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Abstract—SiC electronic device technology has made rapid
progress during the past decade. In this paper, we review the
evolution of SiC power MOSFETSs between 1992 and the present,
discuss the current status of device development, identify the
critical fabrication issues, and assess the prospects for continued
progress and eventual commercialization.

Index Terms—Metal-oxide semiconductor field effect transistors
(MOSFETs), power devices, silicon carbide.

I. INTRODUCTION

T WAS recognized in the late 1980s that power switching

devices in silicon were approaching their theoretical limits
[1] and that these limits could be significantly extended by
fabricating power devices in materials with higher breakdown
electric fields, such as silicon carbide (SiC) or semiconducting
diamond. For vertically oriented majority carrier devices, the
theoretical minimum value of the resistance-area product under
optimum punchthrough conditions is
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where Rgp is the specific resistance in ©2-cm?, yi is the elec-
tron mobility perpendicular to the surface, s is the permit-
tivity of the semiconductor, F is the critical field for avalanche
breakdown perpendicular to the surface, and Vg is the designed
blocking voltage of the drift region. Although it varies with
doping, the critical field E¢ in SiC is almost an order of mag-
nitude higher than in silicon. Even allowing for the lower elec-
tron mobility, the specific resistance in SiC at a given blocking
voltage is about 400x lower than in silicon. At a time when
silicon devices are approaching their theoretical limits of per-
formance, such a large improvement is quite significant.

Semiconducting diamond faces several material problems
that make implementation of MOSFETs impractical at the
present time, but the situation in SiC is much more promising.
Commercially available as single crystal wafers since 1990,
SiC is the only known compound semiconductor whose native
oxide is SiO2. This makes it an ideal candidate for high-perfor-
mance power MOSFETs.

SiC is a hexagonal crystal, and the lack of cubic symmetry
causes the electron mobility, electron saturation velocity, im-
pact ionization coefficients, thermal oxidation rates, and MOS
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interface properties all to be anisotropic. The SiC lattice con-
sists of alternating planes of silicon and carbon atoms, and the
stacking sequence of these planes defines different polytypes of
the material, identified by the repeat distance of the stacking se-
quence (e.g., 3C, 4H, 6H, 15R, etc.). The lattice constant in the
basal plane is virtually identical for all polytypes, but important
electrical properties such as the bandgap energy, electron mo-
bility, and critical field differ significantly between polytypes.
SiC crystals are also polar, so that each wafer has a silicon-ter-
minated face (0001) and a carbon-terminated face (0001). Ox-
idation rates and MOS properties are significantly different on
the silicon- and carbon-faces of the wafer, and most device fab-
rication is performed on the (0001) silicon face.

The high thermal and chemical stability of SiC makes certain
types of fabrication operations difficult. For example, diffusion
coefficients for dopant atoms are extremely low at the temper-
atures typically used for silicon device processing, and for this
reason selective doping of SiC is accomplished by ion implan-
tation. Implant activation typically requires annealing at tem-
peratures between 1000 and 1700 °C. Oxidation rates are lower
than in silicon. Chemical etching is impractical owing to the
high chemical stability of SiC, and selective etching is accom-
plished by reactive ion etching (RIE) using flourinated gasses
such as NF3 or SFg. These factors pose challenges in the fab-
rication of SiC devices and limit the types of device structures
that can be realized in the material. This will become apparent
in the discussions of specific device structures below.

II. EXPERIMENTAL RESULTS

A. Early MOSFETs

The first MOSFETs in SiC were reported in the late 1980s
[2]-[4] and the first power MOSFETs in 1994 [5]. The power
devices were vertical trench MOSFETs, or UMOSFETs, as il-
lustrated in Fig. 1(a). UMOSFETSs are attractive because the
base and source regions can be formed epitaxially, without the
need for ion implantation and associated high-temperature an-
nealing. In UMOSFETs, the MOS channel is formed on the
sidewalls of trenches created by RIE. As a result, the MOS inter-
face lies on the “a-axis” surface of the crystal, typically on the
(1100) or (1120) planes. Unlike the (0001) silicon face, these
a-axis surfaces expose an equal number of silicon and carbon
atoms at the interface. Little is known about the oxide-semicon-
ductor bonding on these surfaces, particularly the role of carbon
bonds, but the MOS interface is generally thought to be infe-
rior to interfaces formed on the (0001) silicon face, where only
silicon atoms are present [6]. However, this conclusion is not
firmly established, and one group has reported excellent elec-
tron mobility along the (1120) interface [7].
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Fig. 1. (a) Cross section of a trench-gate UMOSFET, typical of those
made in SiC between 1992 and 1998. Note that the source can be formed
either by epitaxy or implantation. (b) Cross section of a planar DMOSFET,
typical of those made in SiC since 1996. The base and source are formed by
nonself-aligned ion implantation.

