
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7 Prepared using smrauth.cls [Version: 2003/05/07 v1.1]

Research

A reference architecture for

web browsers

Alan Grosskurth∗, † and Michael W. Godfrey‡

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

SUMMARY

A reference architecture for a domain captures the fundamental subsystems common
to systems of that domain, as well as the relationships between these subsystems. The
presence of a reference architecture can aid both during maintenance and at design
time: it can improve understanding of a given system, it can aid in analyzing trade-
offs between different design options, and it can serve as a template for designing new
systems and reengineering existing ones. In this paper, we examine the history of the
web browser domain and identify several underlying forces that have contributed to its
evolution. We develop a reference architecture for web browsers based on two well known
open source implementations, and we validate it against five additional implementations.
We analyze the maintenance implications of different strategies for code reuse, and we
identify several underlying evolutionary phenomena in the web browser domain; namely,
emergent domain boundaries, convergent evolution, and tension between open and closed
source development approaches.

key words: Software architecture, reference architecture, software evolution, component reuse, web

browser.

INTRODUCTION

A reference architecture[20] for a domain captures the fundamental subsystems and
relationships between them that are common to existing systems in the domain. It aids in the
understanding of these systems, some of which may not have their own specific architectural
documentation. It also serves as a template for creating new systems by identifying areas in
which reuse can occur, both at the design level and the implementation level. While reference
architectures exist for many mature software domains such as compilers and operating systems,
we are not aware of any reference architectures proposed for web browsers.

∗Correspondence to: Alan Grosskurth, David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
†E-mail: agrossku@uwaterloo.ca
‡E-mail: migod@uwaterloo.ca

Copyright c© 2006 John Wiley & Sons, Ltd.

Exhibit 1016
Page 01 of 19

phan_b
Text Box
Adobe Inc. v. Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755
Exhibit 1016




2 ALAN GROSSKURTH AND MICHAEL W. GODFREY

The web browser is perhaps the most widely used software application in history. It has
evolved significantly over the past fifteen years; today, web browsers run on diverse types
of hardware, from cell phones and tablet PCs to regular desktop computers. Web browsers
are used to conduct billions of dollars worth of Internet-enabled commerce each year. A
reference architecture for web browsers can help implementors to understand trade-offs when
designing new systems, and can assist maintainers in understanding legacy code. Comparing
the architecture of older systems with the reference architecture can provide insight into
evolutionary trends occurring in the domain.

In this paper, we present a reference architecture for web browsers that has been derived
from the source code of two existing open source systems and validate our findings against five
additional systems. We explain how the evolutionary history of the web browser domain has
influenced this reference architecture, and we identify underlying phenomena that can help to
explain current trends. Although we present these observations in the context of web browsers,
we believe many of our findings may represent more general evolutionary patterns which apply
to other domains. This paper is organized as follows: the next section provides an overview of
the web browser domain, outlining its history and evolution. We then describe the process and
tools we used to develop a reference architecture for web browsers based on the source code
of two existing open source systems. Next, we present this reference architecture and explain
how it represents the commonalities of the two systems from which it was derived. We then
provide validation for our reference architecture by showing how it maps onto the conceptual
architectures of five additional systems. Finally, we summarize our observations about the web
browser domain, discuss related work, and present conclusions.

THE WEB BROWSER DOMAIN

Overview

The World Wide Web (WWW) is a universal information space operating on top of the
Internet. Each resource on the web is identified by a unique Uniform Resource Identifier[16]
(URI). Resources can take many different forms, including documents, images, sound clips, or
video clips. Documents are typically written using HyperText Markup Language[14] (HTML),
which allows the author to embed hypertext links to other documents or different places in the
same document. Data is typically transmitted via HyperText Transfer Protocol[15] (HTTP),
a stateless and anonymous means of information exchange. A web browser is a program that
retrieves documents from remote servers and displays them on screen, either within the browser
window itself or by passing the document to an external helper application. It allows particular
resources to be requested explicitly by URI, or implicitly by following embedded hyperlinks.

Although HTML itself is a relatively simple language for encoding web pages, other
technologies may be used to improve the visual appearance and user experience. Cascading
Style Sheets[3] (CSS) allow authors to add layout and style information to web pages without
complicating the original structural markup. JavaScript, now standardized as ECMAScript[4],
is a host environment for performing client-side computations. Scripting code is embedded
within HTML documents, and the corresponding displayed page is the result of evaluating

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 02 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 3

the JavaScript code and applying it to the static HTML constructs. Examples of JavaScript
applications include changing element focus, altering page and image loading behaviour, and
interpreting mouse actions. Finally, there are some types of content that the web browser
cannot display directly, such as Macromedia Flash animations and Java applets. Plugins,
small programs that connect with the browser, are used to embed these types of content in
web pages.

In addition to retrieving and displaying documents, web browsers typically provide the user
with other useful features. For example, most browsers keep track of recently visited web
pages and provide a mechanism for “bookmarking” pages of interest. They may also store
commonly entered form values as well as usernames and passwords. Finally, browsers often
provide accessibility features to accommodate users with disabilities such as blindness and low
vision, hearing loss, and motor impairments.

