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Preface

Power semiconductor devices are attracting increasing attention as key components in a variety of power
electronic systems. The major applications of power devices include power supplies, motor controls,
renewable energy, transportation, telecommunications, heating, robotics, and electric utility transmis-
sion/distribution. The utilization of semiconductor power devices in these systems can enable signi!cant
energy savings, increased conservation of fossil fuels, and reduced environmental pollution.

Power electronics has gained renewed attention in the past decade due to the emergence of several
new markets, including converters for photovoltaic and fuel cells, converters and inverters for electric
vehicles (EVs) and hybrid-electric vehicles (HEVs), and controls for smart electric utility distribution
grids. Currently, semiconductor power devices are one of the key enablers for global energy savings and
electric power management in the future.

Silicon power devices have improved signi!cantly over the past several decades, but these devices
are now approaching performance limits imposed by the fundamental material properties of silicon, and
further progress can only be made by migrating to more robust semiconductors. Silicon carbide (SiC)
is a wide-bandgap semiconductor with superior physical and electrical properties that can serve as the
basis for the high-voltage, low-loss power electronics of the future.

SiC is a IV–IV compound semiconductor with a bandgap of 2.3–3.3 eV (depending on the crystal
structure, or polytype). It exhibits about 10 times higher breakdown electric !eld strength and 3
times higher thermal conductivity than silicon, making it especially attractive for high-power and
high-temperature devices. For example, the on-state resistance of SiC power devices is orders-of-
magnitude lower than that of silicon devices at a given blocking voltage, leading to much higher
ef!ciency in electric power conversion. The wide bandgap and high thermal stability make it possible
to operate certain types of SiC devices at junction temperatures of 300 ∘C or higher for inde!nite
periods without measurable degradation. Among wide-bandgap semiconductors, SiC is exceptional
because it can be easily doped either p-type or n-type over a wide range, more than !ve orders-of-
magnitude. In addition, SiC is the only compound semiconductor whose native oxide is SiO2,
the same insulator as silicon. This makes it possible to fabricate the entire family of MOS-based
(metal-oxide-semiconductor) electronic devices in SiC.

Since the 1980s, sustained efforts have been directed toward developing SiC material and device tech-
nology. Based on a number of breakthroughs in the 1980s and 1990s, SiC Schottky barrier diodes (SBDs)
were released as commercial products in 2001. The market for SiC SBDs has grown rapidly over the last
several years. SBDs are employed in a variety of power systems, including switch-mode power supplies,
photovoltaic converters, air conditioners, and motor controls for elevators and subways. Commercial
production of SiC power switching devices, primarily JFETs (junction !eld-effect transistors) and MOS-
FETs (metal-oxide-semiconductor !eld-effect transistors), began in 2006–2010. These devices are well
accepted by the markets and many industries are now taking advantage of the bene!ts of SiC power
switches. As an example, the volume and weight of a power supply or inverter can be reduced by a factor
of 4–10, depending on the extent to which SiC components are employed. In addition to the size and
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weight reduction, there is also a substantial reduction in power dissipation, leading to improved ef!ciency
in electric power conversion systems due to the use of SiC components.

In recent years, the SiC professional community has grown rapidly in both academia and industry.
More and more companies are developing SiC wafer and/or device manufacturing capabilities and the
population of young scientists and engineers is increasing. Unfortunately, very few textbooks are yet
available that cover the broad spectrum of SiC technology from materials to devices to applications. Thus,
those scientists, engineers, and graduate students are potential readers of this text. The authors hope this
book will be timely and bene!cial for such readers, and will enable them to rapidly acquire the essential
knowledge to practice in this !eld. Since this book covers both fundamentals and advanced concepts, a
minimum knowledge of semiconductor physics and devices is assumed, but a graduate student majoring
in material science or electrical engineering will have no dif!culty in reading this book.

The main topics described in this book include SiC physical properties, bulk and epitaxial growth,
characterization of electrical and optical properties, extended and point defects, device processing, design
concepts of power recti!ers and switching devices, physics and features of unipolar/bipolar devices,
breakdown phenomena, high-frequency and high-temperature devices, and system applications of SiC
devices. Both fundamental concepts and state-of-art implementations are presented. In particular, we try
to explain all the subjects with an in-depth treatment, including basic physics, present understanding,
unaddressed issues, and future challenges.

Finally the authors acknowledge a number of colleagues and pioneers in this !eld, especially
Prof. W. J. Choyke (University of Pittsburgh), Emeritus Prof. H. Matsunami (Kyoto University), the
late Dr G. Pensl (University of Erlangen-Nürnberg), Prof. E. Janzén (Linköping University), and
Dr J. W. Palmour (Cree) for their valuable contributions to the !eld and to our understanding. We also
thank Mr. James Murphy and Ms. Clarissa Lim of Wiley for their guidance and patience. At last, we
thank our family for their kind encouragement and support in writing this book. Without their support
and understanding, this book would not have been published.

