IMPLEMENTATION OF A VLS| LAYOUT TOOL ON PERSONAL COMPUTERS

A. G. Jost, P. Streatch! and D. B. Guptill
School of Computer Science
Technical University of Nova Scotia
P. O. Box 1000
Halifax, Nova Scotia, Canada B3J 2X4

ABSTRACT

This paper describes a VLSI layout editor implemented on the
Macintosh and IBM personal computers. The editor is capable
of manipulating integrated circuit designs of complexity
exceeding 50,000 transistors on a standard Macintosh Plus
computer. The paper discusses the design tradeoffs necessary
to implement a program of this capability on small computers.

INTRODUCTION

VLSI design has traditionally been done on super-mini-
computers with attached color graphics terminals, or more
recently on high performance workstations. It is generally
believed that only machines of this class are capable of
managing the complex "artwork” required to specify the layout
of an integrated circuit of VLSI scale (50,000+ devices). It may
be more true to say that since major semiconductor
manufacturers can afford expensive workstations, the software
they need is written for such machines, and the size and
complexity of these programs reflects the capabilities of the
workstations they run on. The result is that a typical state-of-
the-art commercial VLSI design package now consists of
upwards of 30 megabytes of programs and support files, and
requires several times that amount of space to carry the database
for a reasonably complex chip design. This puts the tools
required for VLSI design activity out of the reach of small to
medium companies and many educational institutions. In fact,
even in larger corporations employing many IC designers, the
number of "seats" available (i.e. workstation screens) is often
the limiting factor affecting the productivity of design teams.

It must be recognized that some of the steps involved in
the design of integrated circuits are computationally very
expensive, These tasks include design rule checking, circuit
extraction, timing analysis and simulation. However, none of
these tasks require graphical interaction, and it is perfectly

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1990 ACM 089791-347-7/90/0003/0186 $1.50

186

feasible to perform them on a mainframe time-sharing
computer. What the workstation graphics is required for is
interactive editing of mask layout details and schematic
diagrams. Schematic editors have existed for some time for
personal computers: the missing piece that would enable the
use of PC's in VLSI design is the mask layout editor.
Accordingly, we will examine the feasibility of implementing
a VLSI layout editor on "entry level” personal computers such
as the Macintosh Plus.
VLSI LAYOUT EDITORS

A VLSI layout consists of a large number of complex
geometric patterns for each of a dozen or so "mask layers”
which are roughly analogous to the copper traces on printed
circuit boards. These patterns are built up from a number of
primitive geometric shapes, which historically have included
rectangles, complex polygons, multi-segment "wires”, and
round flashes. One approach to building a VLSI editor is to
produce a general graphics editor capable of manipulating
hierarchical collections of all of these shapes. The problem
with this approach, when viewed from the perspective of a
small machine, is that for each primitive shape supported by
the editor there is a corresponding data structurc in the
database, and for every manipulation permitted by the editor
there must be supporting routines for cach primitive type.
Thus for each of rectangle, polygon, wire, etc. there must be
separate routines to create, delete, read, write, select, deselect,
alter, stretch, rotate, mirror, move, copy, and render (display)
each primitive type. The total number of such support routines
is the product of the number of primitive types times the
number of editor operations to be supported, and any cditor
which attempts to be general and support all primitive types
will inevitably be large, and it will build a large and complex
database. Most existing layout editors, such as the KIC2
program [1] from Berkeley and almost all commercial
packages, fall into this category.

One common constraint imposed on VLSI layouts is the
"manhattan” property, which requires that every edge of cvery
feature be parallel to either the X or Y axis. This can result in a
layout density penalty of the order of 10%, which is in most
cases quite acceptable. It can be shown that any complex set of
manhattan mask features can be represented exactly in the form
of a collection of abutting rectangles. It follows that a layout

1p. Streatch is now with Geovision in Ottawa, Ontario

STMICROELECTRONICS 1017

editor which can manipulate only rectangles can be used to
create and edit any manhattan design. Indeed, this approach
was taken in the early 1980's with the Caesar editor from
Berkeley [2], although the program was implemented on a VAX
and the main advantage perceived was the resulting simplicity
of the user interface and increased efficiency of related artwork
analysis programs. The Berkeley RISC chip [3], the precursor
of Sun Microsystem's SPARC architecture, was implemented
with this editor. It is our conjecture that this approach is also a
key to the implementation of a high performance layout editor
on personal computers, since such an editor would only need
support routines for a single type of primitive and would use a
simple and compact database. We have thus implemented a
layout editor which we call "RED" (Rectangle EDitor) which
runs on a number of platforms including the IBM PC and the
Macintosh, and this editor has been shown to be capable of
effectively editing circuits exceeding 50,000 transistors on an
entry level (1 MB with single floppy disk drive) Macintosh
Plus. The remainder of this paper will discuss the
implementation and user interface of this editor, with an
emphasis on the important design trade-offs required to achieve
high performance on small computers. Although the
discussion focuses on the Macintosh version, most of the
points raised are equally valid on other personal computers.
DATABASE ISSUES