History and evolution

Although key concepts can be traced back to systems envisioned by Vannevar Bush in the
1940s and Ted Nelson in the 1960s, the WWW was first described in a proposal written by
Tim Berners-Lee in 1990 at the European Nuclear Research Center (CERN)[13]. By 1991, he
had written the first web browser, which was graphical and also served as an HTML editor.
Around the same time, researchers at the University of Kansas had independently begun
work on a text-only hypertext browser called Lynx; they adapted Lynx to support the web
in 1993. In the same year, the National Center for Supercomputing Applications (NCSA)
released a graphical web browser called Mosaic, which allowed users to view images directly
interspersed with text. As the commercial potential of the web began to grow, NCSA founded
an offshoot company called Spyglass to commercialize its technologies and Mosaic’s co-author
left to co-found his own company, Netscape. In 1994, Berners-Lee founded the World Wide
Web Consortium (W3C) to guide the evolution of the web and promote interoperability among
web technologies. In 1995, Microsoft released Internet Explorer (IE), based on code licensed
from Spyglass, igniting a period of intense competition with Netscape known as the “browser
wars.” Microsoft eventually dominated the market, and Netscape released its browser as open
source under the name Mozilla in 1998. Figure 1 shows a timeline of the various releases of
several prominent web browsers.

Since 1998, a large number of Mozilla variations have appeared, reusing the browser core
but offering alternative design decisions for user-level features. Firefox is a standalone browser
with a streamlined user interface, eliminating Mozilla’s integrated mail, news, and chat clients.
Galeon is a browser for the GNOME desktop environment[5] that integrates with other
GNOME applications and technologies. The open source Konqueror browser has also been
reused: Apple has integrated its core subsystems into its OS X web browser, Safari, and Apple’s
modifications have in turn been reused by other browsers. Internet Explorer’s closed source
engine has also seen reuse: Maxthon, Avant, and NetCaptor each provide additional features to
IE such as tabbed browsing and ad-blocking. Although each browser engine typically produces
a similar result, there can be differences as to how web pages look and behave; Netscape 8,
based on Firefox, allows the user to switch between IE-based rendering and Mozilla-based
rendering on the fly.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 03 of 19



4 ALAN GROSSKURTH AND MICHAEL W. GODFREY

Lynx

Hybrid

Closed−source

Open−source

Legend

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

W
3C

 fo
un

de
d

1.0 2.0 2.4 2.85

6.05.55.04.03.02.01.0

1.0 2.0 3.0

1.0 2.0 3.0 4.0 4.5

M18

6.0

1.0 1.7

8.0

Internet Explorer

Mosaic

Netscape

Mozilla

Galeon

1998−03−31

1.0

1.0

1.2

0.5

Safari
0.8 1.0

3.02.01.0
Konqueror

0.4
Epiphany

Firefox

7.0

3.02.1
Opera

7.06.05.04.0

20
06

1.5

8.0

Nokia S60 Browser

2.0

1.2

1.0 1.8

Figure 1. Web browser timeline

rawlink

Program
facts

Object
code

Source
code

bfxBuild

Linked
program

facts

liftfileaddcontain

File level
program

facts

addschema

Facts with

osition

decomp−
Predefined
landscape
schema

Hierarchichal
subsystem

decomposition

Software
landscape

Conceptual

Architecture

Concrete

Architecture

Adjustments

lsedit

Legend

Tool

jgrok script

Data flow

Human interaction

Figure 2. Extraction process for concrete architecture

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 04 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 5

Browser Engine

Rendering Engine

Networking
JavaScript
Interpreter

XML
Parser

D
ata P

ersistence
Display Backend

User Interface

Figure 3. Reference architecture for web browsers

DERIVING A REFERENCE ARCHITECTURE

Using the source code and available documentation for two mature web browser
implementations, we derived a reference architecture for the web browser domain. We used
a process similar to that described by Hassan and Holt[26]. For each browser, a conceptual
architecture was proposed based on domain knowledge and available documentation. The
concrete architecture of each system was then extracted from its source code using the
QLDX[8] reverse engineering toolkit, and this concrete architecture was then used to refine
the conceptual architecture. A reference architecture was then proposed based on the common
structure of these refined architectures, and it was validated against five other browser
implementations.

A REFERENCE ARCHITECTURE FOR WEB BROWSERS

The reference architecture we derived is shown in Figure 3. It comprises eight major subsystems
plus the dependencies between them:

1. The User Interface subsystem is the layer between the user and the Browser Engine. It
provides features such as toolbars, visual page-load progress, smart download handling,
preferences, and printing. It may be integrated with the desktop environment to provide
browser session management or communication with other desktop applications.

2. The Browser Engine subsystem is an embeddable component that provides a high-level
interface to the Rendering Engine. It loads a given URI and supports primitive browsing
actions such as forward, back, and reload. It provides hooks for viewing various aspects
of the browsing session such as current page load progress and JavaScript alerts. It also
allows the querying and manipulation of Rendering Engine settings.

