

S+E TK 6570 . 1116 I 22 V.43

University of California, San Diego Please Note: This item is subject to recall. Date Due

FEB 01 1994	JUN 1 2 RECT
NOV 1 5 RECT	JUN 01 1997 NOV DE RECT
<u>MAR 0 8 1994</u> APR 15 1994	SEP 20 RECT
MAR 18 RECD	SEP 30 RECTO
JUN 01 1995	MAY 3 RECU
JUN 08 RECTD DEC 1 4 1995	
DEC - 6 HELT	• <u>•</u>
	6
JUN 0 1 1996	
CI 39a (4/91)	UCSD LIB.

SCIENCE & ENGINEERING LIBRARY C-076-E UNIVERSITY OF CALIFORNIA, SAH DIEGO LA JOLLA, CALIFORNIA 92093

1993 43rd IEEE Vehicular Technology Conference

Meadowlands Hilton, Secaucus, NJ, USA May 18-20, 1993

1993 IEEE 43rd Vehicular Technology Conference

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. Copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. For other copying, reprint, or republications permission, write to the IEEE Copyright Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved. Copyright © 1993 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number: 93CH3305-0 Library of Congress Number: 83-645418

ISBN Softbound: 0-7803-1266-X Casebound: 0-7803-1267-8 Microfiche: 0-7803-1268-6

Additional copies of this publication are available from

IEEE Service Center 445 Hoes Lane Piscataway, NJ 08854-4150

1-800-678-IEEE

TABLE OF CONTENTS

Technical Sessions Session 1A1: Modulation/Demodulation I Tuesday, May 18, 1993
The Choice of a Digital Modulation Scheme in a Mobile Radio System
Near Maximum Likelihood Demodulation for M-ary Orthogonal Signalling
Performance of Trellis-coded Modulation for Equalized ISI Channels
Pilot Symbol Assisted Modulation in Fading and Delay Spread
Performance Evaluation of Differential GMSK using K-th Order Detectors
Session 1A2: Modulation/Demodulation II Tuesday, May 18, 1993
On the Combined Effect of DPSK Modulation Level and Block Coding on Cellular Capacity
Analysis of Channel Capacity of M-ary DPSK and D2PSK with Time Selective Rician Fading
Multichannel Modulation as a Technique for Transmission in Radio Channels
Multi-Carrier Coded 16 QAM System in Land Mobile Radio Communication
Session 1A3: Modulation/Demodulation III Tuesday, May 18, 1993
F-QPSK - A Superior Modulation Technique for Mobile and Personal CommunicationsOptimization of MSK-Type Systems in an ACI Environment
Improvement of Error Performance fo Digital Modulation in the Mobile Radios Using a Novel Multi-Level FSK-QTFSK (Quaternary-phase Transition FSK)
MQAM/CDMA for Increased Cellular Capacity
Optimization of MSK-Type Systems In an ACI Enviroment* I. Kalet, AT&T Bell Labs, USA, Y. Hougui, Tel Aviv University, Israel

••

* Not available at time of printing

Session 1B1: RF Propagation Experiments I Tuesday, May 18, 1993

Wideband Propagation Measurements of I W. Mohr, Siemens, Germany	Mobile Radio C	hannels in Moun	tainous Areas in the 1800 MHZ Frequency Range 49
Practical Design Considerations for Digita H. Hashemi, Sharif University of Techn			ng in the Mountainous Terrain
Site Measurements for Installation of an In P. Bartolome, Alcatel, Spain	ndoor Radio Co	mmunication Sys	iem
Propagation Measurements to Support Th J.C.S Cheung, University of Bristol, UK			work Planning
Experimental Characterization of the Pola P. Eggers, Aalborg University, Denmar	rization State D k	lynamics of Perso	nal Communication Radio Channels
Microwave Measurements in Scaled Road T. Klemenschits, A. L. Scholtz, E. Bond	l Tunnels Mode sk, Technische U	lling 900 MHZ P Universitat Wien,	ropegation
Session 1B2: RF Propagation Exper Tuesday, May 18, 1993	iments II		
Indoor Mobile Radio Channel at 946 MH A. U. Sheikh, Carleton University, Can	z: Measurement ada, M. Handfor	ts and Statistical M rth, M. Abdi, Mite	fodelling
In SITU Microwave Reflection Coefficien M. Feuerstein, US West Advanced Tech	nt Measurement hnologies, USA,	s for Smooth and I , O. Landron, T. S.	Rough Exterior Wall Surfaces
Measurement-Based Performance Analys R. Cameron, B. Woerner, Virginia Tech	is of CDMA Sy L, USA	stems in Multipati	Pading
Session 1B3: Antenna Design Tuesday, May 18, 1993			
J.H. Winters, AT&T Bell Labs, USA			
T. Aubrey, P. White, University of Tech	hnology, Sydney	, Ausuana	
S.P. Stapleton, G. Quon, Simon Fraser	University, Cana	NCH	
Simulation Peformance of a Blind Adapti J.H. Reed, Virginia Tech, USA, B.G. A University of California, Davis, USA	we Array for a R gee, Radix Tech	calistic Mobile Ch nology, Inc.,USA,	annel
Session 1C1: Channel Processing I Tuesday, May 18, 1993			101
P. Jung, University of Kaiserslautern, C	iermany		=1/2 101
A circular Viterbi Algorithm for Decodin C-E W. Sundberg, R.V. Cox, AT&T Be	g Tailbiting Con ell Labs, USA	volutional Systems	
_	-	viii	Original from

