Recent Advances in VLSI Layout

ERNEST S. KUH, FELLOW, IEEE, AND TATSUOOHTSUKI, FELLOW, IEEE

Research in layout design during the past decade has had a sig-
nificant impact on the entire VLSI industry. Because of advances
made in automatic placement and routing, application specific
integrated circuit (ASIC) design now represents a sizeable portion
of the chip market. The influence of computer-aided physical
design will continue to be felt in the future; for example, in further
popularizing the sea-of-gates and building-block design styles.
Recent advances in floorplanning and placement and in global and
detailed routing pertinent to these design styles are reviewed. Also
included are the subjects of computational geometry and layout
engines. The former has received a great deal of attention among
computer scientists and has found interesting applications in grid-
less routing and compaction. The latter is becoming an interesting
research topic along with other hardware accelerators and special-
purpose engines. Although all these subjects are carefully
reviewed, much greater emphasis is placed on the discussion of
the authors’ own research.

. INTRODUCTION

Computer-aided design has made a major impact in
advancing the state of the art of microelectronics in the past
decade. This is especially true in the area of physical design,
where automatic and interactive design tools have become
indispensable to the layout of VLSI chips. The turnaround
time for layout design has been reduced from months and
weeks to days and hours. Standard-cell and gate-array tech-
nology are now prevalent in application specific integrated
circuits (ASIC) design. Even for high-volume custom chips
such as microprocessors, CAD programs for floorplanning,
placement, and routing are essential. As chips become
increasingly complex, larger in dimension, and smaller in
feature size, more sophisticated algorithms and layout soft-
ware are clearly necessary. The sea-of-gates design style, for
example, calls for efficient algorithms which deal with
hundreds of thousands of gates. Previously useful algo-
rithms based on simulated annealing or other random
methods have become unusable: the computation time is
unbearable in spite of the growing accessibility of faster
computers.

Manuscript received April 11, 1989; revised August 8, 1989. This
work was supported in part by the Semiconductor Research Cor-
poration, in part by the National Science Foundation under grant
MIP-88-3711, and in part by the Japan Society for the Promotion of
Science.

E.S. Kuh is with the Department of Electrical Engineering and
Computer Sciences and the Electronics Research Laboratory, Uni-
versity of California, Berkeley, CA 94720.

T. Ohtsuki is with the Department of Electronics and Commu-
nication Engineering, Waseda University, Tokyo 169, Japan.

IEEE Log Number 8934098.

The current status of VLS| layout and the challenges in
research for the future are the issues we will attempt to
address. In an earlier special issue on computer-aided
design, published in 1981, Soukup wrote an excelient review
article on circuit layout[1]. Since then, several edited books
on the subject have also appeared [2]-[4]. Because of page
limitations we will not cover many of the problems and
methods which appeared in these earlier review publica-
tions. For example, channel routing, although used exten-
sively in current-day chip layout, is now a mature subject
and will not be discussed. Others have become obsolete;
gate matrix design, for instance, with the prevalent use of
multiple metal layers. Simulated annealing, although use-
ful in some applications, will not be included because its
effectiveness in solving large and complex problems
remains to be seen.

The standard-cell and gate-array design styles best illus-
trate the power of CAD. There are many good in-house, uni-
versity, and commercial software packages. For example,
the Timberwolf package [5], (6], which is based on simulated
annealing, has proven to be an effective tool for small- and
medium-size designs and is widely used. Therefore we will
not review the methods used for placement and routing
which are pertinent to standard-cell and gate-array designs.
Instead, we have decided to tailor our discussions to sea-
of-gates and building-block (macrocell or general cell)
designs. The building-block design style, which was first
introduced at NEC [7] in the mid 1970’s, has gradually been
accepted in industry, especially in Japan [8], [9] and among
those companies that deal with silicon compilation. How-
ever, because of the complexity involved, there is a lack of
commercial software that offers not only versatile inter-
active features but also the capability of obtaining efficient
layout with an area usage comparable to manual designs.
The potential of building-block layout clearly has not been
realized.

Roughly speaking, VLS| layout refers to the transfor-
mation of the functional and logic specifications of adesired
chip to physical realization of transistors, cells, and macros
together with their interconnection pattern. This in turn
leads to a full mask specification in multiple layers with
detailed geometrical data and processing information for
chip production. The task is complicated, and it is impos-
sible to speak of the truly optimum design. What is possible
is to cleverly break up the overall problem into subprob-
lems which then can be managed and possibly optimized.

0018-9219/90/0200-0237$01.00 © 1990 IEEE

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03.2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

237

STMICROELECTRONICS 1018

The well-known subproblems are partitioning, floorplan-
ning, placement, global routing, and detailed routing. Each
subproblem can then be formulated more precisely subject
to the design styles. Within each subproblem, if suitable
modeling is employed, there are problems that can be spec-
ified mathematically. Unfortunately, almost all such prob-
lems encountered in layout turn out to be NP hard. Roughly
speaking, itis unlikely that the exact solution could be found
in polynomial time. Furthermore, the objective function
often does not reflect all the criteria that are ultimately
desired. Therefore heuristics have played a major role in
developing layout software. For the benefit of readers with
no background in layout, we wil! try to give a concise over-
view of the subject, including necessary terminology and
definitions, and whenever possible, a precise formulation
of the problems. We will review some recent approaches
but will emphasize our own work, which has yielded good
overall results.

In Section Il we will address placementand floorplanning
for both the sea-of-gates and building-block designs. The
former emphasizes the connectivity specification while the
latter must also consider module shape and size. In Section
111 we will discuss global routing based on a method of suc-
cessive cuts on a chip. This is a hierarchical top-down
approach which is useful for both the sea-of-gates and the
building-block designs. Next we will discuss a two-dimen-
sional detailed routing problem. Finally, we will review the
rip-up and rerouting problem.

In Section IV we will review the field of computational
geometry and its application to layout—in particular, to
gridless routing and compaction. Computational geometry
has received a great deal of attention recently among com-
puter scientists and could be a fruitful area of research in
layout. In Section V we will discuss layout engines. Recent
hardware advances and the increasing accessibility of par-
allel machines and supercomputers create an interesting
debate as to the eventual fate of hardware engines for lay-
out.

Finally, we will conclude with a brief mention of some of
the topics of interest not treated in the paper.

Il. PLACEMENT AND FLOORPLANNING

The placement problem for VLSI design is to place mod-
ules on a plane based on the given information on module
interconnection. The purpose of placement is to facilitate
routing with an overall objective; for example, to minimize
the area of the resulting chip. The placement problem as
stated is a two-dimensional problem; however, sometimes
we encounter one-dimensional or linear placement. A typ-
ical example of linear placement is the placement of alinear
array, such as in gate matrix layout. The placement problem
is usually solved in two successive states: constructive
placement and iterative improvement. Numerous methods
have been proposed: clustering from bottom up, parti-
tioning from top down, force directed, resistive network
analogy, eigenvalue approach, etc. for constructive place-
ment; and two-way or multiway exchange, simulated
annealing, or other random methods for iterative improve-
ment.

The interconnection specification is usually given by
means of a net list. It specifies the precise topological rela-
tion between nets and pins of modules. Nets can be two-

terminal or multiterminal depending on whether they are
to connect two pins or many pins. By modules we mean
gates, cells, macros, or pads. The term macro, or macrocell,
is used here to designate large cells whose shape and area
must be considered in placement. Thus the placement
problem canalso be classified into two kinds: point-module
placement and macrocell placement. Constructive place-
ment for gate-array and standard-cell design is usually
treated as a point-module placement problem, i.e., we
ignore the size of the gate or cell. However, for iterative
improvement, we need to take into account the position of
the pins of the cell. In building-block layout, we consider
the macrocell placement problem. It is more difficult
because, in addition to the topological specification of the
net list, we must consider the geometrical specification of
the macros or building blocks. Although some macros may
be rectilinear, we consider only rectangular modules, for
simplicity. Even for rectangular modules, macrocell place-
ment is a difficult problem. It is related to the simpler bin-
packing problem, which is known to be NP complete. [n
bin packing there is no net list specification; the sole pur-
pose is to fit rectangular modules into a rectangle of min-
imum area.

The floorplanning problem is related to the macrocell
placement problem in that some modules may be soft, i.e.,
they have afixed areabutavariable aspectratio. In addition,
pin positions may need to be optimized. Typical examples
of soft modules are PLA and logic blocks created by stan-
dard-cell design. Thus macrocell placement may be con-
sidered a special case of the floorplanning problem in which
all modules are hard, i.e., with fixed area and aspect ratio.
Obviously, floorplanning is a harder problem since it offers
additional degrees of freedom to optimize the total layout
area.

The quality of placement or floorplanning cannot be eas-
ily measured. ldeally, we need to complete the routing and
obtain the total area. This is clearly not feasible because
routing cannot begin without placement. Therefore a cri-
terion based on some measure of wire length isusually used.
Since routing is almost always carried out with horizontal
and vertical wires, we may use the Manhattan geometry. A
commonly accepted measure for placement is the sum of
net length based on the half-perimeter of the enclosing
rectangle of all the pins which belong to a net. In the case
of a two-terminal net, this measure represents the shortest
direct route of a Manhattan connection. For a three-ter-
minal net, this is the length of a rectilinear Steiner tree, as
shown in Fig. 1; thus it also equals the shortest horizontal/

Fig. 1. Half-perimeter wire length is equal to length of
Steiner tree for three-termimal net. S is Steiner point.

vertical connection. For amultiterminal net, the half-perim-
eter length is, at best, a crude approximation. Fortunately,
statistically speaking, over 75 percent of the nets of a typical
chip are two-terminal or three-terminal. Thus the half-
perimeter measure does give a good indication of the qual-
ity of the placement.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

When point-module is used in the formulation, the net
list must be modified first by merging all the pins which
belong to a module. The resulting net list can be charac-
terized by a 0-1 incidence matrix, A = [a;], where a;; is zero
if net i is not connected to module j; it is equal to one if net
i is connected to module j. Another commonly used char-
acterization for the net list is in terms of the connectivity
matrix C = [c;]; however, itis restricted to two-terminal nets.
For an n-module problem, the n x n connectivity matrix is
symmetric with ¢; = 0, and the off-diagonal term c; rep-
resents the total number of connections between module
iand module j. The connectivity matrix has nice properties.
As seen later, it makes the formulation of the optimization
problem obvious. Therefore it is important to be able to use
the connectivity matrix to treat a general net list which con-
sists of not just two-terminal nets. The three possible rep-
resentations of a multiterminal net in terms of equivalent
-two-terminal nets are illustrated in Fig. 2, where a weighted
clique of afour-terminal netis shown in Fig. 2(a), a minimum

(@) (b)

©

Fig. 2. Representations of four-terminal net in following
terms. (a) Weighted clique. (b) Minimum spanning tree. (c)
Linear tree.

spanningtreeis showninFig.2(b),and alineartree is shown
in Fig. 2(c). Depending on the application, one represen-
tation may be better than another. In linear placement, for
example, thelinear tree representation may be the bestone
to use.

With the introduction of the connectivity matrix, the
point-module placement problem can be formulated in
terms of an objective function which measures the sum of
the squared wire lengths of two-terminal nets. Let x;, y;
denote the coordinate of the ith module. The squared wire
length objective function is defined as

Logy) =4 2 ¢l = x)" + (y; = y,1 = x Bx + y' By

M

where B = [b;;]is a modified connectivity matrix defined
by
B=D-C (2a)
and thus
b = — ¢ fori #j (2b)

and D is a diagonal matrix with

it
kel
<

d,‘,' = (2¢)

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

The point-module placement problem is then to minimize
L(x, y) subject to the slot constraint, i.e., all modules are to
be located on a two-dimensional grid, called the legal posi-
tion. Since the coordinate vectors x and y enter separately
in the sum of two quadratic forms in (1), we may consider
each coordinate independently, which amounts to consid-
ering the linear placement problem. The slot constraints for
linear placement can be expressed by a set of n algebraic
equations in x, in terms of the coordinates of the legal posi-
tions [10]. Let P; represent the ith legal position, then the
constraint equations are

n n

Zx=2P

i=1 i=1

n n

Zxi=2 P

i=1 i=1

n n

xP =2 P 3

i=1 i=1

The problem of minimizing the quadratic objective func-
tion L = x” Bx subject to the constraint equation in (3) is
clearly difficult if not impossible.

The eigenvalue approach first introduced by Hall [11] can
be shown to be equivalent to minimize the quadratic objec-
tive function x” Bx subject to the constraints of the first two
equations in (3). By taking the two smallest nonzero eigen-
values of matrix B and their associated eigenvectors, one
obtains the coordinates of the point-modules on a plane.
We call the solution the global placement. The modules so
obtained will not be on slots since only two constraintequa-
tions are used in the formulation. Thus they must be moved
onto slots by successive partitioning and/or iteration. The
method is useful for small or medium-sized gate-array
placement. Since determining the eigenvectors of a large
matrix is a difficult numerical problem it is clearly not fea-
sible for sea-of-gates design.

A. Sea-of-Gates Placement

Sea-of-gates design differs from gate-array design in two
aspects. First, in usual sea-of-gates designs, no routing
channel is used, which means all routing is done over the
gates. Second, the total number of gates could be very large,
for example 50K or more, so computation algorithms that
can handle very large problems efficiently are essential.
Unlike the conventional gate array, there are very few soft-
ware packages for sea-of-gates design.

The input to placement is in terms of a net-list for the cells.
Each cell represents either a gate or an interconnected set
of gates which form a basic logic element. The pads are
placed at the periphery of the chip of I/O and power and
ground connection. We assume that there are two or three
metal layers for interconnection of the cells; however,
throughout the chip there are blockages at various loca-
tions with one or more metal layers representing commit-
ted internal cell connection. The objective of the placement
is to locate all the cells and pads in such a way that nets are
uniformly distributed across the chip. To achieve 100-per-
cent connection, which is required in gate-array technol-
ogy, some of the active devices cannot be utilized because

239

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

their space must be reserved for routing. Thus the effec-
tiveness of a sea-of-gates design can be measured by the
percentage of gate utilization.

One of the main concerns in sea-of-gates placement is the
size of the problem. To deal with more than 50K gates on
achip, hierarchicallayoutapproaches have been proposed.
Onecommonly used method is to divide the layout of achip
recursively into the layout of a set of smaller blocks, and
place and route these blocks at a higher level using build-
ing-block techniques [12]. A series of steps needs to be
addressed in the process: definition of layout hierarchy,
area estimation, and aspect ratio assignment for each block;
pin location assignments; block placement; and block rout-
ing. Some of these will be discussed later. In this subsection
we briefly present the Proud placement program devel-
oped by Tsay at Berkeley [13]. The program is to be used
either for a partitioned block of a chip or a chip itself if the
gate count is not excessive. The constructive placement is
based on a resistive network analogy which takes advan-
tage of the sparsity of the net list specification. As we know,
in circuit simulation sparse matrix algorithms have proven
to be effective in handling circuits with many thousands of
nodes.

Consider the electric network analogy of the placement
problem. The objective function x” Bx can be interpreted
as the power dissipation of an n-node linear resistive net-
work, with x corresponding to an n-vector whose com-
ponents represent the voltages at the nodes. The modified
connectivity matrix B is exactly the indefinite admittance
matrix of the n-node resistive network with —b;; equal to
the conductance between node iand nodej. The placement
problem is then equivalent to that of choosing the node
voltages of the n-node network for which the power dis-
sipation is a minimum. In electric network theory it is well
known that minimum power dissipation is implied by the
two Kirchhoff laws. Thus we can reformulate our linear
placement problem in terms of a linear resistive network
problem provided that we include the I/O pad specifica-
tions. This allows us to model the I/O pads as fixed voltage
sources applied to the network. The coordinates of the
movable modules are then the node voltages to be deter-
mined. Therefore only sparse linear equations need to be
solved. In the program Proud, the successive over-relaxa-
tion method is used to compute x.

The result of the global placement gives the optimal solu-
tion in terms of the original objective function L(x, y). This
is because it is a convex quadratic function, so there exists
a unique global minimum. In the real situation, modules
occupy finite non-zero area and their shapes vary. While the
slot constraint is not pertinent to the global placement
problem, replacing the point modules with real modules
may cause module overlaps at this step. We will specifically
address the overlap problem and propose an efficient par-
titioning method with iterations to improve the initial solu-
tion. The key feature is that we again resort to solving linear
sparse equations. We repeat the process in atop-down hier-
archy to obtain the final solution. At each hierarchy, the
placement interactions between the two partitioned parts
will be handled by the block Gauss-Seidel (BGS) iteration
method to obtain a solution which is close to the global one.
in the following, we will first elaborate the partitioning
scheme.

As shown in Fig. 3, we introduce a vertical cut line to par-

partition line

:< *
e

center line

Fig. 3. Projecting modules from right half of plane to center
line to determine left plane placement.

tition the chip into two. The location of the cut is deter-
mined by the area consideration based on the positions of
the modules obtained from the initial global placement. We
sort the modules from left to right and add up the module
areas until roughly half of the total module area is reached.
The cut is then made. If the cut line happens to coincide
with the center line, we proceed to the next hierarchy level
by performing horizontal cuts on each half. If not, we must
move the cut line to the center in order to satisfy the area
usage requirement. This calls for a modification of the
placement in both halves. To achieve this, we introduce a
simple heuristic, as follows.