Kyoto and West Lafayette, September 2013
Tsunenobu Kimoto

James A. Cooper



1
Introduction

1.1 Progress in Electronics
Development of semiconductor materials and devices has been a strong driving force for a variety
of revolutionary changes and innovations in modern society. Since the invention of germanium
(Ge)-based bipolar transistors in 1947–1948 [1, 2] and the subsequent success of silicon (Si)-based
metal-oxide-semiconductor !eld effect transistors (MOSFETs) [3], semiconductor devices have given
rise to a new !eld, solid state electronics. The invention of integrated circuits (ICs) made by planar
technology [4, 5] triggered rapid progress in microelectronics. Nowadays, Si-based large scale integrated
circuits (LSIs) are the key components in almost all electrical and electronic systems. Despite predictions
of physical limitations, remarkable progress continues to be made in Si-based LSIs, even today [6, 7].
Solar cells and various sensors are also mainly produced using silicon.

In the meantime, compound semiconductors have established unique positions in those applications
where Si devices cannot exhibit good performance because of the inherent material properties. In par-
ticular, III–V semiconductors such as gallium arsenide (GaAs) and indium phosphide (InP) have been
widely employed for high-frequency devices and light-emitting devices [8, 9]. In addition to the high
electron mobility and direct band structure of most III–V semiconductors, bandgap engineering and for-
mation of heterostructures can be utilized to enhance the performance of devices based on compound
semiconductors. Success in making blue and green light-emitting devices using gallium nitride (GaN)
and indium gallium nitride (InGaN) was also a great milestone in the history of semiconductors [10, 11].
Thus, optoelectronics is one of the most important !elds of development, and relies on these III–V
semiconductors.

As our society continues to advance technologically, various demands for new functionalities for semi-
conductor devices have arisen, such as high-temperature operation and "exibility. High-temperature elec-
tronics is a !eld where wide bandgap semiconductors possess much promise [12]. Conversely, organic
semiconductors and oxide semiconductors have been developed for !exible electronics [13].

Improvement of energy ef!ciency (reduction of power consumption and dissipation) is one of the
most basic problems we are facing. In 2010, the world average ratio of electrical energy consumption to
total energy consumption is about 20% [14], and this ratio is expected to increase rapidly in the future.
Independent of the means by which electrical power is generated, power conditioning and conversion
are required for cost-effective and ef!cient delivery to the load. It is estimated that more than 50% of all
electrical power "ows through some form of power conversion.

Power electronics, the concept of which was introduced by Newell in 1973 [15], involves conversion of
electric power using power semiconductor devices and circuits. Electric power is regulated and converted
so that the power can be supplied to the loads in the best form. Electric power conversion includes

Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications, First Edition.
Tsunenobu Kimoto and James A. Cooper.
© 2014 John Wiley & Sons Singapore Pte Ltd. Published 2014 by John Wiley & Sons Singapore Pte Ltd.
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Figure 1.1 Major application areas of power devices plotted as a function of rated voltage.

AC–DC, DC–AC, DC–DC (voltage conversion), and AC–AC (voltage or frequency conversion) [16].
The ef!ciency of power conversion is typically 85–95% using currently available technology, which
is not high enough, because approximately 10% of the electric power is lost as heat at every power
conversion. In AC–DC and DC–AC conversions, which are very common, the ef!ciency becomes as
low as about (0.9)2 ≈ 0.8.

In general, the ef!ciency of power electronics is limited by the performance of semiconductor devices,
capacitors, inductors, and packaging. In particular, power semiconductor devices have attracted increas-
ing attention as key components which limit the performance and size of power converters. As shown
in Figure 1.1, the major applications of power devices include power supplies, motor control, telecom-
munications, heating, robotics, electric/hybrid vehicles, traction, lighting ballasts, and electric power
transmission. Development of high-voltage and low-loss power devices is also essential for construction
of future smart grids.

Realization of high-performance power devices will lead not only to enormous energy saving but
also to conservation of fossil fuels and reduced environmental pollution. At present, Si is the most
commonly used semiconductor for power devices. The performance of Si power switching devices
has been signi!cantly improved through development of power MOSFETs and IGBTs (insulated gate
bipolar transistors) [17, 18]. Progress in Si LSI technology and in advanced simulation technology has
had great impact on the development of Si power devices in recent decades. However, now that Si
power device technology is relatively mature, it is not easy to achieve innovative breakthroughs using
this technology. Silicon carbide (SiC) is an old but emerging semiconductor, which is promising for
advanced power devices because it has superior physical properties. SiC devices are also promising
for high-temperature and radiation-resistant operation. GaN is also attractive as a material for power
devices, and the intrinsic potential of GaN is very similar to that of SiC (since they have almost the
same bandgap and critical electric !eld strength). At present, however, growth and device-fabrication
technologies for SiC are more advanced, and SiC power devices exhibit better performance and relia-
bility. GaN-based lateral switching devices processed on heteroepitaxial GaN on Si show some promise
for relatively low-voltage (100–300 V) applications. When the GaN technology becomes more mature,
especially when large-diameter bulk growth is readily achieved, both SiC and GaN power devices will be
widely employed, depending on the performance and cost. For high-voltage bipolar device applications,
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however, SiC should be inherently superior because SiC has an indirect band structure, leading to an
inherently long carrier lifetime.