To accommodate large complex designs on a small
computer, it is essential that memory be used as efficiently as
possible. Because we support only a single primitive type, the
database is essentially a hierarchical collection of rectangles.
At the lowest level, all mask geometry is ultimately expressed
as lists of rectangles, so the data structure for storing the
rectangle is crucially important. For maximum flexibility,
rectangles are organized in the form of separate linked lists for
each mask layer: the layer number can be omitted from the data
structure because it is implied by the list of which it is a
member. Thus the rectangle structure requires only the x-y
coordinates of diagonally opposite corners, and a pointer to
the next rectangle on the list. A straightforward design would
use 32 bit integers for each coordinate and a 32 bit link
pointer, for a total of 20 bytes. However, careful choice of
coordinate system permitted a significant space savings. In
the final design, each unit corresponds to 1/4 micron, and 16
bit signed integers are used to store each coordinate. The range
is thus plus or minus 32767 units, or 8192 microns. If a large
design is properly centred, this permits the design of chips up
to 1.6 centimetres square. The resultant rectangle data structure
(figure 1) occupies only 12 bytes.

struct BOXES {
short int x1,yl, /* lower left corner
x2,y2; /* upper right corner */
struct BOXES *next;
)

*/

Figure 1: Rectangle data structure (12 bytes total)

However, the situation is slightly more complex than this
implies. Most system memory management facilities organize
memory pools using linked lists of free blocks, and the
memory management overhead typically involves two
longwords per block allocated: a 32 bit integer to record the
size of the block and a 32 bit pointer to the next block on the

187

list. The Macintosh is no exception. The 8 byte overhead is
not significant when allocating large structures, but in the case
of the rectangle structure it increased the net memory
requirement per rectangle to 20 bytes: a 67% penalty. To deal
with this we implemented a specialized memory allocator for
rectangles, which allocates space for 100 rectangles at a time
and uses the internal link pointer to link unused rectangles,
reducing the net overhead to less than 1% (8 bytes for cach
1200 byte block). It also improved performance dramatically
when starting up the program with large designs, since it tumed
out that the CPU overhead of the operating system’s memory
allocator was high.

Other data structures were required for cell definitions, cell
instances, and labels, and these are all larger than the rectangle
structure (Table I). However, in most complex designs these
are much less numerous than the basic geometric primitives, so
careful optimization is not so important. Table 1 also shows
the incidence of each data structure for a complex CMOS chip
designed at our institution: a digital time-domain beamformer
[5] containing 42,313 transistors. With this entire design
loaded into RED's internal data structures, there is still almost
500K bytes of free memory on a standard 1 MB Macintosh
Plus.

Structure Size (bytes) [Beamformer |Memory Use
Freq.

rectangle 12 8873 106476

cell 358 146 52268

instance 44 755 33220

label 48 324 15552

Table 1: Size in bytes of key RED data
structures, and frequency of use in a
representative complex chip design

HIERARCHY

Hierarchical design techniques are by now well established
in the VLSI design community: they exploit the regularity of
many key VLSI structures and permit the description of very
complex circuits with relatively modest amounts of data
storage. In RED hierarchical designs are represented as groups
of related cells, each of which may include instances of other
cells, organized logically in a tree structure with a single root.
The depth of the tree is unlimited. Typically a cell contains
either a few hundred rectangles, or a few instances of other cells
with a small number of rectangles representing interconnection
wiring. On disk, each cell is stored in a separate file, so that it
is possible to edit individual cells without the necd to load the
entire design database into memory at once, although the
current version of RED always loads at least the complete
subhierarchy rooted at the cell being edited. The file format
used is based on a subset of Caltech Intermediate Form (CIF)
[4], and is largely compatible with the format used by the
Berkeley KIC program [1]. It is pure ASCII, so it is easy to edit
by hand and to interface to other tools. RED can also gencrate
a complete CIF file when required for fabrication, design rule
checking, extraction, etc. This is accomplished with the
WriteCIF command, which performs a depth-first traversal of
the hierarchy rooted at the current edit cell to establish the list

of required subcells and outputs them into the CIF file in an
order which guarantees that each cell is defined before it is used,
as required by CIF syntax rules [4].