Another disadvantage of the UMOS geometry becomes ap-
parent when one considers the peak electric fields in the device.
At the onset of avalanche breakdown, the electric field at the p-n
junction in SiC is almost 10 higher than in silicon, owing to
the higher critical field of the material. At the MOS interface, the
field in the oxide exceeds the semiconductor field by the ratio of
the dielectric constants, a factor of 2.5. This places the field in
the oxide at around 5 MV/cm, a value dangerously close to oxide
breakdown. The geometry of the trench corner further increases
the oxide field due to field crowding, resulting in local oxide
failure. By 1995, UMOSFETs fabricated on the carbon face of
SiC had achieved blocking voltages about 260 V [8], limited
by oxide breakdown at the trench corners. Further progress was
only made after major modifications to the MOSFET geometry,
as described in Sections II-B and II-D.

The specific resistance Rsp of UMOSFETs produced
between 1992 and 1995 was in the range of 10-50 mQ-cm?,
higher than the theoretical minimum predicted by (1) for
those blocking voltages. In these devices, as in all SiC power
MOSFETs reported to date, the specific resistance is dominated
by the MOSFET channel and not by the drift region. This, in
effect, prevents designers from taking full advantage of the
higher critical field of SiC, as promised by equation (1). The
issue of MOSFET channel resistance and MOS inversion layer
mobility will be discussed more fully in Section III.
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B. DMOSFETs

An obvious way to avoid the problem with oxide breakdown
at the trench corners is to eliminate the trenches. This was ac-
complished in 1996 with the introduction of planar double-im-
planted DMOSFETsS [9], shown in Fig. 1(b). Since impurity dif-
fusion is impractical in SiC, the base and source regions are
formed by successive ion implantation using aluminum or boron
for the p-type base and nitrogen for the n* source. Because
p-type implant anneals are conducted at temperatures between
1600 and 1700 °C, self-aligned implant processes using polysil-
icon gates are not practical in SiC, and realignment tolerances
must be allowed between the base, source, and gate features.
However, in spite of these drawbacks, the elimination of the
trench corners resulted in a 3 x improvement in device blocking
voltage, to 760 V.

A useful figure of merit to compare device performance is
the ratio V3 /Rsp. This follows naturally from (1), which rep-
resents the ideal situation in which the resistance is dominated
by the drift region and there is no two-dimensional (2-D) field
crowding. In such a case, Vé /Rsp has a theoretical maximum
value of (unesFg)/3.375, a quantity that depends only upon
fundamental material parameters. Any real device will have a
V32 /Rsp value below the theoretical maximum. Thus, V3 /Rsp
becomes a useful measure of the ideality of a given experimental
device.

In addition to the resistance of the MOS inversion layer, the
specific resistance of the DMOSFET also includes the resistance
of the JFET region between the implanted p-base regions. This
introduces a tradeoff in the design: As the spacing between base
regions is increased to reduce the JFET resistance, the area of
the device also increases, increasing fisp. In addition, as the
spacing increases, and the effectiveness of the base regions in
terminating the electric field in the blocking state diminishes, in-
creasing the field in the oxide and lowering the blocking voltage.
The optimum base spacing can be defined as that value that max-
imizes the value of V3/Rsp for the DMOSFET.

