
(12) United States Patent
Mourra et al.

US007873625B2

US 7.873,625 B2
Jan. 18, 2011

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)
(58)

(56)

FILE INDEXING FRAMEWORKAND
SYMBOLICNAME MAINTENANCE
FRAMEWORK

Inventors: John Mourra, Toronto (CA); Vladimir
Klicnik, Oshawa (CA); Lok Tin Loi.
Toronto (CA); Hiroshi Tsuji, Stouffville
(CA)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 304 days.

Appl. No.: 11/532,804

Filed: Sep. 18, 2006

Prior Publication Data

US 2008/OO71805 A1 Mar. 20, 2008

Int. C.
G06F 7700 (2006.01)
G06F 7/30 (2006.01)
U.S. Cl. 707/711; 707/741
Field of Classification Search None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,893,232 A 1/1990 Shimaoka et al. 707/1
5,481,683 A 1/1996 Karim
5,787,435 A * 7/1998 Burrows 707/102
5,806,058 A * 9/1998 Mori et al. 707/2
5,933,820 A * 8/1999 Beier et al. 707/1
6,366,956 B1 4/2002 Krishnan
6,460,178 B1 10/2002 Chan et al.

6,640,225 B1 * 10/2003 Takishita et al. 707/5
6,654,758 B1 1 1/2003 Teague
6,741,988 B1 5, 2004 Wakefield et al.
6,760,694 B2 7/2004 Al-Kazily et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP O405829 1, 1999

OTHER PUBLICATIONS

Kendrick et al., “Method for Supporting Non-Text Objects in an
Index Structure that Originally Supported Only Text Records”, Tech
nical Disclosure Bulletin Jan. 1988, pp. 155-162.

(Continued)
Primary Examiner Pierre MVital
Assistant Examiner—Augustine Obisesan
(74) Attorney, Agent, or Firm—Scott D. Paul, Esq.; Carey
Rodrigues Greenberg & Paul LLP

(57) ABSTRACT

The present invention provides a file management system that
includes a file indexing framework that allows third parties to
contribute index handlers that are responsible for populating
index entries for the artifacts they own and/or generate. The
framework manages the creation, maintenance, and update of
the index, and calls the index handlers at appropriate times so
they can parse files that they understand for values that need
to be stored in the index. The framework also provides APIs
for querying the standardized fields of the index, so applica
tions can search for standard types of data contributed for any
of the indexed files. The present invention also provides a
mechanism to keep track of symbolic name associations for
every file/entity in the system. Specifically, the present inven
tion provides a session-based and transient shadow table of
symbolic names previously used by the files (even beyond the
lifetime of the files themselves).

19 Claims, 3 Drawing Sheets

P&Ess(NG -
NT

MEMORY

SYSTEM

30 FILE INDEXRAMEWRk

NdleR REC(STRATION

SSTEM
20 CANGE NOTIFICATION

SSTEM
ANCLER INTERFs

SR

s: He sers

Sox wir

NERFES 22 g FROCESSNG

s

38

leRY as APPLICATIONS
YSTEM

SyBee at SYSTEM primaryl si
SYSTEM
SAMs ITN Tats t

SYSTEM
TABLE FOUATION

scow - S& - it
SSTEM REFERENCE RESLOTION -

EXTERNAL -
dEWICES

Exhibit 1028
Page 01 of 12

phan_b
Text Box
Adobe Inc. v.
Express Mobile, Inc.,
IPR2021-XXXXX
U.S. Pat. 9,063,755 Exhibit 1028

US 7,873.625 B2
Page 2

7,783,615
2003/0101171
2003. O144990
2003/0182297
2004/O117362
2004/O220919
2004/0225.865
2005/OO 10452
2005/0050537
2005/0O86269
2005/OO974.52
2005/02O3957

U.S. PATENT DOCUMENTS

8, 2010
5/2003
T/2003
9, 2003
6, 2004

11, 2004
11, 2004
1/2005
3, 2005
4, 2005
5/2005
9, 2005

Compton et al. TO7/694
Miyamoto et al. 707.3
Benelisha et al. 707/1
Murakami et al. 7O7/1OO
Nunez
Kobayashi 707/3
Cox et al.
Lusen
Thompson et al.
Chen et al.
Eross 715,513
Wang et al.

2006/0041606 A1 2/2006 Sawdon 707,205
2006, O112141 A1 5, 2006 Morris
2006, O136391 A1 6/2006 Morris
2006/0206535 A1* 9/2006 Ogawa et al. 707/2OO
2007/00 16546 A1 1/2007 De Vorchik et al. 707/1

OTHER PUBLICATIONS

Harold Henke, "Methodology for Searching Adobe Acrobat Portable
Data Format Files Based on Content Relevance', Research Disclo
sure No. 432, Article 141, p. 756, Apr. 2000.
Hedgemonet al., “Two-Level Index Conversion of Text to Composite
Document”, Technical Disclosure Bulletin Aug. 1987, pp. 990-993.