At the cell level, mask data is organized as separate linked
lists of boxes for each layer. Multiple selection had to be
implemented to support efficient editing of details at the box
level, and a novel approach to this problem was to use an
additional set of head pointers to partition each box list into
two sections: the "select pointer” points to a particular box on
the cell's box list and all boxes beyond this point on the list
are considered to be selected. Selecting/deselecting boxes
involves moving a data structure from one end of the list to the
other. Deselecting all boxes is accomplished simply by
setting the select pointer(s) to NULL.

The cell definition structure is the largest used in RED, and
although it could be optimized somewhat, it does not account
for a large percentage of memory use. The cell instance
structure is much smaller and contains only a pointer to the
appropriate cell definition, a link pointer, and the parameters
required to define the transformation to be applied to the
particular instance. Cell instances are very common in typical
VLSI designs.

GRAPHICS

Most mask layout editors use colors to distinguish
individual mask layers on the screen. On a monochrome screen
such as the Macintosh's, mask layers are displayed using unique
stipple patterns drawn in a manner which shows key overlaps
such as polysilicon over diffusion as composite patterns. Red
also supports color displays, on which masks can be displayed
with any combination of colors and patterns, and if the
hardware supports the concept of "bit-planes” transparent solid
colors are possible. The program can also use AND, OR, and
XOR drawing modes to enhance the visual transparency effect.
These attributes are all user-configurable via a configuration
file.

The first version of RED {6] used a generalized graphics
interface package modelled on the ACM CORE graphics
proposal. Arithmetic was performed in floating point and the
graphics subsystem took care of all required window
transformations and clipping. Although it functioned
correctly, performance was barely acceptable, especially when
viewing complex layouts. Since raster displays use integer
coordinates, it was decided to rewrite the graphics code in RED
to use only fixed point arithmetic (in fact floating point
variables were eliminated from the program entirely). The
result was dramatic: drawing speed improved by an order of
magnitude, and the size of the executable program was reduced
substantially. Restricting the program to working with
rectangles also paid big dividends in graphics performance,
since graphics clipping is much more efficient for rectangles
than for more general primitives such as polygons, particularly
when using manhattan geometry. Both of these factors turn out
to be very significant, considering that the display of a fully
expanded view of a large chip can require the clipping and
rendering of hundreds of thousands of rectangles.

To achieve portability and performance at the same time,
we defined a new graphics interface package, which we call Dlib
(Table 2), to be the sole interface to the screen, keyboard, and
mouse. For the most part the Dlib graphics routines are
stateless: instead of setting graphics modes which are
"remembered” in subsequent drawing calls, most calling
sequences include all information relevant to the operation
being performed. It is arguable that this implies additional
calling overhead which would impair performance, but it is
interesting to note that the majority of bugs that arose in the
graphics code were eventually traced to careless reliance on
state information in the original implementation. The
conversion of RED to interface with Dlib and eliminate
floating point arithmetic required a substantial overhaul of the
original code, but the end result was well worth the effort. Diib
drivers for new display hardware can usually be written in a
couple of days (the IBM PC driver was a notable exception).

Initialize D_init (width, height, colors, planes,
buttons)

Terminate D_term()

Draw line D_line (x1, y1, x2, y2, color, pattern,
planes, mode)

Draw box D_rect(x1,y1,x2,y2,color,style,pattern,

planes,mode)

Set text font D_setfont (name, charwidth, charheight)

Display text D_text (x, y, string, color, planes, mode)

Create RGB

color

D_define_color (color, red, green, blue)

Create pattern Didefine =Pattcm(patno,pattel’n)

Set event mask } D_eventmask(mask)

Get input D_getevent(type, data, X, y)
event

Get mouse D_readlocator(x, y)
location

Alert D_Beep()

Flush output D_flush()

Flush and wait_| D_sync()

188

Table 2: "Dlib" graphics interface summary

USER INTERFACE

Supporting only a single geometric primitive made it easy
to keep the user interface simple and intuitive. There are
approximately 35 commands in RED, most of which are
available on a single menu on the right margin of the screen as
shown in figure 2, which shows a typical monochrome display
on the Macintosh computer. Each command can also be
executed by typing a single keystroke on the keyboard (for
example "b" initiates the AddBoxes command), which specds
up operation considerably for the experienced user. The menu
items "light up” at all times that a command is aclive,
providing useful operator feedback.