Assume without loss of generality that the cut line is to
the right of the center, as shown in Fig. 3. All modules to
the right of the center line are projected horizontally on the
center line as shown. We then solve the global placement
problem in the left half-plane by the method outlined in the
aforementioned. Note that, among the projected modules,
only those modules which lie between the cut line and the
center line will be included in the set of movable modules,
whereas the others will be grouped with the fixed modules.
We next repeat the placement algorithm for the right half-
region. However, before that, a temporary top-bottom two-
way partition on the left half-plane is determined. These
modules are then projected on the center line as fixed mod-
ules to solve the right half-plane problem. This process is
repeated two or more times before the partition becomes
fixed. We then reach the next hierarchy and proceed to find
the global placements of the top and bottom quarters of
each half. Eventually, after repeated partitioning, each block
contains one and only one module with a legal location to
which the module will be assigned. Since the partitioning
scheme takes into account the available area, the resulting
placement will usually have no overlaps.

The preceding concludes the constructive placement
phase of the sea-of-gates Proud program. For iterative
improvement, we consider actual pin position in evaluating
an objective function based on the half-perimeter net
length. Pairwise interchange and module insertion are used,
but they are limited to within a window which covers only
aportion of the entire chip. The size of the window is deter-
mined by a compromise between computation time and
the quality of the final result.

For an experimental chip with 100K gates, the compu-
tation time of the Proud program on a VAX 8650 (a 6 MIPs
machine) for the constructive placement phase is 50 min-
utes, and for the iterative improvement phase is about three
hours. The proud program also contains features to place
macros combined with basic cells. An algorithm has been
developed to place the macros first. The pins of the macros
must be considered and are treated like the 1/O pads to

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

obtain a global solution. The hierarchical partitioning
scheme must be modified to take into account the locations
of the boundaries of the macros.

B. Building-Block Placement and Floorplanning

In Fig. 4we show the result of placement and routing for
a33-block industrial chip done by the BEAR program, which
was recently completed at Berkeley[14]. The placement part
took 762 seconds on a VAX 8800. Note that in Fig. 4(a) routing
space is provided based on a hierarchical wiring area esti-
mation program. Crucial to building-block placement is the
allocation of routing space on the routing plane between
blocks. As a matter of fact, the problem of routing region

(b)
Fig. 4. Output of BEAR building-block layout system of

industrial example, primBBL2, with 33 blocks and 123 nets.
(a) Placement with routing area estimation. (b) Routing.

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

definition and ordering is an important aspect of building-
block layout [15]. Furthermore, when the chip is routed,
modules will be moved to accommodate the routing space
required. Thus placement and routing interact; it is much
more difficult to measure the quality of a placement alone,
as in the case of the point-module placement. What really
counts is the final total area after a chip is routed. We believe
that wiring area estimation is an important part of place-
ment and floorplanning using macrocells. Unfortunately,
most published work ignores this important aspect. There
has been, however, recentinterestin wiring area estimation
for layout design (16}, [174], [175].

We will briefly review some pertinent work in floorplan-
ning and placement; for example, the slicing structure, the
top-down partitioning min-cut method, the polar graph
representation, the shape function, the method of rect-
angular dualization, and the macrocell placement approach
based on optimization. As indicated earlier, simulated
annealing will not be included; however, it should be noted
that programs like Mosaico [176] and others{177]-[179] have
shown promise. We will briefly describe our own work used
in the BEAR system, which combines bottom-up clustering
with top-down partitioning. In BEAR, the problems of floor-
planning and placement are treated in a uniform way, in
hierarchical fashion, with only slight differences at the bot-
tom hierarchy or the leaf level, where all hard modules must
be used for placement.

The macrocell placement problem can be formulated as
a nonlinear programming problem. Instead of using point
modules, Sha and Dutton [17] introduced a line-segment
representation of a rectangular macro to approximately
depict its geometry. They used an objective function in
terms of the squared wire length, and carried out the opti-
mization subject to the nonoverlap constraints of the
macros. The nonoverlap constraints are inequalities derived
from the line-segment model. Rotation and mirroring of
modules can be taken into account. A penalty function
method and a sequential quadratic programming method
have been proposed to find a solution. However, neither
method guarantees a global minimum solution. Further-
more, because the nonoverlap constraints are based on a
line-segment approximate representation, the method may
even fail to ensure module nonoverlap. The required com-
putation time is of the same order of magnitude as that of
simulated annealing. Also, there is no routing-area esti-
mation.

Placement based on min-cut partitioning [18] has been
shown to be useful in standard-cell, gate-array, and build-
ing-block layout. Lauther [19] first demonstrated the effec-
tiveness of min-cut partitioning in macrocell placement and,
by introducing a graph representation, he established a
close tie between the placement problem and floorplan-
ning for the slicing structure. The basic idea is to group
together those modules that are tightly connected and sep-
arate those that are minimally connected. This is accom-
plished by successive min-cut bipartitioning (two-way par-
titioning) in alternate vertical and horizontal directions. A
modified Kernighan-Lin algorithm [20] is used. However,
one key aspect of Lauther’s method is to compute the sum
of the areas of the macros of the two partitioned sets and
make sure that the area difference between the two does
not exceed a predefined threshold value. This criterion
ensures that the min-cut partition will not lead to trivial

241

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

results, e.g., a single macro separated from the rest, and
thus a uniform distribution of macros can be obtained. The
same ideais used in the Mason floorplanner [21] developed
at Carnegie-Mellon University. However, they introduce an
additional feature called “in-place partitioning,” which
considers module connectivity in terms of terminal loca-
tions. At the end of the successive min-cut partitioning pro-
cess, all modules are assigned to rectangular biocks which
satisfy the area specification of each macro. Lauther’s
method contains a second phase which adjusts the shapes
of the blocks to satisfy the aspect ratio of each macro and
meanwhile does further optimization to reduce the total
wire length by incorporating rotation and mirroring of the
macros.

Clearly the first phase of Lauther’s method is well suited
to slicing-structure floorplanning since the area but not the
dimensions of macros are considered in each min-cut
bipartitioning. The use of slicing structure for floorplan-
ning was first proposed by Otten and Szepieniec [22]. By
slicing structure, we mean a floorplan which can be
obtained by a successive slicing process. Fig. 5(a) illustrates

3
(@ (b)

(e)

Fig. 5. Floorplanning for building-block layout. (a) Slicing
structure with order of slicing indicated. (b) Nonslicing
structure. (c) Tree representation of slicing structure. (d)
Order of channel routing. (e} T-junction at two channels.

a slicing floorplan with 1, 2, 3, and 4 indicating the slicing
sequence, while Fig. 5(b) gives the simplest structure, which
is nonslicing. To be more precise, we start with a rectan-
gular chip and cut it by k = 1 parallel line segments into
k + 1rectangles. The direction of cut may be either vertical
or horizontal. The resulting k + 1 rectangles can then be
cut again by parallel line segments in the perpendicular
direction from the first. The process continues until, in the
end, each rectangular block, sometimes referred to as a
room, is fitted by a macrocell. Note that in the nonslicing
example of Fig. 5(b), slicing cannot be done at the outset.

It is useful to represent a slicing structure by a slicing
rooted tree. Fig. 5(c) gives the slicing tree representation of
the slicing floorplan in Fig. 5(a). The root of the tree rep-
resents the whole chip. The set of nodes at the next level

242

represents the resulting rectangles after the first stage of
slicing. In the example in Fig. 5(a), it is done in the vertical
direction. Amarker h or vis used on each level of the slicing
tree to depict the direction of slicing. Thus Lauther’s method
of min-cut bipartitioning always leads to a binary tree.

Theslicing floorplan has a distinct advantage in that rout-
ing of the entire chip can be completed by using only a
channel router. Furthermore, it is easy to demonstrate that
the routing order turns out to be the reverse order of the
slicing. For the example of the slicing floorplan in Fig. 5(a)
its routing order is shown in Fig. 5(d). The essence of chan-
nel ordering is illustrated by a T-junction of two channels
shown in Fig. 5(e). Clearly the vertical base channel must
be routed first; its result, i.e., the width and floating ter-
minal information, is needed to route the horizontal bar
channel. In the case of a nonslicing floorplan, as in Fig. 5(b),
channels cannot be defined unambiguously; there is always
a cyclic conflict, and a channel router alone cannot com-
plete the routing [15], [180].

A floorplan, whether of the slicing or nonslicing struc-
ture, can be represented by a pair of dual graphs, the ver-
tical polar digraph and the horizontal polar digraph. The
polar graph originated in the early 1940’s in the problem of
dissection of rectangles into squares [23]. Its use in IC design
was first introduced by Ohtsuki, Suziyama, and Kawanishi
[24]. Fig. 6 shows the vertical and horizontal polar digraphs

SOURCE

i | ! SINK
I ! |

1
! P I
I |
i b ;
1 ! !
H . |
I | !
I

\
| (SINK
SOURCE ,

Fig. 6. Polar digraph representations of slicing structure.

of the floorplan in Fig. 5(a). In the vertical polar digraph, the
top boundary of the rectangular chip is represented by a
source and the bottom boundary of the chip is represented
by a sink. Each slice in the horizontal direction is repre-
sented by a node. A directed edge exists between two nodes
if there exists a block whose top boundary represents one
node and whose bottom boundary represents the other
node. The direction of the edge is from the node repre-
senting the top boundary to the node representing the bot-
tom. The horizontal digraph is similarly defined, with the
source representing the left boundary of the chip and the
sink the right boundary. The edge direction is then from
lefttoright. Itis clear that both digraphs areacyclicand dual
to each other. Furthermore, for a slicing floorplan, the
digraphs are series-parallel graphs.

The floorplanning problem, as discussed in many pub-
lished works, assumes a floorplan structure as represented
by, for example, the polar digraphs. In other words, the rel-
ative placement is given. The objective is to find the min-
imum chip area subject to the constraint that each macro
is specified by its area and perhaps a given shape function.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

Y14

>

0 x
Fig. 7. Shape functions with continuous aspect ratio (pa-
rabola) and discrete aspect ratio (staircase).

For a given macro, if the area is fixed, its x-y dimensions
can be plotted as a point on a parabola, as shown in Fig. 7.
The function f(-), where y = f(x) is called the shape func-
tion. If, in addition, the aspect ratio is specified by discrete
numbers, as in standard-cell design, the parabolais replaced
by a staircase shape function as shown in the figure super-
imposed on the parabola. Obviously, the shape function
gives the lower bound of a final floorplan design. If in the
final design every rectangular block has an aspect ratio
which sits on the parabola of the shape function, the design
is then optimum. To find the optimum solution is, in gen-
eral, difficult; Stockmeyer showed that the problem is NP
complete [25]. In the polar graph representation, the edges
can be assigned a weight which is equal to the area of the
macro. In their recent work, Wimer, Koren, and Ceder-
baum [26] used polar graphs to prove that if the shape func-
tion of the macros is continuous, there exists a unique opti-
mum floorplan, and they give its necessary and sufficient
conditions. This implies that there is always a minimum area
floorplan, and thus, ideally speaking, it is possible to have
no wasted area in floorplanning.

For the discrete aspect ratio situation, i.e., macros with
astaircase-shape function, abranch and bound method has
been proposed to find the optimum solution [27]. Earlier,
Ohtsuki, Suziyama, and Kawanishi used a mathematical
programming formulation based on the electric network
analogy to solve the same problem [24]. A similar approach
was used by Ziebert and Saal [28]. In the electric network
analogy, each macro is represented by a linear resistor. The
height and width of the macro are then the branch voltage
and current, respectively. Thus the aspect ratio gives the
resistance value, and the area represents the power dis-
sipation. The whole chip corresponds to a resistive network
whose power is to be minimized with respect to the resis-
tances in the network.

For the special case of slicing structure, polynomial time
algorithms have been proposed by Stockmeyer [25] and
Otten [29]. In the slicing structure, it is easy to combine the
shape functions of the macros by traversing the slicing tree,
similar to the series and parallel combinations of resistors.
It is simple to show that by traversing through the slicing
tree from the bottom up, we can obtain the combined shape
function for the whole chip. Then, using the information
on the desired aspect ratio of the chip, we can then traverse
the slicing tree from the top down to determine the aspect
ratio for each macro. This is essentially the method used in
the Mason floorplanner [21]. The Mason floorplanner also
contains the important feature of routing area estimation,
done by performing a global routing after preliminary floor-
planning. The tree traversing algorithm is then repeated to
divide the routing areas into blocks.

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

Up to now the discussion of floorplanning has assumed
that the structure of the floorplan is known and that the
only purpose is to minimize the chip area by determining
the aspect ratio of the macros. One way to obtain a slicing
structure placement is to use the bipartition process pro-
posed by Lauther. Other methods can lead to a general
structure. In the following we will briefly review the method
of rectangular dualization which can incorporate the adja-
cent relations of functional and logic blocks into floor-
planning. The objectiveis to find a relative placement of the
modules which is compatible with the overall topological
relations of the functional blocks to be realized in a chip.
For example, module interconnection by abutting is attrac-
tive because no routing space is required. Thus in floor-
planning it is desirable to keep track of the adjacency rela-
tions of the functional and logical blocks. This could also
influence the module designers to assign pin locations to
facilitate abutting.

A rectangular floorplan as represented by its dissection
D is shown in the examples Fig. 5(a) and Fig. 5(b). It can be
characterized in terms of a graph. For simplicity, we assume
that the line intersections, with the exception of the four
corners, are T-shaped. A “/+’ type intersection can be
decomposed into two T-shaped intersections. A rectan-
gular dissection D can be represented by a planar graph,
called the floorplan graph: G = (V, E), where V is a set of
vertices representing the line intersections of D, and there
exists an edge (v;, v;) in E if and only if the intersections
corresponding to v; and to v; are adjacent. The inner faces
of G are called rooms. To represent the adjacency relations
between rooms of G, we construct the inner dual graph of
G: G* = (V* E*),where V* is a set of vertices representing
rooms of G, and there exists an edge (v, v}) in £* if and
only if the rooms corresponding to v} and to v¥ have a com-
mon wall. The floorplan graph of Fig. 5(b) and its inner dual
are shown inFig. 8. Theinner dual graph of afloorplan graph

(a) (b)

Fig. 8. Floorplan graph. (a) Inner dual graph. (b) Nonslicing
structure. -

is a plane triangular graph, i.e., a graph which can be
embedded in a plane and every face of which is a triangle.
A plane triangular graph has a rectangular dual if it is the
inner dual graph of a floorplan graph representing a rect-
angular dissection. The application of dual graphs to |C lay-
out was first introduced by Suziyama, Nemoto, Kani, Oht-
suki, and Watanabe in 1970 [30]. The use of rectangular
dualization originated in architectural design in 1971 [31].
Its application to IC floorplanning was first developed by
Hellerin 1979{32]. Since then anumber of publications have
appeared [33], [34], mainly due to its graph theoretical inter-
est. To apply the method to floorplanning, several steps are
necessary. First, the block diagram which depicts the global

243

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

functional and logic interconnections must be converted
to a planar graph. Next, the planar graph must be reduced
to a plane triangular graph. To guarantee that it has a dual
floorplan graph, the plane triangular graph must not con-
tain complex triangles [35]. In the aforementioned pro-
cesses, edge deletion and node insertion may be necessary;
furthermore, for a given proper plane triangulated graph
there exist many rectangular duals. Thus for a large net-
work, the complexity is too high to be appealing. None-
theless, the method can be used asa guide in floorplanning
for simple designs.

In the following we describe briefly the floorplanner used
inthe BEAR layout system {36]-[38]. The same method is also
used for placement with only minor modifications. The
method has several advantages and has proven toyield good
building-block layouts on several real examples. It is gen-
eralin thatitincludes the nonslicing structure. The method
depends on bottom-up hierarchical clustering to obtain a
clustering tree. Atop-down planning is next performed. The
method includes hierarchical wiring area estimation and
other look-ahead features.

The placement and floorplanning method used in BEAR
can be viewed as a generalization of Lauther’s mincut bipar-
titioning algorithm; however, the number of parts resulting
per partition is not limited to two. With a larger degree of
freedom to group elements together, an artificial separa-
tion of related macros is tess likely. In mincut bipartitioning
a binary tree is generated by a top-down process, whereas
BEAR uses a data-driven bottom-up clustering and thus pre-
serves a natural cluster of macros as much as possible. This
is not the case in mincut bipartitioning because a binary
tree determines the eventual placement of some macros to
a great extent at the very outset. For the final placement it
isalso crucial thatatthe very end of bipartitioning the shape
of the rooms should match the shape of the macros as much
as possible. Since thisis very difficult to achieve, an iterative
step [39] or restructuring of the tree is necessary [40].

BEAR employs a clustering algorithm based on graph par-
tition using acombined criterion of connectivity and geom-
etry. The latter is heuristic in that blocks in pairs are for-
bidden if their areas or if the lengths of their longer sides
differ significantly. We allow the maximum size of a cluster
to equal five at each step. The step is recursively repeated
and thus produces the different hierarchical levels in a bot-
tom-up fashion of the cluster tree. We limit the size of each
cluster to five because: i) with five or less blocks, a simple
pattern enumeration followed by an exhaustive search is
feasible, and ii) a general nonslicing structure floorplan is
included in our treatment.