Error Statistics of Real-Time Power Measurements in Cellular Channels with Miltipath and Shadowing
A New Deterministic/ Stochastic Approach to Model the Intervehicle Channel at 60GHZ
Bandwidth Efficient Coded Diversity for Slow Fading Channels
Theoretical and Simulated Evaluation of 16-DAPSK in Mobile Fading Channels
Session 1C2: Channel Processing II Tuesday, May 18, 1993
Radio Link Protocols for Digital Cellular Systems
Block Error Probabilities in a Nakagami Fading Channel
Evaluation of Channel Capacity in a Generalized Fading Channel
Application of the Isomorphic Emphasis to Spectrum Scramble Encryption in Analog Speech Channels
Session 1C3: Channel Processing III Tuesday, May 18, 1993
Throughput Analysis of Two Multiplexing Schemes for ARQ Protcols in Time-Varying Channels
Performance of a Burst-Correcting Convolutional Coding Scheme in a Mobile Radio Channel
Performance of Nonlinear Carrier Synchronization in Rician Fading Channels
Adopting the Isomorphic Emphasis to Speech Security System on the Time Domain Scrambling
Session 1D1: Cellular Systems Planning I Tuesday, May 18, 1993
A Self-Planning Cellular Radio System Using Dynamic Resource Allocation* P.L. Reilly, Motorola, USA
A Fixed Channel Assignment Plan for Three-Dimensional Cellular System
Performance Analysis of DCA-schemes in Highway Cellular Radio Systems
Distributed Adaptive Channel Allocation Scheme with Variable C/1 Threshold in Cellular Systems
Overall System Performance in a Digital Cellular System Based on Japanese Standard

 \sim

•

Session 1D2: Cellular Systems Planning II Tuesday, May 18, 1993

Traffic Performance Analysis for Cellular Communication Systems with Mixed Platform Types and Queued Hand-Offs 172 S.S. Rappaport, State University of New York, USA, C Purzynski
An Analytical Procedure for Cellular Frequency Planning
Generalized Reuse-Partitioning in Cellular Mobile Radio Systems
High Capacity Cell Configuration Strategy in ACI and CCI Conditions
Session 1D3: Cellular Systems Planning III Tuesday, May 18, 1993
CBWL: A New Channel Assignment and Sharing Method for Cellular Communication Systems
RF Prediction Tools and Database Selection in Cellular Mobile System Design
Channel Assignment in Dual Cellular Systems
Traffic Advantages of Dual-Mode North American Cellular System
Session 1E1: RF Propagation - Indoor I Tuesday, May 18, 1993
Building Penetration Characteristics of 880 and 1922 MHz Radio Waves
Residential Indoor RF Channel Characterization
A Ray Tracing Approach to Predicting Indoor Wireless Transmission
Application of Radio Channel Modelling to a Planning Tool in a Mobile Radio Indoors Communication System
Real Time Emulation of Indoor Multipath Propagation Channels Using Statisti cal and Deterministic FIR Models and Acoustic Charge Transport Technology
A Ray Splitting Model for Indoor Radio Propagation Associated with Complex Geometries
Session 1E2: RF Propagation - Indoor II Tuesday, May 18, 1993
Characteristics of a Simulated Fast Fading Indoor Radio Channel

Indoor Millimetre Wave PCN/LAN Experiment based on Direct MMW Distribution Over Optical Fibre and Multipath-Robust Spread Spectrum Modulation H.J. Thomas, ATR Optical and Radio Comm Res Labs, Japan
Performance Analysis of a New Fuzzy Handoff Algorithm by an Indoor Propagation Simulator
A Ray Tracing Approach to Channel Modeling for the Indoor Environment
Session 1E3: RF Propagation - Outdoor Tuesday, May 18, 1993
Radio Wave Propagation, a Comparison between 900 and 1800 MHz
Propagation Analysis in Cellular Environment with the Help of Models Using Ray Theory and GTD
Estimation of Heavy Time Dispersion for Mobile Radio Channels Using a Path Tracing Concept
Research in Site-Specific Propagation Modeling for PCS System Design
Session 1F1: TDMA I Tuesday, May 18, 1993
A Unified MLSE Detection Technique for TDMA Digital Cellular Radio
Time Slot Assignment Techniques for the TDMA Digital Cellular Systems
Fading Channel Tracking Properties of Several Adaptive Algorithms for Northern American Digital Cellular System
Capacity Enhancement Features in a TDMA System
Low Power Consumption and Fast Setting Frequency Synthesizer for TDMA-TDD Systems
High Capacity TDMA Cellular System Using Time Spread Coded 16-QAM and Cyclical Slow Frequency Hopping
Session 1F2: TDMA II Tuesday, May 18, 1993
Performance of Coded Slow-Frequency-Hopped TDMA Cellular Systems
Microcellular Performance in a TDMA System
Semi-autonomous Synchronization for TDMA/TDD Communication System