The user interface of RED assumes that the workstation has
a mouse or tablet with at least three buttons, and on machines
which have fewer than this, modifier keys are used to achieve
the same effect. For example, on the Macintosh, which has
only one button on the mouse, holding the "Option" key while
pressing the button is treated as "left button". The middle
button is used for all menu selection and drawing/editing
operations, and most graphical operations provide "rubber-
banding" (to a user-settable grid) to preview their effect. The
right button is used to initiate a zoom operation (which shows
a rubber-band rectangle to indicate the area to be zoomed); if
the operation is finished with the right button it is treated as a
zoom-in: if it is finished with the middle button it is a zoom-
out. Panning is performed with the left button in a similar
fashion. Both zoom and pan can be performed at any time
without disturbing other commands in progress, which is very
useful when drawing very long wires and boxes. For
convenience, the keyboard keys comma, space, and period are
considered to be equivalent to left, middle, and right buttons
respectively. At any particular time during operation of the
program, one mask layer is considered to be the "current layer”
and the designation of this layer is controlled via a second
menu across the bottom of the screen (figure 2). This menu
shows the available mask layers with their graphics rendition
and CIF name, and it is user-configurable through the
configuration file. The "current layer" determines the mask
used during drawing operations and is also used to restrict

F e
LR EEERS

ol

v1 Y B
R .

-

selection operations. The special layer called "***" is a wild
card layer which permits selection of geometry on any layer. It
cannot be used for drawing.

The editing operations supported include deletion,
moving, copying, rotation, and flipping either vertically or
horizontally. It is also possible to stretch rectangles (or
groups of rectangles), by "grabbing" either an edge or a comner.
Prior to performing any of these operations, one or more
primitives must first be selected by means of the selection
commands. The set of operations provided has proved to be
entirely satisfactory, even for experienced designers used to
more "sophisticated” editors.

CONCLUSIONS

RED has become the workhorse layout editor at our
institution, even on our Unix workstations, on which it also
runs (in color). The undergraduate VLSI design class does all its
layout work on Macintoshes. The Macintosh binary is only
about 70K bytes, which leaves most of memory free to support
the database. The disk drive is active only when the user loads
or saves a cell, with the result that overall performance is about
the same with either floppy or hard disk. We believe that it
would have been possible for the Berkeley RISC chip to be
designed on a Macintosh with RED: we estimate it would

Quit
EditCall
Souelell
HriteCIF
llniiﬂnce
AddBoxes
AddLabe | 5
Addl ires

ot UnSe lect
frEeee. DeSe lect

i Aotate
Flipk
FIlipY

[F

Figare 2: Typical RED Display

189

require only about 550k bytes of memory to hold the entire
design.

Our experience with the project has taught us several

valuable lessons which would be valid for other projects of a
similar nature:

1)

2)

3)

4)

5)

6)

It pays to resist the temptation to fill your machine's
memory with your program by adding myriads of nice but
unnecessary features. Keeping the program small leaves
valuable room for more important things, in our case to
support a large database.

The restriction to the rectangle primitive and careful
attention to database design resulted in a simple, elegant
user interface and efficient use of storage without the need
to resort to virtual memory techniques which would have
brought the disk drive(s) into play and degraded
performance.

Color is nice, but you can achieve a lot by intelligent use
of monochrome techniques.

Fixed point arithmetic seems to be a lost art, but the price
of floating point can be high for certain kinds of
applications.

Hierarchical data structures are an excellent way of using
resources efficiently when working with designs
containing many repeated patterns, as is typical in VLSL.
Vendor-supplied system software support, which is of
necessity designed to be general, is not always suitable for
specialized applications which use system resources in a
manner differing from that foreseen by the vendor (in our
case it was the memory management that proved to be a
bottle-neck).

190

REFERENCES

K. Keller, "KIC: A Graphics Editor for Integrated
Circuits," Master's thesis, Univ. of Calif., Berkeley,
1981.

J.K. Ousterhout, "Caesar: An Interactive Editor for VLSI
Layouts," VLSI Design, Vol. 2, No. 4, 1981, pp. 34-
38.

M. G. H. Katevenis, "Reduced Instruction Set Computer
Architectures for VLSL," Ph.D. dissertation, Univ. of
Calif., Berkeley, October 1983.

R.F. Sproull and R.F. Lyon, in C. Mead and L. Conway,
Introduction to VLSI Systems Design, Addison Wesley,
Reading Mass., 1980.

A.G. Jost, B.J. McKinnon and W. Robertson,
"Implementation of a CMOS Single Chip Time Domain
Beamformer," Proc. 1988 Canadian Conference on Very
Large Scale Integration, pp. 40-48, October, 1988.

P. Streatch, RED: An Interactive Mask Level Layout
Editor, Master's Project Report, Technical University
of Nova Scotia, May 1987.