3. The Rendering Engine subsystem produces a visual representation for a given URI.
It is capable of displaying HTML and Extensible Markup Language (XML) documents,

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 05 of 19



6 ALAN GROSSKURTH AND MICHAEL W. GODFREY

optionally styled with CSS, as well as embedded content such as images. It calculates the
exact page layout and may use “reflow” algorithms to incrementally adjust the position
of elements on the page. This subsystem also includes the HTML parser.

4. The Networking subsystem implements file transfer protocols such as HTTP and FTP.
It translates between different character sets, and resolves MIME media types for files.
It may implement a cache of recently retrieved resources.

5. The JavaScript Interpreter evaluates JavaScript (also known as ECMAScript) code,
which may be embedded in web pages. JavaScript is an object-oriented scripting language
developed by Netscape. Certain JavaScript functionality, such as the opening of pop-up
windows, may be disabled by the Browser Engine or Rendering Engine for security
purposes.

6. The XML Parser subsystem parses XML documents into a Document Object Model
(DOM) tree. This is one of the most reusable subsystems in the architecture. In
fact, almost all browser implementations leverage an existing XML Parser rather than
rewriting their own from scratch.

7. The Display Backend subsystem provides drawing and windowing primitives, a set of
user interface widgets, and a set of fonts. It may be tied closely with the operating
system.

8. The Data Persistence subsystem stores various data associated with the browsing session
on disk. This may be high-level data such as bookmarks or toolbar settings, or it may
be low-level data such as cookies, security certificates, or cache.

The reader may wonder why we have placed the HTML parser within the rendering engine
subsystem, while isolating the XML parser in a subsystem of its own. The answer: although
arguably less important to the functionality of the system, the XML parser is a generic,
reusable component with a standard, well-defined interface. In contrast, the HTML parser is
often tightly integrated with the rendering engine for performance reasons and can provide
varying levels of support for broken or nonstandard HTML. This tight integration is the result
of a design decision and seems to be a common feature of web browser architectures.

Mozilla

The Mozilla Suite was released as open source by Netscape in 1998. Most of the system has since
been redesigned or rewritten, and a large number of new features have been added. Mozilla’s
key design goals are strong support for web standards, support for multiple platforms, and fast
page rendering. We examined version 1.7.3, which consists of approximately 2,400 kLOC. Most
of the source code is written in C++, although large parts of the user interface are written in
JavaScript and some legacy components are written in C. We built and extracted the Linux
version of Mozilla, which uses the GTK toolkit.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 06 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 7

Necko

Security
(NSS/PSM)

Spider−
Monkey

Expat GTK+
Adapter

JavaScript
Interpreter

XML
Parser

B
row

ser P
ersist.

Networking Display Backend

Rendering Engine

Browser Engine

UI Toolkit (XPFE)

User Interface

U
ser, S

ecure,

User Interface

GTK+ / X11 Libraries

D
ata P

ersistence
Gecko

Figure 4. Architecture of Mozilla

User Interface

Qt / X11 Libraries

XML

Parser
Display Backend

JavaScript
Interpreter

Networking

Rendering Engine

Browser Engine

KIO

Data Persistence

KHTML

KHTMLPart

PCRE

User Interface

KJS

Persist.

Engine

KWallet

Persist.

User

Figure 5. Architecture of Konqueror

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 07 of 19



8 ALAN GROSSKURTH AND MICHAEL W. GODFREY

The mapping of Mozilla’s conceptual architecture onto the reference architecture is shown
in Figure 4. The User Interface is split over two subsystems, allowing for parts of it to
be reused in other applications in the Mozilla suite such as the mail/news client. All data
persistence is provided by Mozilla’s profile mechanism, which stores both high-level data such
as bookmarks and low-level data such as a page cache. Mozilla’s Rendering Engine is larger and
more complex than that of other browsers. One reason for this is Mozilla’s outstanding ability
to parse and render malformed or broken HTML. Another reason is that the Rendering Engine

also renders the application’s cross-platform user interface. The UI is specified in platform-
neutral Extensible User Interface Language (XUL), which in turn is mapped onto platform-
specific libraries using specially written adapter components. This architecture distinguishes
Mozilla from other browsers in which the platform-specific display and widget libraries are
used directly, and it minimizes the maintenance effort required to support multiple, diverse
platforms.

Konqueror

Konqueror[7] is the official web browser of the K Desktop Environment[6] (KDE). It can also
serve as a graphical file manager and a general-purpose file viewer. Development on the browser
began in 1999, and its main design goals are speed, standards compliance, and integration with
KDE. We examined release 3.3.2, which consists of approximately 613 kLOC, including the
required KDE libraries. Konqueror is written entirely in C++, as is most of the code in KDE.
We found Konqueror’s codebase to be very well organized. Modules are split up cleanly into
subdirectories and often contain a concise design document explaining the main abstractions
and design decisions.