* cited by examiner

Exhibit 1028
Page 02 of 12

US 7.873,625 B2 Sheet 1 of 3 Jan. 18, 2011 U.S. Patent

['OIH s

Exhibit 1028
Page 03 of 12

Exhibit 1028
Page 04 of 12

U.S. Patent Jan. 18, 2011 Sheet 3 of 3 US 7.873,625 B2

>

H
Z
t

<g
D

H
Z
t

Exhibit 1028
Page 05 of 12

US 7,873,625 B2
1.

FILE INDEXING FRAMEWORKAND
SYMBOLICNAME MAINTENANCE

FRAMEWORK

BACKGROUND OF THE INVENTION

1. Field of the Invention

In general, the present invention relates to file manage
ment. Specifically, the present invention provides a system
for indexing files and for tracking symbolic names associated
with files.

2. Related Art
Many computer applications persist information by storing

data in files. For example, a software tool that allows a user to
create different kinds of data objects may store representa
tions of each into a separate file. However, an application
trying to find specific information that has been stored in one
or more files faces two problems: (1) searching for data in
files becomes time-consuming as the number and size of files
increases; and (2) only files with well-known formats can be
searched. The first problem can be addressed for the most part
by indexing the contents of files: parsing each file once to
store the relevant contents of the file into an index, and after
wards searching the index (which presumably provides effi
cient search characteristics) instead of each file individually.
However, this technique also can only be used for files with
well-known formats. Without a well-known format, the con
tents of a file cannot be parsed. A significant hurdle thus faces
applications that wish to search or index arbitrary files with
arbitrary formats. A trend in Software is to Support pluggable
extensions, which allows clients to provide their own special
ized behavior to the software. This trend leads to the use of file
formats understood only by a specific extension, or the intro
duction of extensions-specific data into extensible file for
mats. Unfortunately, none of the existing systems are capable
of treating extensions-specific data on par with file data it is
hard-coded to understand.

Additional problems exist in the current art with respect to
symbolic names for files. Specifically, consider an interde
pendent environment, where references are symbolic and not
direct, examples of which may include an XML-based sys
tem. In Such an environment, references between entities are
described through symbolic names, where one entity refer
ences a symbolic name while another entity associates itself
with the same symbolic name. At runtime, the referenced
symbolic name is resolved to the respective entity. The advan
tages of Such an environment are clear and documented,
ranging from flexibility to pluggability. Nonetheless, one
common problem encountered in Such a system is the issue of
dangling references, where a reference is un-resolvable due to
a missing dependency. This may occur when an entity being
referenced symbolically is deleted or its associated symbolic
name is modified. When the entity being referenced is
deleted, its association with the symbolic name is deleted
with it. Even if the change was simply a modification of the
associated symbolic name, then the association with the origi
nal symbolic name is deleted. Accordingly, the referencing
entity is no longer capable of associating its dangling refer
ence with the specific entity that was deleted. This means that
there is no way to identify to a user of such an environment the
reason that caused the dangling reference (e.g. the name of the
specific file that was deleted). Looking at the same issue from
a different perspective, it also means that when an entity's
association with a symbolic name is deleted (i.e. the entity is
either deleted or simply associated with a different symbolic
name), there is no way to find all referencing entities that are

10

15

25

30

35

40

45

50

55

60

65

2
affected after the fact (since they only reference the deleted
symbolic name, and not the entity itself).

SUMMARY OF THE INVENTION

The invention introduces an indexing and search frame
work that allows third parties to contribute indexing exten
sions (referred to herein as index handlers) that are respon
sible for populating index entries for the artifacts they own
and/or generate. Each entry in the index represents a file and
its contents. The index entries include a standardized list of
fields, such as file name and defined elements. These stan
dardized fields allow similar data to be stored in a consistent
way for each file, which therefore essentially allows file con
tent searches (via searching of the index) to be done in a
consistent way for all files, regardless of the format of those
files. The framework manages the creation, maintenance, and
update of the index, and calls the index handlers at appropri
ate times so they can parse files that they understand for
values that need to be stored in the index. The framework
provides APIs for querying the standardized fields of the
index, so applications can search for standard types of data
contributed for any of the indexed files.
The present invention also provides a mechanism to keep

track of symbolic name associations for every file/entity in
the system. Specifically, the present invention provides a
session-based and transient shadow table of symbolic names
previously used by the files (even beyond the lifetime of the
files themselves). By maintaining symbolic name association
information beyond the lifetime of the entity itself or its
association, the door is opened for other features that can use
this information to track referencing entities and validate or
even repair them as necessary (even if the referenced entity no
longer exists or is no longer associated with the specific
symbolic name).

In one aspect of the present invention, a method for index
ing a file is provided. The method comprises: registering an
index handler corresponding to a particular file type; calling
the index handler when a change to a file having the particular
file type is detected; parsing the file with the index handler to
obtain index information; and writing the index information
to an index entry corresponding to the file using an index
writer.

