR CONVERSION OF
GENERIC SERVICES' APPLICATIONS INTO
COMPONENT BASED APPLICATIONS FOR

DEVICES

BACKGROUND

[0001] This application relates generally to transformation
of applications for communication of services over a net-
work to a device.

[0002] There is a continually increasing number of devices
in use today, such as two-way devices, mobile telephones,
PDAs with wireless communication capabilities, self service
kiosks and two-way pagers. Software applications which run
on these devices increase their utility. For example, a mobile
phone may include an application which retrieves the
weather for a range of cities, or a PDA may include an
application that allows a user to shop for groceries. These
software applications take advantage of the connectivity to
a network in order to provide timely and useful services to
users. However, due to the restricted resources of some
devices, and the complexity of delivering large amounts of
data to the devices, developing software applications for a
variety of devices remains a difficult and time-consuming
task.

[0003] Currently, devices are configured to communicate
with Web Services through Internet based Browsers and/or
native applications. Browsers have the advantage of being
adaptable to operate on a cross-platform basis for a variety
of different devices, but have a disadvantage of requesting
pages (screen definitions in HTML) from the Web Service,
which hinders the persistence of data contained in the
screens. A further disadvantage of Browsers is that the
screens are rendered at runtime, which can be resource
intensive. Native applications have the advantage of being
developed specifically for the type of device platform,
thereby providing a relatively optimized application pro-
gram for each runtime environment. However, native appli-
cations have disadvantages of not being platform indepen-
dent, thereby necessitating the development multiple
versions of the same application, as well as being relatively
large in size, thereby taxing the memory resources of the
device. Further, application developers need experience with
programming languages such as Java and C++ to construct
these hard coded native applications. There is a need for
application programs, other than page-based applications,
that can be run on client devices having a wide variety of
runtime environments, as well as having a reduced con-
sumption of device resources.

[0004] The systems and methods disclosed herein provide
a conversion capability to transform page-based applications
to component based applications to obviate or mitigate at
least some of the above presented disadvantages.

SUMMARY

[0005] Currently, devices are configured to communicate
with Web Services and other data sources through Internet
based Browsers and/or native applications. Browsers have
the advantage of being adaptable to operate on a cross-
platform basis for a variety of different devices, but have a
disadvantage of requesting pages (screen definitions in
HTML) from the Web Service, which hinders the persis-
tence of data contained in the screens. A further disadvan-

tage of Browsers is that the screens are rendered at runtime,
which can be resource intensive. Native applications have
the advantage of being developed specifically for the type of
device platform, thereby providing a relatively optimized
application program for each runtime environment. How-
ever, native applications have disadvantages of not being
platform independent, thereby necessitating the develop-
ment multiple versions of the same application, as well as
being relatively large in size, thereby taxing the memory
resources of the device. There is a need for application
programs, other than page-based applications, that can be
run on client devices having a wide variety of runtime
environments, as well as having a reduced consumption of
device resources.

[0006] Contrary to the current use of page-based applica-
tions, there are disclosed systems and methods for providing
a conversion capability to transform page-based applications
to component based applications.

[0007] Accordingly, a method is disclosed for converting
a page-based application to a component based application
configured for execution on a devices the device configured
for communication over a network with a schema-defined
service of a data source, the page-based application
expressed as a series of presentation pages having embedded
data and messaging elements for interaction with a user
interface, the method comprising the steps of: assembling a
set of page metadata representing at least a portion of a
selected page from the series of pages of the page-based
application, the page metadata expressed in a first structured
definition language; converting the embedded data elements
into a data component, the data component containing data
descriptors expressed in a selected structured definition
language of the component based application; converting the
embedded messaging elements into a message component,
the message component containing message descriptors
expressed in the selected structured definition language of
the component based application, the message component
operatively coupled to the data component; and generating
a dependency link associated with an event corresponding to
the embedded elements, the dependency link for describing
a workflow of the components in respect to operation of the
component based application when executed on a user
interface of the device.

[0008] Also disclosed is a system for converting a page-
based application to a component based application config-
ured for execution on a device, the device configured for
communication over a network with a schema-defined ser-
vice of a data source, the page-based application expressed
as a series of presentation pages having embedded data and
messaging elements for interaction with a user interface, the
system comprising: an analyzer module for assembling a set
of page metadata representing at least a portion of a selected
page from the series of pages of the page-based application,
the page metadata expressed in a first structured definition
language; a data conversion module for converting the
embedded data elements into a data component, the data
component containing data descriptors expressed in a
selected structured definition language of the component
based application; a message conversion module for con-
verting the embedded messaging elements into a message
component, the message component containing message
descriptors expressed in the selected structured definition
language of the component based application, the message

Exhibit 1007
Page 12 of 27

US 2006/0200749 Al Sep. 7, 2006
2

component operatively coupled to the data component; and
a dependency module for generating a dependency link
associated with an event corresponding to the embedded
elements, the dependency link for describing a workflow of
the components in respect to operation of the component
based application when executed on a user interface of the
device.

[0009] Also disclosed is a computer program product for
converting a page-based application to a component based
application configured for execution on a device, the device
configured for communication over a network with a
schema-defined service of a data source, the page-based
application expressed as a series of presentation pages
having embedded data and messaging elements for interac-
tion with a user interface, the computer program product
comprising: a computer readable medium; an analyzer mod-
ule Stored on the computer readable medium for assembling
a set of page metadata representing at least a portion of a
selected page from the series of pages of the page-based
application, the page metadata expressed in a first structured
definition language; a data conversion module coupled to the
analyzer module for converting the embedded data elements
into a data component, the data component containing data
descriptors expressed in a selected structured definition
language of the component based application; a message
conversion module coupled to the analyzer module for
converting the embedded messaging elements into a mes-
sage component, the message component containing mes-
sage descriptors expressed in the selected structured defini-
tion language of the component based application, the
message component operatively coupled to the data com-
ponent; and a dependency module coupled to the analyzer
module for generating a dependency link associated with an
event corresponding to the embedded elements, the depen-
dency link for describing a workflow of the components in
respect to operation of the component based application
when executed on a user interface of the device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] These and other features will become more appar-
ent in the following detailed description in which reference
is made to the appended drawings wherein:

[0011] FIG. 1 is a block diagram of a network system with
conversion tools;

[0012] FIG. 2 is a block diagram of a generic device of
FIG. 1;

[0013] FIG. 3 is a block diagram of a runtime environ-
ment of the device of FIG. 2;

[0014] FIG. 4 is a block diagram of a component appli-
cation of FIG. 2;

[0015] FIG. 4a shows a representative application pack-
aging and hosting model for the system of FIG. 1;

[0016] FIG. 4b is a model of a client runtime of the device
of FIG. 1;

[0017] FIG. 5 is a block diagram of a computer for
implementing the conversion tools of FIG. 1;

[0018] FIG. 6 is an alternative embodiment of the tool of
FIG. 1;

[0019] FIG. 7 is an example operation of the tools of FIG.
1; and

[0020] FIG. 8 is an example of screen-data mappings for
the applications of FIG. 4.

DESCRIPTION

[0021] Referring to FIG. 1, a network system 10 com-
prises a plurality of generic devices 100 for interacting with
one or more generic schema defined services provided by
one or more data sources 106 (and associated data servers)
via a coupled Wide Area Network (WAN) 104 such as but
not limited to the Internet. These generic devices 100 can be
wireless devices such as but not limited to two-way devices,
mobile phones, PDAs, self-service kiosks and the like. The
generic services provided by the data source 106 can be Web
Services and/or other services such as but not limited to SQL
Databases, IDL-based CORBA and RMI/IIOP systems,
Legacy Databases, J2EE, SAP RFCs, and COM/DCOM
components. It is recognized that each data source 106 can
have an associated pre-compiled (e.g. executable) applica-
tion 107, for downloading/uploading to the device 100,
configured for executing on a specific device platform. The
compiled application 107 is executed on the device 100 so
as to establish a client-server relationship between the
device 100 and the data source 106 respectively. Further, the
system 10 has a gateway server 112 coupled to a wireless
network 102 for connecting the devices 100 to the WAN
104. It is recognized that other devices and computers (not
shown) could be connected to the data sources 106 via the
WAN 104 and associated networks other than as shown in
FIG. 1. Web services are selected as an example data source
106 for the following description of the system 10, for the
sake of simplicity. However, it is recognized that other
generic schema defined services could be substituted for the
web services 106, if desired. Further, the networks 102, 104,
of the system 10 will hereafter be referred to as the network
104, for the sake of simplicity.