Improved ADPCM Voice Transmission for TDMA-TDD Systems
Seasion 1F3: TDMA III Tuesday, May 18, 1993
A Hybrid DS/FH Spread Spectrum System for Mobile Radio Channel: Performance and Capacity Analysis
Hybrid Intra-Cell TDMA/Inter-Cell CDMA with Inter-Cell Interference Suppression for wireless networks
Session 1G1: Mobile Communication Systems Tuesday, May 18, 1993
Histogram and Integral Based Evaluation of an Experimental Inter Vehicle Communication Trial
MINT-A Mobile Internet Router
Spectrum Efficient Digital Communications for 220-222 MHz Narrowband Land Mobile Channels
A Worldwide Network Architecture Standard for Mobile Communications
Capacities of Simplex and Duplex VHF Air/Ground Mobile Radio Communication Systems Employing Cylindrical Cells 331 S.M. Elnoubi, The MITRE Corporation, USA
Vehicle-to-Vehicle Communication and Ranging System Using Spread Spectrum Technique
Session 1G2: Satellite Communication Systems Tuesday, May 18, 1993
Improvement of Slotted-Aloha for Land-Mobile Satellite Communications, Using Channel State Information
The Use of Meteor Scatter and Extended Range VHF for Vehicle Tracking and Communication
Design of the Westinghouse Series 1000 Mobile Phone
Session 1G3: Intelligent Vehicle Highway Systems Tuesday, May 18, 1993
Overhead Infrared Vehicle Sensor for Traffic Control
Contribution of Vehicle Location Technology to Transmit Headway Minimization
G.L. Mayhew, R Rubio, D Long, Hughes Aircraft Company, USA

т

 \sim

Precursor System Analyses of an Automated Highway System
Session 2A1: Receiver Processing Techniques I Wednesday, May 19, 1993
RAKE Decorrelation as an Alternative to Rapid Power Control in DS-CDMA Mobile Radio
A Coherent Demodulator for Fast-Frequency-Hopping-Spread-Spectrum Signal Employing on Adaptive Algorithm
Trellis Coding with Multiple-Symbol Differential Detection
PDI Receiver for Fast Frequency Hopping Spread Spectrum System
High Capacity to Differentially Detected pi/4-Shifted DQPSK with Narrowing Occupied Bandwidth Based on Short Time DFT
Session 2A2: Receiver Processing Techniques II Wednesday, May 19, 1993
Fractional Bit Detection with Advanced Sampling to Combat Multipath-Induced Error Floor
Carrier Frequency Recovery forFully Digital Direct-Sequence Spread- Spectrum Receiver: A Comparison
pi/4-shift QPSK Coherent Detection Demodulator for TDMA-TDD Systems
Coherent Detection with Reference Symbol Based Channel Estimation for Direct Sequence CDMA Uplink Communications400 F. Ling, Motorola Inc., USA
Session 2A3: Radio Receiver Design I Wednesday, May 19, 1993
A Direct Conversion Receiver for GMSK Signals in Digital Mobile Communications
New MLSE Receiver Free from Sample Timing and Input Level Controls
A Low-Cost Dual-Mode Noncoherent Receiver with Robust Frequency-Offset Compensation
Session 2B1: CDMA I Wednesday, May 19, 1993
On the Teletraffice Characterisation of CDMA Mobile Communications
Peformance Analysis and Simulation of Code Division Multiple Access (CDMA) Cellular Digital Networks

xiii

-

Original from

A Comparison of CDMA Techniques for Third Generation Mobile Radio Systems
Simulation of CDMA Using Measured Channel Impulse Response Data
A Detector Bassed on Optimal Estimator for Asynchronous CDMA Systems
On the Optimisation of DS-CDMA Channel Bandwidth for Personal Communication Systems
Seasion 2B2: CDMA II Wednesday, May 19, 1993
CDMA-IC: A Proposal for Future High Capacity Digital Cellular Systems
A Time Diversity CDMA Scheme Employing Orthogonal Modulation Schemes for Time Varying Channels
Advanced CDMA Scheme Based on Interference Cancellation
Broadband-CDMA Overlay
Throughput and Delay Analysis of a Slotted DS/SS CDMA System in a Shadowed Rician Channel
Session 2B3: CDMA III Wednesday, May 19, 1993
Frequency Selective Fading Model on Near-Far Problem in M-ary CDMA Communication
Performance Evaluation for Band-Limited DS-CDMA Communication System
Resolving Sub-Chip Spaced Multipath Components in CDMA Communication Systems
Performance Evaluation of CDMA Networks Employing Multiple Diversity in a Mobile Environment
Session 2C1: Channel Processing IV Wednesday, May 19, 1993
Modeling, Capacity, and Joint Source/Channel Coding for Rayleigh Fading Channel
The GSM Radio Link Performance with Space Diversity and Slow Frequency Hopping
Adjacent Channel Interference in Coexistence Scenarios

.

T

0

Analysis and Optimization of ARQ Protocols for Imperfect Feedback Channels
Analysis of a Global Safety Assurance Method Based on Cyclic Coding Techniques
Optimized Channel Access for Dedicated Road Traffic Radio Networks
Session 2C2: Channel Processing V Wednesday, May 19, 1993
Combined Source Coding and Modulation for Fading Channels
A Design of Digital Syllabic Compandor Using the Mean Absolute Estimator
Signal-Level-Based Dynamic Power Control for Co-Channel
Application of the Geometrical Theory of Diffraction to Predicting Channel Impulse Responses for Cellular Systems
Two Signaling Schemes for Improving the Error Performance of Frequency- Division-Suplex (FDD) Transmission Systems Using Transmitter Antenna Divers
Session 2C3: Speech Processing Wednesday, May 19, 1993
Discussion of a Alternate Transmission Techniques for Mobile Telaphony Using Speaker Recognition Traits to Reduce Bandwith
Quantitative Estimation of Improving Speech Quality by the Isomorphic Emphasis in Spectrum Scramble Encryption
Over Poor Radio Channels
Variable-Rate for the Basic Speech Service in UMTS
Session 2D1: Cellular Systems Planning IV Wednesday, May 19, 1993
Virtually Dynamic Channel Allocation Scheme in an Active Environment
Self-Organized Reuse Partitioning, a Dynamic Channel Assignment Method in Cellular System
Overall System Performance in a Digital Cellular System Based on Japanese Standard
Instability and Deadlock of Distributed Dynamic Channel Allocation
Distributed Dynamic Channel Assignment Schemes