In another aspect of the present invention, the method
further comprises: passing the index handler the file after the
change is detected; and determining that the index handler is
capable of parsing the file.

In another aspect of the present invention, the method
further comprises: responsive to determining that the index
handler is capable of parsing the file, calling the index han
dler; passing the index handler an index writer object with the
file; and the index handler calling the index writer using the
index writer object to store the index information.

In another aspect of the present invention, the method
further comprises: receiving a query for the file; and search
ing the index entry based on the query.

In another aspect of the present invention, a system for
indexing a file is provided. The system comprises: a handler
registration system for registering an index handler corre
sponding to a particular file type; a change notification system
for receiving a notification of a change to a file having the
particular file type; a handler interface system for calling the
index handler based on the notification, wherein the index
handler parses the file to obtain index information; and an
index writer that is called by the index handler for writing the
index information to an index entry.

Exhibit 1028
Page 06 of 12

US 7,873,625 B2
3

In another aspect of the present invention, the handler
interface system passes the index handler an index writer
object.

In another aspect of the present invention, the system fur
ther comprises a query processing system for receiving a
query on the file, and for searching the index entry based on
the query.

In another aspect of the present invention, the system fur
ther comprises an index containing the index entry, wherein
the index entry contains a standardized list of fields that
contain the file information.

In another aspect of the present invention, a program prod
uct stored on at least one computer readable medium for
indexing a file is provided. The at least one computer readable
medium comprises program code for causing a computer
system to perform the following: register an index handler
corresponding to a particular file type; call the index handler
when a change to a file having the particular file type is
detected; parse the file with the index handler to obtain index
information; and write the index information to an index entry
corresponding to the file using an index writer.

In another aspect of the present invention, the at least one
computer readable medium further comprises program code
for causing the computer system to perform the following:
communicate with the index handler; and pass the index
handler the file after the change is detected.

In another aspect of the present invention, the at least one
computer readable medium further comprises program code
for causing the computer system to perform the following:
call the index handler if the index handler is capable of pars
ing the file; and pass the index handleran index writer object
with the file.

In another aspect of the present invention, the at least one
computer readable medium further comprises program code
for causing the computer system to perform the following:
receive a query for the file; and search the index entry based
on the query.

In another aspect of the present invention, a method for
deploying a system for indexing a file is provided. The system
comprises: providing a computer infrastructure being oper
able to: registeran index handler corresponding to aparticular
file type; call the index handler when a change to a file having
the particular file type is detected; parse the file with the index
handler to obtain index information; and write the index
information to an index entry corresponding to the file using
an index writer.

In another aspect of the present invention, a method for
maintaining symbolic name integrity in a dynamic environ
ment is provided. The method comprises: detecting a new
symbolic name associated with a file; populating a primary
table with the association of the new symbolic name to the
file; populating a shadow table with an association of a pre
vious symbolic name to the file; and using the shadow table to
resolve a dangling reference to the file.

In another aspect of the present invention, the method for
maintaining symbolic name integrity in the dynamic environ
ment further comprises using the shadow table to resolve a
dangling reference to the file.

In another aspect of the present invention, the method for
maintaining symbolic name integrity in the dynamic environ
ment further comprises deleting the association of the previ
ous symbolic name to the file from the shadow table after a
predetermined time period.

In another aspect of the present invention, a system for
maintaining symbolic name integrity in a dynamic environ
ment is provided. The system comprises: a name detection
system for detecting a new symbolic name associated with a

10

15

25

30

35

40

45

50

55

60

65

4
file; a table population system for populating a primary table
with the association of the new symbolic name to the file, and
for populating a shadow table with an association of a previ
ous symbolic name to the file; and a reference resolution
system for using the shadow table to resolve a dangling ref
erence to the file.

In another aspect of the present invention, the system for
maintaining symbolic name integrity in a dynamic environ
ment further comprises a reference resolution system for
using the shadow table to resolve a dangling reference to the
file.

In another aspect of the present invention, the table popu
lation system further deletes the association of the previous
symbolic name to the file from the shadow table after a
predetermined time period.

In another aspect of the present invention, a program prod
uct stored on at least one computer readable medium for
maintaining symbolic name integrity in a dynamic environ
ment is provided. The at least one computer readable medium
comprises program code for causing a computer system to
perform the following: detect a new symbolic name associ
ated with a file; populate a primary table with the association
of the new symbolic name to the file; and populate a shadow
table with an association of a previous symbolic name to the
file.

In another aspect of the present invention, the at least one
computer readable medium further comprising program code
for causing the computer system to perform the following:
use the shadow table to resolve a dangling reference to the
file.

In another aspect of the present invention, the at least one
computer readable medium further comprising program code
for causing the computer system to perform the following:
delete the association of the previous symbolic name to the
file from the shadow table after a predetermined time period.