[0022] Referring again to FIG. 1, a series of conversion
tools 12 are used to convert the code (e.g. source code) of a
compiled web application 107 into a series of descriptors
using a selected structured definition language (e.g. XML).
The page content of the application 107 have embedded data
elements, embedded message elements and embedded pre-
sentation elements. The application 107 is converted into a
component application 105, as further described below. The
tools 12 can be used to convert commonly used web
applications 107 into XML-defined component applications
105, organized as groups of XML descriptors in the form of
a plurality of interactive components 400, 402, 404, 406 (see
FIG. 4 as further described below). The conversion process
of the tools 12 is based on structural code analysis of the
original application 107 (e.g. web pages) of the web service
106, and then on application of mapping patterns and
associated conversion logic to convert these application 107
pages into the set of structured language (e.g. A) defined
components 400, 402, 404 augmented by scripting/com-
mand language (e.g. Java Script) defined workflow compo-
nents 406. The selected structured definition language and
the selected scripting/command language are chosen or
otherwise predefined for use by the tools 12 in expressing
the descriptors and workflow of components 400, 402, 404,
406 (see FIG. 4) that comprise the converted component
application 105. It is noted that the selected structured

Exhibit 1007
Page 13 of 27

US 2006/0200749 Al Sep. 7, 2006
3

definition language is hereafter referred to as XML for the
sake of simplicity. Further, it is noted that the selected
scripting/command language is hereafter referred to as Java
Script for the sake of simplicity. However, it is recognized
that other selected languages could be substituted for the
XML and/or Java Script, if desired.

Client-Server Interaction through Network Messaging

[0023] Referring again to FIG. 1, the devices 100 transmit
and receive requests/response messages, respectively, over
the network 104 when in communication with the web
services 106. The transmission and reception of the mes-
sages is enabled through interaction with the component
application 105 when first provisioned and then executed on
the device 100. The devices 100 can operate as web clients
of the web services 106 by using the requests/response
messages are defined by the component application 105 in
the form of message header information and associated data
content, for example requesting and receiving product pric-
ing and availability from an on-line merchant. It is recog-
nized that the component application 105 is provided to the
device 100 as a plurality of uncompiled components 400,
402, 404, 406, each expressed in the selected XML and/or
Java Script languages, for providing defined application data
functions (i.e. data components 400), defined application
message functions (i.e. message components 404), defined
application presentation functions (i.e. presentation compo-
nents 402) and defined application workflow functions (i.e.
workflow components 406). The uncompiled component
application 105 is received by the device 100 as the series of
the interactively defined components 400, 402, 404, 406,
which are subsequently provisioned in executable form on a
device runtime 206 (see FIG. 2) to operate as the client
application 105 for communication with the web service(s)
through messaging, as further described below. The web
service 106 is an example of a system with which compo-
nent applications 105 interact via the network 104 in order
to provide utility to users of the communication devices 100.
The messages sent between the communication devices 100
and the web service 106 could traverse a message-map
service (not shown) of the server 112, which would convert
the messages between any differing formats used by the
devices 100 and the web services 106.

[0024] For satisfying the appropriate requests/response
messages, the web services 106 can communicate with the
server 110 through various protocols (such as but not limited
to HTTP and component API) for exposing relevant business
logic (methods) of the web services 106 to the component
application(s) 105 provisioned on the device 100. The
provisioned component applications 105 can use the busi-
ness logic of the web services 106 similarly to calling a
method on an object (or a function). It is recognized that the
component applications 105 can be downloaded/uploaded in
relation to the server 112, through the messages via the
network 104, directly to the devices 100. The web services
106 provide information messages which are used by the
component applications105 running on the devices 100.
Alternatively, or in addition, the web services 106 may
receive and use the information messages provided by the
component applications 105, perform tasks on behalf of
component applications 105, and/or enable asynchronous
messaging for server 112 to device 100 notifications.

[0025] The web service 106 can be defined as a software
service, which can implement an interface such as expressed

using Web Services Description Language (WSDL) regis-
tered in a Universal Discovery Description and Integration
(UDDI) services registry, and can communicate through
messages with client devices 100 by being exposed over the
network 104 through an appropriate protocol such as but not
limited to the Simple Object Access Protocol (SOAP). In
some implementations, SOAP is a specification that defines
the XML format for the messages associated with the
executing component application 105, including a well-
formed XML fragment enclosed in SOAP elements. For
example, the SOAP request message can contain a callable
function, and the parameters to pass to the function, which
is sent (according to the message and data format described
in the components 400, 404 of the component application
105) from the client device 100, and the service 106 then
returns the response message (also according to the expected
message and data format described in the components 400,
404) with the results of the executed function. It is recog-
nized that the messaging between the device 100 and web
service 106 can include synchronous and/or asynchronous
communication messages. Alternatively, the web service
106 may use known communication protocols, message
formats, and the interface may be expressed in web services
languages other than described above.

Device 100 and Runtime Environment 206

[0026] Referring to FIG. 2, the devices 100 are devices
such as but not limited to mobile telephones, PDAs, two-
way pagers or dual-mode communication devices. The
devices 100 include a network connection interface 200,
such as a wireless transceiver or a wired network interface
card or a modem, coupled via connection 218 to a device
infrastructure 204. The connection interface 200 is connect-
able during operation of the devices 100 to the network 104,
such as to the wireless network 102 by wireless links (e.g.,
RF, IR, etc.), which enables the devices 100 to communicate
with each other and with external systems (such as the web
service 106) via the network 104 and to coordinate the
requests/response messages between the component appli-
cations 105 and the service 106. The network 104 supports
the transmission of data in the request/response messages
between devices 100 and external systems (e.g. data sources
106), which are connected to the network 104. The network
104 may also support voice communication for telephone
calls between the devices 100 and devices which are exter-
nal to the network 104. A wireless data transmission protocol
can be used by the wireless network 102, such as but not
limited to DataTAC, GPRS or CDMA.

[0027] Referring again to FIG. 2, the devices 100 also
have a user interface 202, coupled to the device infrastruc-
ture 204 by connection 222, to interact with a user (not
shown). The user interface 202 includes one or more user
input devices such as but not limited to a QWERTY key-
board, a keypad, a trackwheel, a stylus, a mouse, a micro-
phone and the user output device such as an LCD screen
display and/or a speaker. If the screen is touch sensitive, then
the display can also be used as the user input device as
controlled by the device infrastructure 204. The user inter-
face 202 is employed by the user of the device 100 to
coordinate the requests/response message messages over the
network 104 (see FIG. 1) as employed by component
applications 105, further described below.

[0028] Referring again to FIG. 2, operation of the device
100 is enabled by the device infrastructure 204. The device

Exhibit 1007
Page 14 of 27

US 2006/0200749 Al Sep. 7, 2006
4

infrastructure 204 includes the computer processor 208 and
the associated memory module 210. The computer processor
208 manipulates the operation of the network interface 200,
the user interface 202 and the runtime environment 206 of
the communication device 100 by executing related instruc-
tions, which are provided by an operating system and
component applications 105 located in the memory module
210. Further, it is recognized that the device infrastructure
204 can include a computer readable storage medium 212
coupled to the processor 208 for providing instructions to
the processor and/or to load/update client application pro-
grams 302 in the memory module 210. The computer
readable medium 212 can include hardware and/or software
such as, by way of example only, magnetic disks, magnetic
tape, optically readable medium such as CD/DVD ROMS,
and memory cards. In each case, the computer readable
medium 212 may take the form of a small disk, floppy
diskette, cassette, hard disk drive, solid state memory cad, or
RAM provided in the memory module 210. It should be
noted that the above listed example computer readable
mediums 212 can be used either alone or in combination.

[0029] Referring again to FIG. 2, the component applica-
tions 302 are transmitted via the network 104 and loaded
into the memory module 210 of a device infrastructure 204
of the device 100. Alternatively, the component applications
105 may be loaded via a serial connection, a USB connec-
tion, or a short-range wireless communication system such
as IR, 802.11(x) BluetoothTM (not shown). Once loaded onto
the device 100, the component applications 105 can be
executed by a runtime environment 206 of the device 100,
which provisions the component applications 105 into an
executable form, which is then executed by the processor
208 in the device infrastructure 204. For example, the
component applications 105 may be executed as native code
or interpreted by another software module or operating
system on the device 100, as her described below with
reference to FIG. 4b. In any event, the component applica-
tions 105 are run in the terminal runtime environment 206
provided by the device 100.

[0030] Referring again to FIG. 1, the client runtime envi-
ronment can be configured to make the devices 100 operate
as web clients of the web services or any other generic
schema-defined services supplied by the data sources 106.
The client runtime environment 206 is preferably capable of
generating, hosting and executing the component applica-
tions 105 on the device 100. Therefore, the native runtime
environment 206 is an interface to the device 100 function-
ality of the processor 208 and associated operating system of
the device infrastructure 204. Further, specific functions of
the runtime environment 206 can include such as but not
limited to support for language, coordinating memory allo-
cation, networking, management of data during I/O opera-
tions, coordinating graphics on an output device of the
devices 100 and providing access to core object oriented
classes and supporting files/libraries.

[0031] The terminal runtime environment 206 can be
referred to as a smart host container for the component
application 105, and can be responsible for analyzing mes-
sage meta-data (of the messages) and for updating the
representation of the meta-data in the memory module 210.
The terminal runtime environment 206 preferably supports

the following basic functions for the resident executable
versions of the component applications 105, functions such
as but not limited to:

[0032] provide a communications capability to send mes-
sages to the Web Services 106 or messages to any other
generic schema defined services connected via the network
104 to the devices 100;

[0033] provide data input capabilities by the user on an
input device of the devices 100 to supply data parts for Web
Services' 106 outgoing messages;

[0034] provide data presentation or output capabilities for
Web Services' 106 response messages (incoming messages)
or uncorrelated notifications of the web service 106 on the
output device;

[0035] provide data storage services to maintain local
client data in the memory module 210 (see FIG. 2) of the
device 100; and

[0036] provide an execution environment for the scripting
language for coordinating operation of the application com-
ponents 400, 402, 404, 406 (see FIG. 4) of the component
applications 105.