Next the method proceeds top-down from the root of the
tree, which represents the whole chip, with the chip’s spec-
ified aspect ratio and possibly I/O goals. The known infor-
mation at this stage is represented by the clusters of blocks
at the next level, which includes area and possibly shape
information passed on from the leaves towards the root of
the tree. The floorplanner then searches a library of floor-
plan templates and considers all possible room assign-
ments which meet the combined goals of aspect ratio and
1/0O pads. The library of templates for two to five rooms is
illustrated in Fig. 9. Note that only in the five-room situation
does a nonslicing structure exist. The cost function is again
given by a combined criterion of connectivity and geom-

[
BB H}HHIH

1 —EEEH
I & M8 B B -

Fig. 9. Floorplan templates for two-room, three-room, four-
room, and five-room configurations.

etry. Fig. 10illustrates a cluster tree with three possible floor
plans whose chip aspect ratios equal 1:1,2:1,and 4: 1.
The algorithms used at the leaf level and the nonleaf level
are slightly different. The details are given in [38].

An important feature included is wiring area estimation.
A simple top-down hierarchical method is used. Fig. 11
shows a three-block cluster with elements (0, 1, and 2) and
1/0’s (N, E, S, and W), where the shaded areas are called
bottlenecks [41]. Each bottleneck has an estimated channel
width which is calculated by the sum of possible nets going
through the channel according to a probability measure.
Consider the bottleneck between block 1 and block 2. The
channel width is given by

_ 12
Wiy =ty ,Zf:Pif o

where Cjis the connectivity between elementiand element
j, piis the probability that the i-j connection goes through
the bottleneck 1-2, and ty, is a heuristic weight factor which
takes into account track sharing. The probability factors
p% and pif, for example, are each equal to 0.5.

The preceding estimation takes advantage of all the infor-
mation gathered about the position and connectivity of
clusters of blocks up to that level. Earlier in the top-down
process space for global connections between different
clusters has been provided. Later on, in the successive lev-
els, internal connections within the clusters become visi-
ble. Because the path information is precomputed for the
finite number of topologies, the wiring area estimation can
be done efficiently and simultaneously with the template
evaluation process. Routing area can be treated in the same
way as the block area in the objective function, to obtain
an optimal floorplan/placement with routing.

There is an additional feature of floorplanning in BEAR
which is used after global routing. It is called the global
shape optimizer, and is similar in philosophy to a chip-level
compactor. The optimizer assumes that module orienta-
tions and the relative pin locations are fixed. Given the ini-
tial placement and a set of constraints on module shapes
for each module, the shape optimizer alters the location of
modules and the aspect ratio of the soft modules to further
reduce the chip area. The algorithm performs X- and Y-axis
optimization in one pass. It iteratively reduces the longest
path by picking up amodulelying onacritical path(in either
direction) and resizing it so that the module dimension
along the critical path is reduced. The process terminates
when no significant improvement in the layout area can be
achieved.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

C3e 0 39
230 933 b34 D32 P36 o 31 835 037
§60dd dd6d dodd b6 60 do0dd dddbd o8
2526115 8 4292820 521222 101 0 9 7 13243 1227 619142318 16 17
(a)
38 39
—%% 3%
a7
34
33 a1
30
36 35
32
38 39
e — e
34 30 32
31
35
33 36 po
—_— % %
34 30 32 37| 3
33 | 35
(b)

Fig. 10. Example of hierarchical floorplan enumeration. (a) Cluster tree. (b) Floorplanning

with overall aspect ratio goals 1:1, 2:1, and 4:1.

N
02
P05 -
«0.5
N
2
w :K 7 E
0
1
S

Fig. 11. Hierarchical routing area allocation.

IIl. ROUTING

After modules are placed, the remaining task in layout
design is to make all the necessary interconnections. This
means that pins of modules must be tied together by nets
according to the net list specification, meanwhile satisfying
both the physical constraints and design rules. The prob-

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

lem is usually referred to as routing. In the sea-of-gates
design it entails the connection of many thousands of nets
competing for the space throughout the chip that is left over
from cell design. The principal requirement is to make 100-
percent interconnection. In building-block layout, routing
regions are defined after placement [15], though the areas
of those regions are not yet fixed. The objective is to devise
a method of routing which, when it is completed, mini-
mizes the total chip area. Since the problem is complex,
routing is done in two stages: global routing and detailed
routing.

Global routing (sometimes called loose routing) calls for
a routing plan in which each net is assigned to a particular
routing region. The aim is not only to make 100-percent
assignments but also to minimize the total wire length.
Between neighboring regions, pseudo-pins are used to
indicate the intersections of global paths with the bound-
aries of the local regions. These pins are sometimes called
"“floating,” to imply that their precise coordinates on the
boundary may not be fixed. Detailed routing takes over after

245

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

global routing and gives the precise recipe of net inter-
connections for each region in terms of net, via, and track
assignments. Although detailed routing is sometimes done
using only one layer, as in river routing [42], in most current
practice two layers are used. As technology advances, rout-
ing on three or more layers will become important. Even
now, multilayer interconnect is of real interest in packaging
design.

The simplest approach to both global routing and detailed
routing is sequential routing, i.e., to route one net at a time
and to choose the shortest path whenever possible. The
Lee-Moore grid expansion algorithm [43] and many of its
modified versions have been widely used. The problem of
finding the shortest connection for an n-terminal net is
called the Steiner problem. Itis related to the shortest span-
ning tree problem but it allows, in addition to the n given
terminals, intermediate connecting points called the Stei-
ner points. Unfortunately, the Steiner problem is NP com-
plete. There exist simple heuristic algorithms, however, and
for n < 5 the rectilinear Steiner tree is easily found [44].
Also, for global routing it is useful to consider the Steiner
problem on a weighted graph [45]. For special graphs, such
as the 2 X N grid graphs and the partial two-trees {46] and
plane-triangular partial three-trees [47], there are linear time
algorithms. These graphs have been found useful in hier-
archical routing and in combining floorplanning with global
routing [36], [48].

The objective of routing is to make 100-percent connec-
tion that minimizes the chip area. Clearly it is not generally
possible to route all the nets with shortest connection paths
because they compete with each other for paths. The
sequential approach updates the available routing space
after completing each net, as in the Lee-Moore router. The
routing order becomes crucial. There are arguments for
routing the shortest nets first; there are also arguments for
routing nets with the mostterminals first. Itis almostimpos-
sible to devise a general procedure which works the best
inal! situations. The otherapproach is to route all netsinde-
pendently, and if some routing space becomes over-
crowded, reroute the nets which cause congestion. This
sometimes can be accomplished by rip-up and rerouting,
which will be discussed in section lI-C. Often the infor-
mation obtained from independent net routing can be used
to help in implementing a totally different routing strategy
based on the global view it presents. We will discuss global
routing in section Ill-A and detailed routing in section
111-B.

A. Global Routing

Although the aim of global routing isto minimize the total
wire length, the approaches used differ somewhat accord-
ing to the layout design styles [49]. For gate-array design
there are methods based on deterministic optimization,
simulated annealing, hierarchical top-down and bottom-up
schemes, and strictly constructive methods [49]-[52]. In
standard-cell design, feedthroughs must be used to inter-
connect cell rows. Global routing can be treated as a mul-
tichannel optimization problem using spanning-tree or
Steiner-tree algorithms to reduce the total number of rout-
ing tracks [53]. For building-block layout, a graph is usually
used to represent the topology of the placement, and
sequential routing is done on the graph. The edge weight

246

of the graph, which depicts routing congestion, is updated
after each net is routed [41].

In the following we will briefly discuss a method which
is based on successive top-down cuts on a plane. The
method was discovered independently by Marek-
Sadowska for building-block layout [54] and by Lauther for
sea-of-gates design [55]. Its special feature is that it is order-
independent, and at each hierarchy, it attempts to simul-
taneously assign optimum net crossings at a cut-line. We
have implemented the method in the BEAR program for
building-block layout and in the Proud program for sea-of-
gates design. We believe that the results are superior to any
other available methods in terms of quality and compu-
tation time.

The essence of the method will be illustrated first with
the sea-of-gates problem. We will assume that the routing
capacity is uniform across the chip. The whole chip is
divided into rectangular regions; at the boundaries of each
region the capacity for net crossing is uniform. The end
result of global routing is a specification for each region of
the net list for detailed routing in terms of pseudo-pins and
cell terminals. Clearly, with no overflow the number of net
crossings must not be larger than the capacity at each
boundary.

To illustrate, a horizontal cut is first made. There are alto-
gether M sections evenly spaced on the cut-line, as shown
in Fig. 12(a). We assume that there are N two-terminal nets

CUT LINE

SECTION
_\

P

-

SV R |

TiDEAL
RANGE

i
|
|
|
|
|
|
l

COosT

(b)

Fig. 12. (a) Hlustrating cut-line, sections, enclosing rect-
angle of two-terminal net, and ideal range. (b) Cost function
defined for net.

which must cross the cut-line from the top to the bottom.
For simplicity, let us also assume that the capacity for each
section is one and N < M. It is thus possible to assign one
net to a specific section in such a way that some measure
of wire length is minimized. Specifically, we want to con-
sider the incremental length, i.e., the length exceeding the
shortest route for each net. A cost function must be intro-
duced for each net with respect to the sections of the cut-
line. Let us draw the bounding box of each net. Clearly, if
the sections are within the bounding box of a net, the cost
is zero. We say that these sections are in the ideal range.
For sections outside the bounding box, the cost is pro-
portional to the horizontal distance away from the ideal
range, as shown in Fig. 12(b) by finite-slope straight lines.
The slopes in the cost function may be defined according

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

to the vertical distance from the terminal to the cut-line.
Nets compete for sections in their ideal ranges; some nets
must take detours and thus there is a higher cost. For ter-
minals very near the cut-line, the net should not be routed
with along detour away from the ideal range. Other criteria
can also be used; for example, in routing critical nets. With
the cost functions specified, the problem can be solved by
standard linear assignment algorithms. As mentioned ear-
lier, netassignmentis doneall atonce without net ordering.
After the initial cut, we proceed to the next hierarchy in the
upper plane and lower plane. The process is repeated for
each half-plane with vertical cuts. It is terminated when we
reach to lowest level of hierarchy, i.e., when we attain the
regions for detailed routing.

In the preceding we have assumed that all nets are two-
terminal nets and each net is to cross the cut-line exactly
once. For multiterminal nets, some preprocessing must be
done to decompose the net into subnets. The best way is
to find the minimum Steiner tree or an approximate min-
imum Steiner tree for each net. A subnet denotes a subtree
which crosses the cut-line only once.

The location of the cut-line affects the overall result of
global routing. What seems to count is net congestion. We
have found that the best result can be obtained if the cut
is made in the most congested area. Thus we propose to
first obtain a density profile after placement. This entails
finding all the Steiner trees of nets independently. The order
of cuts is then determined according to the density profile
with the most congested area cut first. Cuts need not be
done at the center in each hierarchy; neither is an alter-
native horizontal/vertical cut required.

The preceding discussion must be elaborated to fit the
real design situations in both sea-of-gates and building-
block layout. The sections on each cut-line have routing
capacity specifications. Let us use building-block layout to
illustrate first. When a cut-line is made it intersects both the
macrocells and the routing regions. The sections are defined
accordingly. If we assume that no over-the-cell routing is
allowed, then the sections defined by macrocells will have
zero porosity, i.e., the capacity is zero. The capacity of sec-
tions defined by the routing regions depends on the num-
ber of tracks predetermined by placement with routing area
estimation. If over-the-cell routing is allowed on one layer
in some locations, the routing capacity for those sections
must be calculated. In sea-of-gates design, the capacity
specification must include information on whether two or
three layers are used for routing and on where layer com-
mitments have already been made in cell design. Once the
capacity is specified and cost functions are given, the global
routing problem can be described as follows. For each cut,
we have sections j = 1,2, - - - M, each with a capacity C;.
There are nets/subnets crossing the cut-line, i =1,2, - - -
N.The costis defined by an N x M matrix W = [w;;], where
w;; is the cost of ith net assigned to the jth section. Let x;
be a0-1variable, then we are seeking an assignment of nets
to sections to minimize the total cost function F:

N M
F=2 Zw,,-x‘,-

i=1j=1

subject to

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

and
M
2 X =1

That the variable x; is zero implies that net i is not assigned
to section j. It is equal to one if net i is assigned to section
j. This is a familiar network flow problem in which the inte-
ger min-cut maximal flow solution can be obtained by stan-
dard methods [56]. The time complexity is, on the average,
of O(M x N). For a building-block layout example with 77
macros and 500 nets, it takes 20 seconds CPU time on a VAX
11/780 to find a solution.

B. Detailed Routing

In detailed routing a net list is given together with a spec-
ified routing region and available routing layers. For sim-
plicity we assume that pins are accessible in any layer unless
they are precisely specified. The primary requirement is to
make 100-percent interconnection from the given net list
using the space available. There are often additional objec-
tives such as minimizing the total wire length or the total
routing area if the routing region has flexible boundaries.
Others may be imposed: minimizing the number of vias,
considering prerouted nets such as power, ground, and bus
lines, or treating critical nets specially, for instance.

The problem of detailed routing can be classified in terms
of the number of available routing layers. For one-layer
routing, the key constraint is planarity. There are well-
established problems like river routing and single-row rout-
ing [57], [58]. For two-layer routing, a key strategy often
employed, called H/V routing, is to route one layer with only
horizontal wires and the other with only vertical wires. The
connections between the two layers are made at vias. There
exist numerous well-known algorithms for H/V routing.
What is perhaps not so well-known is the concept of col-
lapsed routing [59], which is a planar representation of two-
layer routing. If knock-knee connections are excluded, the
collapsed routing can easily be transformed to an H/V rout-
ing by inserting a via at every intersection. Horizontal con-
nections can be routed all on one layer and vertical con-
nections on the other. Well-known via-minimization
algorithms can reduce the number of vias [60]-[64]. The
result will have horizontal and vertical wires mixed on the
two layers. The concept of collapsed routing is appealing
because it initially disregards layers. We believe that this
approach should be researched further to develop new
routing algorithms.

The problem of via minimization has received consid-
erable attention. It has both theoretical interest and prac-
tical significance. The problem can be classified into two:
the constrained via minimization and the unconstrained,
also called topological, via minimization. In the former,
routing has already been done either on two layers or in the
collapsed form. Via minimization then follows as a post-
processor. Algorithms based on graph representation and
clustering have been reported which show that via reduc-
tion of 20 percent or more from an initial routing can often
be achieved. The unconstrained via minimization problem
was first introduced by Fisu in 1983 [65]. The aim is to min-
imize the number of vias based on the net list information
without considering either the geometry of the region or
design rules. It is an NP complete problem [66], but there

247

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

are heuristic algorithms which find a topological routing
[67], [68]. The conversion of topological routing to geo-
metric routing, however, is difficult. The problem lies in
mapping topological routes onto routing tracks to fit the
space and boundaries of the given routing region. Much
more research is needed before topological routing
becomes useful in real layout design.

Detailed routing can also be classified according to
whether the routing region is a channel or a general two-
dimensional region. An ordinary channel is arectangle with
open ends on two opposite sides. There are pins on the
other two opposite boundaries of the rectangle. Nets leave
the channel through the open ends and are connected to
other parts of the chip. In building-block layout, when four
channels meet at a "+’ (cross) intersection, the region of
the intersection defines a rectangular routing region called
aswitch box. As far as the switch box is concerned, pins and
pseudo-terminals exist on all four sides of the rectangle.
The major difference between a channel and a switch box
is that a channel is an open region and its width can be
expanded or reduced according to the space required by
achannel router. A switch box, onthe other hand, is aclosed
region whose routing space is fixed. In channel routing,
100-percent completion is guaranteed and the main aim is
usually to minimize the channel width. In switch box rout-
ing, though, the main aim is to make 100-percent connec-
tion. If, for a given net list, routing cannot be completed,
the problem is said to be not realizable.

There are generalized versions which include rectilinear
boundaries of both the channel routing problem and the
switch-box routing problem. The channel can be L-shaped
or Z-shaped [69]; the switch box becomes a two-dimen-
sional closed region with a rectilinear boundary which may
contain obstructions or rectilinear blocks. These general-
izations are important in the detailed routing for both sea-
of-gates design and building-block layout. In the following
we will give a brief review of switch-box routing and its gen-
eralizations. We assume that vertical and horizontal routing
grids are given in a closed two-dimensional region and
design rules are automatically satisfied. The problem is to
make 100-percent interconnection of the pins according to
the specified net list.

Of course sequential routing in the form of either maze
running or line search {70], [71] may be used. This shouid
be combined, however, with other strategies such as a
breadth-first search and minimum change in routing direc-
tions [72].

The hierarchical method developed by Burstein [73] can
be used both for ordinary channels and switch boxes. It
employs a divide-and-conquer technique and leads to
excellent results for channel routing, but fails to complete
the “Burstein difficult switchbox.” Since the publication of
the particular example in 1983, several routers have been
developed which succeed in routing Burstein’s difficult
example.