In another aspect of the present invention, a method for
deploying a system for maintaining symbolic name integrity
in a dynamic environment is provided. The method com
prises: providing a computer infrastructure being operable to:
detect a new symbolic name associated with a file; populate a
primary table with the association of the new symbolic name
to the file; and populate a shadow table with an association of
a previous symbolic name to the file.

In another aspect of the present invention, the computer
infrastructure is further operable to use the shadow table to
resolve a dangling reference to the file.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a file management system according to an
aspect of the present invention.

FIG.2 depicts a more detailed depiction of the file indexing
framework of FIG. 1.

FIG. 3 depicts an illustrative symbolic name scenario
according to an aspect of the present invention.
The drawings are not necessarily to scale. The drawings are

merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

Exhibit 1028
Page 07 of 12

US 7,873,625 B2
5

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, a file management system 10
according to the present invention is shown. As depicted,
system 10 includes computer system 14 deployed within a
computer infrastructure/environment 12. This is intended to
demonstrate, among other things, that some or all of the
teachings of the present invention could be implemented
within a network environment (e.g., the Internet, a wide area
network (WAN), a local area network (LAN), a virtual private
network (VPN), etc.), or on a stand-alone computer system.
In the case of the former, communication throughout the
network can occur via any combination of various types of
communications links. For example, the communication
links can comprise addressable connections that may utilize
any combination of wired and/or wireless transmission meth
ods. Where communications occur via the Internet, connec
tivity could be provided by conventional TCP/IP sockets
based protocol, and an Internet service provider could be used
to establish connectivity to the Internet. Still yet, computer
infrastructure 12 is intended to demonstrate that some orall of
the components of system 10 could be deployed, managed,
serviced, etc. by a service provider who offers to manage files
according to the present invention.
As shown, computer system 14 includes a processing unit

16, a memory 18, a bus 20, and input/output (I/O) interfaces
22. Further, computer system 14 is shown in communication
with external I/O devices/resources 24 and index 26. In gen
eral, processing unit 16 executes computer program code,
such as applications 50, file indexing framework 30, and
symbolic name system 42, which are stored in memory 18.
While executing computer program code, processing unit 16
can read and/or write data to/from memory 18, index 26,
and/or I/O interfaces 22. Bus 20 provides a communication
link between each of the components in computer system 14.
External devices 24 can comprise any devices (e.g., keyboard,
pointing device, display, etc.) that enable a user to interact
with computer system 14 and/or any devices (e.g., network
card, modem, etc.) that enable computer system 14 to com
municate with one or more other devices.

Computer infrastructure 12 is only illustrative of various
types of computerinfrastructures for implementing the inven
tion. For example, in one embodiment, computer infrastruc
ture 12 comprises two or more devices (e.g., a server cluster)
that communicate over a network to perform the various
process of the invention. Moreover, computer system 14 is
only representative of various possible computer systems that
can include numerous combinations of hardware. To this
extent, in other embodiments, computer system 14 can com
prise any specific purpose article of manufacture comprising
hardware and/or computer program code for performing spe
cific functions, any article of manufacture that comprises a
combination of specific purpose and general purpose hard
ware/software, or the like. In each case, the program code and
hardware can be created using standard programming and
engineering techniques, respectively. Moreover, processing
unit 16 may comprise a single processing unit, or be distrib
uted across one or more processing units in one or more
locations, e.g., on a client and server. Similarly, memory 18
and/or index 26 can comprise any combination of various
types of data storage and/or transmission media that reside at
one or more physical locations. Further, I/O interfaces 22 can
comprise any system for exchanging information with one or
more external devices 24. Still further, it is understood that
one or more additional components (e.g., system software,
math co-processing unit, etc.) not shown in FIG. 1 can be
included in computer system 14. However, if computer sys

10

15

25

30

35

40

45

50

55

60

65

6
tem 14 comprises a handheld device or the like, it is under
stood that one or more external devices 24 (e.g., a display)
and/or index 26 could be contained within computer system
14, not externally as shown.

Index 26 can be any type of system (e.g., a database)
capable of providing storage for file information and/or tables
54 and 56 of symbolic names under the present invention. To
this extent, index 26 could include one or more storage
devices, such as a magnetic disk drive oran optical disk drive.
In another embodiment, index 26 includes data distributed
across, for example, a local area network (LAN), wide area
network (WAN) or a storage area network (SAN) (not
shown). In a typical embodiment, index 26 includes one or
more index entries that each correspond to a particular file.
Along these lines, each index entry includes a standardized
list of fields that contains file information as extracted and
indexed under the present invention
Shown in memory 18 of computer system 14 (among other