[0037] Referring to FIGS. 2, 4 and 4a, the client runtime
environment 206 loads the raw metadata contained in the
component 400, 402, 404, 406 definitions and the builds the
executable version of the application program 302 on the
device 100. For example, there can be two operational
models/modes for client runtime: a template-based native
execution mode and a metadata-based execution mode. With
the template-based native execution model the runtime hosts
data, message, and screen templates 500 pre-built on the
device 100 using the native code. When the component
application 105 definitions are loaded, the runtime environ-
ment 206 fills the templates 500 with metadata-defined
parameters from the components 400, 402, 404 and builds
the executable component application 105 in the native
format. The workflow script (for example Java Script) of the
workflow component 406 could be either converted to native
code or executed using an appropriate script interpreter 502
to a native code redirector 504, where the redirector 504
interprets calls to the scripting language into operations on
native components through a native runtime engine 506.
With the metadata-based execution, the runtime environ-
ment 206 either keeps component 400, 402, 404, 406
definitions in XML (for example), which are parsed during
execution time or uses native representation of XML (for
example) nodes. During execution, the native runtime
engine 506 operates on definitions of the components 400,
402, 404, 406 rather than on native component entities. It is
recognized that the template based approach can be more
performance efficient over the metadata based execution, but
can require a more sophisticated execution environment and
more memory resources.

[0038] Referring again to FIG. 3, the runtime environment
206 can also provide framework services 304 (a standard set
of generic services) to the component applications 105, in
the event certain services are not included as part of the
components 400, 402, 404, 406 (see FIG. 4) or received as
separate components (not shown) as part of the component
applications 105. As a result, the component applications
105 can have access to the functionality of the communi-
cation device 100 without having to implement it. The

Exhibit 1007
Page 15 of 27

US 2006/0200749 Al Sep. 7, 2006
5

component application 105 has communications 214 with
the runtime environment 206, which coordinates communi-
cations 216 with the framework services 304, as needed. The
framework services 304 of the runtime environment 206
coordinate communications via the connection 220 with the
device infrastructure 204. Accordingly, access to the device
infrastructure 204, user interface 202 and network interface
200 is provided to the component applications 105 by the
runtime environment 206. The framework services 304 can
include services such as but not limited to a communication
service 306, a presentation service 308, a persistence service
310, an access service 312, a provisioning service 314 and
a utility service 316. The communication service 306 man-
ages connectivity between the component applications 105
and the external system 10, such as the messages and
associated data sent/received in respect to the web service
106 (by the communication service 306) on behalf of the
component applications 105. The presentation service 308
manages the representation of the component applications
105 as they are output on the output device of the user
interface 202 (see FIG. 2). The persistence service 310
allows the component applications 105 to store data in the
memory module 210 (see FIG. 2) of the device infrastruc-
ture 204. The access service 312 provides the component
applications 105 access to other non-component based soft-
ware applications which are present on the communication
device 100. The provisioning service 314 manages the
provisioning of software applications on the communication
device 100. Application provisioning can include requesting
and receiving new and updated component applications 105,
configuring component applications 105 for access to ser-
vices which are accessible via the network 104, modifying
the configuration of component applications 105 and ser-
vices, and removing component applications 105 and ser-
vices. The utility service 316 is used to accomplish a variety
of common tasks, such as performing data manipulation in
the conversion of strings to different formats.

Component Application 105

[0039] Referring to FIG. 2, component applications 105
are executed within the terminal runtime environment 206,
which supports access to Web Service 106 operations (see
FIG. 1). WSDL and SOAP protocol definitions clearly
imply a messages/data pattern. In a WSDL Web Service
definition, the operations are defined using the notion of
messages and data parts, which are used to define the Web
Service component applications 105 as a set of the related
data 400 and the message 404 components (see FIG. 4).

[0040] Referring to FIG. 4, a block diagram of the com-
ponent applications 105 comprises the data components 400,
the presentation components 402 and the message compo-
nents 404, which are coordinated by workflow components
406 through communications 214 with the runtime environ-
ment 206. The structured definition language can be used to
construct the components 400, 402, 404 as a series of
metadata records, which consist of a number of pre-defined
elements representing specific attributes of a resource such
that each element can have one or more values. Each
metadata schema typically has defined characteristics such
as but not limited to; a limited number of elements, a name
of each element, and a meaning for each element. Example
metadata schemas include such as but not limited to Dublin
Core (DC), Anglo-American Cataloging Rules (AACR2),
Government Information Locator Service (GILS), Encoded

Archives Description (EAD), IMS Global Learning Consor-
tium (IMS), and Australian Government Locator Service
(AGLS).

[0041] Referring again to FIG. 4, the data components
400 define data entities which are used by the component
application program 302. Examples of data entities which
data components 400 may describe are orders, users, and
financial transactions. Data components 400 define what
information is required to describe the data entities, and in
what format the information is expressed. For example, the
data component 400 may define such as but not limited to an
order which is comprised of a unique identifier for the order
which is formatted as a number, a list of items which are
formatted as strings, the time the order was created which
has a date-time format, the status of the order which is
formatted as a string, and a user who placed the order which
is formatted according to the definition of another one of the
data components 400. Since data parts (elements) are usu-
ally transferred from message to message according to Web
Services 106 choreography rules, preferably there is persis-
tence of data components 400. Data components 400 may be
dynamically generated according to Web Service(s) 106
choreography definitions (if available) or defined by the
application 105 designer based on complex type definitions
and/or message correlation information.

[0042] Referring again to FIG. 4, the message compo-
nents 404 define the format of messages used by the com-
ponent applications 105 to communicate with external sys-
tems such as the web service 106. For example, one of the
message components 404 may describe such as but not
limited to a message for placing an order which includes the
unique identifier for the order, the status of the order, and
notes associated with the order. Message component 404
definitions written in the structured definition language can
uniquely represent (and map to) WSDL messages, and can
be generated dynamically at runtime. Accordingly, the
dynamic generation can be done for the component defini-
tions for component applications 105, and associated data
content, from standard Web Service 106 metadata in the
definition language used to express the web service inter-
face, for example such as but not limited to WSDL and
BPEL. Web Service 106 messages are defined within the
context of operation and there is defined correlations
between the message components 404 in the component
applications 105 definitions. This correlation could be done
using predefined message parameters and/or through sepa-
rate workflow components 406, as further defined below.

[0043] Referring again to FIG. 4, the presentation com-
ponents 402 define the appearance and behavior of the
component applications 105 as it displayed by the user
interface 202. The presentation components 402 can specify
GUT screens and controls, and actions to be executed when
the user interacts with the component applications 105 using
the user interface 202. For example, the presentation com-
ponents 402 may define screens, labels, edit boxes, buttons
and menus, and actions to be taken when the user types in
an edit box or pushes a button. The majority of Web Service
106 consumers use a visual presentation of Web Service 106
operation results, and therefore provide the runtime envi-
ronment 206 on their devices 100 capable of displaying user
interface screens.

[0044] Referring to FIGS. 1, 4 and 4b, it is recognized that
in the above described component applications 105 defini-

Exhibit 1007
Page 16 of 27

US 2006/0200749 Al Sep. 7, 2006
6

tions hosting model, the presentation components 402 may
vary depending on the client platform and environment of
the device 100. For example, in some cases Web Service 106
consumers do not require a visual presentation. The appli-
cation definition of the components 400, 402, 404, 406 of the
component applications 105 can be hosted in a Web Service
106 registry in a metadata repository 700 (see FIG. 1) as a
bundle of platform-neutral data 400, message 404, workflow
406 component descriptors with a set of platform-specific
presentation component 402 descriptors for various pre-
defined client runtimes (i.e. specific runtime environments
206 see FIG. 2) When the discovery or deployment
request message for the component application 105 is issued
(either by the device or by the data source 106), the client
type could be specified as a part of this deployment message.
In order not to duplicate data, message, and workflow
metadata while packaging component applications 105 for
different client platforms of the devices 100, application
definitions can be hosted in the repository 700 as a bundle
of platform-neutral component definitions linked with dif-
ferent sets of presentation components 403a, 403b, 403c,
representing the different supported user interfaces 202 of
the devices 100. It is also recognized that a standard pre-
sentation component 402 can be used in the event the
specific device 100 is not explicitly supported, thereby
providing at least a reduced set of presentation features.
When a user makes a discovery or download request mes-
sage to the server 112 (see FIG. 1), the client runtime type
of the devices 100 is validated along with the intended data
source 106, and the proper component application 105
bundle is constructed for delivery by the server 112 to the
device 100 over the network 104. For those Web Service 106
consumers, the component applications 105 could contain
selected presentation components 403a,b,c linked with the
data 400 and message 404 components through the work-
flow components 406, thereby providing a customized com-
ponent application 105.