The DMOSFET geometry offers many advantages in SiC,
and several groups have reported novel DMOS variations. The
most notable of these are the accumulation-channel DMOSFET
developed at North Carolina State University, Raleigh, in 1997
[10], the triple-implanted DMOSFET reported by Siemens
in 1998 [11], and the static induction accumulation FET
(SIAFET) developed by Kansai Electric Power Company
(KEPCO) and Cree, Inc., Durham, NC, in 2000 [12]. The accu-
mulation-channel DMOSFET is formed by burying the p-base
beneath the surface, leaving a thin n-type region adjacent to
the oxide-semiconductor interface. This increases the effective
MOS channel mobility, reducing Rsp. The North Carolina
State device exhibited a blocking voltage of 350 V, specific
resistance of 18 m-cm?, and VB?/RSP of 6.8 MW/cm?2. The
triple-implanted 6H-SiC DMOSFET reported by Siemens
exhibited a blocking voltage of 1800 V, specific resistance of
46 mQ-cm?, and V3 /Rsp of 70 MW/cm?.

The SIAFET developed by KEPCO and Cree is structurally
similar to the accumulation-channel DMOSFET, but each cell
of the device contains a channel-terminating p™* surface contact
that plays an important role in both blocking and on-state
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Fig. 2. Cross section of a lateral DMOSFET on an insulating substrate, first
introduced in SiC in 1997.

operation. In the on-state, the p* surface contact and buried
p-base are forward biased relative to the channel, reducing
the lateral depletion of the JFET region between the buried
p-base regions and conductivity modulating both the channel
and JFET regions. This makes it possible to design the device
with a smaller JFET gap than would otherwise be the case,
providing increased protection to the gate oxide in the blocking
state. At the present time the SIAFET holds the record for
MOSFET blocking voltage, 6.1 kV, with a specific resistance
of 732 m§2-cm? and a V3/Rsp of 51 MW/cm? [12]. For
comparison, the theoretical maximum V3/Rgsp for silicon
power MOSFETSs is only about 4 MW/cm?.

C. LDMOSFETs

SiC lateral DMOSFETSs were introduced in 1997 [13] to en-
able blocking voltages higher than permitted by the thickness of
the epilayers available at that time. The basic geometry, Fig. 2,
consists of an n-type epilayer on an insulating SiC substrate.
As in the conventional DMOSFET, the p-base and nT source
are formed by ion implantation. The source implant step is also
used to form a drain contact on the top surface, allowing the drift
region to extend laterally along the surface instead of vertically.
The original LDMOSFET [13] exhibited a blocking voltage of
2600 V, 3 x higher than that of vertical devices available at the
time.

The LDMOSFET requires a large surface area to accom-
modate the lateral drift region, but this can be minimized by
employing reduced-surface-field (RESURF) design techniques
[14]. In the RESURF technique, an n-type drift region is
implanted into a p-type epilayer, as illustrated in Fig. 3. In
the blocking state, the drift region depletes before reaching
avalanche breakdown, and field lines from donor atoms in the
depleted drift region extend vertically, terminating on acceptor
atoms in the underlying p-type epilayer. Since field lines are
oriented vertically and not horizontally, there is very little field
taper from source to drain. Thus, the lateral field remains almost
constant along the drift region, and an arbitrarily high blocking
voltage can be achieved simply by moving the drain further
from the source. In practice, the blocking voltage is limited
by vertical breakdown between the drain and the underlying
p-type epilayer. If field crowding at the ends are ignored and
a constant lateral field is assumed along the drift region, the
specific resistance of a RESURF LDMOSFET is approximately
4x lower than given by (1) for a vertical device of the same
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Fig. 3. Cross section of a lateral RESURF DMOSFET on a p-type substrate.

blocking voltage [15]. However, in practice it is very difficult
to achieve a constant lateral field along the drift region, and
RESURF devices have so far not proven competitive with
vertical MOSFETs in SiC. In addition, RESURF devices are
much more sensitive to the surface charge in the oxide above
the active SiC layer, a particularly difficult problem in SiC.

D. Advanced UMOSFETs

In our discussion of early UMOSFETs, we noted that their
blocking voltage was limited by oxide breakdown at the trench
corners. A number of attempts were made to alleviate this
problem by tapering the sidewalls or rounding the corners
using proprietary processing techniques. A notable example is
the UMOSFET reported by Denso Corp., Japan, in 1997 [16].
This device utilizes rounded trench corners and incorporates
an n-type epilayer grown subsequent to trench etch, forming
the first accumulation-channel UMOSFET. This UMOSFET
exhibited a blocking voltage of 450 V, specific resistance of
10.9 m§2-cm?, and V3 /Rsp of 18.6 MW/cm?.