The method introduced by Marek-Sadowska [59] is rule-
based. It uses the collapsed routing strategy and conducts
routing from the boundary of the region inwards. One key
idea is to detect patterns of partial routing which call for
a unique solution. A more elaborate rule-based router is
Weaver [74], which is a knowledge-based expert systems
router. Weaver produces excellent routing results, but takes
an enormous amount of time even for simple problems.

248

The Mighty router [75] is based on an incremental routing
strategy. It employs maze running but has the special fea-
ture of modifying the already-routed nets. The cost func-
tion penalizes long paths and those which require vias. Rip-
up and rerouting may be necessary to complete the routing.

Another recently developed heuristic router, Beaver [76],
hasyielded excellent results. The algorithm consists of three
successive parts: corner routing, line-sweep routing, and
maze routing. It uses priority queues to determine net
ordering. In addition, an important feature of track control
is employed to prevent routihg conflicts. At the beginning,
a net is given control of the tracks that extend out part of
the way from its terminals. A portion of the tracks is reserved
for other nets, so controlled sections may overlap and rout-
ing is done on a first-come-first-served basis. This method
tends to give a more global view and serves as a guide to
the heuristic routing process.

An earlier routing approach proposed for printed circuit
board design, called a pattern router [77], [78], is useful in
two-dimensional routing. The idea is to enumerate all pos-
sible patterns according to cost functions to determine the
best path for a two-terminal net. This and various other
strategies have been combined recently in the develop-
ment of a template-based router [79], [80]. As shown in Fig.
13, only four basic types of template are needed. Within
each type there are four different configurations depend-
ing on the orientation of the templates. For the three-seg-
ment template, the span of the central segment depends
on the spacing of a given net. The end sections can be char-
acterized in terms of a single number d, which depicts the
relative dimension of the sections. If d = 0, the three-seg-
ment template is reduced to an L-shaped pattern.

Routing is done sequentially, with the longest half-perim-
eter net routed first in the present implementation. A con-
trol structure similar to that in Beaver is used. Terminals
control a specified percentage of the length of the tracks
they face. For terminals on the edge of arouting region, the
distance is set to a fraction f of the available length of the
track perpendicular to the boundary where the terminal
lies. Whenever a net is completed, it releases control of all
the grid points which it controls. Terminals are also allowed
intheinterior of the routing region. For these terminals, the
reserved track extends in a preferred routing direction on
both sides of the terminal, with a distance equal to f/2 of
the distance to the boundary. It is easy to see that due to
the control structure a deadlock situation can occur where
one net does not permit another net to be routed. A special
feature in the algorithm is the dynamic updating of the con-
trol structure with automatic decrease of the control region.
Having uncompleted nets after one pass through the rout-
ing will lead to an automatic decrease of the extent of con-
trol for the remaining unconnected nets by a fixed amount
until the control reaches zero toward the end of the routing
process, when maximum congestion starts occurring.

To select a template to be used for routing a net, a set of
costs is defined. In the formulation, we assume that
obstruction may exist within the routing region. The fol-
lowing defines the various costs.

C, Cost of routing on a grid that is blocked.

C. Cost of routing on a grid point controlled by a net
other than itself.

C, Cost of a via.

PROCEEDINGS OF THE I[EEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

11

pi
1A 1B
P2
1D

pl

Type 1

1

2D

p2
2A
d
pl
2C

Type 2

Fig. 13. Routing templates for template-based two-dimensional router.

C; Cost of routing over an uncontrolled grid point.
C, Cost of routing on a grid point controlled by itself.

Then G, is set to be infinity, and C, >> C, > C; > C,. The
costs of various templates are evaluated for each net to be
routed between two terminals. The template with the min-
imum cost is selected if its cost is less than C.. The con-
nection between the two points is uniquely identified by
the template chosen and the characteristic dimension num-
ber d. These parameters are stored in the memory, so that
if, at a later stage in the routing process, a certain connec-
tion needs to be ripped, only the template number and its
characteristic dimension needs to be retrieved.

Ifthere are no templates that have a cost less than C,, then
either blockage has been encountered or atemplate passes
over a grid that is being controlled by another net. A special
strategy is needed, depending on the nature of the conflict,
to find a successful path [80].

Multiterminal nets must first be decomposed into two-
terminal subnets. Because the router allows terminals inside
the routing region, a minimum Steiner tree can be used to
define the subnets. Inthe presentimplementation, the min-
imum spanning tree is used. In summary, the template-
based router has several salient features. It is also very flex-

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

Type 3

p2

4B

4A

1
P Type 4

ible in that if rip-up and rerouting is needed, it can easily
be done because of the simplicity of the template’s rep-
resentation. Preliminary tests indicate that the router yields
high-quality results in that most nets are routed with short-
est paths. It is also extremely fast.

For the Burstein more-difficult switchbox example, the
initial template-based routing completes 23 of the 24 nets,
all with minimum wire length. The last net is completed by
maze routing. The total wire length i5 542 units and the num-
ber of vias used is 35, which is comparable to that of Mighty
and Beaver [76]. The router has an additional special fea-
ture: it allows terminals to be prespecified on a particular
layer.

The problem of general two-dimensional routing is clearly
more difficult than channel routing. There are no theoret-
ical results, such as those in channel routing, obtained from
a graph theoretical approach. However, in special situa-
tions, there are some intersting results. Nishizeki, Saito, and
Suzuki [81] considered routing in a two-dimensional region
with convex grids that include knock-knee intersections on
one or two layers. They proposed an exact solution with a
linear time algorithm if all nets are two-terminal and pins
are restricted to the boundary. The agorithm is based on
planar multicommodity flows and finds edge-disjoint paths

249

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

when they exist. Onaga[82] researched the switchbox prob-
lem and found a method for multiterminal nets which
obtained similar results.

C. Rip-Up and Rerouting

The primary goal of detailed routing is to achieve 100-per-
cent interconnection using the space available. The con-
ventional incremental routing algorithms suffer from a fatal
disadvantage in that they provide no feedback or antici-
pation to avoid conflict between nets. Because of this blind-
ness such autorouters often fail to connect all the nets and
must be followed by manual rework to connect the remain-
ing nets (usually less than 5 percent). What is typically done
by designers for connecting the remaining few nets is to
detect existing connections causing “’blockages’ and to rip
up and reroute them so as to provide room for the blocked
nets. The basic idea behind the recent rip-up and rerouting
techiques is to simulate the human way of doing this. The
goal of routing tools having the rip-up and rerouting ability
is to achieve 100-percent interconnection as successfully as
a human expert with shorter design turn-around time, by
either improving existing autorouters or using interactive
tools.

Recently, several CAD vendors have provided routers
with rip-up and rerouting features, which achieves better
performance. Until now, a few published papers [75], [83]-
[85], [181] have reported rip-up and rerouting schemes, but
they only ambiguously describe key strategies on deciding
which existing nets should be ripped up and how their
routes should be modified in order to complete the inter-
connection under consideration. Roughly speaking, these
are the commonly used strategies: pay special attention to
the neighborhood of the pins for subsequent intercon-
nections [83); push aside nearby existing nets so as to make
room for a blocked net [75], [84]; remove some existing
interconnections so as to connect the blocked net earlier
[75], [83]; etc. The template-based router discussed in the
last subsection uses a combination of the aforementioned
schemes for rip-up and rerouting. In the following we will
briefly discuss a graph-theoretic approach to rip-up and
rerouting [86], [87] and its implementation on an interactive
routing system, called WIRES [88], developed at Waseda
University.

When a particular interconnection fails at an interme-
diate stage of incremental routing, it implies that some
already-routed nets have blocked the pin pair. Such ablock-
age can be well characterized by the graph-theoretic term
“minimal separator.” The example shown in Fig. 14 will help
an understanding of this term, where nets 1, 2, ---, 5 have
been routed and net 6 has been blocked. The essential min-
imal separators for our purpose are those consisting only
of the cells occupied by existing interconnections. Among
them, two particular ones, S, (reachable from a pin of the

Fig. 14. Minimal separators blocking net 6.

250

blocked net 6) and Sy (reachable from the other pin) can be
found by means of exhaustive wave propagation, i.e., an
obvious modification of the Lee algorithm. Those cells in
Sa and Sg are marked with O and X, respectively.

In order to indicate the likelihood of rerouting particular
nets to succeed, the following measure [86], [87] is derived
from these two minimal separators. For each already-routed
net W, let N(W) and Ng(W) be the number of cells of W
contained in S4 and S, respectively. Then

P(W) = min {N (W) — Li(W), Ng(W) — Lz(W)}

is called the “‘reroute effect index’” for W, where L (W) =
1, if the pin pair of W lies in the opposite sides of S, oth-
erwiseitis equal tozero. Ly(W)issimilarly defined. It should
be stressed here that rerouting of W successfully makes
room for the blocked net only if

PW) =z 1.

In this particular example, we know that only net 4, with
P(W) = 2, and net 5, with P(W) = 5, are worth trying for rip-
up and rerouting. Although rerouting of net 4 alone is
actually successful in this example, the reroute effect index
is useful to narrow the range of trial and error. It is desirable
toimprove thisindex because a larger value means itis more
likely to succeed. An approach in this direction is reported
in [88].

Very often we encounter acase where asimple rip-up and
rerouting is of no help. Fig. 15(a) is such an example; net

(©)
Fig. 15. Example in which X router is effective.

2 has been blocked by the already-routed net 1. If we con-
nect net 2 by means of a shortest path after removing net
1, as shown in Fig. 15(b), then net 1is blocked as well. Thus
the partial reordering does not work. In such a case, the “'X
router” implemented in the WIRES system [88] is of great
help to find an optimal rerouting path. The cells marked
with X in Fig. 15(c), called X cells,” indicate the essential
part of the existing interconnection which blocks the
unconnected net. Then the X router tries to find a path for
the removed net 1 without using X cells so as to make room
for the blocked net 2. Note that those X cells can be found

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

Succ. net : 72 Rate : 393.5%

Net number : 36

) 1
J

uUTo
e

R o—Ue
Flu €t © ><
c—Route [

Mo ol § F 5
Env” -

Fig. 16. Multiwindow display in WIRES system.

by means of a slight modification of the wave propagation
search for obtaining the minimal separators [87], [88].

The sophisticated rip-up and rerouting is more suitable
to implementation in a standalone interactive system than
in an autorouter; the former has more flexibility to exploit
expert designers’ control. On the other hand, the inter-
active system must provide a pertinent set of commands
that are executed very fast so as not to make the interactive
operations tedious. The WIRES system has a backup hard-
ware router to accelerate the execution of key commands,
which will be briefly described in section V. The WIRES sys-
tem, in addition to the ordinary incremental router, accom-
modates the commands for finding minimal separators, cal-
culating reroute effect indices, temporarily removing an
existing interconnection, generating X cells, invoking X
router, etc. Fig. 16 shows an example of multiwindow dis-
play in WIRES. In this example the display consists of the
whole wiring space, its partial zoom, command menu,
reroute effect indices of blocking nets, and a managing tree
representing a sequence of rip-up and rerouting trial.

Fig. 17 shows an example of two-layer wiring done by a
graduate student using WIRES. There are 56 nets to be con-
nected, but an incremental router left eight of them uncon-
nected. The interconnection of the remaining nets was
completed in 8 minutes (turn-around-time), where exhaus-
tive wave propagation search, ordinary two-pin router, and
X router were invoked 4, 14, and 6 times, respectively.

The rip-up and rerouting techniques are useful and
promising for improvement of existing detailed routers.
However, in order to solve large-scale problems in shorter
time, research on faster backup accelerators and on rip-up
and rerouting strategies based on gridless routing will be
needed.

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

BNV
= b b
—
7
4
i i =
net number : 36
No. Ka(Ma) Kb(Mb)
| 195¢C 6) 5 4
= 2 ?55(5 5(4
- H 2 1340 9 40 2
T [l 4 513 @3¢ D
1 5 s22C &) 2 D
£ li 6 612(5 2(1
7 692 3 20 2)
§ 11119 1¢ D
9 53 1C 7 1C 1
18 58 1C 20 10 2)
!! { 1T 11 €5 1C 2% 10 2)
5 e 1 12 68 10 2 1¢ 2
=H T B 13 67 1C 13 1< 1
14 31 8¢ 157 8 @)
LI 1O B ke e o
16 so o 19) B0 @

Fig. 17. Two-layer routing problem.

IV. CoMPUTATIONAL GEOMETRY IN VLSI Lavout

Theoretical computational geometry has advanced, aim-
ing at applications such as geographic information pro-
cessing, computer graphics, structural databases, etc. [89].

251

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

In the past several years, applications of computational
geometry to VLS| layout have also become popular [94]-
[110], [114]-[118]. Some of these contributions are sum-
marized in a review article [90]. In this paper we will discuss
some more recent results on design rule checking, gridless
routing, and layout compaction, after briefly reviewing basic
algorithmic techniques and data structures relevant to VLSI
layout.

The geometrical patterns encountered in VLS| design are
usually simple, i.e., polygons in the mask planes, although
we have to deal with extremely large-scale problems. Many
of the relevant geometric search problems can be char-
acterized as intersection problems in which layout objects
such as rectangles, line segments, points, etc., lying on the
digitized plane, are under consideration. These intersec-
tion problems are classified into two categories. One of
them, called ““batched mode,” is to report all the inter-
secting pairs among a given set D of objects. The other,
called “on-line mode,” is to report items of D that intersect
a particular query object. The on-line mode problems are
further divided into two classes: static problems, in which
the underlying set D is not changed, and dynamic prob-
lems, in which D is updated by intersections and deletions.

The most powerful and commonly used algorithmic tech-
nique in layout verification is the “worklist method,” often
called “’plane sweep” by computer scientists. In this
method, the IC mask plane is swept by moving a horizontal
scan line from the top to the bottom. Only the layout objects
currently intersecting the scan line are examined and par-
tial results are reported. The objects lying above the scan
line have finished their roles, and those below the scan line
will play their roles afterwards. In batched-mode layout ver-
ification, the worklist method is used in such away that only
objects intersecting the current scan line are fetched from
a sequential file, which accommodates the whole data, and
therefore the main memory capacity can be saved to great
extent. To be more precise, the method runs with O(\/E)
main memory space for a total of n layout objects in the
plane, provided that they are uniformly distributed [183].
Note that a typical mask set of a VLSI chip includes polyg-
onal patterns with a total of 10°-10° edges. In theoretical
computational geometry, the plane sweep is used to
improve time complexity even if the whole data is within
main memory capacity [89].

We shall examine the efficiency of the worklist method
along with a rectilinear line-segment intersection problem,
illustrated in Fig. 18. The vertical segments S; and S,, which
initially intersect the scan line, are stored in a work list. As
the scan line goes down and hits the top end of S;, it is
inserted in the work list. When the scan line reaches the
bottom end of S,, it is deleted. When the scan line overlaps
the horizontal segment S,, (S;, S,) may be reported to be an
intersecting pair. Continuing this way, everything desired
can be reported once the whole plane has been swept out.
A key point of the efficiency of this method is that any non-
intersecting pairs need not be examined. The precise time
complexity of the method depends on how the worklist data
is managed.

The worklist method can be viewed as a technique of
reducing a two-dimensional batched-mode problem into a
sequence of one-dimensional, dynamic, on-line mode
problems. The one-dimensional problem derived from the
preceding example is as follows.

252

Si
Sa2

scan line L

>
______ b

L

L 2

Ss
Sa

— — — — oEniesssea—m— — — — - — —

Fig. 18. Reporting intersecting pairs of line segment by
means of plane sweep.

Problem A.Foraset D of m numbers and a query inter-
val /, enumerate all numbers of D contained in /.

A powerful and simple data structure for dealing with the
preceding problem is a balanced binary search tree, e.g.,
an “AVL tree’” [91]. By virtue of the balanced nature of the
tree, the unit operations of inserting or deleting a number
and accessing the smallest (largest) number above (below)
the given key value can be done in O(log m) time. Note that
in the process of reporting the line-segment intersections,
the x coordinates of vertical line segments currently inter-
secting the scan line are kept in the AVL tree and x coor-
dinates of the terminals of query interval / are used as keys
to search all the numbers covered by /. From the aforetold
arguments it is seen that the rectilinear line-segment inter-
section problem can be solved in O(nlog n + k) time, where
n is the total number of line segments and & is the number
of enumerated intersecting pairs.

There is a wide variety of subproblems encountered in
layout verification, but they can be represented by a com-
bination of a number of basic geometrical operations
among mask patterns, such as intersection of two polyg-
onal patterns, shrinking or expanding polygons by given
width, etc. [92]. Many IC suppliers have a long history of
working in this area; they have been making an effort to
develop batched-mode layout verifiers which run in almost
linear time with O(v/n) main memory space in practical
cases. From the theoretical point of view, optimal algo-
rithms with O(n log n) worst-case run time have been
worked out for almost all subproblems encountered in lay-
out verification, by means of the worklist method with per-
tinent data structures [90].