[0045] Referring again to FIG. 4, the workflow compo-
nents 406 of the component application 105 define process-
ing that occurs when an action is to be performed, such as
an action specified by a presentation component 402 as
described above, or an action to be performed when mes-
sages (see FIG. 1) arrive from the system 10. Presentation
workflow and message processing are defined by the work-
flow components 406. The workflow components 406 are
written as a series of instructions in the selected program-
ming/scripting language, such as but not limited to Java
Script, and can be compiled into native code and executed
by the runtime environment, as described above. An
example of the workflow components 406 may be to assign
values to data, manipulate screens, or send the message. The
workflow component 406 supports a correlation between the
messages and defines application flow as a set of rules for
operations on the other components 400, 402, 404. Multiple
workflow components can be defined with respect to a given
component application 105. Such additional workflow com-
ponents, similar to the multiple presentation components
403a, 403b, 403c, can define differing work flows based
upon different supported capabilities or feature of particular
devices 100.

Component Application Program Example

[0046] Accordingly, referring to FIG. 4, the client appli-
cation programs 302 can be defined as a set of platform-

neutral component definitions, namely for data 400 and
message 404 components, and presentation components 402
using XML (or any other suitable structured definition
language). The workflow components 406 can be defined
using Java Script (or any other suitable platform-neutral
scripting language). The client runtime environment of the
component framework 206 (see FIG. 2) can generate com-
ponent templates based on meta-definitions, as further
described below, when the components 400, 402, 404, 406
of the component application 105 are provisioned on the
device 100.

[0047] The following example shows how a Web Services
106 component application 105 could be expressed using a
structured definition language, such as but not limited to
XML, and a platform neutral scripting programming lan-
guage, such as but not limited to Java Script, defined
components:

[0048] Example XML Data Components 400

<data name="Order">
<item name="orderid" type="Number" key="true"/>
<item name="items" type="String" array="true"/>
<item name="user" comp="true" compName="User"/>

<item name="orderStatus" type="String"/>
</data>

[0049] Example XML Message Components 404

<msg name="ordConfirmation" type="response"
action="mhConfirmation">

<part name="orderId" type="String" />
<part name="status" type="String" />

</msg>

[0050] Example XML Presentation Components 402

<screen name="scrConfurnation" tle="Order Confirmation"
param="Order">

<layout type="vertical">
<widget type="label" value="Order Confirmation Result:"/>

< widget type="edit" value="@Order.orderStatus"/>
</layout>

<menu>
<item label="Con nue" navigate=` scrMain"/>

</menu>
</screen>

[0051] Example Java Script Workflow Components 406

<actions>
<function name="mhConfirmation">

key = ordConfirmation.orderld;
order = Order.get(key);

Exhibit 1007
Page 17 of 27

US 2006/0200749 Al Sep. 7, 2006
7

-continued

order.orderStatus = ordConfirmation.status;
scrConfinnation.display(onler);

</function>

</actions>

[0052] Referring to FIG. 4, as given above, it can be seen
that the message components 404 relay the required data for
the input and output of the messages associated with the
applications 105 executing on the device 100. The corre-
sponding data components 400 coordinate the storage of the
data in the memory module 210 (see FIG. 2) of the device
100 for subsequent presentation on the user interface 202
(see FIG. 2) by the presentation components 402. The
workflow components 406 coordinate the transfer of data
between the data 400, presentation 402, and message 404
components.

[0053] There are a number of potential advantages to the
component application model as described above. For
example, there is a minimized need for a mediator in the
service protocol between client runtime and service end-
point. Unlike browser-based applications 107 that require a
Web Server to host additional components (e.g. servlets,
JSP, ASP, etc.) to connect HTML pages data/requests with a
service endpoint, the component application model allows
end-to-end direct connectivity between the client runtime of
the device 100 and the service endpoint using Web Service
106 based message component definitions.

[0054] Further, the component application 105 model
combines the simplicity of browser-based applications with
the efficiency of native application execution. Unlike
browser applications 107, rendering screens at runtime is
minimized as the whole component application 105 defini-
tion is downloaded preferably at once and the client runtime
environment 206 can generate a native representation of
application screens. Additionally, requesting of pages
(screen definitions in HTML) from the server is minimized,
as the component application model architecture is based on
message components 404 that contain data.

[0055] Further, the component application 105 architec-
ture can provide a relatively small application download size
consisting of component definitions only, as compared to
hard coded and compiled native applications 107, and can
provide an effective data storage and persistence model. The
client runtime 206 is capable of storing and updating atomic
data entities directly vs. manipulating rendered presentations
such as HTML pages for browser applications.

[0056] Further, the component application architecture
can provide a platform-neutral model. Unlike native appli-
cations uniquely developed for a specific client runtime, the
applications 105 built using widely adopted standards such
as XML and Java Script could be reused on a large variety
of platforms and truly implement the principle "write once
run everywhere". Further, the combination of non-proce-
dural and procedural application definitions can greatly
reduce programming time and effort.

Conversion Tools 12

[0057] Referring to FIG. 1, the conversion tools 12 are
executed on a computer 14 and are used to generate com-

ponent applications 105 through the conversion of non-
component page based applications 107, as further described
below. The completed component applications 105 are sent
directly to the gateway server 112 and/or to the repository
for storage and subsequent retrieval. The gateway server 112
coordinates the upload/download of the component appli-
cations 105 with respect to the devices 100, such that the
component applications 105 facilitate communication
between the devices 100 and the data sources 106 as
described above The tools 12 include the following mod-
ules: a page analyzer module 110, a conversion module 113,
a component storage module 114, a user interface module
116, a component optimizer module 118, a workflow com-
ponent generator module 120 and a component application
builder module 122. It is recognized that the modules could
operate in a manual mode, a semi-automated mode, or an
automated mode in connection with the user of the computer
14, as further described below. In addition, the page analyzer
module 110 and the conversion module 113 could be imple-
mented on the user computer as a separate application
converter tool 126, for generation of components 400, 402,
404 from the input page-based application 107. Similarly,
the component optimizer module 118 and/or the workflow
generator module 120 could be implemented on the user
computer as a separate workflow tool 124. Likewise, the
application builder module 122 could be implemented on the
user computer as a separate application builder tool. The
features and functionality of the individual tools 124, 126
and modules 110,113,114,116,118,120,122 are further
described below.

Page Analyzer Module 110

[0058] The page analyzer module 110 assembles the page
metadata from the input application 107 from page analysis
and/or from source code. For the source code example, the
module 110 parses each presentation page/screen (i.e. dis-
play output to a user interface of a client computer) from the
source code and then collects the metadata for each presen-
tation page. The module 110 includes the characteristics of
navigation and other user event links, presentation styles/
format, page type and data dependencies for each set of page
metadata corresponding to the respective pages of the input
application 107. For the page analysis example, the module
110 validates the presented web page displayed on the user
interface 502 (see FIG. 5) of the user computer 14, analyzes
the page type, retrieves the navigation and any other user
event links, determines the page styles and formats, and
notes the data dependencies. The module 110 then builds the
representative metadata for each presentation page of the
input application 107. The page metadata for each presen-
tation page of the input application is then made available to
the conversion module 113. It is recognised that the module
110 could also be coupled to a comparison module 600 (see
FIG. 6) for determining the scale of the pages of the
application 107 as compared to the best suited scale of the
presentation content (of the pages) for the UI 202 of the
device.

Conversion Module 113

[0059] The conversion module 113 can have a series of
page converters 128 (e.g. XML, HTML, JSP, ASP, etc.) for
converting each page metadata into their respective compo-
nents 400, 402, 404. The module 113 receives the page
metadata from the page analyzer module 110 and confirms

Exhibit 1007
Page 18 of 27

US 2006/0200749 Al Sep. 7, 2006
8

the scale (e.g. size) of the page presentation contents
(according to UI 202 see FIG. 2—capabilities of the
device 100 as well as format/style of the presentation
page/screen contents). If needed, the module 113 splits the
page metadata into page metadata subsets representing sub-
pages suitable for presentation on mobile device 100. The
module 113 then extracts from the metadata set/subset any
data of the page presentation content suited for representa-
tion by data 400 and/or message 404 components, extracts
the corresponding presentation format of the data suitable
for representation by the presentation components 402, and
extracts server communication interactions between the
device 100 and the data sources 106 and/or server 112 suited
for representation by message components 404. The module
113 then translates the page metadata into the selected
structured definition language (if necessary) using language
translation algorithms as are known in the art, and then the
module 113 applies component patterns to convert or oth-
erwise configure the translated page metadata into the com-
ponent architecture required to build or otherwise generates
the atomic screen 402, data 400, and message 404 XML
components. The module 113 also generates an XML docu-
ment containing user event dependency links (e.g. naviga-
tion) for representing the workflow of the generated com-
ponents 400,402,404, as further described with reference to
the workflow component generator module 120 below. It is
recognised that the module 113 can include additional
conversion modules such as but not limited to a data
conversion module 602, a message conversion module 604
and a presentation conversion module 602.