~~

-

Original from

Session 2D2: Cellular Systems Planning V

Wednesday, May 19, 1993
Dynamic Location Area Management and Performance Analysis
Capacity Analysis of a Mixed Mode Slow Frequency Hopped Cellular System
A Simplified Approach to Growth Planning for Cellular Systems
Impact on Capacity to AMPS Jamming CDMA/ CDMA Jamming AMPS in Adjacent Cells
Session 2D3: Spectrum Sharing Wednesday, May 19, 1993
Interference, Sensitivity and Capacity Calculations for Measurement-based Wireless Access Spectrum Sharing
A Beacon Detection Method for Sharing Spectrum Between Wireless Access Systmes and Fixed Microwave Systems
The Impact of Digital Technologies on Future Land Mobile Spectrum Requirements
Spectrum Sharing Between a Fixed-Service Microwave System and a Cellular CDMA Mobile Radio System
Session 2E1: Radio Base Station Systems/Microcell Systems I Wednesday, May 19, 1993
Co-channel Interference of Microcellular Systems on Shadowed Nakagami Fading Channels
Assessment of Base Station Antenna Diversity Efficiency in Frequency Selective u- and Pico-cell Environments
Combined Analysis of Transmission and Traffic Characteristics in Micro-cellular Mobile Communication Systems
Frequency In-Band Notch Analysis and Measurement for Wideband Microcellular Environment
A New Microcell Architecture Using Digital Optical Transport
Session 2E2: Radio Base Station Systems/Microcell Systems II Wednesday, May 19, 1993
Narrow-Band Small Area Microcellular Mobile Radio Channel Characterization Using Ray Tracing Technique
A microcell Radio System with a Dynamic Channel Control Method
Outrage and Spectrum Efficiency Analysis in Microcellular Systems

Linear Predictive Transmitter Diversity for Microcellular TDMA/TDD Mobile Radio System
Session 2E3: Radio Base Station Systems/Microcell Systems III Wednesday, May 19, 1993
Generalized Fixed Channel Assignment with Hand-Off Priority in Micro-Cellular Communication Systems
GSM Base Station Diversity Using Soft Decision Combining on Up-Link and Delayed-signal Combining on Down-link
Microcellular Propagation Measurements in Dallas City
Base Systm Configurations for 3rd Generation Mobile Telecommunication Systems
Session 2F1: Equalization Techniques I Wednesday, May 19, 1993
Realization of a Soft Output Viterbi Equalizer Using Field Programmable Gate Arrays
Performance of MMSE a Linear Equalizer and Decision Feedback Equalizer in a Single Frequency Simulcast Environment629 P-E Ostling, Royal Institute of Technology, Sweden
Combined Equalization, Decoding and Antenna Diversity Combining for Mobile/Personal Digital Radio Transmission Using Feedforward Synchronization
Performance of Decision-Feedback Equalizers with Dual Antenna Diversity
The Structure and Performance of FRESH-DECISION Feedback Equalizer in the Presence of Adjacent Channel Interference641 H.M. Hafez, F. Hendessi, A.U.H. Sheikh, Carleton University, Canada
Session 2F2: Equalization Techniques II Wednesday, May 19, 1993
Performance Analysis of Adaptive Equalizer in a Mobile Frequency-Selective Fading Channel
Equalization of Orthogonal Frequency Division Multiplexing System
Adaptive Equalization Techniques for Multipath Fading and Co-Channel Interference
Diversity Combined Decision Feedback Equalizer of Digital 16QAM Micro-cellular Mobile Radio Communication Systems657 M Iida, K Satoh, Mobile Comm Tech Devel Co., Ltd., Japan
Session 2F3: Singal Processing I Wednesday, May 19, 1993
Signal Detection in a Hybrid System
Will Original from

Application of the Generalized Short Time DFT to the Hilbert Transformer and its Characteristics
Performance of SRC-Filtered ODQPSK in Mobile Radio Communications
A Distributed Parallel Processing Architecture for Vital Wayside and Carborne Applications
Session 2G1: RF Amplifier Design Wednesday, May 19, 1993
Dynamically Biased Cartesian Feedback Linearization
Power Amplifier Linearization using Cubic Spline Interpolation
Design Principles and Limitations of Integrated Silicon Bipolar Transistor Amplifiers for Mobile Communications
Linearization of Multi-Carrier Power Amplifiers
Statistical Characterization of Intermodulation Products in a Multicarrier Linear Power Amplifier
Session 2G2: PCN Technology I Wednesday, May 19, 1993
Frequency Hopping CDMA for the Third Generation Mobile Radio Systems
An Intelligent Personal Communication System
Autonomous Time Synchronization Among Radio Ports in Wireless Personal Communications
Performance Comparison of TDMa and CDMA for Personal Communications
* A Concept of Designing a Proper PCS System
Session 2G3: PCN Technology II Thursday, May 20, 1993
Near-Far Effects on Performance of DS/SS CDMA Systems for Personal Communication Networks
Air Interface of the Future European Fully Digital Trunk System
* Portable Telephone for Digital Cellular System Based on Japan RCR Standard