systems and tables) are file indexing framework 30, symbolic
name system 42, application(s) 50 and index handler(s) 52. It
should be understood that file indexing framework 30 and
symbolic name system 42 could be provided independent of
one another. For example, they do not need to both be pro
vided on a single computer system 14 within the scope of the
present invention. In addition, it should be understood that file
indexing framework 30 and symbolic name system 42 could
be realized as multiple computer programs (as shown), or as
a single computer program (not shown). It should also be
understood that the various systems and their Sub-systems of
FIG. 1 are shown as such for illustrative purposes only and
that the same functionality could be implemented with a
different configuration of systems and sub-systems. In any
event, the functions of file indexing framework 30 will be
described first in conjunction with FIGS. 1 and 2.
A. File Indexing Framework
As depicted in FIG. 1, file indexing framework 30 includes

handler registration system 32, change notification system
34, handler interface system 36, index writer 38, and query
processing system 40. Among other things, file indexing
framework 30 provides the following capabilities: (1) regis
tration mechanism for index handlers; (2) infrastructure to
initialize the contents of the index and update its contents as
files are added, changed, and deleted; (3) a delegation mecha
nism for calling index handlers to parse files they understand
for relevant content—this delegation provides the Support for
indexing arbitrary files with arbitrary formats; (4) establish
ment of standardized fields in the index entry for a file; (5) a
set of index writer APIs to be called by index handlers to store
standardized index values for a file; and (6) another set of
APIs 60 shown in FIG. 2 (provided as part of query process
ing system 40) to be called by applications 50 to query the
standardized index values. (The term API is an acronym for
“application programming interface', which enables a com
puter program to access a set of functions (typically provided
by another application or library) without a detailed under
standing of the internal workings of the functions being
accessed.)
The index handlers are responsible for identifying files

they understand, parsing the contents of those files, and iden
tifying appropriate data to be stored in the index entries for
those files. Some advantages over a non-extensible file index
ing system include: (1) Support for new file formats can be
added by the provider of the file format, without any changes
to the indexing framework or applications querying the index;
(2) files storing data formats with built-in extensibility
mechanisms, (e.g., WSDL and SCDL) can be indexed with

Exhibit 1028
Page 08 of 12

US 7,873,625 B2
7

out changes to file indexing framework 30, the code that
indexes the base elements of the data standard, or applications
querying the index (Support for a particular extension can be
added by the extension provider in the form of an index
handler that only processes that extension); and (3) applica
tions 50 can essentially search the contents of arbitrary files
with arbitrary formats in a standard manner, by searching
standardized fields of index 26, without knowledge of file
formats or the runtime extensions for which they may be
targeted.
A general description of the file indexing framework 30

will now be given in conjunction with FIG. 1. Thereafter, a
more specific illustrative example will be given in FIG. 2. In
general, handler registration system32 allows third parties to
register index handlers 52. Each index handler 52 is typically
associated with a particular file format. As changes to a file
having a particular file format occur, a notification will be
received by change notification system34. Under the present
invention Such a notification can come directly from applica
tions 50 or from an operating system level. In any event, when
such a notification is received, handler interface system 36
will call the associated index handler 52 to determine whether
index handler 52 is capable of parsing the affected file. If so,
handler interface system 36 will pass index handler 52 the file
along with an index writer object. Upon receipt, index handler
52 will parse the file to obtain index information. Such infor
mation can be any type of information that will identify the
file and its contents. Once the index information is deter
mined/extracted, index handler 52 will call index writer 38 to
store the index information. Specifically, index writer 38 will
write the index information to an index entry corresponding
to the file. As indicated above, each file typically has its own
index entry in index 26. Each entry includes a standardized
list of fields such as file name and elements defined in the file.
Should a user later desire to search/query index 26, the user
can Submit a query that will be received and processed by
query processing system 40. Specifically, query processing
system 40 includes a set of query APIs 60 (FIG. 2) that is
adapted to receive queries from applications 50.

Referring now to FIG. 2, a more specific example of these
functions is shown. The example shown in FIG. 2 is an index
ing and search framework used to implement WebSphere
Integration Developer (WID) 6.0., which is commercially
available from IBM Corp. of Armonk, N.Y. In general, tool
ing in WID requires the following information, which can be
scattered across all files generated and referenced by WID:
(1) all element definitions of a certain type; (2) all files that
reference a specified file; (3) all elements that reference a
specified element; (4) all elements referenced by a specified
element; and (5) all files that define a specified namespace.
Implementing these searches without the use of an index 26 is
not a viable option from a performance standpoint, because of
the potential number of files that would need to be searched.
More importantly, WID is based on the Service Component
Architecture (SCA) which is highly pluggable. SCA compo
nent, import, and export objects—which are saved as files—
all contain extensible data that can be defined by a runtime
extension. Similarly, the implementation files that each com
ponent can reference in its extensible data are also specific to
a runtime extension. Correctly indexing new component,
import or export types introduced by new runtime extensions
would not be possible without an extensible indexing mecha
nism. The mechanism in this case is file indexing framework
3O.
As mentioned above, file indexing framework 30 provides

a registration mechanism that allows third parties to define
index handlers 52A-D. An index handler 52A-D is respon