Component Storage Module 114

[0060] The component storage module 114 can be con-
sidered an XML Depot for storing the XML defined com-
ponents 400, 402, 404 and dependency link information
generated for each processed presentation page metadata
set/subset, as received from the conversion module 113. It is
recognized that the module 114 can be a distinct module of
the conversion tools 12 or simply a storage 510 of the user
computer 14. When the pages of the input application 107
are processed, the data contents of the XML Depot are made
available to the component optimizer module 118.

Component Optimizer Module 118

[0061] The component optimizer module 118 processes
generated XML components 400, 402, 404 to identify com-
mon data components 400, message components 402 and
screen components 404 and eliminates duplications between
the various components generated for each respective set/
subset of page metadata. Further, the module 118 can
optimize links for direct screen transfers, screen to data
mappings, and message to data mappings.

[0062] An example of optimizing screen to data mappings
is described with reference to FIG. 8, such that it is
recognized that a similar example could be given for mes-
sage to data mappings. In practice, typically the expression
of the components 400, 402 by the developer can have
overlapping content, while the behaviour of each of the
components 400, 402 of the application 105 is distinct.
Therefore, by recognizing the fact that user interface 202
(see FIG. 2) content is often generated from some under-
lying data element, and in light of the similarities between
expression of these components 400, 402, it is convenient to
introduce certain mappings 804 (see FIG. 8) to the expres-

sion of screen components 402, as further described below.
Referring to FIGS. 4 and 8, these mappings 804 are
essentially shortcuts to the expression of the screen elements
802 (screen element definitions) associated with the screen
component 402, and how the screen component 402 behaves
at runtime during execution of the application 105. The
mapping 804 is a stated relationship between the screen
element definitions of the screen component 402 and the
data component 400 definition. In relation to expression of
the screen component 402, using the mapping 804 can
reduce the amount of metadata required to describe the
component 402. Thus use of the mapping 804 can have a
direct effect on the amount of "code" required to describe the
application 105. In relation to how the component 402
behaves at runtime, the mapping 804 specifies how linked
data elements (described by the data component 400) are
resolved and affected by screen element 802 state. In this
regard, specifying the mapping 804 can reduce the need for
the developer to provide additional specific screen handling
code in the application 302.

[0063] Referring to FIG. 8, screen representations of the
screen components 402 (see FIG. 4) consist of screen
elements 802, such as but not limited to UI controls, that are
displayed on the user interface 202 and are associated with
data field instances of the corresponding data objects 800.
Therefore, each of the screen elements 802 is bound or
mapped 804 to the fields of a respective data object 800. The
device user of the application 105 can select screen elements
802 on the user interface 202 (see FIG. 2) and edit the
controls within them, i.e. by user events. Any modifications
of the screen elements 802 are propagated to the data object
800 mapped to the screen element 802. Similarly, all modi-
fications (driven by the application 302 logic or incoming
server messages 105) to the data objects 800 are reflected in
the screen elements 802 mapped to these data objects 800.
Tracking of the user events and any direct modifications to
the data objects 800 can be monitored via a mapping
manager of the runtime environment 206, as described
below. The mapping 804 provides for identification and
modification of the data object 800 affected by the mapping
804. The mapping 804 isolates the data object 800 of the
data component 400 to which the screen element 802 of the
corresponding screen component 404 is linked.

[0064] It is recognised that either the screen component
402 or data component 400 definitions contain the mapping
800, which defines the relationship between the data object
800 and screen element 802 or the relationship between an
individual data field (or group of data fields) of the data
object 800 with screen element 802. It is recognised that the
data object 800 may be passed to the user interface 202 as
a parameter. In this case the data field values of the data
object 800 mapped to the screen element 804 would be
extracted from the passed parameter. For example, an edit
control (screen element 802) defined in a screen field
definition of the screen component 402 could be mapped
into a data field definition of the linked data component 400
(i.e. a one to one mapping 804) or a choice control (screen
element 802) defined in a screen field definition of the screen
component 402 could be mapped into a particular data field
definition of a collection of data components 400 (i.e. a one
to many mapping 804). It is recognized that similar map-
pings 804 could be used for message 402 and data 400
component mapping relationships. The mappings 804 can be

Exhibit 1007
Page 19 of 27

US 2006/0200749 Al Sep. 7, 2006
9

stored in a mapping table (not shown) coupled to the
mapping manager of the runtime environment 206.

[0065] Referring to FIGS. 4 and 8, screen component
metadata can describe mapping to the data field definition of
the linked data component 400 in addition to its other
attributes. For example, a single screen element 802 may
map to:

[0066] one of the data field definitions of the data com-
ponent 400 or

[0067] all data field definitions of the data component 400
by a primary key (or mapping identifier) in this case, the
mapping 804 resolves to the primary key field.

[0068] A choice/list screen element 802 may map to:

[0069] a collection of all instances of the data components
400 or

[0070] one of the data field definitions of the data com-
ponent 400 that is a collection.

[0071] The runtime environment 206 provides a system
for effective management of the User Interface 202 by
implementing the direct mappings 800 between the appli-
cation data domain (data objects 800) and the UI screen
elements 802 (e.g. UI controls). Changes to the application
domain data objects 800 are automatically synchronized
with the user interface 202, and user-entered data is auto-
matically reflected in the application domain data objects
800. The primary mechanism behind this synchronization is
the mapping 804 between paired screen element 802 and
data object 800. The mapping system relates to applications
105 defined using metadata expressed in a structured lan-
guage such as XML. The mapping 804 mechanism enables
creation of dynamic and interactive screens on the user
interface 202. All changes to the data object 800 can be
synchronously reflected on the user interface and vice versa.
The implementation of mappings 804 facilitates building the
wireless applications 302 based on server-to-device notifi-
cations. The data object 800 updates asynchronously pushed
from the server (web service 106) are synchronously
reflected by the linked UI screen element 802 on the user
interface 202. These mappings 800 can be applicable for a
variety of wireless applications 105 such as stock trading,
news updates, alerts, weather updates.

[0072] An example of the mappings 804 are as follows:

[0073] Example XML data component 400`User' with
primary key field 'name' can be defined using the following
metadata:

<cData name="User" pkey="name" >
type="String" />

<dfield name="street" type="String" />
<dfield name="city" type="String" />
<dfield name="postal" type="String" />
<dfield name="phone" type="String" />

</cData>

<dfield name="name"

[0074] Example XML presentation component 402 such
that the scrAllUsers' screen can define choice control
`cbNames' mapped to a 'name' field of all instances of the
`User' data component 400. The screen metadata definition
contains a button or menu item with an action to display
screen scrUserInfo' with parameter 'User' selected, passed
as a parameter to the user interface 202.

<cScr name="scrAllUsers" >

<choice name="cbNames" mapping="User[].name" />

<action screen="scrUserInfo" param="cbNames.selected"/>

</cScr>

[0075] A screen `scrUserInfo' defines an edit control
`ebName' mapped to a 'name' field of a specific instance of
`User' data component 400 passed as a parameter:

<cScr name="scrUserInfo" param="User">

<edit name="ebName" mapping="User.name" I>

</cScr>

Workflow Component Generator Module 120

[0076] The workflow component generator module 120
uses the generated dependency links to create component
application 105 workflow by creating or otherwise coordi-
nating the creation of scripts for augmenting the XML
definitions (i.e. data, message, presentation definitions) of
the components 400, 404, 402. The dependency links in
script form can represent system/user actions/events such as
but not limited to: navigation from one screen to another of
the application 105; message generation/interpretation (for
both synchronous and asynchronous communication envi-
ronments) such as for delivering data to the data source 106
in response to user events on the UI 202 and for message
interpretation (incoming message to the device 100) for data
contents of the message for display to the screen (according
to the respective screen component 402) and/or storage to
the memory 210; and transfer of data component from one
screen to another and/or persistence of the data component
in the memory 210. Further, the module 120 generates the
workflow components 406 corresponding to the created
script commands, such that the workflow components 406
operatively couple the components 400, 402, 404 when the
components 400, 402, 404, 406 are bundled as the applica-
tion 105 by the component application builder module 122.

[0077] The scripts generated by the module 120 can be
such as but not limited to using ECMA (European Computer
Manufacturers Association) Script, which is a standard
script language. The scripts can be referred to as a sequence
of instructions that is interpreted or carried out by another
program rather than by the computer processor. Some other
example of script languages are Perl, Rexx, VBScript,
JavaScript, and Tcl/Tk. The scripting languages, in general,
are instructional languages that are used to manipulate,
customize, and automate the operational facilities of the
devices 100 in conjunction with the components 400,402,
404,406. In such systems, useful functionality is already
available through the user interface 202 (see FIG. 2), and the
scripting language is a mechanism for exposing that func-
tionality to application 105 control. In this way, the device
100 is said to provide the host runtime environment 206 of
objects and facilities which completes the capabilities of the
scripting language.