•••

Portable Telephone for Personal Digital K Murota, A. Sasaki, N. Tokuhiro, K.			
Intelligent Microcell Application in PCS W.C.Y. Lee, T Benz, R Rudokas, Pac			
Session 3A1: Radio Receiver Desig Thursday, May 20, 1993	n II		
Architecture Simplifications for an Impr E Le Strat, Alcatel Radiotelephone, Pr		Receiver	
Performance of RAKE Receivers in Rea H Erben, H. Nuszkowski, University of			
Postdistortion Receiver for Mobile Com S.P. Stapleton, L D Quach, Simon Fran		•••••	
An All Feedforward Synchronization Un F Claben, H Meyr, Aachen University	uit for Digital Radio of Technology, German	ny, P Sehier, ALCATEL	
Optimizing the RAKEfor the CDMA D G Bottomley, Ericsson GE Mobile Com			
Session 3A2: Radio Receiver Desig Thursday, May 20, 1993	n III		
Adaptive Correlator Received Performan C.N. Pateros, G.J. Saulnier, Rensselaer			
Adaptive Receiver Consisting of Viterbi H Murata, Kyoto University, Japan, S		ntenna Diversity for Ce	llular Radio
A New Approach to Eliminate the DC O B Lindquist, M Isberg, Lund Universit		sion Receiver	
A New Symbol Error Rate Calculation for S Chennakeshu, General Electric Co., 1		tichannel Reception of	MPSK Signals758
Session 3B1: Wireless Data Thursday, May 20, 1993			
A Hybrid ARQ for Data Transmission in K. Sawai, S. Uebayashi, NTT Mobile C			
Performance Analysis of FAX Transmiss P Decker, Aachen University of Techn		at GSM Data Service	•
Background Data Service for Cellular M W. A. Krzymien, W.D. Grover, J Chin,		•••••	
A Mobile Data (CDMA) System with Po Y-J Liu, Y-A Zhang, GTE Laboratorie:		plication to Low-Bit-Ra	te Image Transmission
Practical Implementation of a Mobile Da S Kallel, S Bakhtiyari, T Chen, V Leur			cheme and Code Combining
Data Transmission via Cellular Systems W C Y Lee, PacTel Corporation, USA			
	1	xix	Original from

Session 3B2: Frequency Hopping Thursday, May 20, 1993

Generalized Frequency Hopping in Mobile Radio Systems
Construction of Optimal Frequency Hopping Sequences for Minimizing Bit Errors in Selective Fading Channels
Coded Performance of Frequency-Hopped MFSK Communication Systems on Rayleigh Fading Channels
Prequency Hopping F-QPSK for Power and Spectrally Efficient Cellular Systems
Session 3C1: Spread Spectrum Techniques and Analysis I Thursday, May 20 , 1993
Protection Ratio Figures for Single Cell & Multi-Cell Spread Spectrum Systems
Performance Evaluation of a Direct-Sequence Spread-spectrum Multiple-Access system with Microscopic and Macroscopic Diversity in Mobile Radio En
DFE Convergence for Interferencee Cancellation in Spread Spectrum Multiple Access Systems
Detection of Multiple users of Direct Sequence Spread Spectrum Signals by Cyclic Spectral Analysis
Frame Timing Acquisition for Direct Sequence Spread Spectrum Signals in Time Division Duplex Transmission
Broadband SpreadSpectrum Multiple Access for Personal and Cellular Communications
Session 3C2: Spread Spectrum Techniques and Analysis II Thursday, May 20, 1993
Spectrum Spreading Effect of Bandwidth Expansion on Spectral Efficiency of Cellular Systems
Performance of pi/4-shift DQPSK Direct-Sequence Spread-Spectrum Multiple-Access Communications with Diversity Combining Over Frequency Selective
A Convolver Based Spread Spectrum Data Communication System
A Spread Spectrum Communication System Without Reference Signal for Frequency-Selective Fading Channel
Studies in Time Division Duplex Direct Sequence Spread Spectrum Transmission