10

15

25

30

35

40

45

50

55

60

65

8
sible for generating index information for a file, and is a class
that implements a Java interface provided by file indexing
framework 30. An index handler 52A-D is generally specific
to a single file type and is provided by the domain owner of the
file type. An index handler 52A-D must understand how to
parse a file for meaning, to identify elements definitions and
references that are relevant to the WID tooling that will be
querying index 26.
When creating an index entry for a file, file indexing frame

work 30 calls each index handler 52A-D, passing it the file
being indexed. The index handler 52A-D first determines if it
is a file it understands how to parse. If so, it returns true;
otherwise it returns false. If index handler 52A-D returns true,
file indexing framework 30 calls it again, also passing it an
index writer object. Index handler 52A-D should then open
the file, parse it, and call index writer 38 with any data that
should be stored in the index entry for the file. The index
writer class 38 provides convenient methods for storing infor
mation in standardized index fields, as well as a method for
storing data in handler-specific index fields. Again, index
handler 52A-D can return true or false, this time to indicate if
data it passed to the index writer 38 should be saved or
discarded. File indexing framework 30 calls all handlers
52A-D in the same manner. Index writer 38 manages the
merging of data supplied by multiple index handlers 52A-D
and stores all of the contributed index fields into an index
entry for the file.
By passing all files to all index handlers 52A-D, file index

ing framework 30 supports the ability to index arbitrary files
with a format understood only by specific index handlers
52A-D, which may be associated with specific runtime exten
sions. This allows file indexing framework 30 and applica
tions 50 that query index 26 to be independent of the file types
being indexed. By allowing multiple index handlers 52A-D to
contribute information to an index entry, file indexing frame
work 30 supports the ability to index file formats that support
extensibility. For example, consider WSDL, which has a
built-in extensibility mechanism. A basic index handler 52A
for WSDL can index the definitions of element types defined
as part of the WSDL standard. For example, it can identify all
port types defined in a given WSDL file. However, this index
handler 52A will not be able to anticipate data type extensions
that others may provide, which may appear in any WSDL file.
WSDL extensions must instead be indexed by an additional
index handler 52D Supplied by the providers of those exten
sions. This additional index handler 52D does not need to
index standard WSDL elements, because those will be
indexed by the base WSDL index handler 52A. Instead it only
needs to contribute index data introduced by its own exten
sions. File indexing framework 30, through the index writer
38, will merge all index data into the index entry for the file.
As a result, the index entry for a WSDL file would contain the
index field values contributed by the base WSDL index han
dler 52A along with those contributed by any index handlers
52D for WSDL extensions.

It should be understood that the exemplary index handlers
52A-D shown in FIG. 2 are depicted for illustrative purposes
only. To this extent the present invention could be imple
mented with any type of technology.
B. Symbolic Names

Referring back to FIG. 1, the functions of symbolic name
system 42 will be described in greater detail. Specifically, in
many systems today: (1) every entity/file is associated with a
symbolic name; and (2) entities/files can reference symbolic
names (and hence other entities indirectly). This is shown in
greater detail in FIG. 3. Specifically, as shown in FIG. 3,

Exhibit 1028
Page 09 of 12

US 7,873,625 B2
9

entity/file 'A' is associated with symbolic name “SN1.
while entity/file “B” is associated with symbolic name
“SN2. Further, entity “A” references symbolic name “SN2.
The following changes can occur in the symbolic name asso
ciations of such a system: (1) The symbolic name association
of an entity is modified (i.e. the entity is associated with a
different symbolic name) (e.g., entity “B” is associated with
SN3); and (2) The symbolic name association of an entity is
deleted (e.g., the entity such as entity “B”, is deleted).

Symbolic name system 42 of FIG. 1 provides a way to deal
with Such changes in a manner that would allow an advanced
response to the changes by the system (e.g. revalidation or
re-factoring of affected referencing entities). In general, an
aspect of the present invention provides tables 54 and 56 that
track symbolic name associations for entities in the system.
Specifically, the mechanism of this aspect of the present
invention is complemented with an analogous, but transient,
shadow table 56 responsible for tracking the previous state of
symbolic name associations for entities. To this extent, when
a change occurs in a symbolic name association of an entry,
the change will be detected by name detection system 44.
Upon detection, the association of the entity/file with the new
symbolic name will be populated into primary table 54 by
table population system 46. Similarly, the old/previous asso
ciation of the entity/file will be populated into shadow table
56 (e.g., prior to the reflection of the change in the primary
table 54). This provides the unique capability of not only
looking up what an entity association is, but also what an
entity association was prior to the occurrence of the change.
This enables various functions that require knowledge of the
previous state, such as the ability to find previously referenc
ing entities that now have dangling references, and either
validate them to indicate errors or fix them to reference the
correct symbolic names. Such lookup and/or resolution func
tions can be facilitated by reference resolution system 48. In
any event, after a predetermined period of time, table popu
lation system 46 can update shadow table 56 to remove older
associations. This helps control the size of shadow table 56,
and helps ensure that stale associations are not maintained.