1.2 Features and Brief History of Silicon Carbide
Silicon carbide (SiC) is a IV–IV compound material with unique physical and chemical properties. The
strong chemical bonding between Si and C atoms gives this material very high hardness, chemical inert-
ness, and high thermal conductivity [19]. As a semiconductor, SiC exhibits a wide bandgap, high critical
electric !eld strength, and high saturation drift velocity. Both n- and p-type control across a wide doping
range is relatively easy in SiC; this makes SiC exceptional among wide bandgap semiconductors. The
ability of SiC to form silicon dioxide (SiO2) as a native oxide is an important advantage for device fabrica-
tion. Because of these properties, SiC is a promising semiconductor for high-power and high-temperature
electronics [20–22]; subsequent chapters will describe in detail the fundamentals of SiC technologies,
its properties, growth, characterization, device fabrication, and device characteristics.

The physical and chemical stability of SiC, however, has made crystal growth of SiC extremely dif!-
cult, and severely hampered development of SiC semiconductor devices and their electronic applications.
The existence of various SiC structures with different stacking sequences (otherwise known as polytyp-
ism) [23] has also hampered growth of electronic-grade SiC crystals. SiC polytypes such as 3C-, 4H-,
and 6H-SiC, are described in Section 2.1.

1.2.1 Early History
SiC itself is rare in nature, and synthesis of a compound material containing silicon–carbon bonds was
!rst reported by Berzelius in 1824 [24]. Acheson invented a process for the synthesis of SiC from silica,
carbon, and some additives (e.g., salt) in 1892 [25]. This process (Acheson process) provided volume
production of SiC powders used for cutting, grinding, and polishing, which was the !rst industrial appli-
cation of SiC. In the Acheson process, ingots which contain small single crystalline SiC platelets (mainly
6H-SiC) can be obtained as a by-product (Figure 1.2a). Although these SiC platelets are not pure, they
were used for some basic studies on the physical and chemical properties of SiC. One of the highlights of
this work was the !rst discovery of electroluminescence (emission of yellow light) from SiC by Round in
1907 [26]. In the meantime, Moissan discovered natural SiC and investigated this material as a mineral
[27]. This is why SiC is named “Moissanite” in mineralogy or in the !eld of gem stones.

(b)(a)

150 mm wafer 

100 mm wafer 

Figure 1.2 (a) SiC platelets (mainly 6H-SiC) obtained as a by-product in the Acheson process.
(b) 4H-SiC wafers with 100 and 150 mm in diameter.
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Lely successfully grew relatively pure SiC crystals by a sublimation technique (Lely method) in 1955
[28]. The crystals obtained are mostly 6H-SiC, but inclusions of foreign polytypes are often observed.
Owing to the relatively high crystal quality of the Lely platelets, the !rst wave of research into SiC as
a semiconductor emerged in the 1960s. During this period, the main target applications for semicon-
ductor SiC were the development of high-temperature devices and blue light-emitting diodes [29, 30].
Shockley participated in an international conference on SiC, and emphasized the promise of SiC for
high-temperature electronics [30]. Important academic studies on optical properties of SiC were exten-
sively performed by Choyke [31]. However, because of the small size of Lely platelets and unsteady
material supply, research and development of SiC semiconductors slowed down in the late 1970s, and
the technology remained immature. Conversely, polycrystalline SiC technology was developed, and
SiC-based ceramics, heating elements, passive components, and thermistors were commercialized.

1.2.2 Innovations in SiC Crystal Growth
In 1978–1981, Tairov and Tsvetkov invented a reproducible method for SiC boule growth [32, 33]. They
introduced a 6H-SiC seed into a sublimation growth furnace, and designed an appropriate temperature
gradient to control mass transport from the SiC source onto the seed crystal, based on thermodynamic
and kinetic considerations. This growth process is called the modi"ed Lely method or seeded sublima-
tion method. Several groups followed and further developed the growth process to obtain SiC boules with
a larger diameter and a reduced density of extended defects. Davis and Carter signi!cantly re!ned this
method [34]. The !rst commercialization of SiC (6H-SiC) wafers occurred in 1991 [35]. Through contin-
uous efforts, reasonably high-quality SiC wafers, 100–150 mm in diameter, are commercially available
from several vendors at present (Figure 1.2b). The availability of single crystalline wafers has driven
rapid development of SiC-based electronic devices.