R Esmailzadeh, M Nakagawa, Keio University, Japan

~ •

~~

Session 3D1: Hand-off Management Techniques Thursday, May 20, 1993

Original from

~

T

vui

Session 3E2: Packet Radio Thursday, May 20, 1993

An Experimental Implementation of the PRMA Prot R.A. Ziegler, Bell Communications Research, US	ocol for Po A, G.P. Pol	rtable Wirek Ilini, Rutgers	ess Communication
Performance of PRMA Schemes via Fading Channel L Hanzo, J Cheung, W Webb, R Steele, University			
On the Hand-offs in Packetized Wireless Systems Z Haas, AT&T Bell Laboratories, USA, C.L. I		•••••	
Utilizing a Wide Area Cellular Packet Data Network J.E. Lawler, Cellular Data, Inc., USA	k for the Tr	ansportation	of GPS Data*
Session 3F1: Wireless Operations Networks Thursday, May 20, 1993	and Signa	ling	
Network and Signalling Structure for Digital Cellul A. Nakajima, K. Yamamoto, H. Takamura, NTT	ar System I Mobile Con	Based on Japa nm. Network	ancse Standard
Authentication and Encryption in a Mobil Commun S Sasaki, R Akiyama, Fujitsu, Japan	ications Sy	stem	
The Intelligent Network Signaling and Switching C G.P. Pollini, Rutgers University, USA, S. Tabban			cation Strategy Using Memory
Radio and Network Resource Management for a Th S.T.S. Chia, BT Laboratories, UK	uird Genera	tion Mobile S	System
Mobile Communications Integrated Operations Sys M Hasegawa, NTT Mobile Communications, Jap		•••••	
Session 3F2: Railroad Systems Thursday, May 20, 1993			
Safety and Performance Analysis of a Railway Dat B.W. Johnson, University of Virginia, USA, T C	a Radio Ma Giras, R Pa	oving Block A eterson, Unio	* * * * * * * * * * * * * * * * * * *
Integrated Carborne Train Inertial Position System B.W. Johnson, University of Virginia, USA, T C	Giras, R P	eterson, J A 1	* Profeta, L. Mackey, Union Switch & Signal, Inc., USA
			ns Chen, T C Giras, Union Switch & Signal, Inc., USA
Vital Track Circuit Digital Signal Processing Arch B.W. Johnson, University of Virginia, USA, L B Union Switch & Signal, Inc., USA			* porti, Italy, T C Giras, J A Profeta, J Wang,
Session 3G1: RF Device Technology Thursday, May 20, 1993			
A Railway Engineer Training Simulator Using RIS B.W. Johnson, University of Virginia, USA, M I Union Switch & Signal, Inc., USA			echnology to Achieve Real-Time Performance* usen, M Kelly, G Nguyen,
Soft-Output Viterbi Decoding: VLSI Implementati O. Joeressen, M Vaupel, H Meyr, Aachen Unive			
\sim 1		vvii	Original from

A DSP Implementation of IS-56 Analog Mode	45
Session 3G2: Digital Cordless Technology Thursday, May 20 , 1993	
A Contribution to DECT in Frequency Synthesis and Modulation Using DDS	49
DECT Transceiver Architectures Superheterodyne or Direct Conversion?	53
Multiple Access Options for Cellular Based Personal Communications	57
Digital Cordless Telephone Equipment for Wireless PBX Systems	53

- -

¥.

VTC'94

June 7 - 11

Stockholm, Sweden

The 1994 IEEE Vehicular Technology Conference, VTC'94, under the sponsorship of the VTS, IEEE Swedish Section, and the Swedish Society of Electrical Engineers will be held in Stockholm, Sweden. It will also be coordinated with the 6th Digital Mobile Radio Conference, DMR VI.

1994 will be a very interesting year with respect to different digital radio systems. A large amount of practical experience from the GSM, the North American, and the Japanese digital cellular systems will be available. The first practical results from commercial operation of cordless systems such as DECT (the Digital European Cordless Telephone System) will be presented. It will also be a good time to present the results of several large cooperative European programs: Mobile RACE (European research program on 3rd generation cellular system), COST 231 (Personal Communication), Prometheus, and Drive (Integrated Car Control System). The conference will also put an emphasis on discussing the realization of future land mobile radio systems. In connection with the conference there will be an exhibition where results from the programs are demonstrated and a number of electronics corporations will show their products.

For more information and to be put on a mailing list write:

Prof. Sven-Olof Ohrvik, IEEE VTC'94, Stockholm Convention Bureau, Box 6911, S-102 39 Stockholm, Sweden

Fax: +46 8 34 84 41.

Call For Papers

A paper summary of about 150 words should be sent by September 15,1993 to

IEEE VTC 1994 Project Office Prof. Sven-Olof Ohrvik, Technical Chairman Ericsson Radio Systems AB S-164 80 Stockholm, Sweden

Telephone: +46 8 757 04 83

A New Microcell Architecture Using Digital Optical Transport

Philip M. Wala Waseca Technology, Inc. RR4 Box 145, P.O. Box 286 Waseca, MN 56093 USA

Abstract - The performance of microcells which rely on analog modulation of an optical or microwave carrier is limited by the dynamic range of the analog transport. This paper describes a new microcell design which relies on high speed, analog-to-digital conversion to digitize the entire cellular band, enabling transparent RF transport to be accomplished over a digitally modulated optical fiber. Laboratory and field tests of an ADC Kentrox microcell which uses this technique are described. The application of this technology to the future design of an all-digital cellular base station is also discussed.

I. INTRODUCTION

The trend towards a "personal communications" environment requires the ability to deliver sufficient coverage and capacity to provide truly ubiquitous service. Coverage must be provided in areas not served by macrocell antenna installations, including shadow areas, tunnels, and the interiors of high-rise office buildings. Capacity must be sufficient to accommodate high concentrations of users in convention centers and train stations. In addition, as cells continue to decrease in size and increase in number, the cost of real estate becomes significant, requiring that this coverage and capacity be delivered using equipment occupying a minimum amount of space. Finally, the plurality of potential modulation techniques, including FM, TDMA and CDMA, provides incentive for an infrastructure configuration that maintains flexibility for future system upgrades.