However, the minimum width/spacing check problem is
an exceptional case where existing optimal algorithms are
not acceptable in practice. To observe this point, Fig. 19
shows four possible cases to be considered for checking
spacing errors in rectilinear polygonal patterns. By moving
a horizontal scan line vertically, we cannot find spacing
errors as in Fig. 19(b), but can find those shown in Fig. 19(a).
Note that performing plane sweep in both horizontal and
vertical directions still leads to an optimal algorithm, but
it requires two sorted files (with respect to both x coor-
dinates and y coordinates, separately). Spacing errors like

PROCEEDINGS OF THE [EEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

-Z %
)
@ ‘)

U Y.
AN /
. 7
(©) (d)
Fig. 19. Four possible cases causing minimal spacing error.

those of Fig. 19(c) and Fig. 19(d) are more difficult to check
because Euclidean geometry is involved. Theoretically,
those errors can easily be checked by means of a ‘“Voronoi
diagram’” and an optimal algorithm to draw it in: O(n log
n) time is available [93]. On the other hand, this algorithm
requires that we keep the whole data in main memory.

Recently the ““enhanced plane sweep” method [94] was
presented to overcome these practical difficulties. A key
consideration in the method is to prepare an additional
worklist that stores the sequence of already-scanned ver-
tices visible from the current scan line. This makes a single-
plane sweep possible to detect the types of spacing errors
shown in Figs. 19(a) and 19(b). Another key consideration
is not to generate the complete Voronoi diagram but to
update its partial cross section at the current scan line. This
makes a single-plane sweep possible to detect the types of
spacing errors shown in Figs. 19(c) and 19(d), with O(+/n)
main memory space. For this purpose, two more worklists
are used to separately store southeast and southwest cor-
ners of the opaque polygons, which are visible from the
current scan line, together with some additional data
needed to update the partial Voronoi diagram.

The enhanced plane-sweep method was implemented in
an experimental program written in PL/l and run on the
Hitachi M680H computer. The CPU time for a 129K vertex
example is 29.8 seconds, and that for a 256K vertex example
is 60.4 seconds.

Unlike batched-mode layout verification, in which the
plane sweep method can be exploited, interactive layout
verification and gridless routing involve several two-dimen-
sional on-line mode problems. Among them the following
basic search problems are important in many applications;
only rectilinear polygonal patterns are considered here for
simplicity of our arguments.

Problem B. For a set D of n horizontal line segments
and a vertical line segment query V: :

1) report all line segments of D intersecting V, or
2) find the uppermost (lowermost) one among them.

Problem C. For a set D of n horizontal line segments
and a rectangle query R:

1) report all line segments of D intersecting R, or
2) find the uppermost (lowermost) one among them.

Note that those equivalent to the preceding problems by
symmetry are not stated here.

To deal with these problems, McCreight proposed an
interesting and powerful data structure called a “‘priority
search tree” [95]. Originally, it was designed to represent
adynamic set of points in the plane so as to efficiently search

KUH AND OHTSUKI: RECENT ADVANCES IN VLS! LAYOUT

the points inside a query rectangle determined by the set
of points (a, b) such that, for given three numbers x4, x,, and
Yy, %y = a =< x,and 0 < b £ y. The key consideration here
is that a horizontal or vertical half-line, instead of a line seg-
ment, can be identified by two numbers. To manage the set
of horizontal line segments, we bisect the plane by a vertical
slice line in such a way that the number of line segments
to the leftand to the right of the bisector are balanced. Con-
tinuing the bisection recursively, the set D of horizontal line
segments is reprgsented by atwo-level tree with O (n) mem-
ory space. The external one is a binary search tree of O(log
n)depth representing the hierarchical bisections. Each node
of the external tree refers to two priority search trees of
O(log n) depth representing the fictitious half-lines to the
leftand to the right of a bisector. Based on the sophisticated
structure, Problem B can be solved in O(log® n + k) time,
where kis the number of reported intersections. Moreover,
an update operation of inserting or deleting an item can be
donein O(log n) time, provided that the distribution of data
to be managed are known in advance. McCreight’s method
is considered to be the best available to deal with the likes
of Problem B among those requiring only linear memory
space.

There is another data structure, called a ““segment tree”
[96], applicable to Problem B. It was originally designed to
solve the one-dimensional version of Problem B in O(log
n) time, in which the horizontal line segments are replaced
by intervals and the vertical line-segment query by a point.
By means of a similar technique of building a two-level tree,
it achieves the same time complexity as a priority search
tree. A modified version, called a “’layered segment tree”’
[97], was proposed to improve the search time from O(log?
n) to O(log n). Imai and Asano [99] have further extended
the data structure, based on the idea proposed in [98], so
that an update operation can be done in O(log n) time for
the restricted case where line segments are updated by
insertions only or deletions only. The preceding extension
of segment trees is theoretically interesting and achieves
better time complexity than priority search trees. It is not
recommended for practical use, however, because it
requires O(n log n) memory space and involves nontrivial
programming overheads.

The aforementioned data structures, with some modi-
fications, can also be used to solve Problem C, and they
achieve approximately the same expected time complexity
as when applied to Problem B. However, there is no known
data structure for Problem C that achieves worst-case time
complexity better than O(n) within linear memory space in
the dynamic case, where items are inserted and deleted at
a random sequence.

In contrast to the preceding approaches taken from the-
oretical points of view, several techniques aiming at prac-
tical efficiency have been proposed. Edaharo etal. [100] pro-
posed an algorithm for layout verification based on the
bucketingtechnique, inwhich the planeis divided into O(n)
rectangles of equal size, called “‘buckets,” and the global
solution is obtained from local solutions within buckets by
means of a divide-and-conquer technique. The line seg-

‘ments lying on several buckets are treated by a special oper-

ation, called ““filtering.”” Hitachi is using a similar technique
for interactive VLSI layout based on a “field-block’ data
structure [101]. In this technique, each field-block is deter-
mined by a minimal rectangle which encloses approxi-

253

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

mately the same number (several tens) of line segments.
Both of these techniques are expected to search, insert, or
delete an item in constant time for practical problem
instances within linear memory space. Another technique
proposed by NEC for its application to Printed Wiring Board
(PWB) layout is based on the “'slit tree’’ [102]. In typical two-
layer wiring, one of the layers is dominated by vertical line
segments and the other by horizontal ones. Then the slit
tree represents recursive bisections of the layer dominated
by vertical ones by means of vertical slice lines, and line
segments intersecting or overlapping a common slice line
are managed by a bilateral linked list. Another slit tree is
used to manage the other layer as well. This simple data
structure achieves O(log n) expected time for a search or
update operation within linear memory space.

The techniques aiming at practical efficiency described
in the preceding paragraph have poor worst-case time com-
plexity as compared with the sophisticated data structures,
such as priority search trees and segment trees. On the other
hand, they are attractive in practice, because of their sim-
plicity, and are efficient for problem instances of uniform
data distribution.

A typical application of the search techniques for a
dynamic set of line segments is gridless routing, which,
unlike the classical routers, does not use grid graphs as in
the Lee algorithm [43] but directly considers geometrical
patterns. This approach is aimed at saving main memory
and providing flexibility in accommodating complicated
design rules. In the pastten years, routing algorithms in this
direction have been proposed [76],{103]-[110]. Among them
we will review algorithms for “’gridless maze routers.” By
agridiess maze router we mean an incremental routing pro-
cess, like the Lee algorithm [43] and the exhaustive line
search [71], in which each net can be always interconnected
unless blocked by the nets already routed. In those gridless
maze routers, not only the path-finding process butalso the
postprocessing of updating geometrical information for
subsequent interconnection occupies a major portion of
total processing time for interconnecting nets one after
another. Two-pin connection algorithms used for such
gridless maze routers can be classified into four categories,
as follows.

1) Visibility Graph Methods: The space for routing
(assumed to be a polygonal region) is represented by a
“visibility graph,” in which each node is associated with a
convex vertex of an obstacle and a branch is inserted if and
onlyifthe corresponding vertex pair is visible to each other.
It is clear that the visibility graph can be constructed by a
naive method in O(n®) time with O(n% memory space for an
nvertex polygonal region. Then ashortest path can be found
in O(n% time by means of the Dijkstra method. A more effi-
cient method has been proposed to find a rectilinear short-
est path in O(n log® n)time in the rectilinear geometry [106].
The key consideration here is to represent the visibility
information by a modified graph which has only O(n log n)
branches rather than O(n?). Disadvantages of this method
are the memory overhead needed for maintaining the graph
information and the complicated postprocessing after a
path has been found.

2) Auxiliary Line Methods: As preprocessing, a pair of
horizontal and vertical chords are drawn from each convex
(90-degree) vertex of obstacle polygons, until they hit
another obstacle. Note that the obstacles here can be rec-

254

tilinear polygons of any shape. By associating a node with
each point of interesection of these auxiliary lines (chords),
agraph with O(n? nodes and branches is derived. Then the
Dijkstra method leads to a rectilinear shortest path in O(n*
log n) time, with O(n») memory space [107]. If we are sat-
isfied withaminimum bend path rather than a shortest path,
the former can be found much faster. For this purpose the
preprocessing to calculate all the points of intersection in
advanceis not needed. By using priority search trees to store
the auxiliary lines, Ohtsuki [90], [108] presented an algo-
rithm, which after O(n log n) time preprocessing, finds a
minimum bend path, including the postprocessing in O(k
log? n)time with O(n) memory space, where k is the searched
and updated auxiliary lines. Note that the algorithm can be
viewed as a gridless version of the exhaustive line search
[71). The methods using auxiliary lines, again, have a dis-
advantage in memory overhead for maintaining them.

3) Rectangular Partitioning Methods: The space for rout-
ing is partitioned into nonoverlapping rectangles, called
“tiles”” [184], by horizontal slice lines. Then a path is
searched by exploiting the incidence relations between
neighboring tiles [109], [110]. It is shown that, after O(n log
n) preprocessing time, a minimum bend path can be found
in O(k log k) time with O(n) memory space, and the tile plane
can be updated in O(k) time, where k is the number of
searched and updated tiles [109]. The algorithms of this cat-
egory run very fast, but there is some difficulty in gener-
alizing it to multilayer interconnection.

4) Area Search Methods: To reduce memory overhead in
the implementation of gridless routers, it is desirable not
to generate paths, auxiliary lines, partitioning lines, etc. as
preprocessing. Although no algorithm in this direction
which achieves good theoretical time complexity has been
reported, the use of the practice-oriented data structures
[100]-[102] in the routers of this category seems to be attrac-
tive for achieving better average processing time with less
memory. The “line expansion” algorithm [111] has been
suggested to work out such a gridless router. The basic
operation in this algorithm, as shown in Fig. 20, is to search

LK

i

Lt
f

Fig. 20. Basic area search in grid expansion algorithm.

the area (grid points), which can be reached by moving a
line segment or its portion in the perpendicular direction.
Now it is seen that the gridless version of the search prob-
lem is reduced to Problem C, posed earlier. Thus various
data structures for dynamic search problems can be applied.
Moreover, when the CAM-based hardware engine, which
will be described in section V, has become available, such
a basic search problem can be solved in constant time, and
therefore a path will be found in linear time [148].

PROCEEDINGS OF THE I(EEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

In the last part of this section, we will review a few recent
results on layout compaction in which the application of
computational geometry was most successful. The
enhanced plane sweep [94], which was successfully applied
to design rule checking, is again becoming a powerful
means for one-dimensional compaction. In contrast to pre-
vious compaction algorithms [112], [113], those based on
plane sweep can bypass the use of constraint graphs and
compaction grids, and therefore both processing time and
space are saved to great extent. Furthermore, geometrical
compactors make automatic jog insertion possible and pro-
vide intelligence not only for compacting a region of a chip,
but also, if necessary, for expanding or adjusting it so as to
match the layout of neighboring regions subject to a given
design rule. A compactor possessing this intelligence is
sometimes called a ““spacer.”

The channel spacer called Nutcracker [114], developed
at the University of California at Berkeley, is based on the
ideadescribed in the preceeding paragraph. A similar result
is also reported in [115]. The compaction algorithm imple-
mented in Nutcracker essentially consists of two phases.
In the first phase (‘“squeeze-down phase”), a channel rout-
ing result, followed by pertinent via reduction as shown in
Fig. 21(a), is squeezed down subject to the design rule by
scanning the channel from bottom to top. As a result, all
possible jogs are inserted and the channel width is deter-
mined as shown in Fig. 21(b). [n the second phase “(lift-up
phase”), by scanning the channel from top to bottom, each
wire with its vias lifted up so as to remove unnecessary jogs
and reserve as much room in the lower part as possible for
flexibility to linearize the remaining wires, Fig. 21(c) helps
one understand what the output of the phase looks like.
The second phase may still leave a small number of unnec-
essary jobs unremoved, as is seen from Fig. 21(c), which is
caused by overreserving the space for the subsequent
linearizations of the wires lying below. Such jogs can be
removed by adding the third phase (“refinement phase”),
which involves little overhead, and the final pattern, as
shown in Fig. 21(d), is obtained [116].

Theoretically, the preceding algorithm runs in O(n log n
+ k) time with O(n + k) memory space, where n is the total
number of wire segments and vias, and & is the number of
generated jogs. Practical efficiency of the algorithm was also
confirmed by experimental results of Nutcracker, written
in C and run on a VAX11/780. Many examples, with 69-252
nets, were tested, and the channel width was reduced at
an average of 16.4 percent in less than 9 seconds.

The geometrical compaction based on plane sweep was
extended to chip compaction [117]. Unlike the channel
compaction, a difficult problem lies in that, whenever a
block is moved, its terminals and all the wires connected
to them must be moved simultaneously. To resolve the
problem, a scheme for manipulating such a group of layout
objects, called a “bag,” is proposed in [117], and leads to
an efficient chip compactor as well.

Another geometrical approach to compaction is reported
in [118], where the tile plane representation of layout space
as in the gridless maze routing [109], [110] is applied to
‘‘global spacing’ of building-block layout. Here the term
“global spacing” refers to placement modifications per-
formed before detailed routing to modify the estimated
channel capacity according to the result of global routing.
The key operation for such placement modifications is to

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

n Hl ‘II
[il - s
| S - =
» |
= 2
I | N
' EEe N ME Ee N8
(a)
[N ’
hgm
"4
(b)
ne R "
.
()
] []]
3 i § é‘
[
]
& IE

(d)
Fig. 21. Channel spacing based on plane sweep. (a) Chan-
nel routing result with via reduction. (b) After squeeze-down
phase. (c) After lift-up phase. (d) Final refinement.

find an optimal compression ridge. The authors of [118],
based on the tile plane, presented an O(n) time algorithm
for finding an optimal monotonic ridge, where nis the num-
ber of tiles. Note that previous methods require O(n? time
to find a monotonic ridge. Furthermore, the authors have
generalized the compression ridges to be nonmonotonic

255

and developed an O(n log n) time algorithm to find an opti-
mal one.

As has been reviewed, the one-dimensional compaction
problems can be solved very fast by applying computa-
tional geometry. However, our ultimate goal is to establish
efficient two-dimensional compaction algorithms. So far,
only methods of repeating one-dimensional compactions
to x and y directions alternatively or their slight modifi-
cation are known [112], [113], and further research on the
subject will be needed. Some recent papers that treated
two-dimensional compaction can be found in [119]-[122].

V. LavouTt ENGINES

““Hardware accelerators,” “backend processors,” and
‘““special-purpose engines”” have become interesting
research subjects in the past decade as viable solutions to
awide range of computer-aided design problems for VLSI.
The motivation for developing such CAD enginesis to over-
come design size limitations of increasingly complex VLSI
systems. On the other hand, recent advances in VLSI tech-
nologies have made it realistic to build such machines.
Research and development on CAD engines, including
commercial products, tools for in-house use, lab proto-
types, and paper machines, cover almost all VLSI design
phases. These results, with discussions on their problems
and limitations, are surveyed in review articles [123], [124].

Unfortunately, CAD engines cannot be discussed with-
outtrade-offs[182]. A “pointaccelerator,” i.e., an algorithm-
built-in hardware dedicated to a very limited class of jobs,
is one extreme that is most expensive and least flexible. The
other extreme is to use a general-purpose computer with
programs providing the greatest flexibility. It attains the
least cost per application, through processing speed for a
particular application is unsatisfactory. Taking the trade-off
issue into account, it is becoming of a general understand-
ing of CAD specialists that a “‘global accelerator,” in which
amultiprocessor architecture covers awide range of design
automation jobs, is most viable for business, considering
the present and near future VLS! design environment. In
addition, there seems to be another consensus, that point
accelerators do not make sense in practice for anything but
simulation. As amatter of fact, only simulation engines have
been used to solve real problems in industry or brought
into the commercial market. This is because simulation is
the central part of the design process, is needed by a wide
spectrum of users, and involves unbounded tasks the
designers run into.

Despite the arguments against point accelerators for any-
thing but simulation (from the viewpoint of economical via-
bility), a wide variety of approaches has been reported:
building engines for placement [127]-[135], routing [87],
[136]-[145],{152], and design rule checking [146]-[152]. These
contributions seem concerned with other kinds of viability
as well; e.g., as a research topic, as a marketable product
in the next generation design environment, etc. There
seems to be a strong suggestion that, after the low-hanging
fruit of simulation engines has been picked, the next reach-
able fruit should be targeted [182]. As such a target, layout
engines are expected to reduce the intolerable computer
time of software-implemented layout algorithms.