The mapping of Konqueror’s conceptual architecture onto the reference architecture is shown
in Figure 5. Konqueror makes extensive use of various KDE libraries: KHTML performs
parsing, layout, and rendering of web pages; KJS interprets embedded JavaScript code;
KWallet stores sensitive data, such as passwords, with strong encryption and error detection;
and KIO is an asynchronous virtual file system that automatically provides encoding and
decoding over common protocols. The XML Parser and Display Backend subsystems are
both provided by the Qt toolkit[9], which serves as the basis for all KDE applications;
these subsystems are external to the browser itself. The Perl Compatible Regular Expressions
(PCRE) library is used as a backend for the regular expression functionality of the JavaScript

Interpreter. PCRE is a mature and well-tested component used in many other high-profile
open source projects including Python and Apache. Data Persistence is provided at three
levels. First, some high-level data such as bookmarks and history is stored by Konqueror
itself. Second, other high-level data such as form completions is stored by KHTML. Third,
secure data such as passwords is stored by KWallet, which allows this data to be shared with
other KDE applications.

We found that Konqueror makes extensive use of existing libraries that handle difficult
tasks. In contrast, Mozilla has developed almost all of these libraries in-house, delegating to
other libraries only when necessary. A consequence of this is that Konqueror is closely tied
to UNIX-like operating systems and the Qt toolkit, while Mozilla supports several different

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 08 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 9

operating systems and display toolkits. However, as we will see in the next section, Apple was
able to adapt Konqueror to its own needs by removing the dependency on Qt.

VALIDATING THE REFERENCE ARCHITECTURE

Five additional implementations were chosen against which to validate the reference
architecture: Epiphany, Safari, Lynx, Mosaic, and Firefox. Epiphany was chosen because it
demonstrates reuse using exclusively open source components—it combines Mozilla’s engine
with GNOME desktop components. Safari was chosen because it represents an interesting mix
of open and closed source technology—Apple has adapted Konqueror’s core subsystems to use
OS X libraries and added a proprietary user interface. Lynx was chosen because it is the oldest
web browser still regularly used and maintained. Mosaic was chosen because it was the first
widely used graphical web browser. Firefox was chosen because of its exceptional extensibility.

Epiphany

Epiphany is the official browser of the GNOME desktop, and it embeds the Mozilla engine. The
project was started in 2003 as a separate code branch of the Galeon browser (first released in
2000) because of disagreements over user interface design decisions. We examined the source of
code release 1.4.6, which is approximately 70 kLOC, although it requires approximately 1,500
kLOC of Mozilla engine code to function. Apart from the Mozilla engine code, all of Epiphany
is written in C.

The mapping of Epiphany’s conceptual architecture onto the reference architecture is shown
in Figure 6. Since Epiphany reuses Mozilla’s entire engine, the only differing subsystems are
the User Interface and the Data Persistence subsystems. Epiphany’s architecture contains
two XML parsers: Expat is used in the Mozilla engine for parsing web content (the typical
use corresponding to the XML Parser subsystem), while libxml2 is used by Epiphany to
serialize high-level application data. Since the Expat parser is hidden as an implementation
detail inside Mozilla, it is not possible for Epiphany to reuse it for this task.

Another component that Epiphany does not take full advantage of is Mozilla’s XUL
abstraction layer, which allows consistent user interfaces across multiple platforms. Instead,
Epiphany directly uses the GTK+ toolkit, one of the supported XUL backends, along with
several GNOME libraries. This is done in order to achieve closer integration with the GNOME
desktop. It is interesting to note that data persistence is provided at three separate levels.
User preferences are stored by the GConf configuration system, which stores preferences for
all GNOME applications. High-level data such as toolbars, history, and bookmarks is stored
by Epiphany itself in an XML format. Finally, low-level data such as cache, certificates, and
cookies is stored by Mozilla’s profile mechanism.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 09 of 19



10 ALAN GROSSKURTH AND MICHAEL W. GODFREY

GTK+
Adapter

GTK+ / X11 Libraries

Expat
Spider−
Monkey

JavaScript
Interpreter

XML
Parser

Necko

Security
(NSS/PSM)

Networking Display Backend

Data Persistence

Browser Engine

Rendering Engine

Gecko

User Interface

User Interface

Engine

Persistence

(Mozilla)

User Pref.

Persistence

(GConf)

User Data

Persistence

(libxml2)

Figure 6. Architecture of Epiphany

KJS

Networking

P
ersist.

P
ersist.

U
ser

B
row

ser

PCRE

JavaScript
Interpreter

XML Display Backend

ExpatFoundation
Core

User Interface

Cocoa / Carbon

Parser

User Interface

Browser Engine

K
eychain

Rendering Engine

Adapter (KWQ)

KHTML

D
ata P

ersistence

Brower Engine (WebKit)

Figure 7. Architecture of Safari

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 10 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 11

Epiphany’s approach to code reuse has affected the way maintenance must be performed.
Epiphany treats the Mozilla code as a blackbox—it is reused without modification and all
communication takes place through a small number of well-defined interfaces. Epiphany’s code
is stored in a repository for the GNOME desktop; Mozilla’s code is stored in a repository for all
Mozilla products. The two projects use separate bug-tracking systems and mailing lists. This
approach avoids duplication of effort; bug fixes and feature enhancements to the Mozilla engine
are realized immediately in Epiphany, as long as the relevant interfaces are not changed. If
they are, Epiphany developers need to modify Epiphany to make use of the updated interfaces.
Consequently, for each release of Epiphany, there is typically one suggested version of Mozilla
with which it is compatible and stable.