II. LIMITATIONS OF TRADITIONAL SOLUTIONS

Solutions to the problem of delivering coverage and capacity fall into three general categories: cellular repeaters, 0-7803-1266-x/93/\$3.0001993IEEE distributed radio microcells, and centralized radio microcells [1].

Cellular repeaters increase coverage by re-radiating off-the-air signals. Because existing channels are re-transmitted, there is no capacity increase. Also, system degradation can occur due to the fact that noise and interference are re-radiated, along with the desired signals.

Distributed radio microcells or "mini-cells" are miniature versions of cell sites, incorporating a separate receiver and exciter for each channel served. While such a configuration can add both capacity and coverage, size and cost will increase proportionately to the number of channels. Such a system also lacks the ability to upgrade to new modulation techniques without replacing all of the transceiver modules.

Centralized radio microcells transport a broadband spectrum of combined radio frequency (RF) signals between remote antenna sites and banks of centrally located single-channel transceivers. This configuration has the advantage of transparency to modulation technique and the ability to serve multiple channels without any change to the remote equipment.

Most products of this type, however, suffer from the disadvantage that the transport is accomplished by the analog modulation of an optical or microwave carrier. This severely limits the dynamic range of the system for two reasons.

First of all, there is a tradeoff between signal-to-noise ratio and third-order intermodulation performance, which is a function of the modulation depth per channel [2], [3]. It can be difficult to maintain the optimum operating point, especially in a system where the number of active carriers can be constantly changing. Ultimately, in an optical system, the third-order intermodulation performance of the diode laser becomes the limiting factor [2], [4]. Secondly, the nature of analog modulation is such that the system dynamic range is destined to degrade in proportion to the attenuation on the transport link. In an optical system, this degradation is equal to twice the optical attenuation in dB [5], yielding an optical budget of as little as 10 dB [6] and maximum fiber distances on the order of 10 km [7].

III. A NEW APPROACH: DIGITAL RF TRANSPORT

Many of the problems associated with analog modulation could be circumvented if it were possible to first digitize the information signal and then transport it digitally. Up until now that possibility has not been considered for the transport of the broadband "A" or "B" cellular spectrum because of the difficulty of digitizing the 12.5 MHz bandwidth with enough speed, resolution and linearity to accurately reproduce the dynamic range of signals found in the mobile environment. Recently, however, analog-to-digital converters with sufficient performance capabilities have become available [8], and have been successfully incorporated into a newly announced fiber- fed microcell product [9].

This digital microcell system consists of two main components: a donor or "host" site interface, and a remote microcell unit (Fig.1) In the forward or "downlink" path, the host interface takes the combined channels from the cell site transmitters and digitizes the broadband signal at a sample rate of 30.72 MHz. An optical transmitter adds overhead and signaling information and creates a 552.96 Mbps serial data stream which is used to digitally modulate an optical carrier. At the remote site, an optical receiver demodulates the incoming optical carrier, and reconstructs the original 30.72 MHz parallel word, which is then converted back to RF by a digital-to-RF converter. At this point, the combined forward link channels have been reconstructed, and are ready to be linearly amplified for transmission.

In the reverse or "uplink" path, signals coming in through the antenna from mobiles or handhelds are filtered to remove out-of-band signals. The 12.5 MHz spectrum is then digitized in much the same way as the forward link spectrum, and a similar serial data stream is constructed for digital optical transport. At the bost site, the optical carrier is demodulated, and the original RF signal is reconstructed and sent on to the individual channel receivers.

This particular configuration also incorporates the use of two different wavelength lasers and a wavelength division multiplexer (WDM) in order to enable bi-directional transport of forward and reverse path RF over a single fiber.

200710

586

The host interface for each microcell is contained in a $17^{\circ} \times 7^{\circ} \times 8.5^{\circ}$ rack mountable module. The remote cabinet is $34^{\circ} \times 20^{\circ} \times 11^{\circ}$ (including power supply and backup batteries), and can be pole or wall mounted.

IV. DIGITAL RF TRANSPORT: PERFORMANCE EVALUATION

Microcells employing the digital transport architecture have been tested on the bench as well as in actual service, and have demonstrated all the advantages of other centralized radio microcells, including transparency to modulation technique and channel selection, and a small remote unit size that is independent of the number of channels being carried. The absolute group delay due to the filtering and digitization process has been measured at less than 4 μ s across the band, and should not adversely affect TDMA or CDMA signals.

In addition, the digital microcell has proven to have some significant advantages over earlier generation analog versions. Because the forward link carries a relatively narrow dynamic range of signals, with the path performance typically limited by the linearity of the power amplifier (as in analog microcells), much of the following discussion will focus on the transport of the more hostile reverse link (mobile to cell site) spectrum.

Assuming that the digital transport can be accomplished without significant errors, the reverse link dynamic range will be limited by signal-to-noise ratio and linearity of the digitization and reconstruction process. In analog systems, the spurious free dynamic range is a function of the noise level in the signal bandwidth (N_a) and the third-order intercept point (IP₃), both in dBm:

$$SFDR = (2/3) \times (IP_3 - N_{\bullet})$$
 (1)

Neglecting fiber loss, distributed feedback (DFB) lasers with an output power of +3 dBm have achieved a spurious free dynamic range on the order of 82 dB [4], with an absolute theoretical maximum of approximately 88 dB, assuming a 30 kHz signal bandwidth [10].