While shown and described herein as a file management
system, it is understood that the invention further provides
various alternative embodiments. For example, in one
embodiment, the invention provides a computer-readable/
useable medium that includes computer program code to
enable a computer infrastructure to manage files. To this
extent, the computer-readablefuseable medium includes pro
gram code that implements each of the various process of the
invention. It is understood that the terms computer-readable
medium or computer useable medium comprises one or more
of any type of physical embodiment of the program code. In
particular, the computer-readablefuseable medium can com
prise program code embodied on one or more portable Stor
age articles of manufacture (e.g., a compact disc, a magnetic
disk, a tape, etc.), on one or more data storage portions of a
device. Such as memory 18 (FIG. 1) (e.g., a fixed disk, a
read-only memory, a random access memory, a cache
memory, etc.), and/or as a data signal (e.g., a propagated
signal) traveling over a network (e.g., during a wired/wireless
electronic distribution of the program code).

In another embodiment, the invention provides a business
method that performs the process of the invention on a sub
Scription, advertising, and/or fee basis. That is, a service
provider, Such as a Solution Integrator, could offer to
remotely manage files. In this case, the service provider can
create, maintain, deploy, Support, etc., a computer infrastruc
ture, such as computer infrastructure 12 (FIG. 1) that per
forms the process of the invention for one or more customers.

5

10

15

25

30

35

40

45

50

55

60

65

10
In return, the service provider can receive payment from the
target organization(s) under a Subscription and/or fee agree
ment and/or the service provider can receive payment from
the sale of advertising content to one or more third parties.

In still another embodiment, the invention provides a com
puter-implemented method for managing files. In this case, a
computer infrastructure. Such as computer infrastructure 12
(FIG. 1), can be provided and one or more systems for per
forming the process of the invention can be obtained (e.g.,
created, purchased, used, modified, etc.) and deployed to the
computer infrastructure. To this extent, the deployment of a
system can comprise one or more of (1) installing program
code on a device. Such as computer system 14 (FIG. 1), from
a computer-readable medium; (2) adding one or more devices
to the computer infrastructure; and (3) incorporating and/or
modifying one or more existing systems of the computer
infrastructure to enable the computer infrastructure to per
form processes according to one or more aspects of the inven
tion.

As used herein, it is understood that the terms “program
code' and "computer program code' are synonymous and
mean any expression, in any language, code or notation, of a
set of instructions intended to cause a device having an infor
mation processing capability to perform a particular function
either directly or after either or both of the following: (a)
conversion to another language, code or notation; and/or (b)
reproduction in a different material form. To this extent, pro
gram code can be embodied as one or more of an application/
Software program, component Software/a library of func
tions, an operating system, a basic I/O system/driver for a
particular providing and/or I/O device, and the like.
The invention can take the form of an entirely software

embodiment or an embodiment containing both hardware and
software elements. In a preferred embodiment, the invention
is implemented in software, which includes but is not limited
to firmware, resident software, microcode, etc. Furthermore,
the invention can take the form of a computer program prod
uct accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any tangible apparatus that can con
tain, store, communicate, propagate, or transport the program
for use by or in connection with the instruction execution
system, apparatus, or device.
The medium can be an electronic, magnetic, optical, elec

tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer
readable medium include a semiconductor or Solid State
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD
ROM), compact disk read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution. Input/output or I/O devices (including but
not limited to keyboards, displays, pointing devices, etc.) can
be coupled to the system either directly or through interven
ing I/O controllers.

Exhibit 1028
Page 10 of 12

US 7,873,625 B2
11

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modemand Ethernet cards are just a few of the currently
available types of network adapters.
The foregoing description of various aspects of the inven

tion has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to a person skilled in the
art are intended to be included within the scope of the inven
tion as defined by the accompanying claims.

For example, the file indexing and symbolic name integrity
functions described above could be provided separate and
apart from one another, in combination with one another. For
example, in the case of the latter, file indexing framework 30
calls index handlers 52 to create an index entry for a file. The
index entry can store any kind of information about the file,
but one of the standard fields supported by the index writer
and index search APIs holds elements that are defined in the
file. These elements can be specified in the form of symbolic
names. In one embodiment, the file indexing framework 30 is
used to Supportan application 50 that displays data to the user
as “logical artifacts (pieces of data defined in one or more
files) rather than as “physical artifacts (i.e. files). Application
50 can use index queries to resolve a symbolic name to the file
it is defined in, as well as resolve a reference to a symbolic
name into a file reference. In some cases, it is useful to find
and resolve symbolic name references that resolve into ref
erencestonewly deleted files. However, because file indexing
framework 30 removes index entries of deleted files from
index 26, it can delete the associations between a deleted file
and the symbolic names it defined. Along these lines, the
primary table of symbolic names (54 in FIG. 1) is stored in
index 26, and the triggering mechanism for updating shadow
table 56 can be when the file indexing framework 30 removes
entries from index 26.
We claim:
1. A method for indexing a plurality of files, comprising:

registering a plurality of index handlers, each index handler
corresponding to a particular file type for a corresponding
file;

receiving a notification of a change to a changed file;
calling a registered index handler in response to the noti

fication;
parsing the changed file with the registered index handler

to obtain index information for the changed file; and
writing, using an index writer, the index information to an

index entry corresponding to the changed file in an
index, wherein

the index entry contains a list of fields that contain file
information for the changed file in a standardized format
regardless of a particular file type of the changed file, and

each index handler corresponding to a different file format.
2. The method of claim 1, further comprising:
passing the changed file to the registered index handler

after the notification of the change is received; and
determining that the registered index handler is capable of

parsing the changed file.
3. The method of claim 2, further comprising:
responsive to the determining that the registered index

handler is capable of parsing the changed file, calling the
registered index handler,

passing an index writer object with the changed file to the
registered index handler, and

10

15

25

30

35

40

45

50

55

60

65

12
calling the index writer, by the registered index handler,

using the index writer object to store the index informa
tion.

4. The method of claim 1, further comprising:
receiving a query for the changed file; and
searching the index entry based on the query.
5. The method of claim 1, wherein
each index handler is received from a domain owner of the

file type.
6. The method of claim 1, further comprising
passing the changed file to each of the plurality of index

handlers.
7. A method for indexing a plurality of files, comprising:
registering a plurality of index handlers, each index han

dler corresponding to a particular file type for a corre
sponding file;

receiving a notification of a change to a file;
calling a registered index handler in response to the noti

fication;
parsing the file with the registered index handler to obtain

index information for the file; and
writing, using an index writer, the index information to an

index entry corresponding to the file in an index;
detecting a new symbolic name associated with the file;
populating a primary table with the association of the new

symbolic name to the file;
populating a shadow table with an association of a previous

symbolic name to the file; and
using the shadow table to resolve a dangling reference to

the file, wherein
the index entry contains a list of fields that contain file

information for the file in a standardized format regard
less of a particular file type of the file.

8. The method of claim 7, further comprising
deleting the association of the previous symbolic name to

the file from the shadow table after a predetermined time
period.

9. A system for indexing a plurality of files, comprising:
at least one computing device including:
a handler registration system for registering a plurality of

index handlers, each index handler corresponding to a
particular file type for a corresponding file;

a change notification system for receiving a notification of
a change to a changed file;

a handler interface system for calling a registered index
handler based on the notification, wherein the registered
index handler parses the changed file to obtain index
information for the changed file; and

an index writer for writing and storing the index informa
tion to an index entry in an index; wherein

the index is a storage database,
the index entry contains a list of fields that contain file

information for the changed file in a standardized format
regardless of aparticular file type of the changed file, and
each index handler corresponding to a different file for
mat.

10. The system of claim 9, wherein
the handler interface system passes an index writer object

to the index handler.
11. The system of claim 9, wherein
the at least one computing device further including a query

processing system for receiving a query on the changed
file, and searching the index entry based on the query.

12. The system of claim 9, wherein
each index handler is received from a domain owner of the

file type.
13. The system of claim 9, wherein
the handler interface system calls each of the plurality of

index handlers based on the notification.

Exhibit 1028
Page 11 of 12

US 7,873,625 B2
13

14. A program product stored on at least one computer
readable storage medium for indexing a plurality of files, the
at least one computer readable storage medium comprising
program code for causing a computer system to perform the
following:

register a plurality of index handlers, each index handler
corresponding to a particular file type for a correspond
ing file;

receive a notification of a change to a changed file;
call a registered index handler in response to the notifica

tion;
parse the changed file with the registered index handler to

obtain index information for the changed file; and
write and store, using an index writer, the index informa

tion to an index entry corresponding to the changed file,
in an index; wherein

the index is a storage database,
the index entry contains a list of fields that contain file

information for the changed file in a standardized format
regardless of the particular file type of the changed file,
and

each index handler corresponding to a different file format.
15. The program product of claim 14, wherein the at least

one computer readable storage medium further comprising
program code for causing the computer system to perform the
following:

communicate with the registered index handler; and
pass the changed file to the registered index handler after

the change is detected.

10

15

25

14
16. The program product of claim 15, wherein the at least

one computer readable storage medium further comprising
program code for causing the computer system to perform the
following:

call the registered index handler upon a determination that
the registered index handler is capable of parsing the
changed file; and

pass an index writer with the changed file to the registered
index handler.

17. The program product of claim 14, wherein the at least
one computer readable storage medium further comprising
program code for causing the computer system to perform the
following:

receive a query for the changed file; and
search the index entry based on the query.
18. The program product of claim 14, wherein
each index handler is received from a domain owner of the

file type.
19. The program product of claim 14, wherein the at least

one computer readable storage medium further comprising
program code for causing the computer system to perform the
following:

passing the changed file to each of the plurality of index
handlers.

Exhibit 1028
Page 12 of 12