Exhibit 1007
Page 20 of 27

US 2006/0200749 Al Sep. 7, 2006
10

[0078] Specifically, EMCAScript is an object-oriented
programming language for performing computations and
manipulating computational objects within the host runtime
environment 206. ECMAScript can be used as a Web
scripting language, providing a mechanism to perform data
source 106 computation as part of the Web-based client-
server architecture of the system 10 (see FIG. 1). ECMA-
Script can provide core scripting capabilities for a variety of
host runtime environments 206, and therefore the core
scripting language can be considered platform neutral for a
number of particular host runtime environments 206. The
runtime environment 206 (see FIG. 2) can provide the
ECMAScript host environment for client-side computation
of the devices 100, such as but not limited to; objects that
represent windows, menus, pop-ups, dialog boxes, text
areas, anchors, frames, history, cookies, and input/output.
Further, the host runtime environment 206 provides a means
to attach scripting code to events such as but not limited to
change of focus, page and image loading, unloading, error,
and abort, selection, form submission, and mouse actions.
The scripting code appears within the workflow components
406, combines user interface elements and fixed and com-
puted text and images, and is reactive to user interaction on
the user interface 202. The data source 106 (see FIG. 1)
provides a different host environment for server-side com-
putation including objects representing requests, clients, and
files, and mechanisms to lock and share data. By using the
client side and server side scripting together, it is possible to
distribute computation between the client devices 100 and
the data sources 106, while providing a customized user
interface 202 for the Web-based component applications
105.

[0079] The Script of the workflow components 406 can
also define a set of built-in operators which may not be,
strictly speaking, functions or methods. Operators include
such as but not limited to various unary operations, multi-
plicative operators, additive operators, bitwise shift opera-
tors, relational operators, equality operators, binary bitwise
operators, binary logical operators, assignment operators,
and the comma operator. ECMAScript syntax resembles
Java syntax, however, ECMAScript syntax is relaxed to
enable it to serve as an easy-to-use scripting language for
developers. For example, a variable in ECMAScript is not
required to have its type declared nor are types associated
with properties, and defined functions are not required to
have their declarations appear textually before calls to them.
It is recognized that in a class-based object-oriented pro-
gramming language, in general, state is carried by instances,
methods are carried by classes, and inheritance is only of
structure and behavior. In ECMAScript, the state and meth-
ods are carried by objects, and structure, behavior, and state
are all inherited

Component Application Builder Module 122

[0080] The component application builder module 122
combines all components 400, 402, 404, 406 of the whole
component application 105 together, as well as generates
mapping information of network 10 communication for use
by the Mobile Gateway server 112 at can allow:

[0081] direct connection to the data source 106, if avail-
able;

[0082] or conversion information for interaction between
Mobile Gateway 112 and Server of the data source 106 if
direct access to data source 106 is not available.

[0083] The application 105 packages or bundles generated
by the module 122 contain application elements or artifacts

such as but not limited to XML definitions and scripts of the
componentrs 400, 402, 404, 406, network 10 mappings,
application resources, and optionally resource bundle(s) for
localization support. XML file definitions are XML coding
of application data 400, messages 404, screens 402 compo-
nents (optionally workflow 406), part of the raw application
105. It is recognised that XML syntax is used only as an
example of any structured definition language applicable to
coding of the applications 105. The application XML defi-
nitions can be represented as a file (e.g. application.def) that
is generically named and added to the top level (for
example) of a jar application package file.

[0084] Application mapping defines the relationship of
content in the application messaging to backend operation of
the data sources 106, whereby the gateway AG server 112
utilizes this mapping information during communication of
the application 105 request/response messages between the
runtime environment 206, of the devices 100, and the data
sources 106. The mapping information is generated as an
annotation to the data source 106 schema. Thus the mapping
information and the backend data source 106 interface can
be described in a single mapping information file of the
package. For example, the data source 106 description can
be a WSDL schema of a web-service. Further, there may be
multiple such files in the application package file in the case
that more than one backend data source 106 is utilized by the
application 105. All such mapping files can be grouped
together within a mappings folder (not shown) and can be
named according to the data source 106 service name. The
application file extension can be based on the service type,
for example. For example, the artifacts/elements file can
have one such application file in the repository 700 for each
backend data source 106 service supported by the applica-
tion 105, e.g. mappings/WeatherService.wsdl and mappings/
AirlineBookingSystem.wsdl.

[0085] The resources are one or more resources (images,
soundbytes, media, etc. . . .) that are packaged with the
application 105 as static dependencies. For example,
resources can be located relative to a resources folder (not
shown) such that a particular resource may contain its own
relative path to the main folder (e.g. resources/icon.gif,
resources/screens/clipart 1.0/happyface.gif, and resources/
soundbytes/midi/inthemood.midi). The resource bundles
can contain localization information for each language sup-
ported by the application 105. These bundles can be located
in a locale folder, for example, and can be named according
to the language supported (e.g. locale/lang_en.properties
and locale/lang_fr.properties).

[0086] When the component application 105 is completed,
module 122 can publish the application 105 package into the
public/corporate Application Repository 700 and/or deploy
the application 105 directly to Mobile Gateway server 112.

[0087] Tool Computer 14

[0088] Referring to FIG. 5, the computers 14 include a
network connection interface 500, such as a wireless trans-
ceiver or a wired network interface card or a modem,
coupled via connection 518 to a computer infrastructure
504. The connection interface 500 is connectable during
operation of the computer 14 to the network 104, such as to
the wireless network 102 by wireless links (e.g., RF, IR,
etc.), which enables the computers 14 to communicate with
the server 112 and/or the repository 700 (see FIG. 1) for
making available the completed component applications
105. The computers 14 also have a user interface 502,
coupled to the computer infrastructure 504 by connection

Exhibit 1007
Page 21 of 27

US 2006/0200749 Al Sep. 7, 2006
11

522, to interact with the tool user through the administration
module 116. The user interface 502 includes one or more
user input devices such as but not limited to a QWERTY
keyboard, a keypad, a trackwheel, a stylus, a mouse, a
microphone and the user output device such as an LCD
screen display and/or a speaker. If the screen is touch
sensitive, then the display can also be used as the user input
device as controlled by the infrastructure 504. The user
interface 502 is employed by the user of the computers 14
to generate the component applications 105 from the input
applications 107, and then make the completed applications
105 available over the network 104 (see FIG. 1).

[0089] Referring again to FIG. 5, operation of the com-
puters 14 is enabled by the infrastructure 504. The infra-
structure 504 includes the computer processor 508 and the
associated memory module 510. The computer processor
508 manipulates the operation of the network interface 500,
the user interface 502 and the runtime environment 506 by
executing related instructions, which are provided by an
operating system and the tools 12 located in the memory
module 510. Further, it is recognized that the infrastructure
504 can include a computer readable storage medium 512
coupled to the processor 508 for providing instructions to
the processor and/or to load/update the tools 12 in the
memory module 510. The computer readable medium 512
can include hardware and/or software such as, by way of
example only, magnetic disks, magnetic tape, optically read-
able medium such as CD/DVD ROMS, and memory cards.
In each case, the computer readable medium 512 may take
the form of a small disk, floppy diskette, cassette, hard disk
drive, solid state memory card, or RAM provided in the
memory module 510. It should be noted that the above listed
example computer readable mediums 512 can be used either
alone or in combination.

Operation of Conversion Tools 12

[0090] Referring to FIG. 6, the conversion tools 12 can be
represented as a set or suite of tools 122, 124, 126, as a
combined tool 12, or any combination therefore. Interaction
with the user of the computer 14 though the user interface
502 can be such that the raw applications 107 are given as
input to the tool 126 in order to generate the components
400, 402, 404, 406 for storage in the depot storage 114, or
can be such that the generated components 400, 402, 404,
406 are retrieved from storage 114 (in the case where
provided by another user and/or designed manually from
scratch not using the tool 126) and opimised (optional) and
assigned corresponding workflow components using the tool
124. The builder tool 122 would then be used to make the
completed applications 105 available to the repository 700
or directly to the server 112.

[0091] The tools 12 could function in 3 modes, such as but
not limited to:

[0092] Initial (learning) phase—only basic mapping
patterns applied for conversion, admin user monitors
the process and adjusts application 105 generation
during conversion. Optionally, the tools 12 could learn
from the admin actions and adjust mapping patterns of
the module 113 accordingly. After sufficient learning
phase (i.e. a number of various web applications 107
converted to component based applications 105) such
tools 12 are ready to operate in semi-automated mode;

[0093] Semi-automated mode admin user interaction
at page conversion time may no longer be required;
admin only applies validation logic at the application

building phase of the module 122. Optionally, the tools
12 could learn validation rules to enable fully auto-
mated conversion process; and

[0094] Automated mode the admin user only inter-
feres if during the application building phase the vali-
dation subsystem raises alerts on inconsistency of gen-
erated components 400, 402, 404, 406.

[0095] Two examples of converting page-based applica-
tions 107 to component based applications 105 are as
follows.