In the digitized system described here, (1) cannot be applied, because the third-order intermodulation products not only fail to rise faster than the fundamentals, their level may actually drop as the fundamental signals increase or additional signals are added (due, in part, to the "dithering effect", which can add effective bits of resolution to an oversampled system). Consequently, one must evaluate the

C - - - 1-

dynamic range by noting the behavior of the noise floor and the third-order products as a function of signal level in order to determine the effect of any anomalies in the curves. In the prototype system, third-order spurious free dynamic range was limited to about 76 dB.

The real advantage of the digital transport method becomes apparent when one examines the optical budgets of the digital and analog systems. First of all, although the digital system third-order dynamic range is less than the theoretical maximum attributed to analog systems, it should be noted that this is achieved with a -4 dBm output laser, rather than the +3 dBm assumed earlier. An analog system with an equivalent laser power would be limited to a maximum dynamic range of about 74 dB.

Secondly, the nature of digital transport is such that, up until the point where the optical level approaches the sharp threshold where synchronization is lost, there is no degradation of the signal being transported whereas analog systems suffer 2 dB of degradation for every dB of optical attenuation [5]. The digital transport can maintain the RF path at its full dynamic range for optical levels as low as -31 dBm (more than a 20 dB improvement over analog transport). The dramatic nature of the improvement can be seen in Fig. 2, with an arbitrary 65 dB dynamic range performance requirement marked to show the effect on the usable fiber distance.

V. DIGITAL RF TRANSPORT: FUTURE APPLICATIONS

The dynamic range and optical budget advantages already demonstrated constitute only a portion of the potential benefits of digital RF transport.

Fig.2. Dynamic range vs. fiber distance (-4 dBm lasers)

Original from

587

Further potential advantages stem from the fact that digital signals are well suited to being time-division multiplexed with other digital signals. Although the current system uses time-division multiplexing to carry secondary digital channels with alarm and control information, secondary channels could serve a multitude of other purposes, including an uplink diversity path, an alternate RF service (such as paging), or digitized cable TV signals.

Ultimately, the establishment of a standard for the digital transport of RF could lead to a digital RF distribution system, carrying cellular or personal communications services, paging, trunking, or even broadcast signals, with drop and add capability, to a widespread network of microcells situated to provide seamless coverage of a service area.

Perhaps the biggest potential for the future of digital transport can be anticipated by another look at Fig.1. Because the voice channels between the mobile telephone switching office (MTSO) and the cell site are often already in digitized form, and the interface to the host microcell interface optical transceiver is a parallel digital word, one might legitimately wonder why one should even bother to make the intermediate conversion to RF. Conceivably, the cell site transceivers, combiners, splitters, and RF-digital converters could all be replaced by a digital signal processing unit, which would take the digitized voice signals and synthesize a digitized RF spectrum, reversing the process on the uplink path. In this configuration, RF would appear only at the remote microcell cabinet, and all cell site RF transceivers, combiners, splitters and filters would be replaced by an all-digital base station.

VI. CONCLUSIONS

The application of new digital RF transport technology to a fiber-fed microcell application has been described, and its performance compared with that of analog microcells. Digital microcells have demonstrated dynamic range as good as or better than their analog counterparts, with no discernible degradation for fiber distances in excess of 50 km. Digital RF transport also has the potential for revolutionizing the way we think about distributing RF by making possible a digital RF transport infrastructure, in which a network of remote antenna locations are served, without degradation, from a centrally located all-digital base station.

ACKNOWLEDGMENTS

This work was performed under contract to the Wireless Systems Group of ADC Kentrox, Portland, Oregon in association with Steinbrecher Corporation, Woburn, Massachusetts, and American Lightwave Systems, Meriden, Connecticut.

REFERENCES

- D. Russell. "New microcell technology sets cellular carriers free," *Telephony*, v.224, no.9, March 1,1993, pp. 40-46.
- [2] T. Tsuchiya, T. Shiraishi and J. Arata. "An estimation of input dynamic range and C/I characteristic on the design of optical fiber for mobile communication," *Fiber Networks for Telephony and CATV, SPIE* v.1578, 1991.
- [3] T. Chu and M. Gans. "Fiber optic microcellular radio," *IEEE Transactions on Vehicular Technology*, v. 40, no. 3, August 1991, pp. 599-606.
- [4] D. Fye. "Design of fiber optic antenna remoting links for cellular radio applications," 40th IEEE Vehicular Technology Conference, Orlando, 1990.
- [5] L. Meyer. "Using fiber optics with analog RF signals," 39th IEEE Vehtcular Technology Conference, San Francisco, 1989, pp. 398-400.
- [6] H. Young, "Fiber links to microcells," Cellular Business, v.8, no.11, November 1991.
- [7] V. O'Byrne. "TDMA and CDMA in a fiber-optic environment," 42nd IEEE Vehicular Technology Conference, Denver, 1992, pp. 727-731.
- [8] f. harris and D. Steinbrecher. "High-performance Digital Receivers," Workshop presented at Wireless Symposium and Exhibition, San Jose, CA, January 12, 1993.
- [9] T. Anderson. "ADC Kentrox says CityCell 824 promises clearer connections," *Radio Communications Report*, v.12, no.5, March 1, 1993, p.41.
- [10] C.Gee, H. Blauvelt, P.Chen, L.Stark and I.Ury. "Optical links serve low-noise communications," *Microwaves and RF*, v.31, no.11, November 1992, pp. 96-98.