In 1998, Purdue University reported a SiC accumula-
tion-channel UMOSFET with new structural features that
shielded the trench oxide from high electric fields in the
blocking state [17]. A cross section of this device is shown in
Fig. 4. The new features consist of a p-type region formed in
the trench bottom by self-aligned ion implantation, and a thin
n-type epilayer incorporated between the n-drift region and
the p-type base. The p-type trench implant is grounded, and
shields the trench oxide from high electric fields in the blocking
state. The n-type epilayer prevents JFET pinch-off between
the trench implant and the base, and promotes lateral current
spreading in the on-state, eliminating current crowding at the
trench corners. The device also incorporates an n-type epilayer
grown after the trench etch and implant steps, as in the Denso
device. The Purdue UMOSFET exhibited a blocking voltage of
1400 V, specific resistance of 15.7 mQ-cm?, and V3 /Rsp of
125 MW/ecm?, about 25 x higher than the theoretical limit for
conventional silicon MOSFETs.

E. Comparison of Devices

Fig. 5 shows specific resistance and blocking voltage for the
leading SiC power MOSFETSs reported to date. Diagonal lines in
the figure represent the theoretical limits given by (1) using pa-
rameters for silicon and 4H-SiC, respectively. As seen, a number
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Fig. 4. Cross section of an advanced accumulation-channel UMOSFET
introduced in 1998. New features include a p* region at the bottom of the
trench to protect the oxide from high fields in the blocking state, an n-type
layer below the base to prevent JFET pinchoff of the channel and promote
lateral current spreading, and an n-type epilayer grown on the trench sidewalls
to form an accumulation channel at the MOS interface.

of SiC power MOSFETSs exceed the theoretical limit for silicon
MOSFETs by a wide margin, but so far none come close to the
theoretical limit for 4H-SiC. This is because the specific resis-
tance in these devices is dominated by the MOSFET channel,
and not by the drift region. Examination of the figure reveals
that little progress has been made in reducing the specific re-
sistance over the past eight years. We will discuss the device
physics underlying this problem in Section III.

In spite of the lingering problems with MOS channel resis-
tance, overall progress has been impressive. Blocking voltage
has increased at the average rate of 75% per year over the past
seven years, as shown in Fig. 6. The hot-wall epigrowth tech-
nique [18], [19] makes it feasible to obtain drift regions up to
200 pm thick, which should enable blocking voltages of about
20 kV (PiN diodes have already demonstrated blocking volt-
ages of 19.3 kV [20].) Work is currently underway to improve
our understanding of the SiC/SiO; interface and increase the
MOS channel mobility. This is expected to push the perfor-
mance much closer to the theoretical limits predicted by (1).

III. MOSFET PROCESSING ISSUES

A. Effect of Implant Activation Annealing on Inversion Layer
Mobility

Since diffusion is impractical in SiC, selective doping must
be accomplished by ion implantation. Activation of implanted
dopants requires annealing at temperatures between 1000 and
1700 °C, depending upon the implant species and polytype [21],
[22]. At the higher temperatures, surface degradation occurs due
to loss of silicon from the surface and an associated phenom-
enon known as step bunching [23]. Step bunching arises as a
result of the intentional miscut angle of the substrate needed
to preserve the polytype stacking sequence during epigrowth,
typically 3.5° for 6H-SiC and 8° for 4H-SiC. At the higher an-
nealing temperatures, the surface atoms become mobile, and the
surface seeks to minimize its energy by reducing the number
of steps. This results in fewer but higher steps, a phenomenon
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Fig. 5. On resistance and blocking voltage of representative SiC MOSFETs

fabricated between 1992 and the present. Solid diagonal lines represent the
theoretical limits for silicon and 4H-SiC given by (1), and the dashed line
represents the current state-of-the-art in SiC.

known as step bunching. The inversion layer mobility of MOS-
FETs fabricated on step-bunched surfaces can be extremely low,
often less than 1 ¢cm?/Vs. Experiments at various institutions
[24] indicate that annealing in a silicon-rich ambient signifi-
cantly improves surface morphology. However, even if visually
smooth surfaces are maintained during the anneal, the MOSFET
inversion layer mobility can still be quite low [25], and research
in this area is continuing.