Safari

Safari[10] is a web browser developed by Apple Computer for its Mac OS X operating system.
The first version was released in January 2003. The main design goals for Safari are usability,
speed, standards compliance, and integration with OS X. Safari reuses the KHTML rendering
engine and the KJS JavaScript interpreter from the KDE project. The modified versions are
called WebCore and JavaScriptCore, and are released under the GNU Lesser General Public
License (LGPL). However, the rest of Safari’s code is proprietary, including the user interface.†

We examined the source code of release 125 of WebCore and JavaScriptCore, which consists
of 114 kLOC of C++ code and 22 kLOC of Objective C++. Since we could not extract the
proprietary parts, their structure was inferred from Apple’s developer documentation[2].

The mapping of Safari’s conceptual architecture onto the reference architecture is shown
in Figure 7. The Rendering Engine is composed of the KHTML core engine wrapped in the
KWQ adapter. KWQ is written in Objective C++, allowing it to present an Objective C
API to KHTML, which is written in C++. This was needed for integrating Safari into OS X.
Networking functionality is provided by OS X’s Core Foundation networking library, used
in place of KIO. The XML Parser subsystem is provided by the Expat XML parser, used
in place of the XML Parser provided by the Qt toolkit. The Display Backend subsystem is
composed of two complementary libraries: Carbon and Cocoa. Carbon provides a lower-level
C API for display routines, while Cocoa provides a higher-level Objective C API. Persistent
data is handled by three separate system-wide services that are built into OS X: Preferences,
Keychains, and Caches. The use of these services allows Safari to to integrate smoothly with
other OS X applications.

Overall, Safari’s conceptual architecture corresponds well to our reference architecture.
Safari reuses the core engine from Konqueror, substitutes a Mac OS X look-and-feel, and makes
use of other components and libraries native to OS X in place of the Linux- and KDE-specific
components of Konqueror. Apple maintains its own parallel version of Konqueror’s engine in
order to achieve total control over its development and adapt the code to fit the needs of
OS X. A consequence of this decision is that bug fixes and new features contributed to Safari

†In June 2005, Apple released another component of Safari, the WebKit framework, as open source.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 11 of 19



12 ALAN GROSSKURTH AND MICHAEL W. GODFREY

must be propagated manually to Konqueror (and vice versa), or else rewritten from scratch.
Since the initial fork, Safari’s engine has been developed at a faster pace than Konqueror’s
with various OS X-specific changes, causing the two codebases to diverge. Recently, however,
updates to Safari were reused in Konqueror, helping it pass the Acid2 browser test[1]. Also,
several technologies from Konqueror have been ported to Safari, including the scalable vector
graphics engine (KSVG2), the new Document Object Model architecture (KDOM), and the
render tree library (KCanvas).

Lynx

Lynx is a one of the most popular text-only browsers in use today. It predates the WWW,
first serving as an interface for an “organization-wide information system.” Custom hypertext
capabilities were then added, followed by support for the Gopher protocol. Finally, support
for WWW protocols was grafted on, making Lynx into a true web browser. This incremental
development process has resulted in a system composed of small fragments of code with no
coherent overall structure. Furthermore, much of the code is low-level and platform-specific,
increasing its complexity.

The mapping of Lynx’s conceptual architecture onto the reference architecture is shown in
Figure 8. The libwww library provides a wide variety of functionality such as HTML parsing
and support for both the HTTP and FTP protocols. The libgnutls library provides optional
support for secure protocols. The curses library is used to display and navigate information
on character-cell terminals. Lynx’s conceptual architecture shows a clear separation between
three main subsystems: browser core, networking, and display backend; however, there is no
clear separation between the User Interface, Browser Engine, Rendering Engine, and Data

Persistence subsystems. This is likely because they are less complex due to Lynx’s text-only
nature—the rendering engine outputs web pages in linear form rather than attempting to
lay out elements at appropriate coordinates, and the user interface relies solely on keyboard
input rather than dealing with menus, widgets, and mouse events. Lynx does not contain a
JavaScript Interpreter or an XML Parser because these are relatively modern features that
are not yet supported.

The lack of modularity and the text-only nature of Lynx make its conceptual architecture
much simpler than our reference architecture. The missing components draw attention to
changes that have occurred in the web browser domain since the era when Lynx was actively
being developed. Due to the distributed and open nature of the web, new technologies are
constantly being employed by browsers to enhance the user experience. Once browser support
for a particular technology reaches a critical threshold, authors may begin using the technology
in their web pages. This effectively makes browsers that do not keep pace, such as Lynx, less
useful than browsers that do. However, Lynx still suffices for browsing many types of sites,
hence its continued popularity with some users.