EXAMPLE 1

[0096] Web page fragment (HTML FORM for entry of
user info):

<FORM action="http://somesite.com/sendUserInfo" method="post">
<P>
<LABEL for="firstname">First name: </LABEL>

<INPUT type="text" id="firstname">

<LABEL for="lastname">Last name: </LABEL>

<INPUT type="text" id="lastname">

<LABEL for="email">email: </LABEL>

<INPUT type="text" id="email">

<INPUT type="radio" name="sex" value="Male"> Male

<INPUT type="radio" name="sex" value="Female"> Female

<INPUT type="submit" value="Send"> <INPUT type="reset">
</P>

</FORM>

[0097] HTML Page Converter of the module 113 gener-
ates the Screen Component 402, Data Component 400, and
Message Component 404 from this form. The components
are generated as follows:

<screen name=" scrUser" type=" form" binding=" dtUser:UserInfo" >
<layout type=" vertical" >

<layout type=" flow" >
<label value=" First Name: " />
<text name=" firstname" binding=" dtUser.fname" />

</layout>
<layout type=" flow" >

<label value=" Last Name: " />
<text name=" lastname" binding=" dtUser.lname" />

</layout>
<layout>

<label value=" email: " />
<text name=" email" binding=" dtUsetemail" />

</layout type=" flow" >
<radio_list binding=" dtUser.sex>

<radio" name="sexl" value="Male"/>
<radio" name="sex2" value="Female"/>

<radio listi>
<button value=" Send" action=" sendUserInfo"
binding=" dtUser" I>

<layout>
</screen>
<data name=" Userinfo" >

<field name=" fname" type=" string" />
<field name=" Iname" type=" string" />
<field name=" email" type=" string" />
<field name=" sex" type=" string" />

</data>
<msg name=" sendUserInfo" type=" out" binding=" dtUser:Userinfo/>

Exhibit 1007
Page 22 of 27

US 2006/0200749 Al Sep. 7, 2006
12

[0098] While seemingly the above example conversion
generates more XML text than in the original HTML, one
should remember that unlike browser application 107 para-
digm in the component based application 105 model the
screen definition can be managed by device UI service 308
(see FIG. 3), data components 400 are persisted in the
device database storage 210 (see FIG. 2) and the message
components 404 are exchanged between the device 100 and
the mobile gateway server 112. Such component application
105 model can result in significant savings of bandwidth,

low latency, ability to work "out of coverage" and therefore
can bring superior user experience.

EXAMPLE 2

[0099] Web page fragment (HTML page with TABLEs):
The method uses HTML tags <P>,
, <TD>, <TR> at
the original web page to format XML screen components
402 accordingly by using combinations of "vertical",
"flow", or "grid" layouts:

<html>

<body>
<h1>Please re
<p>
<table>

</table>
<table>

</table>
<table>

ew your order:</h1>

<tr>

</tr>

<tr>

</tr>
<tr>

</tr>
<tr>

</tr>

<tr>

</tr>
</table>
<p> </p>
<table>

<tr>
<td>Web Store Customer Number:</td>

<td><INPUT type="text" id="number"></td>
</tr>

<td>Items:</td>
<td>Price:</td>

<td>Microsoft Office 2003 Professional Edition</td>
<td>$250</td>

<td>Microsoft Windows XP Professional</td>
<td>$100</td>

<td>Logitech Wireless Mouse</td>
<td>$20</td>

<td>Total:</td>
<td>$370</td>

<td>Web Store Coupon:</td>
<td><INPUT type="text" id="coupon"></td>

</tr>

<td>State:</td>
<td><INPUT type="text" id="state"></td>

</tr>
</table>
<p>Continue</p>
</body>
</DIM>

Step 1: convert page
<screen name=" scrOrder" binding=" dtOrder:Order" >

<layout type=" vertical" >
<label style=" headerl" value=" Please review your order:" />

<layout type=" grid" >
<column>

<label binding=" dtOrder.items.name" />
</column>
<column>

<label binding=" dtOrder. ems.price" />
</column>

</layout>
<layout type=" flow" >

Exhibit 1007
Page 23 of 27

US 2006/0200749 Al Sep. 7, 2006
13

-continued

<label value=" Total:" />
<label binding=" dtOrder.total" />

</layout>
<layout type=" grid" >

<column>
<label value=" Web Store Customer Number:" />
<label value=" Web Store Coupon:" />
<label value=" State:" />

</column>
<text name=" customer" binding=" dtOrder.custNum" I>
<text name=" coupon" binding=" dtOrder.coupon" I>
<text name=" state" binding=" dtOrder.state" I>

</layout>
<button value=" Continue" screen=" scrUser" binding=" dtOrder.userInfo" />

<layout>
</screen>
<data name=" Order" >

<component name=" items" type=" array:Item" I>
<component name=" userInfo" type=" UserInfo" />
<field name=" custNumber" type=" number" />
<field name=" coupon" type=" string" />
<field name=" state" type=" string" />

</data>
<data name=" Item" >

<field name=" name" type=" string" />
<field name=" price" type=" number" />

</data>
Step 2: split page into subpages if too big for mobile terminal

<screen name=" scrOrderl" binding=" dtOrder:Order" >
<layout type=" vertical" >

<label style=" headerl" value=" Please review your order:" />
<layout type=" grid" >

<column>
<label binding=" dtOrder.items.name" />

</column>
<column>

<label binding=" dtOrder.items.price" />
</column>

</layout>
<layout type=" flow" >

<label value=" Total:" />
<label binding=" dtOrder.total" />

</layout>
<button value=" Next" screen=" scrOrder2" binding=" dtOrder" />

<layout>
</screen>
<screen name=" scrOrder2" binding=" dtOrder:Order" >

<layout type=" vertical" >
<layout type=" grid" >

<column>
<label value=" Web Store Customer Number:" />
<label value=" Web Store Coupon:" />
<label value=" State:" I>

</column>
<text name=" customer" binding=" dtOrder.custNum" />
<text name=" coupon" binding=" dtOrder.coupon" I>
<text name=" state" binding=" dtOrder.state" I>

</layout>
<button value=" Continue" screen=" scrUser" binding=" dtOrder.userInfo" />

<layout>
</screen>

[0100] Using the presentation pages from Example 1 and
Example 2, the tools 12 produce linked XML components
400,402,404 with the following workflow components 406:

[0101] a) screens "scrOrderl" and "scrOrder2" are
linked through the action button "Next": data compo-
nent "Order" is passed from one screen to another
during screen navigation;

[0102] b) screens "scrOrder2" and "scrUser" are linked
through the action button "Continue": data component

"UserInfo" (nested in "Order") is passed from one
screen to another during screen navigation; and

[0103] c) screen "scrUser" and message "sendUse-
rInfo" are linked through the action button "Send": the
message "sendUserInfo" carries "UserInfo" data com-
ponent to the server.

[0104] Referring to FIG. 7, operation 702 of the tools 12,
124, 126, 122 is given, recognizing that operation of one tool
can begin where another has finished in the process of
converting the input page-based application 107 to the

Exhibit 1007
Page 24 of 27

US 2006/0200749 Al Sep. 7, 2006
14

component based application 105. At step 704, the applica-
tion 107 is selected for conversion. At step 706 the page
metadata is assembled or other wise created for each pre-
sentation page of the application 107. At step 708 the page
metadata is scaled, if necessary, to be compatible with the
display capabilities of the UI 202 of the device 100 (see
FIG. 2). At step 710 the page metadata is converted into the
selected structured definition language according to the
respective translation algorithm of the module 113. At step
712 the definitions of the translated metadata are organized
into respective data 400, message 404 and appropriate
presentation 402 components. It is recognized that genera-
tion of the presentation components 402 can be done manu-
ally by the user of the computer 14, i.e. separate from the
conversion process implemented by the conversion tools 12.
At step 714 the inherent dependency links of the page-based
application 107, and/or customized dependency links cre-
ated by the user (e.g. subpage navigation) are generated
from the page metadata. It is recognized that generation of
the dependency links can be done combined with step 712,
before step 712, or a combination thereof. At step 716, the
completed components 400, 402, 404 and dependency link
definitions arc stored in the storage module 114. At step 718
the components 400,402,404 are analysed for optimization
(e.g. duplication of components and generation of map-
pings). At step 720 the dependency links are processed by
the module 120 and corresponding selected script language
or other command language is used to represent the links as
a series of instructions in workflow components 406. At step
722 the module 122 assembles the components 400,402,
404,406 and any other suitable application elements/artifacts
(as described above) into the component application 105
package, suitable for sending 724 to the repository and/or
the server 112. Accordingly, the device 100 at step 726
requests the application package 105 from the server 112 for
enabling communication with a selected data source 106.

[0105] It is recognized that component applications 105
which are created using the methods described above can
require less time to create than hard coded applications,
since the component applications 105 do not use full pro-
gramming languages, but rather use standards-based tech-
nologies such as XML and ECMAScript, which are com-
paratively simple and easy to learn. The methods can result
in component applications 105 in which the user-interface
202 and the definition of the data are decoupled. This
decoupling allows for modification of any component 400,
402, 404, 406 in the component application 105 without
affecting and requiring substantial changes to other compo-
nents 400, 402, 404, 406 in the application 105, and thus can
facilitate maintenance of the component applications 105,
including modification and updating of the component
applications 105 on the device 100.

[0106] Although the disclosure herein has been drawn to
one or more exemplary systems and methods, many varia-
tions will be apparent to those knowledgeable in the field,
and such variations are within the scope of the application.
For example, although XML and a subset of ECMAScript
are used in the examples provided, other languages and
language variants may be used to define component appli-
cations 105. It is recognised that the structured definition
languages of the application 107 metadata and the applica-
tion 105 metadata can be the same or different, as desired.