Recent contributions on layout engines are based on a
wide variety of approaches and fall into several groups in

terms of speed-up techniques and target applications. There
have been many contributions on applying global accel-
erators with a processor-array architecture (such as the con-
nection machine {125] and the hypercube [126]) to simu-
lated annealing-based placement [127]-[133], [185] maze
routing [136], [137], and design rule checking [146], {147].
Attempts to design point accelerators or special-purpose
architectures with array or pipeline configurations for
placement [134], (135], maze routing [87], [137]-[145], and
design rule checking [147], [149], [152] have also been
reported. As another approach, image processing engines
are used to speed up design rule checking based on bit-map
representation of geometrical patterns (150}, [151]. Because
of page limitations, we will not review these contributions
but will focus the remaining discussion in this section on
our own works [87], [152].

There have been several attempts [137]-[145] to build a
hardware maze router which physicallyimplements the Lee
algorithm [43]. The primary idea here is to prepare an N X
N array of identical ‘“processor elements’” (PE’s) that has a
one-to-one correspondence with the N X N grid plane, and
toachieve linear runtime for finding a path [137],[138]. Such
a “full grid machine,” though it obviously finds a path in
linear time, has a serious disadvantage, in that it needs O(N?)
PE’s despite the fact that almost all of them are not utilized.
The objective of the contribution in [87] was to build a new
architecture that achieves linear run time with only O(N)
PE’s.

The possibility of saving the number of PE’s comes from
the observation that only those grid cells on the current
wavefront need to activate the corresponding PE’s. In this
sense, a hardware maze router is called a ‘““wavefront
machine” if it has only PE’s to be assigned to wavefront cells
[87]. It should be noted here that the average length of wave-
fronts foran N x N grid plane is of O(N). Taking into account
the trade-off between performance and processor utiliza-
tion, and according to simulation, itis suggested in [87] that
N/2is the reasonable number of PE's foran N x N grid plane.
The actual means of processor-to-cells mapping is exploit-
ing the fact that a wavefront consists of diagonal line seg-
ments, and the mapping of PE’s to any diagonal lines on the
grid plane is optimized. Then, if there are N/2 PE’s, the same
PE appears at every N/4 PE’s along any diagonal lines. Note
that it is optimal because, when a PE is used to send a mes-
sage during a wave propagation step, another PE must be
simultaneously used to receive it. A figure showing how the
N/2 PE’s are mapped on an N x N grid plane is available in
[87]. Such an optimal assignment can be realized by inter-
connecting PE’s in a twisted-torus configuration.

Another key consideration for the proposed wavefront
machine is to divide the PE’s and grid cells into two groups,
like the black and white squares of a chessboard. The grid
cells on the current wavefront are all ““black’ or all “white,”
provided thataunit costis assigned to each cell. Taking into
account the bipartite structure of the grid plane, com-
munication between the control unit and PE’s is simplified.

A prototype machine with 64 PE’s was developed in 1984
to implement the Lee algorithm on a 128 x 128 grid plane.
The block diagram of its architecture is available in [87].
Roughly speaking, each PE is composed of an 8-bit micro-
processor chip (NECxPD7800), an 8-kbyte RAM, an 8-kbyte
ROM, achannel selector, and an ID number unit. The chan-
nel selector, made of CMOS switches, is added to allow

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 22. Circuit board witn tour PE’s embedded.

communication with the four neighbors. The ID number
unit is used to identify which grid cells each PE is assigned
to. Such a PE was built by eleven IC’s. Fig. 22 is a photo of
a printed wiring board with four PE’s embedded, i.e., a total
of 16 boaras is used to assemble the wavefront machine
with 64 PE’s. For the control unit, we used a personal com-
puter, NEC’s PC8801, with a Z80 chip for its CPU.

The measured performance of the prototype machine for
various sample problems is also available in [87]. Perfor-
mance statistics taken on these sample problems are as fol-
lows. The “average multiple assignment factor’ of a PE was
observed to spread between 2 and 3, which suggests that
the wavefront machine reduces the N? PE’s needed in the
full grid machine to N/2 with a speed degradation by afactor
of 2-3. The average “‘processor utilization” of a PE was
observed to be about 50 percent throughout all the sample
problems. The average time spent to advance the wavefront
one unit was about 26 ms, and the time for finding a path
of length L was observed to be proportional to L™, i.e.,
almost linear.

The prototype machine with 64 PE’s is too small to be used
in real design. A wavefront machine of reasonable size
would be one with 1000 PE’s to deal with a 2000 x 2000 grid
plane. To realize such a machine, a custom chip must be
developed. On the basis of recent VLSI technology, we esti-
mate that the whole PE with ROM and RAM can be inte-
grated in a single chip, and it results in a whole machine
with about ten boards.

Thereisacritical issue against the viability of parallel maze
routers in that some software speed-up techniques, e.g.,
those of [153], [186], would achieve almost linear expected
running time for finding a path. It is true for connecting
most of the nets. However, incremental routing tends to
leave a small number of nets unconnected, and it usually
occupies a major portion of the design turnaround time to
connect the remaining nets by means of manual or inter-
active rework. The final clean-up phase involves the pro-
cedure to find the nets already routed which block an
unconnected net. In this situation, any software speed-up
techniques do not make sense because the wave must be
propagated in the whole grid plane exhaustively, and the
parallel processing on a wavefront can be well exploited to
reduce O(N? wave propagation time to O(N). Based on this
observation, the WIRES system [88] for interactive rip-up
and rerouting was designed as described in section HI-C,
where the wavefront machine is used as a backend pro-
cessor,

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

There is another issue, which is more fatal, against the
viability of parallel maze routers. This is caused by the
inherent nature of grid-based routing; i.e., no matter how
the wavefront machine saves the number of PE’s, we still
need O(N?) memory space and, actually, the memory capac-
ity must be at least doubled compared to software imple-
mentation. This negative feature of the grid-based approach
has given rise to another class of routing methods, i.e., grid-
less routing, which was described in the preceding section.

To speed up gridless maze routers described in section
1V, a new architecture [152] based on ““content addressable
memory’’ (CAM), elsewhere called “associative memory,”
was proposed. The “pattern matching”” in hardware, the
basic function of early bit-parallel CAM, can be extended
to several more sophisticated word-parallel searches. Then,
provided that the number of bits per word is fixed, hard-
ware implementation of such searches achieves constant
processing time independent of the number of words.
Among them the following searches play an essential role
for our purpose.

Equivalence search: For a given search key word K in
the index register, enumerate all the words that match K
within a partial content specified by the mask register.

Threshold search: For a given search key word K in the
index register, enumerate all the words greater (or less) than
K with respect to a partial content specified by the mask
register.

Extremum search: Find the word with maximum (or
minimum) value with respect to a partial content specified
by the mask Register.

Fig. 23 shows the basic CAM configuration and how the
equivalence search is done as an example. Note that the

1[O]O[1[OJ1[O[1}-—{1] flag
0011000OjE
[1]1]0[0[0[0[1][1} 10|
O|O[O[1[1[1]0[1} 4O
1[1/1]1]0]1]0]1 1| flag
1011]0[0]0]1]0]1}-40)
[1[0]1]0[1]1[1][1} {O]
0/0{1/0[1/0]0[0}-{O]
O[O[1[1{1]0|O[1} {O
A0 0 T 1 {11 flag
mask register
[1]0[0]1]0]1]0[1] index register

Fig. 23. Equivalence search on CAM.

partial content under consideration is specified by 0's in the
mask register, i.e., 1’s indicate the ““don’t care”’ bits, and the
output is indicated by 1’s in FLAG bit.

The preceding functions of CAM can be applied to the
geometrical search problems posed in section IV. For exam-
ple, Problem C1 can be solved in constant time by repeating
the threshold search four times (with respect to each edge
of the query rectangle R), where each horizontal line seg-
ment data is assumed to be stored in a CAM word in the
format as shown in Fig. 24. In similar ways, almost all on-
line mode search problems on polygonal patterns can be
solved in constant time by virtue of the word-parallel nature
of CAM. This implies that CAM makes all the gridless maze
routers described in section IV possible for finding a path
in linear time.

257

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

G o [w [v]
L furs o

(xe.Y) (Xr,Y)

LINE SEGMENT

Fig. 24. Representation of line segment.

The outlined architecture of the proposed CAM-based
layout engine is available in [152], which was designed as
a back-end processor controlled by a host computer. It is
intended to accelerate not only gridless routers but also a
variety of geometrical problems encountered in VLSI
design, such as design rule checking, layout compaction,
artwork generation, etc.

A prototype machine named CHARGE (CAM-based
hardware for geometrical search) was developed in 1987 to
confirm the aforementioned idea. It consists of four major
parts: CAM, sequencer, RAM, and ALU. In physical reali-
zation, too, there are four corresponding boards. A photo
of the CAM board is given in Fig. 25. For the CAM part, we
are currently using the 4-kbit CAM chips developed by NTT
[154], which can be replaced by more recent 20-kbit chips
[155]. The machine is designed to embed a maximum of 64
such chips. The 4-kbit CAM has 30 instructions, and each
instruction can be carried out within a 140-ns clock cycle.
The details of its specification are available in [154]. The
sequencer part is used to drive the microcode. This part is
very important, because the simple scheme, in which a CPU
directly gives instructions to CAM, cannot follow that high-
speed clock. RAM chips are used as shared memory for the
host computer and the back-end processor (CHARGE). The

ALU is used for preprocessing for generating input data to
CAM and for other operations which are not suitable to
CAM.

In implementing the geometrical search algorithms and
the gridless routers described in section IV, two words (64
bits) of 4-kbit CAM chips are assigned to each rectilinearly
oriented line segment. Then Problem B2, for example, can
be processed within 300-cycle time units. Fig. 25 demon-
strates the performance improvement CHARGE confers
over software implementation. For software implementa-
tion, the priority search tree was used to represent line seg-
ments as the best available data structure. To make the com-
parison fair, the software program is implemented on a
VAX11/785 computer with a 133-ns cycle time, whereas the
instructions of CHARGE is driven by a 200-ns clock pulse.
The performance for a small number of line segments was
measured on the prototype machine with four CAM chips
embedded, and that for large problems was extrapolated
by means of the results on an emulator. The slight jump
observed at the “hardware” curve in Fig. 26 is caused by
the signal delay in two-stage configuration of priority
encoder circuits for connecting several tens of CAM chips.

The CAM-based layout engine can be viewed as a point
accelerator with a kind of SIMD configuration. Neverthe-
less, it provides the flexibility to deal with a variety of geo-
metrical problems for VLS| design. Another advantage is
that complicated coding for sophisticated data structures
depending on subproblems is not needed, unlike software
implementation. As a future direction, it is expected that
higher density CAM chips and faster priority encoders will
emerge.

Until now, a certain amount of effort and experience has

Fig. 25. CAM boards.

258

PROCEEDINGS OF THE [EEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

osl software

/

©

V%

0.3} /

Processing time (m sec)

o2l
o
At
° hardware
_—
10?2 10° 10*

Number of line segments

Fig. 26. Comparison of search time: software versus hard-
ware.

been accumulated in research and development of CAD
engines. According to those involved in the area, hardware
assembly is not a major task, but software support, includ-
ing debugging tools, have given rise to more critical issues.
The advances needed for the next-generation accelerators
include more flexible CAD engines, better parallel-pro-
gramming environments, and more efficient parallel algo-
rithms.

VI. CONCLUSION

We have discussed four major topjcs of current interest
in VLSI layout. Unfortunately, because of space limitations,
several other important topics were left out.

The subject of timing-driven layout is crucial in the design
of high-density and high-speed chips. An automatic layout/
simulation iteration loop has been proposed for standard-
cell design at AT&T Bell Laboratories [156]. A hierarchical
approach based on min-cut partitioning and placement for
gate-array design which satisfies timing specifications has
been proposed by Burstein and Youssel at IBM [157]. These
approaches lack the ability to deal dynamically with chip
timing in the paths during layout. Timing analysis is inher-
ently path-oriented; physical design is net-oriented. The
obvious way to do timing-driven layout is to optimize tim-
ing subject to net constraints. However, in doing so, one
tends to overly constrain the problem solution. In [158], a
new approach is introduced which dynamically optimizes
the performance of the chip during placement. A linear-
programming formulation is used, and the results on tested
examples indicate that the approach is promising.

Current CAD efforts in routing concentrate on signal
routing. [n industry, manual routing of power and ground
nets is still being used for most chip designs. Only in the
past three years has some research been reported on auto-
matic sizing of power/ground (P/G) segments [159], [160] and
pad assignment [161]. A more general approach for auto-
matic sizing of P/G networks has been reported recently

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

[162]. In this approach, no restrictions are imposed on the
network topology or the number of applying pads. Wire
widths are optimally determined subject to the constraints
of voltage drops and electromigration. As we enter the
phase of future chip designs with multimetal layers, more
innovative approaches are needed for P/G routing.

In interconnection and packaging design, considerable
advance has been made in hardware developmentin recent
years [163]. To name a few, there are surface mounting
boards, multilayer ceramics, multichip and wafer scale inte-
gration, high-density multichip interconnect (HMDI) [164],
and button boards [165]. While computer-aided design has
had an enormousimpact atthe chip level, its impacton gen-
eral interconnet and packaging has been limited. Even for
IC’s, three-dimensional integration is within sight [166].
There is a crucial need for basic research on three-dimen-
sional interconnect [167]. In this connection, some recent
work on multilayer routing has been reported [168], [169].

Another topic of interest and importance is analog circuit
layout. Because of many inherently complicated con-
straints, the difficulties encountered are numerous; to name
a few, a combinatorial choice of the geometrical configu-
ration of passive devices, having to consider abutting and
isolating a group of transistors, the effect of signal delay due
to parasitics, the need to shield of sensitive signal nets, etc.
These are good topics for future research. Nonetheless,
there are recent efforts worth noting [170], [171].

ACKNOWLEDGMENT

The authors wish to acknowledge the research contri-
butions and suggestions of W. Dai, B. Eschermann, C. P.
Hsu, M. Marek-Sadowska, M. Pedram, M. Sato, A. Srini-
vasan, K. Suzuki, R. S. Tsay, and X. Xiong.

REFERENCES

[1] J. Soukup, ““Circuit layout,” Proc. IEEE, vol. 69, no. 10, pp.
1281-1304, Oct. 1981.

[2} T.C.HuandE.S. Kuh, Eds., VLSI Circuit Layout: Theory and
Design. New York: IEEE Press, 1985.

[3] T. Ohtsuki, Ed., Layout Design and Verification. Amster-
dam: North Holland, 1986.

[4]1 G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antog-
netti, Eds., Design Systems for VLSI Circuits. Dordrecht, The
Netherlands: Martinus Nijhoff Publishers, 1987.

[5] C.Sechenand A. Sangiovanni-Vincentelli, “Timber Wolf 3.2:
A new standard cell placement and global routing pack-
age,”” in Proc. 23rd DAC, 1986, pp. 432-439.

[6] C.SechenandK-W. Lee, “Animproved simulated annealing
algorithm for row-based placement,” in Digest of Tech.
Papers, ICCAD, 1987, pp. 478-481.

[7]1 H. Kato, H. Kawanishi, S. Goto, T. Oyamada, and K. Kani,
“On automated wire routing for building-block MOS LS1,”
in Proc. IEEE ISCAS, 1974, pp. 309-312.

[8] S.Kimura, N.Kubo, T.Chiba,andI. Nishioka, “An automatic
routing scheme for general cell LSI,” IEEE Trans. Computer-
Aided Design, vol. CAD-2, no. 4, pp. 285-292, Oct. 1983.

[9] T.Kozawa, C. Miura, and H. Terai, ’Combine and top down
block placement algorithm for hierarchical logic VLSI lay-
out,” in Proc. 21st DAC, 1984, pp. 667-669.

[10] C-K. Cheng and E. S. Kuh, “Module placement based on
resistive network optimization,” IEEE Trans. Comput. Aided
Design, vol. CAD-3, no. 3, pp. 218-225, july 1984.

[11] K. M. Hall, “An r-dimension quadratic placement algo-
rithm,”” Manag. Sci., vol. 17, no. 3, pp. 219-229, Nov. 1970.

[12] C.P.Hsu,S. Evans,). Tang, K. Chow, R. Perry, and). Liu, “An
effective hierarchical approach to high complexity circuit
layout,” in Proc. IEEE Custom Integrated Circuits Conf., 1987,
pp. 614-617.

259

13]

[14]

[15]

f16)

1171

8}

{19]

[20)

[21]

[22)

[23]

[24]

[25]

[26]

27

[28]
[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[371

[38]

R-S. Tsay, E. S. Kuh, and C-P. Hsu, “PROUD: A sea-of-gates
placement algorithm,” IEEE Design and Test of Computers,
pp. 44-56, Dec. 1988.

W-M. Dai, H. H. Chen, R. Dutta, M. Jackson, E. S. Kuh, M.
Marek-Sadowska, M. Sato, D. Wang, and X-M. Xiong, "‘BEAR:
A new building-block layout system,” in Digest of Tech.
Papers, IEEE ICCAD, Nov. 1987, pp. 34-37.