Mosaic

Mosaic is the first graphical web browser designed for widespread use. First released in
1993, it introduced numerous innovations such as rendering images interspersed with text

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 12 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 13

Rendering Engine

Browser Engine

Browser Core

User Interface

Security
(libgnutls)

JavaScript

Interpreter

XML

Parser
Curses

Display Backend

libwww

Data
Persistence

Networking

Figure 8. Architecture of Lynx

Browser Engine

Browser Core Persistence
Data

Client
Common

Interface

User Interface

libwww

Networking

libhtmlw
Engine

Rendering

Interpreter

JavaScript XML

Parser

motif / X11

Display Backend

Figure 9. Architecture of Mosaic

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 13 of 19



14 ALAN GROSSKURTH AND MICHAEL W. GODFREY

and multimedia capabilities. It was developed at NCSA by a small team of programmers.
Separate versions were maintained for each of the Windows, Mac, and UNIX platforms,
although some common code was shared among them. Mosaic was surpassed by Netscape
and Internet Explorer, and development stopped officially in 1997. Although source code for
the UNIX version was publicly available, the license for it is not technically open source. It is
still possible to obtain the source code and compile and run it on current UNIX systems. We
examined the source code of release 2.7b6, which is approximately 88 kLOC and is written
entirely in C.

The mapping of Mosaic’s conceptual architecture onto the reference architecture is shown in
Figure 9. As with Lynx, Mosaic is too old to contain modern subsystems such as a JavaScript

Interpreter or XML Parser. The Rendering Engine subsystem is realized by libhtmlw, a
generic display widget used to render document data. Although it performs the same task as
modern rendering engines, it is much smaller in size because the layout options for early web
pages were vastly simpler than they are for modern web pages. The Common Client Interface
(CCI) was an experimental subsystem that allowed external applications to communicate
with currently running sessions of Mosaic via TCP/IP. Using the CCI, a client could perform
HTTP actions including GET and POST, arrange to have particular types of rendering output
forwarded to it, or register to be notified each time Mosaic loaded a new URI. The CCI is
closely coupled with the browser core and is an interesting example of a subsystem not typically
found in modern web browsers.

Mosaic reuses Tim Berners-Lee’s libwww library, albeit heavily modified, as does Lynx. Many
of the changes made by Mosaic were later incorporated back into the original version of the
library. This early instance of open source code reuse among browsers marks the beginning of a
crucial trend in the web browser domain: the willingness of implementors to build on existing,
mature code rather than attempting to develop equivalent functionality from scratch. At the
time, libwww was the only library available providing HTTP protocol and HTML parsing
functionality, and its reuse dramatically reduced the amount of effort required to develop a
new web browser.

Firefox

Firefox is a variation of Mozilla, providing a streamlined interface and removing many of
the integrated components such as clients for mail, news, and chat. We examined release 1.0
of Firefox, which is approximately 2,400 kLOC (it shares most of its code with the Mozilla
Suite). In most respects, Firefox’s conceptual architecture is similar to Mozilla’s; hence we will
not show a mapping of it onto the reference architecture. However, Firefox does contain one
notable feature not found in the reference architecture: a powerful extension facility. While
standard browser plugins are used to display content that the browser is unable to display
directly, extensions can “hook in” and alter the browser at various levels in the architecture.
For example, extensions can modify user interface elements such as toolbars and menus, capture
user interface events such as mouse clicks, alter the way web pages are rendered, and provide
support for additional network protocols.

Extensions have implications with respect to software maintenance. When a new version of
Firefox is released, the interfaces used by extensions to communicate with the browser are often

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 14 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 15

modified. This means extensions are only compatible with certain versions of the browser, and
must be updated frequently to maintain compatibility with newer versions. Extensions are
typically developed in different source code repositories and by different engineers. This can
result in overlapping functionality, and in some cases conflicting behavior among extensions.
Finally, extensions have the potential to create security vulnerabilities in Firefox. For example,
Greasemonkey is an extension that lets users add scripts to any web page to change its behavior,
and some early versions contained a security hole that allowed malicious web sites to read any
file on the user’s hard drive. Fortunately, the extension developer was able to quickly release
a temporary fix. However, had this not been the case, the Firefox developers might taken
advantage of the fact that Greasemonkey is open source and created their own security patch.

SUMMARY AND OBSERVATIONS

Our reference architecture for web browsers identifies the key subsystems found in modern
implementations, as well as the relationships between them. In addition to serving as a
guide for maintenance and reengineering, it serves as a valuable framework for comparing
browser implementations, both past and present. We have validated the reference architecture
with five additional open source browsers and examined the results. Overall, we have found
these implementations correspond quite closely, although there are several reasons why their
architectures differ from our reference architecture. Some of the subsystems in the reference
architecture may be combined as a single subsystem for simplicity, while others may be spread
across multiple subsystems in the web browser for greater flexibility. New subsystems may be
added to provide additional capabilities, while others may be omitted to make the browser
more lightweight.

Table I shows various statistics about the different web browsers studied.‡ Konqueror
achieves nearly the same breadth of functionality as Mozilla with approximately one-quarter
of the amount of code. Lynx, while smaller than the other browsers, is still five times larger
than Links, a more recent text-only browser with a comparable feature set. We are unable
to obtain complete size information for Safari because of its closed source components; the
numbers shown correspond only to the open source parts.