B. Effect of Interface States on Inversion Layer Mobility

From 1992 to 1997, SiC MOS research focussed on reducing
the density of interface states on p-type SiC, since this is
the material on which n-channel MOSFETs are made. Due
to the wide bandgap of SiC, however, conventional MOS
measurement techniques can only probe the lower half of the
bandgap on p-type substrates. Through a series of incremental
improvements [26]-[28], the average interface state density
Dy in the lower half of the bandgap was reduced from 6 x
10 eV—! em™2in 1992 to around 1.5 x 10 eV—! cm~2 in
1996. In the best devices, the interface state density decreases
into the mid-10'° eV~! cm~2 range near midgap [29]. At
these levels, it was felt that interface state density had little
impact on MOSFET performance. However, in 1997 Afanasev
and co-workers [30] reported internal photoemission (IPE)
measurements of interface state density in the upper-half of
the bandgap that show Djr rising exponentially toward the
conduction band, reaching levels above 10* eV~! cm~2
near the band edge. These measurements have since been
confirmed by other groups [31], [32] using MOS admittance
measurements on n-type substrates. Fig. 7 shows interface state
density measured on both p-type and n-type SiC samples using
the AC conductance technique.

An exponentially increasing interface state density in the
upper half of the bandgap can be highly detrimental to the
inversion layer mobility in MOSFETSs because of two effects
[31], [33], [34]. First, a substantial fraction of the electron
charge induced at the interface will be held in traps, and
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Fig. 6. Best reported blocking voltage versus year for SiC MOSFETSs.
Blocking voltage has increased at about 75% per year since 1992.

these carriers are not available for conduction. Second, the
trapped electrons give rise to strong Coulomb scattering of
the remaining mobile electrons, reducing their mobility. The
combined effect can easily account for the observed low
inversion layer mobilities in both 4H and 6H polytypes. Work
is underway to reduce the interface state density in the upper
half of the bandgap, and significant progress has been achieved
using post-oxidation annealing in nitric oxide (NO) [35], [36].
It has recently been demonstrated that this anneal can lead to
higher inversion layer mobilities [37], [38], but the picture is
still not totally clear and the results have yet to be transferred
to high voltage power MOSFETs.

C. Oxide Reliability Considerations

As discussed earlier, the higher critical field of SiC means
that the surface electric fields in SiC MOSFETSs can be up to
10x higher than in silicon devices. This places greater stress
on the gate oxide, and raises concerns about oxide reliability,
especially at elevated temperatures. The concern is heightened
because the conduction band offset between SiO, and SiC is
lower than between SiO» and silicon. The most severe degra-
dation occurs when electrons are injected from the SiC into the
oxide, as will occur in an n-channel MOSFET in the conducting
state. Only a limited amount of work has been performed on
SiC oxide reliability [39], but these studies suggest that accept-
able reliability can be maintained if the oxide electric field is
kept below about 4 MV/cm and the temperature below 150 °C.
Higher temperatures can be tolerated if the oxide field is further
reduced. Unfortunately, it appears that long term operation of
SiC MOS devices above 200-250 °C will not be feasible.

IV. SUMMARY AND CONCLUSIONS

SiC MOSFETs have achieved blocking voltages of 6.1 kV
and performance figures-of-merit 70x higher than the theo-
retical limit for silicon MOSFETs. Blocking voltages have in-
creased at an average rate of 75% per year for the past eight
years. In spite of this progress, SIC MOSFETs are not yet eco-
nomically competitive with silicon devices, and therefore are
not yet ready for commercialization.
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Two aspects of SiC MOSFET development require further
improvement. First, inversion layer mobility needs to be in-
creased. This will require minimizing surface degradation due
to implant anneals while reducing interface state density, pos-
sibly using post-oxidation annealing techniques now under in-
vestigation. The incorporation of accumulation-channel surface
layers or buried channel implants may provide an alternate route
around the mobility limitations. Second, device size needs to be
increased to provide absolute currents in the tens of amps in-
stead of fractions of an amp, and a manufacturable process must
be developed that can produce high performance devices with
good yield at an acceptable cost. This requires improvements in
SiC material quality, increases in wafer size, and reductions in
wafer cost, topics addressed by an accompanying paper in this
issue [40].
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