W-M. Dai, T. Asano, and E. S. Kuh, “Routing region defi-
nition and ordering scheme for building-block layout,” IEEE
Trans. Comput. Aided Design, vol. CAD-4, no. 3, pp. 189-
197, July 1985.

F.). Kurdahi and A. C. Parker, "PLEST: A program for area
estimation of VLS! circuits,”” in Proc. 23rd DAC, 1986, pp. 467-
473.

L. Shaand R. W. Dutton, “’An analytical algorithm for place-
ment of arbitrarily sized rectangular blocks,” in Proc. 22nd
DAC, 1985, pp. 602-607.

M. A. Breuer, “A class of min-cut placement algorithms,”
in Proc. 14th DAC, 1977, pp. 284-290.

U. Lauther, /A min-cut placement algorithm for general cell
assemblies based on a graph representation,’” in Proc. 16th
DAC, June 1979, pp. 1-10.

B. W. Kernighan and S. Lin, ““An efficient heuristic proce-
dure for partitioning graphs,”” Bell Syst. Tech. J., vol. 49, no.
2, pp. 291-307, 1970.

D. P. LaPotin and S. W. Director, “Mason: A global floor-
planning approach for VLSI design,” IEEE Trans. Comput.
Aided Design, vol. CAD-5, no. 4, pp. 477-489, Oct. 1986.
A. A. Szepieniec and R. Otten, “‘The genealogical approach
to the layout problem,” in Proc. 17th DAC, 1980, pp. 535-
542.

R.L.Brooks, C. A.B.Smith, A. H. Stone, and W. T. Tutte, “The
dissection of rectangles into squares,” Duke Math. ., vol.
7, pp. 312-340, 1940.

T. Ohtsuki, N. Suziyama, and H. Kawanishi, “‘An optimi-
zation technique for integrated circuit layout design,” in
Proc. ICCST—Kyoto, 1970, pp. 67-68.

L. Stockmeyer, ‘“Optimal orientation of cells in slicing floor-
plan designs,” Inform. Control, vol. 57, pp. 91-101, 1983.
S. Wimer, |. Koren, and I. Cederbaum, ‘‘Floor plans, planar
graphs, and layouts,” IEEE Trans. Circuits Syst., vol. CAS-35,
no. 32, pp. 267-278, Mar. 1988.

S.Wimer, I.Koren, and |. Cederbaum, “Optimal aspect ratios
of building blocks in VLS!,” in Proc. 25th DAC, 1988, pp. 66-
72.

K. Zibert and R. Saal, “On computer-aided hybrid circuit
layout,” in Proc. IEEE ISCAS, 1974, pp. 314-318.

R. H.J. M. Otten, “tfficient floorplan optimization,’”” in Proc.
ICCD, 1983, pp. 499-502.

N. Suziyama, S. Nemoto, K. Kani, T. Ohtsuki, and H. Watan-
abe, “An integrated circuit layout design program based on
a graph-theoretical approach,” in Digest IEEE ISSCC, 1970,
pp- 86-87.

). Grason, “An approach to computerize space planning
using graph theory,” in Proc. 8th DAC, 1971, pp. 170-179.
W. R. Heller, G. Sorkin, and K. Maling, “The planar package
planner for system designers,” in Proc. 19th DAC, 1982, pp.
253-260.

K.Kozminskiand E.Kinnen, “An algorithm for finding a rect-
angular dual of a planar graph for use in area planning for
VLSI integrated circuits,” in Proc. 21st DAC, 1984, pp. 655-
656.

S.M. Leinwand and Y-T. Lai, “An algorithm for building rect-
angular floorplans,” in Proc. 21st DAC, 1984, pp. 663-664.
S. Tsukiyama, K. Koike, and I. Shirakawa, ’An algorithm to
eliminate all complex triangle in a maximar planar graph for
use in VLSI floorplan,” in Proc. IEEE ISCAS, 1986, pp. 321-
324.

W-M. Dai and E. S. Kuh, “’Simultaneous floor planning and
global routing for hierarchical building-block layout,” [EEE
Trans. Comput. Aided Design, vol. CAD-6, no. 5, pp. 828-
837, Sept. 1987.

B. Eschermann, W-M. Dai, E. S. Kuh, and M. Pedram, ‘‘Hier-
archical placement for macrocells: A ‘meet in the middle’
approach,” in Digest of Tech. Papers, ICCAD, Nov. 1988, pp.
460-463.

B. Eschermann, “’Hierarchical placement for macrocells with

391

[40]

[41]

[42]

[43]

{45]

[46]

(471

(48]

{49]

[50]

[51]

[52]

(53]

[54]

{55]

(56]

[571

(58]

{591

[60]

{61]

[62]

[63]

[64]

simultaneous routing areaallocation,” Electronics Research
Laboratory, University of California, Berkeley, memo. no.
UCB/ERL M88/49, July 1988.

B.T.Preasand P. G.Karger, “Automatic placement: A review
of current techniques,” in Proc. 23rd DAC, 1986, pp. 622-
629.

T. R. Muller, D. F. Wong, and C. L. Liu, “An enhanced bot-
tom-up algorithm for floorplan design,” in Digest of Tech.
Papers, ICCAD, 1987, pp. 524-527.

N.P.Chen, C-P. Hsu, and E. S. Kuh, “The Berkeley building-
block layout system for VLSI design,” in Proc. VLSI 83, Aug.
1983, pp. 37-44.

C-P. Hsu, "“General river routing algorithm,” in Proc. 20th
DAC, 1983, pp. 578-583.

C.Y. Lee, "“An algorithm for path connection and its appli-
cations,”” IEEE Trans. Electron. Comput., vol. EC-10, pp. 346-
365, 1961.

M. Hanan, “On Steiner’s problem with rectilinear dis-
tance,”” SIAM J. Appl. Math., vol. 14, no. 2, pp. 255-265, 1966.
S. L. Hakimi, “Steiner’s problem in graphs and its appli-
cation,”” Networks, vol. 1, pp. 113-133, 1971.

J. A. Wald and C. J. Colbourn, “Steiner trees, partial two-
trees, and minimum IFl networks,” Networks, vol. 13, pp.
159-167, 1983.

W-M. Dai, “BEAR: A macrocell layout system for VLSI cir-
cuits,” Ph.D. thesis, EECS Dept., University of California,
Berkeley, 1988.

W. K. Luk, P. Sipda, M. Tamminen, D. Tang, L. S. Woo, and
C. K. Wong, A hierarchical global wiring algorithm for cus-
tom chip design,” IEEE Trans. Comput. Aided Design, vol.
CAD-6, no. 4, pp. 518-533, July 1987.

E. S. Kuh and M. Marek-Sadowska, “Global routing,” in Lay-
out Design and Verification, T. Ohtsuki, Ed. Amsterdam:
North Holland, 1986, pp. 169-198.

M. P.Vecchiand S. Kirkpatrick, “Global wiring by simulated
annealing,” IEEE Trans. Comput. Aided Design, vol. CAD-2,
no. 4, pp. 215-222, Oct. 1983.

J. T. Li and M. Marek-Sadowska, “‘Global routing for gate
array,’’ IEEE Trans. Comput. Aided Design, vol. CAD-3, pp.
298-307, 1984.

B.S.Tingand B.N.Tien, “Routing techniques for gate array,”
IEEE Trans. Comput. Aided Design, vol. CAD-2, no. 4, pp. 301-
312, Oct. 1973.

K. Aoshima and E. S. Kuh, ““Multichannel optimization in
gate-array LSI layout,” in Proc. IEEE ISCAS, 1983, pp. 1005-
1089.

M. Marek-Sadowska, ‘‘Router planner for custom chip
design,” in Digest of Tech. Papers, ICCAD, 1986, pp. 246~
249.

U. Lauther, “Top-down hierarchical global routing for chan-
nelless gate arrays based on linear assignment,” in Proc. of
IFIP VLSI 87, 1987, pp. 109-120.

R.E. Burkard and U. Deirgs, Assignment and Matching Prob-
lems: Solution Methods with Fortran Programs. Springer
Verlag, 1980.

B. S. Ting, E. S. Kuh, and I. Shirakawa, ‘“The multilayer rout-
ing problem: Algorithms and necessary and sufficient con-
ditions for the single-row, single-layer case,’” IEEE Trans. Cir-
cuits Syst., vol. CAS-23, no. 12, pp. 768-778, Dec. 1976.

E. S. Kuh, T. Kashiwabara, and T. Fujisawa, “On optimum
single-row routing,” IEEE Trans. Circuits Syst., vol. CAS-26,
no. 6, pp. 361-386, July 1979.

M. Marek-Sadowska, ‘“Two-dimensional router for double
layer layout,” in Proc. 22nd DAC, 1985, pp. 117-123.
A.Hashimoto and). Stevens, “Wiring routing by optimizing
channel assignment within large apparatus,” in Proc. DAC,
pp. 155-169, 1977.

R. Y. Pinter, “Optimal layer assignment interconnect,” in
Proc. ICCC, pp. 398-401, 1982.

R. W. Chan, Y. Kajitani, and S. P. Chan, ““A graph-theoretic
via minimization algorithm for two-layer printed circuit
boards,”” IEEE Trans. Circuits Syst., vol. CAS-30, pp. 284-299,
May 1983.

K. C. Chang and D. H-C. Du, “Efficient algorithms for layer
assignment problem,” IEEE Trans. Comput. Aided Design,
pp. 67-78, Jan. 1987.

X-M.XiongandE. S.Kuh, “The constrained via minimization

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

{65]

(66]

[67]

[68]

[69]
[70]

{71]

{72]

[73]

74

[75]

[76]

[77]

[78]

[79]

[80]

[81}

[82]

[83]

[84]

[85]

[86]

[87]

[88)

[89]

[90]

probiem for PCB and VLS| designs,” in Proc. 25th DAC, june
1988, pp. 573-578.

C-P. Hsu, “Minimum-via topological routing,” IEEE Trans.
Comput. Aided Design, vol. CAD-2, no. 4, pp. 235-245, Oct.
1983.

M. Marek-Sadowska, “An unconstrained topological via
minimization problem for two-layer routing,”” IEEE Trans.
Comput. Aided Design, vol. CAD-3, no. 3, pp. 184-190, July
1984.

C-P. Hsu, “Theory and algorithms for signal routing in inte-
grated circuit layout,” Ph.D. thesis, University of California,
Berkeley, 1983.

X-M. Xiong and E. S. Kuh, “A unified approach to the via
minimization problem,” IEEE Trans. Circuits Syst., vol. CAS-
36, no. 2, pp. 190-204, Feb. 1989.

H.H. Chen, ““Routing L-shaped channelsin nonslicing struc-
ture placement,” in Proc. 24th DAC, 1987, pp. 152-158.

D. W. Hightower, “A solution to the line-routing problem
on the continuous plane,” in Proc. 6th DAC, 1969, pp. 1-24.
K. Mikamiand T. Tabuchi, “A computer program for optimal
routing of printed circuit connections,” in Proc. IfIPS, vol.
H47, pp. 1475-1478, 1968.

C-P. Hsu, “A new two-dimensional routing algorithm,” in
Proc. 19th DAC, 1982, pp. 46-50.

M. Burstein and R. Pelavin, “Hierarchical wire routing," IEEE
Trans. Comput. Aided Design, vol. CAD-2, no. 4, pp. 223-
234, Oct. 1983.

R. Joobbani, Weaver: A Knowledge-Based Routing Expert.
Dordrecht, The Netherlands: Kluwer Academic Press, 1986.
H. Shen and A. Sangiovanni-Vincentelli, “Mighty: A rip-up
and reroute detailed router,” in Digest of Tech. Papers,
ICCAD, Nov. 1986, pp. 2-5.)

J. P. Cohoon and L. H. Patrick, “BEAVER: A computational-
geometry-based tool for switchbox routing,” IEEE Trans.
Comput. Aided Design, vol. CAD-7, no. 6, pp. 684-696, June
1988.

J. Soukup and). Fournier, “Pattern router,” in Proc. IEEE
ISCAS, 1979, pp. 486-489.

T. Asano, “‘Parametric pattern router,” in Proc. 19th DAC,
1982, pp. 411-417.

A. Srinivasan and N. Shenoy, ‘“Template-based pattern rout-
ing,"” EECS 244 class report, University of California, Berke-
ley, 1988.

A. Srinivasan, “MOLE—A new template based router,”” Elec-
tronics Research Laboratory, University of California,
Berkeley, memo. no. UCB/ERL M89/58, 1989.

T. Nishizeki, N. Saito, and K. Suzuki, A linear-time routing
algorithm for convex grids,” [EEE Trans. Comput. Aided
Design, vol. CAD-4, no. 1, pp. 68-76, Jan. 1985.

K. Onaga, “'Distributed computing and network flow the-
oretic approach to simultaneous VLSI switchbox routing on
two-dimensional processor arrays,” in Digest of Tech.
Papers, ICCAD, 1986, pp. 352-355.

H. Mori, T. Fujita, M. Annaka, S. Goto, and T. Ohtsuki, ““An
advanced interactive layout design system for printed wir-
ing board,” in Proc. Int. Conf. on Circuits and Computers,
1980, pp. 754-757.

W.A.Deesand P. G. Karger, “Automated rip-up and reroute
techniques,” in Proc. 19th DAC, 1982, pp. 432-439.

I. Shirakawa and S. Futagami, ‘A rerouting scheme for sin-
gle-layer printed wiring boards,”” IEEE Trans. Comput. Aided
Design, vol. CAD-2, no. 4, pp. 261-271, Oct. 1983.

T. Ohtsuki, “Maze-running and line-search algorithms,” in
Layout Design and Verification, T. Ohtsuki, Ed. Amster-
dam: North Holland, 1986, pp. 99-131.

K. Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki, ““A
hardware maze router with application to interactive rip-up
and reroute,” IEEE Trans. Comput. Aided Design, vol. CAD-
5, no. 4, pp. 466-476, Oct. 1986.

T. Namekawa, K. Suzuki, H. Takano, and T. Ohtsuki, “Pro-
moting efficiency of rip-up and reroute method and its eval-
uation (in Japanese),” IEICE monograph, VLD 88-91, pp. 39-
46, Feb. 1989.

D. T. Lee and F. P. Preparata, “Computational geometry—
A survey,” IEEE Trans. Comput., vol. C-33, no. 12, pp. 1072-
1101, 1984.

T. Asano, M. Sato, and T. Ohtsuki, “Computational geom-

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

[91]

[92]

[93]

{94)

{95}

[96]

[97]

[98]

[99]

[100]

[101]

[102}

[103]

[104]

[105]

[106}

[107]

[108]

[109]

[110]

[111]

(112}

[113])

[114]

[115]

etry algorithms,” in Layout Design and Verification, T. Oht-
suki, Ed. Amsterdam: North Holland, 1986, pp. 295-347.
N. Wirth, Algorithms + Data Structure = Program. Engle-
wood Cliffs, NJ: Prentice-Hall, 1976.

K. Yoshida, ""Layout verification,” in Layout Design and Ver-
ification, T. Ohtsuki, Ed. Amsterdam: North Holland, 1986,
pp. 237-265. :

M. I. Shamos and D. Hoey, “Closest-point problems,” in
Proc. 16th IEEE Symp. Foundations of Computer Sci., 1975,
pp. 151-162.

M. Sato, J. B. Kim, T. Awashima, and T. Ohtsuki, /A theo-
retically optimal and practically fast algorithm for VLSI geo-
metrical design rule verification,” in Proc. IEEE ISCAS, 1988,
pp. 1445-1448.

E. M. McCreight, ‘‘Priority search trees,” SIAM J. Comput.,
vol. 14, no. 2, pp. 257-276, 1985.

J. L. Bentley and D. Wood, ““An optimal worst case algorithm
for reporting intersections of rectangles,” IEEE Trans. Com-
put., vol. C-29, no. 7, pp. 571-577, 1980.

V. K. Vaishnavi and D. Wood, “Rectilinear line segment
intersection, layered segment trees, and dynamization,” J.
Algorithm, vol. 3, pp. 160-176, 1982.

H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for
a special case of disjoint set union,” in Proc. 15th Ann. ACM
Symp. on Theory of Computing, 1983, pp. 246-251.
H.ImaiandT. Asano, “Dynamic segmentintersection search
with applications,” in Proc. 25th Ann. IEEE Symp. on Foun-
dations of Computer Sci., 1984, pp. 393-402.

M. Edahiro, K. Tanaka, T. Hoshino, and T. Asano, “‘A buck-
eting algorithm for the orthogonal segment intersection
search problem and its practical efficiency,” Algorithmica,
vol. 4, pp. 61-76, 1986.

G. Suzuki and N. Hamada, “’Practical data structure for
incremental design rule checking and compaction,” in Proc.
IEEE Int. Conf. on Computer Design, 1987, pp. 442-447.

{. Kato, S. Ohhira, and Y. Hisatomi, “A method of pattern
data management of PWB layout system,” (in Japanese) in
Proc. 35th Ann. Convention IPS Japan, 1987, pp. 2429-
2430.

W. Lipski Jr., “Finding a Manhattan path and related prob-
lems,”” Networks, vol. 13, pp. 399-409, 1983.

T. Ohtsuki, M. Sato, and I. Kojima, “’Computational geom-
etry approach to wire routing design,” in Proc. ECCTD 83,
1983.