The different approaches to code reuse and maintenance demonstrated by Epiphany and
Safari are driven by the number of resources available to each project. Epiphany is developed
by a small team of engineers, who work on the project in their spare time as volunteers. The
“blackbox” approach to reusing Mozilla’s engine allows Epiphany to take advantage of the
efforts of the large number of engineers who contribute to Mozilla, some of whom are employed
full-time to work on the project. Safari, on the other hand, has its own team of engineers
employed full-time by Apple. The “whitebox” approach to reusing Konqueror’s engine allows
Apple to tailor the browser to its own needs, while at the same time manually propagate any

‡Data obtained using David A. Wheeler’s SLOCCount[11] package.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 15 of 19



16 ALAN GROSSKURTH AND MICHAEL W. GODFREY

Table I. Approximate web browser statistics

Project Version Language Files kLOC Start
Mozilla 1.7.3 C++, C 10,700 2,400 1998
Konqueror 3.3.2 C++ 3,150 600 1996
Epiphany 1.4.6 C++, C 7,230 1,540 2000
Safari 1.2 C++, Obj C > 1,550 >230 2003
Lynx 2.8.5 C 200 120 1989
Mosaic 2.7b6 C 295 88 1993
Firefox 1.0 C++, C 10,700 2,400 2002

important changes from Konqueror when desired. Conversely, Konqueror is sometimes able to
propagate changes made by Apple to its own engine.

The recent arrival of cell phone web browsers represents disruptive change in the evolutionary
history of browsers. Previously, cell phones had monochrome, text-only screens and extremely
small amounts of memory, providing a limited platform for browsing. The approach taken by
wireless providers was to create WAP[22] gateways, which translated HTML into stripped-
down markup that was displayed in a page-at-a-time fashion. However, as cell phone displays
and interfaces became more advanced, cell phone browsers began to render the same HTML
pages as regular browsers. Currently, many cell phones have high-resolution color displays and
increased amounts of memory. This allows them to run stripped-down versions of desktop
browsers, although the user interfaces are typically tuned to accommodate the smaller screen
and limited input methods[19]. Opera has released a mobile version of its browser that includes
many features traditionally found only in desktop browsers, such as bookmarks and password
management; Nokia has released a browser based on WebCore that displays a thumbnail
rendering of the whole web page and allows the user to zoom in on areas of interest.

RELATED WORK

Reference architectures have been proposed for other domains, including real-time train control
systems[20], avionics[12], and web servers[26]. Product line architectures[18] are similar to
reference architectures, although they generally represent a group of systems intended to be
produced by a single organization, while reference architectures represent the entire spectrum
of systems in a domain. Various aspects of Mozilla’s architecture and development process
have been studied[24][28][21].

Larrondo-Petrie et. al. have used object-oriented domain analysis to create a domain model,
object model, and feature tree that describe the structure and functionality commonly provided
by web browsers[27]. However, they do not extract the concrete architectures of browsers to
refine their models. Chuang, et al. have conducted a quantitative energy-profiling study of
Konqueror in order to examine the feasibility of their proposed profiling solution and aid in
the possible design of an energy-efficient browser[17].

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 16 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 17

CONCLUSIONS

We have examined the history and evolution of the web browser domain, developed a reference
architecture for web browsers based on two existing implementations, and validated this
reference architecture by mapping it onto five additional implementations. We have analyzed
the maintenance implications of the different code reuse strategies employed by these browsers.
We have also observed several interesting evolutionary phenomena in the web browser domain;
namely, emergent domain boundaries, convergent evolution, and tension between open and

closed source development approaches.
As the web browser domain has evolved, its conceptual boundaries—both external and

internal—have become increasingly more defined. However, there are still discrepancies as to
the nature of these boundaries. Microsoft has claimed that Internet Explorer is a fundamental
part of the Windows operating systems, providing rendering functionality to other applications.
This has posed a problem for third-party browsers such as Netscape that sought to compete
with IE. Similarly, mail, news, and ftp client functionality have been integrated into the
Netscape and Mozilla browsers, discouraging competition from external clients. It will be
interesting to observe how the web browser domain adapts to support embedded devices such
as cell phones and PDAs, where limited memory makes it undesirable to deploy multiple
competing applications.

The large amount of effort devoted to creating high-quality open source browser
implementations has had a profound influence on the domain. During the “browser wars,”
proprietary extensions were added to core components in order to attract customers. Today,
increased pressure to comply with standards has led to the general reuse of core components;
the browsers are mainly differentiated by their user-level features. However, these features are
often easily duplicated; for example, tabbed browsing and pop-up blocking were once innovative
features but are now commonplace. These observations suggest that the web browser domain
is exhibiting a form of convergent evolution[23] (i.e. species are independently evolving similar
morphological features).

The availability of mature browser components has also resulted in tension between open
and closed source development approaches. Mozilla’s open source engine has been reused in
numerous applications, both open and closed source. Similarly, Konqueror’s open source engine
has been used as the basis for Safari. As per the terms of the license, Apple has contributed
its changes to open source components back to the community. Conversely, Internet Explorer
represents a closed source engine that can potentially be embedded in an otherwise open
source product. Netscape 8 strikes a balance by embedding both the Mozilla and IE engines,
allowing users to switch on the fly. While we have seen applications composed of both open
and closed source components before, the interaction usually takes place on the perimeter, as is
the case with closed source binary modules for the Linux kernel. We believe the heterogeneous
combination of core open and closed source software components within individual systems
makes the web browser domain unique in terms of software maintenance and evolution.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 17 of 19



18 ALAN GROSSKURTH AND MICHAEL W. GODFREY

ACKNOWLEDGEMENTS

An earlier version of this paper[25] appeared in the Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05).