The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as the follows:

1. A method for converting a page-based application to a
component based application configured for execution on a
device, the device configured for communication over a
network with a schema-defined service of a data source, the
page-based application expressed as a series of presentation
pages having embedded data and messaging elements for
interaction with a user interface, the method comprising the
steps of:

assembling a set of page metadata representing at least a
portion of a selected page from the series of pages of
the page-based application, the page metadata
expressed in a first structured definition language;

converting the embedded data elements into a data com-
ponent, the data component containing data descriptors
expressed in a selected structured definition language
of the component based application;

converting the embedded messaging elements into a mes-
sage component, the message component containing
message descriptors expressed in the selected struc-
tured definition language of the component based appli-
cation, the message component operatively coupled to
the data component; and

generating a dependency link associated with an event
corresponding to the embedded elements, the depen-
dency link for describing a workflow of the compo-
nents in respect to operation of the component based
application when executed on a user interface of the
device.

2. The method of claim 1 further comprising the step of
confirming the scale of the page metadata to accommodate
the capabilities of the device user interface.

3. The method of claim 2 further comprising the step of
splitting the set of page metadata into a plurality of subsets
of sub-page metadata according to the capabilities of the
device user interface.

4. The method of claim 3 further comprising the step of
generating an additional dependency link to that of the
dependency Link associated with an event corresponding to
the embedded elements, the additional dependency link
accounting for interaction of the sub-pages.

5. The method of claim 4, wherein the additional depen-
dency link is associated with a user navigation event
between the sub-pages.

6. The method of claim 1 further comprising the step of
automatically generating the dependency link responsive to
the content of the page metadata.

7. The method of claim 1, wherein the step of assembling
further comprises the step of determining the set of page
metadata according to a plurality of analyzed characteristics
of the selected page.

8. The method of claim 7, wherein the page characteristics
are selected from the group comprising: page content vali-
dation, page type, navigation links, user events, page style,
and data dependencies.

9. The method of claim 1, wherein the step of assembling
further comprises the step of parsing the set of page meta-
data from code of the page-based application expressed in
the first structured definition language.

Exhibit 1007
Page 25 of 27

US 2006/0200749 Al Sep. 7, 2006
15

10. The method of claim 9, wherein the first structured
definition language is different from the selected structured
definition language of the component based application.

11. The method of claim 10, wherein the selected struc-
tured definition language is XML and the first structured
definition language is HTML.

12. The method of claim 10, wherein the page metadata
is selected from the group comprising: XML; HTML; JSP;
and ASP formatted definitions.

13. The method of claim 1 further comprising the step of
converting an embedded presentation element of the page-
based application into a presentation component, the pre-
sentation component containing presentation descriptors
expressed in the selected structured definition language of
the component based application.

14. The method of claim 13 further comprising the step of
generating another dependency link associated with an event
corresponding to the embedded presentation element, the
other dependency link for describing a workflow of the
presentation component in respect to operation of the com-
ponent based application when executed on the user inter-
face of the device.

15. The method of claim 13, wherein the conversion of the
elements is assisted by a conversion tool functioning in a
learning mode, the learning mode for teaching the conver-
sion tool to automatically generate the components and the
dependency links.

16. The method of claim 13, wherein the conversion of the
elements is assisted by a conversion tool functioning in a
semi-automated mode, the semi-automated mode for teach-
ing the conversion tool to automatically apply validation
logic to building of the component application using the
generated components and dependency links.

17. The method of claim 13, wherein the conversion of the
elements is assisted by a conversion tool functioning in an
automated mode, the automated mode for detecting incon-
sistency of the generated components and dependency links.

18. The method of claim 1, wherein the data component
defines the data element associated with presentation content
of the selected page of the page-based application.

19. The method of claim 1, wherein the message compo-
nent defines the message element associated communication
between the device and the data source.

20. The method of claim 13, wherein the presentation
component defines the presentation element associated with
presentation content of the selected page of the page-based
application.

21. A system for converting a page-based application to a
component based application configured for execution on a
device, the device configured for communication over a
network with a schema-defined service of a data source, the
page-based application expressed as a series of presentation
pages having embedded data and messaging elements for
interaction with a user interface, the system comprising:

an analyzer module for assembling a set of page metadata
representing at least a portion of a selected page from
the series of pages of the page-based application, the
page metadata expressed in a first structured definition
language;

a data conversion module for converting the embedded
data elements into a data component, the data compo-

nent containing data descriptors expressed in a selected
structured definition language of the component based
application;

a message conversion module for converting the embed-
ded messaging elements into a message component, the
message component containing message descriptors
expressed in the selected structured definition language
of the component based application, the message com-
ponent operatively coupled to the data component; and

a dependency module for generating a dependency link
associated with an event corresponding to the embed-
ded elements, the dependency link for describing a
workflow of the components in respect to operation of
the component based application when executed on a
user interface of the device.

22. The system of claim 21 further comprising a com-
parison module for confirming the scale of the page meta-
data to accommodate the capabilities of the device user
interface.

23. The system of claim 22, wherein the set of page
metadata is split into a plurality of subsets of sub-page
metadata according to the capabilities of the device user
interface.

24. The system of claim 23, wherein the dependency
module generates an additional dependency link to that of
the dependency link associated with an event corresponding
to the embedded elements, the additional dependency link
accounting for interaction of the sub-pages.

25. The system of claim 24, wherein the additional
dependency link is associated with a user navigation event
between the sub-pages.

26. The system of claim 21, wherein the dependency
module automatically generates the dependency link respon-
sive to the content of the page metadata.

27. The system of claim 21, wherein the analyzer module
facilitates the determining of the set of page metadata by
identifying a plurality of analyzed characteristics of the
selected page.

28. The system of claim 27, wherein the page character-
istics are selected from the group comprising: page content
validation, page type, navigation links, user events, page
style, and data dependencies.

29. The system of claim 21, wherein the analyzer module
parses the set of page metadata from code of the page-based
application expressed in the first structured definition lan-
guage.

30. The system of claim 29, wherein the first structured
definition language is different from the selected structured
definition language of the component based application.

31. The system of claim 30, wherein the selected struc-
tured definition language is XML and the first structured
definition language is HTML.

32. The system of claim 30, wherein the page metadata is
selected from the group comprising: XML; HTML; JSP; and
ASP formatted definitions.

33. The system of claim 21 further comprising a presen-
tation module for converting an embedded presentation
element of the page-based application into a presentation
component, the presentation component containing presen-
tation descriptors expressed in the selected structured defi-
nition language of the component based application.

34. The system of claim 33, wherein the presentation
module generates another dependency link associated with

Exhibit 1007
Page 26 of 27

US 2006/0200749 Al Sep. 7, 2006
16

an event corresponding to the embedded presentation ele-
ment, the other dependency link for describing a workflow
of the presentation component in respect to operation of the
component based application when executed on the user
interface of the device.

35. The system of claim 33, wherein the conversion of the
elements is assisted by the conversion modules functioning
in a learning mode, the learning mode for teaching the
conversion tool to automatically generate the components
and the dependency links.

36. The system of claim 33, wherein the conversion of the
elements is assisted by the conversion modules functioning
in a semi-automated mode, the semi-automated mode for
teaching the conversion tool to automatically apply valida-
tion logic to building of the component application using the
generated components and dependency links.

37. The system of claim 33, wherein the conversion of the
elements is assisted by the conversion modules functioning
in an automated mode, the automated mode for detecting
inconsistency of the generated components and dependency
links.

38. The system of claim 21, wherein the data component
defines the data element associated with presentation content
of the selected page of the page-based application.

39. The system of claim 21, wherein the message com-
ponent defines the message element associated communica-
tion between the device and the data source.

40. The system of claim 33, wherein the presentation
component defines the presentation element associated with
presentation content of the selected page of the page-based
application.

41. A computer program product for converting a page-
based application to a component based application config-
ured for execution on a device, the device configured for
communication over a network with a schema-defined ser-

vice of a data source, the page-based application expressed
as a series of presentation pages having embedded data and
messaging elements for interaction with a user interface, the
computer program product comprising:

a computer readable medium;

an analyzer module stored on the computer readable
medium for assembling a set of page metadata repre-
senting at least a portion of a selected page from the
series of pages of the page-based application, the page
metadata expressed in a first structured definition lan-
guage;

a data conversion module coupled to the analyzer module
for converting the embedded data elements into a data
component, the data component containing data
descriptors expressed in a selected structured definition
language of the component based application;

a message conversion module coupled to the analyzer
module for converting the embedded messaging ele-
ments into a message component, the message compo-
nent containing message descriptors expressed in the
selected structured definition language of the compo-
nent based application, the message component opera-
tively coupled to the data component; and

a dependency module coupled to the analyzer module for
generating a dependency link associated with an event
corresponding to the embedded elements, the depen-
dency link for describing a workflow of the compo-
nents in respect to operation of the component based
application when executed on a user interface of the
device.

Exhibit 1007
Page 27 of 27