T. Ohtsuki and M. Sato, ““Gridless routers for two-layer inter-
connection,” in Digest of Tech. Papers, ICCAD, 1984, pp. 76~
78.

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear
shortest paths through polygonal obstacles in O(n(log n)?)
time,”” in Proc. 3rd Ann. Symp. on Computational Geometry,
1987, pp. 251-257.)

Y. F. Wu, P. Widamayer, M. D. F. Schlag, and C. K. Wong,
“Rectilinear shortest paths and minimum spanning trees in
the presence of rectilinear obstacles,” IEEE Trans. Comput.,
vol. C-36, no. 3, pp. 321-331, 1987.

T. Ohtsuki, “Gridless routers-new wire routing algorithms
based on computational geometry,” presented at Int. Conf.
on Circuits and Systems in China, 1985.

M. Sato, . Sakanaka, and T. Ohtsuki, ““A fast line-search
method based on atile plane,” in Proc. IEEEISCAS, 1987, pp.
588-591.

A. Margarino, A. Romano, A. De Cloria, F. Curatelli, and P.
Antognetti, “A tile-expansion router,”” IEEE Trans. CAD, vol.
CAD-6, no. 4, pp. 507-517, 1987.

W. Heyns, W. Sansen, and H. Beke, ‘A line-expansion algo-
rithm for the general routing problem with a guaranteed
solution,” in Proc. 17th Design Automation Conf., 1980, pp.
243-249.

Y.E.Cho, “A subjective review of compaction,” in Proc. 22nd
Design Automation Conf., 1985, pp. 396-404.

D. A. Mlynski and C. H. Sung, “’Layout compaction,” in Lay-
out Design and Verification, T. Ohtsuki, Ed. Amsterdam:
North Holland, 1986.

X. M. Xiong and E. S. Kuh, “Nutcracker: An efficient and
intelligent channel spacer,” in Proc. 24th Design Automa-
tion Conf., 1987, pp. 298-304.

C. K. Cheng and D. N. Deutch, “Improved channel routing

261

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

[116}

[(117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125)

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134)

[135]

[136]

[137]

[138]
(139]
[140]

[141]

262

by via minimization and shifting,” in Proc. Int. Workshop on
Placement and Routing, North Carolina, 1988, pp. 1-12.

J. B. Kim, N. Nakajima, M. Sato, and T. Ohtsuki, ““A fast intel-
ligent channel spacer with automatic jog insertion and via
reduction,” (in Japanese) Trans. IEICE Japan, vol.)72-A, no.
2, pp. 349-358, 1989.

X. M. Xiong, “Optimized one-dimensional compaction of
building-block layout,” technical report, University of Cal-
ifornia, Berkeley, memo. no. UCB/ERL M87/45, 1987.

W. M. Dai and E. S. Kuh, ““Global spacing of building-block
layout,” in Proc. VLSI'87, 1987, pp. 193-205.

M. Schlag, Y. Z. Liao, and C. K. Wong, “‘An algorithm for
optimal two-dimensional compaction of VLSI layouts,” Inte-
gration, pp. 179-209, 1983.

G. Kedem and H. Watanabe, “Graph-optimization tech-
niques for IC layout and compaction,” IEEE Trans. Comput.
Aided Design, vol. CAD-3, no. 1, pp. 12-20, 1984.

W. Wolf, R. Methews, J. Newkirk, and R. Dutton, ““Algo-
rithms for optimizing two-dimensional symbolic layout
compaction,” IEEE Trans. Comput. Aided Design, vol. CAD-
7, no. 4, pp. 451-466, 1988.

H. Shin, A. Sangiovanni-Vincentelli, and C. Sequin, “Two-
dimensional compaction by zone-refining,” in Proc. 23rd
DAC, 1986, pp. 115-122.

T. Blank, “’A survey of hardware accelerators used in com-
puter-aided design,”” IEEE Design Test Comput., vol. 1, no.
4, pp. 21-39, 1984.

N. Koike and K. Ohmori, “Design automation machine,” in
Design Methodologies, S. Goto, Ed. North Holland, pp. 465-
499, 1986.

W.D. Hills, The Connection Machine. Cambridge, MA: MIT
Press, 1986.

). Palmer, S. Colley,). P. Hayes, T.N. Mudge, and Q. F. Stout,
“’Architecture of a hypercube supercomputer,” in Proc. Int.
Conf. on Parallel Processing, 1986, pp. 653-660.

M. Jones and P. Banerjee, "Performance of a parallel algo-
rithm for standard cell placement on the Intel hypercube,”
in Proc. 24th DAC, 1987, pp. 807-813.

A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A
parallel simulated annealing algorithm for the placement of
marco-cells,”” IEEE Trans. Comput. Aided Design, vol. CAD-
6, no. 5, pp. 838-847, 1987.

F. Darema, S. Kirkpatrick, and V. A. Norton, “Parallel tech-
niques for chip placement by simulated annealing on shared
memory systems,’’ in Digest of Tech. Papers, ICCAD, 1987,
pp. 87-90.

R. Jayaraman and R. A. Rutenbar, “Floorplanning by anneal-
ing on a hypercube multiprocessor,” in Digest of Tech.
Papers, ICCAD, pp. 346-349.

C. Wong and R. Fiebrich, “Simulated annealing-based cir-
cuit placement algorithm on the connection machine sys-
tem,” in Digest of Tech. Papers, ICCAD, pp. 78-82.

A. Casotto and A. Sangiovanni-Vincentelli, ‘“Placement of
standard cells using simulated annealing on the connection
machine,” in Digest of Tech. Papers, ICCAD, pp. 350-353.
J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, “Parallel
standard cell placement algorithms with quality equivalent
to simulated annealing,” IEEE Trans. Comput. Aided Design,
vol. CAD-7, no. 3, pp. 387-396, 1988.

C. P. Ravikumar and L. M. Patnaik, “Parallel placement by
simulated annealing,” in Proc. IEEE ICCD87, 1987, pp. 91-94.
C. P. Ravikumar and S. Sastry, “Parallel placement on
reduced array architecture,” in Proc. 25th DAC, 1988, pp.
121-127.

Y. Won and S. Sahni, “Maze routing on a hypercube mul-
tiprocessor computer,” in Proc. Int. Conf. on Paralle! Pro-
cessing, 1987, pp. 630-637.

O. A. Olukoton and T. N. Mudge, A preliminary investi-
gation into parallel routing on a hypercube computer,” in
Proc. 24th DAC, 1987, pp. 814-819.

A. losupovicz, “Design of an iterative array maze router,”
in Proc. ICCC, 1980, pp. 908-911.

M. A. Breuer and K. Shasma, “A hardware router,” /. Digital
Syst., vol. 4, no. 4, pp. 393-408, 1981.

S. J. Hong, R. Nair, and E. Shapiro, A physical design
machine,” in Proc. VLSI'81, 1981, pp. 257-266.
R.A.Rutenbar and D. E. Atkins, “/Systolic routing hardware:

[142)

[143]
[144]
[145]

[146]

[147]

[148]

[149]

[150]

[151]

(152

[153]
[154]

[155]

[156]

157]

[158]

[159]

{160

[161]

[162]

[163]

[164]

[165]

[166]
(1671

[168]

Performance evaluation and optimization,” [EEE Trans.
Comput. Aided Design, vol. CAD-7, no. 3, pp. 397-409,
1988.

T. Watanabe, H. Kitazawa, and Y. Sugiyama, A parallel
adaptable routing algorithm and its implementation on a
two-dimensional array processor,” IEEE Trans. Comput.
Aided Design, vol. CAD-6, no. 2, pp. 241-250, 1987.
T.D.Spiersand D. A. Edwards, A high performance routing
engine,” in Proc. 24th DAC, 1987, pp. 793-799.

Y. Won, S. Sahni, and Y. EI-Zig, “’A hardware accelerator for
maze routing,” in Proc. 24th DAC, 1987, pp. 800-806.
T.Ryan and). E. Rodgers, “An Isma Lee router accelerator,”
IEEE Design Test Comput., vol. 4, no. 5, pp. 38-45, 1987.

K. Kuwayama, S. Tsukiyama, and I. Shirakawa, "‘A design
rule checker for VLS| on a multiprocessor,” (in Japanese)
IEICE monograph, CAS 87-209, pp. 7-11, 1988.

£. C. Carlson and R. A. Rutenbar, “Mask verification on the
connection machine,” in Proc. 25th DAC, 1988, pp. 134-140.
E. C. Carlson and R. A. Rutenbar, “A scanline data structure
processor for VSLI geometry checking,”” IEEE Trans. Com-
put. Aided Design, vol. CAD-6, no. 5, pp. 780-794, 1987.
R.Kane and S. Sahni, "’A systolic design-rule checker,” IEEE
Trans. Comput. Aided Design, vol. CAD-6, no. 1, pp. 22-32,
1987.

C. C. Jong, A. F. Pearmain, and P. R. Coward, “Dapmac:
Design-rule checking using DAP,”” in Proc. IEEE
COMPEURQO87, 1987, pp. 422-425.

K.S.Eo,S.S.Kim, and C. M. Kyung, “’Ringtree: A VLS! archi-
tecture for fast image generation and processing,” in Proc.
ISCAS, 1988, pp. 801-804.

K. Suzuki, T. Ohtsuki, and M. Sato, ‘A gridless router: Soft-
ware and hardware implementations,” in Proc. VLS/’87,1987,
pp. 153-163.

). Soukup, ““Fast maze router,” in Proc. 15th DAC, 1978, pp.
100-102.

T. Ogura et al., ‘A 4-kbit associative memory LSI,” IEEE .
Solid-State Circuits, vol. SC-20, pp. 1277-1282, 1985.
T.Ogura et al., "'A 20-kb CMOS associative memory LSI for
artificial intelligence machines,” in Proc. ICCD’86, 1986, pp.
574-577.

A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P.
Kozak, and M. Wiesel, ’Chip layout optimization using crit-
ical path weighting,”” in Proc. 21st Design Automation Conf.,
1984, pp. 133-136.

M. Burstein and M. Youssef, “Timing influenced layout
design,” in Proc. 22nd Design Automation Conf., 1985, pp.
124-130.

M. A. B. Jackson and E. S. Kuh, “Performance-driven place-
ment of cell based IC’s,” in Proc. 26th Design Automation
Conf., 1989.

S. Chowdhury and M. A. Breuer, “'Optimum design of IC
power/ground nets subject to reliability constraints,” /EEE
Trans. Comput. Aided Design, vol. CAD-7, no. 7, pp. 787-
796, July 1988.

S. Chowdhury, “An automated design of minimum area IC
power/ground nets,” in Proc. 24th Design Automation Conf.,
1987, pp. 223-229.

M. Marek-Sadowska, “Pad assignment for power netsin VLSI
circuits,” IEEE Trans. Comput. Aided Design, vol. CAD-6, no.
4, pp. 550-560, July 1987.

R. Dutta and M. Marek-Sadowska, ““Automatic sizing of
power/ground (P/G) networks in VLSI,” in Proc. 26th Design
Automation Conf., 1989,

C. W. Ho, "“High-performance computer packaging and the
thin-film multichip module,” in VLS Electronics Microstruc-
ture Science,Vol.5. New York: Academic Press, 1982, chap.
3, pp. 103-143.

“The pacing technology,” Vectors, vol. 30, no. 4, pp. 2-7,
1988.

R. Smolley, “Connectorless high speed interconnect,” pre-
sented at Government Microcircuit Applications Conf.,
Orlando, FL, Oct. 1987.

Y. Akasaka, “Three-dimensional IC trends,”’ Proc. IEEE, vol.
74, no. 12, pp. 1703-1714, Dec. 1986.

F.T. Leighton and A. L. Rosenburg, “Three-dimensional cir-
cuit layout,” SIAM J. Comput., vol. 15, pp. 793-813, 1986.
Y.K.Chenand M. L. Liu, “Three-layer channel routing,” IEEE

PROCEEDINGS OF THE {EEE, VOL. 78, NO. 2, FEBRUARY 1990

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

[169]

[170]

(171

[172]

[173]

[174]

[175]

[176]

(177

[178]

[179]

[180]

[181]

Trans. Comput. Aided Design, vol. CAD-3, no. 2, pp. 156-
163, Apr. 1984.

D. Braun, J. L. Burns, F. Romeo, A. Sangiovanni-Vincentelli,
K. Mayaram, S. Devades, and H-K. T. Ma, “Techniques for
multilayer channel routing,” IEEE Trans. Comput. Aided
Design, vol. CAD-7, no. 6, pp. 698-712, June 1988.

D. J. Garrod, R. A. Rutenbar, and R. L. Carley, “Automatic
layout of custom analog cells in ANAGRAM,"” in Digest of
Tech. Papers, Int. Conf. on Computer-Aided Design, 1988,
pp. 544-547.

H. Y. Koh, C. H. Sequin, and P. R. Gray, “Automatic layout
generation for CMOS operational amplifiers,” in Digest of
Tech. Papers, Int. Conf. on Computer-Aided Design, 1988,
pp. 548-551.

A. Fujimura, “Automating the layout of very large gate
arrays,” VLSI Systems Design, vol. 9, no. 4, pp. 22-27, Apr.
1988.

M. lgusa, M. Beardslee, and A. Sangiovanni-Vincentelli,
“ORCA: A sea-of-gates place and route system,"” in Proc. 26th
Design Automation Conf., 1989, pp. 122-127.

S. Sastry and Jen-! Pi, “An investigation into statistical prop-
erties of partitioning and floorplanning problems,” in Proc.
26th Design Automation Conf., 1989, pp. 382-387.

C. Sechen, “Average interconnection length estimation of
random and optimized placements,” in Digest of Technical
Papers, Int. Conf. on Computer-Aided Design, 1987, pp. 190-
193.

A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “Q
parallel simulated annealing algorithm for the placement o

macrocells,” IEEE Trans. Computer-Aided Design, vol. CAD-
6, no. 5, pp. 838-847, Sept. 1987.

D.Jepsenand D. Gelott, “Macro placement by Monte Carlo
annealing,” in Proc. Int. Conf. on Computer-Aided Design,
Nov. 1983, pp. 495-498.

D.F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing
for VLSI Design. Boston: Kluwer Academic, 1988.

C. Sechen, “Chip-planning, placement, and global routing
of macro/custom cell integrated circuits using simulated
annealing,” in Proc. 25th Design Automation Conf., 1988,
pp. 73-80.

H. Kawanishi, S. Goto, T. Oyamada, and K. Kani, A routing
method of building-block LSI,” in Rec. 7th Asilomar Conf.
on Circuits, Systems, and Computers, 1973, pp. 119-123.

R. Linsker, “An iterative-improvement penalty-function
driven wire routing.system,”” IBM J. Res. Develop., vol. 28,
no. 5, pp. 613-624, 1984.

KUH AND OHTSUKI: RECENT ADVANCES IN VLSI LAYOUT

[182] T. Blank et al., “‘Point accelerators versus general-purpose
machines for electronic CAD,” in (D&T Roundtable), IEEE
Design Test Comput., pp. 46-51, Oct. 1987.

[183] H.S.Baird, “Fastalgorithm for LSl artwork analysis,” in Proc.
14th DAC, 1977, pp. 303-311.

[184] J.K.Ousterhout, “Corner stitching: A data-structuring tech-
nique for VLSI layout tools,” IEEE Trans. Computer-Aided
Design, vol. CAD-3, no. 1, pp. 87-100, 1984.

[185] S. A. Kravitz and R. A. Rutenbar, “Multiprocessor-based
placement by simulated annealing,” in Proc. 23rd DAC, 1986,
pp. 567-573.

[186] K. Vorm, “‘A production VLSI design CAD system,” in Proc.
ICCD’83, 1983, pp. 476-479.

Ernest S. Kuh (Fellow, IEEE) received the B.S.
degree from the University of Michigan,
Ann Arbor, in 1949; the S.M. degree from
the Massachusetts Institute of Technology,
Cambridge, in 1950; and the Ph.D. degree
from Stanford University, Stanford, CA, in
1952,

Heis a Professor of electrical engineering
atthe University of California, Berkeley. He
joined the Electrical Engineering and Com-
puter Sciences Department faculty in 1956.
From 1968 to 1972 he served as Chairman of the department; from
1973 to 1980 he served as Dean of the College of Engineering. From
1952 to 1956 he was a member of the Technical Staff at Bell Tele-
phone Laboratories in Murray Hill, N).

Tatsuo Ohtsuki (Fellow, IEEE) received
the B.E., M.E., and Dr.Eng. degrees from
Waseda University, Tokyo, Japan, in 1963,
1965, and 1970, respectively, all in electrical
engineering.

In 1965, he joined the Nippon Electric
Company, Ltd., Tokyo, Japan. From 1978 to
1980, he served as Research Manager,
Application System Research Laboratory, at
Central Research Laboratories. in 1980 he
left Nippon Electric Company and joined
Waseda University, where he is presently a Professor and Chair of
the Department of Electronics and Communication Engineering.

263

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 03,2021 at 15:11:12 UTC from IEEE Xplore. Restrictions apply.