We thank Ali Echihabi for his contributions to an earlier project, as well as Ric Holt for his feedback
and advice.

REFERENCES

1. Acid2 browser test home page. http://www.webstandards.org/act/acid2/.
2. Apple developer documentation. http://developer.apple.com/documentation.
3. Cascading Style Sheets home page. http://www.w3.org/Style/CSS.
4. ECMAScript language specification. http://www.ecma-international.org/publications/standards/

Ecma-262.htm.
5. Gnome desktop environment. http://gnome.org.
6. K Desktop Environment home page. http://kde.org.
7. Konqueror web browser home page. http://konqueror.org.
8. QLDX reverse engineering toolkit home page. http://swag.uwaterloo.ca/qldx.
9. Qt application development framework home page. http://www.trolltech.com/products/qt.

10. Safari web browser home page. www.apple.com/safari.
11. SLOCCount home page. http://www.dwheeler.com/sloccount/.
12. Don Batory, Lou Coglianese, Mark Goodwin, and Steve Shafer. Creating reference architectures: An

example from avionics. In Proceedings of the 1995 Symposium on Software Reusability (SSR’95), pages
27–37, 1995.

13. Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web
by Its Inventor. Harper San Francisco, 1999.

14. Tim Berners-Lee and Dan Connolly. Hypertext markup language — 2.0, RFC 1866, November 1995.
15. Tim Berners-Lee, Roy Fielding, and H. Frystyk. Hypertext transfer protocol — HTTP/1.0, RFC 1945,

May 1996.
16. Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource identifier (uri): Generic syntax,

RFC 3986, January 2005.
17. Chen-Ting Chuang, Chin-Fu Kuo, Tei-Wei Kuo, and Ai-Chun Pang. A multi-granularity energy profiling

approach and a quantitative study of a web browser. In Proceedings of the 10th International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS’05), 2005.

18. Paul Clements and Linda M. Northrop. Software product lines: practices and patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

19. O. de Bruijn, R. Spence, and M. Y. Chong. RSVP browser: Web browsing on small screen devices.
Personal Ubiquitous Computing, 6(4):245–252, 2002.

20. Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, and Berndt Bellay. Software architecture recovery of a
program family. In Proceedings of the 20th International Conference on Software Engineering (ICSE’98),
pages 508–511, 1998.

21. Michael Fischer and Harald Gall. Visualizing feature evolution of large-scale software based on problem
and modification report data. Journal of Software Maintenance and Evolution: Research and Practice,
16:385–403, 2004.

22. WAP Forum. Wireless transaction protocol, version 10, July 2001.
23. Douglas J. Futuyma. Evolutionary Biology. Sinauer Associates, Sunderland, MA, USA, 3rd edition, 1998.
24. Michael Godfrey and Eric H. S. Lee. Secrets from the monster: Extracting Mozilla’s software architecture.

In Second International Symposium on Constructing Software Engineering Tools (CoSET’00), June 2000.
25. Alan Grosskurth and Michael W. Godfrey. A reference architecture for web browsers. In ICSM’05:

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05), pages 661–
664, Washington, DC, USA, 2005. IEEE Computer Society.

26. Ahmed E. Hassan and Richard C. Holt. A reference architecture for web servers. In Proceedings of the
7th Working Conference on Reverse Engineering (WCRE’00), pages 150–160, 2000.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 18 of 19



A REFERENCE ARCHITECTURE FOR WEB BROWSERS 19

27. Maria M. Larrondo-Petrie, Krishnakumar R. Nair, and Gopal K. Raghavan. A domain analysis of web
browser architectures, languages and features. In Southcon/96 Conference Record, pages 168–174, June
1996.

28. Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source software
development: Apache and Mozilla. In ACM Trans. Software Engineering and Methodology, pages 11(3),
309–346, 2002.

AUTHORS’ BIOGRAPHIES

Alan Grosskurth is currently pursuing an M.Math in Computer Science at
the University of Waterloo under the supervision of Dr. Michael W. Godfrey. He
graduated from the University of Toronto with a B.Sc. in Computer Science and
Mathematics in 2004. His research interests include software evolution, software
build systems, and computer security.

Michael W. Godfrey is an assistant professor in the David R. Cheriton
School of Computer Science at the University of Waterloo. He is the associate
chairholder of the Industrial Research Chair in Telecommunications Software
Engineering sponsored by Nortel Networks, the National Science and Engineering
Research Council (NSERC), and the University of Waterloo. He holds a Ph.D.
in Computer Science from the University of Toronto (1997) and has also been
a faculty member at Cornell University. His research interests include software
architecture extraction and modelling, reverse engineering, software evolution,
and program comprehension.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–7
Prepared using smrauth.cls

Exhibit 1016
Page 19 of 19