Concerning epitaxial growth of SiC, liquid phase epitaxy (LPE) of 6H-SiC on Lely platelets was inves-
tigated in the 1980s, in research targeting blue light-emitting diodes [36, 37]. Heteroepitaxial growth of
3C-SiC on a Si substrate by chemical vapor deposition (CVD) was developed [38, 39] in the early 1980s,
but the performance of electronic devices (Schottky barrier diodes (SBDs), pn diodes, MOSFETs) was
far below that expected. This result can be attributed to a high density of stacking faults and dislocations,
which are generated because of large mismatches in the lattice constants and thermal expansion coef-
!cients. Therefore, a few groups started CVD growth of 3C-SiC on 6H-SiC{0001} (Lely or Acheson
platelets). Although the quality of 3C-SiC was much improved, it was still not satisfactory.

In 1987, Matsunami et al. discovered that high-quality 6H-SiC can be homoepitaxially grown
by CVD at relatively low growth temperature, when a several degree off-angle is introduced into
the 6H-SiC{0001} substrates (“step-controlled epitaxy”) [40]. Davis et al. also reported homoepi-
taxial growth of 6H-SiC on off-axis substrates [41]. Homoepitaxial growth of 6H-SiC on off-axis
6H-SiC{0001} became a standard technique in the SiC community because it yielded high purity, good
doping control, and uniformity. In 1993, a high mobility of over 700 cm2 V–1 s−1 was !rst reported
for 4H-SiC grown using this technique [42]. The combination of this result, the other superior physical
properties of SiC, the commercial release of 4H-SiC wafers, and demonstration of excellent 4H-SiC
devices made 4H-SiC the preferred choice for electronic device fabrication in the mid 1990s. In the
meantime, the doping control was drastically improved by exploiting the “site-competition” concept
proposed by Larkin et al. [43]. A hot-wall CVD reactor was proposed by Kordina et al. [44], and this
reactor design is currently the standard, because it allows superior control of temperature distribution,
has a much longer susceptor life, and better growth ef!ciency.

Since high-quality 4H- and 6H-SiC epitaxial layers (both n- and p-types) can be obtained, physi-
cal properties and defects of SiC have been extensively investigated in the University of Pittsburgh,
the University of Erlangen-Nürnberg, Linköping University, Kyoto University, Ioffe Physical Technical
Institute, Purdue University, the Naval Research Laboratory, the State University of New York at Stony
Brook, Carnegie Mellon University, AIST, and so on.
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1.2.3 Promise and Demonstration of SiC Power Devices
The outstanding potential of SiC-based power devices was suggested in 1989 by Baliga [45], and a
systematic theoretical analysis of the performance was published in 1993 by the same group [46]. These
papers have inspired and motivated scientists and engineers in this !eld.

As a result of the progress in homoepitaxial growth technology described above, lightly-doped hexago-
nal SiC epitaxial layers with reasonable quality became available in the early 1990s. Matus et al. reported
a 1 kV 6H-SiC pn diode and its recti!cation operation up to 600 ∘C [47]. Urushidani et al. in 1993 demon-
strated a 1 kV 6H-SiC SBD with a low speci!c on-resistance and 400 ∘C recti!cation [48]. In 1994, the
on-resistance of high-voltage SiC SBDs was signi!cantly reduced by using 4H-SiC [49]. After structure
and process optimization, the !rst SiC SBD products were released in 2001 [50]. One of the typical appli-
cations of SiC SBDs was as fast diodes employed in a power-factor-correction circuit of switching-mode
power supplies. Because of the negligibly small reverse recovery of SiC SBDs, the switching loss can be
dramatically reduced and the switching frequency can be increased, leading to the downsizing of passive
components. SiC SBDs are currently employed in a broad spectrum of applications, such as industrial
motor control, photovoltaic converters, air conditioners, elevators, and traction (subway). In research and
development, the maximum blocking voltage of SiC diodes exceeded 20 kV [51, 52].

In conjunction with development of high-voltage SiC diodes, fabrication of vertical SiC switching
devices started in the early 1990s. In 1993, a vertical trench MOSFET of 6H-SiC was demonstrated
by Palmour et al. [53]. Palmour and coworkers also extensively developed 4H-SiC trench MOSFETs,
thyristors, and bipolar junction transistors (BJTs), as important steps toward high-power electronics [54].
In 1996 and 1997, the !rst planar double-implanted metal-oxide-semiconductor !eld effect transistor
(DIMOSFET) of 4H-SiC with a blocking voltage of 760 V and low on-resistance was reported by Pur-
due University [55]. This group demonstrated a 1.4 kV–15 mΩ cm2 4H-SiC trench MOSFET with a
number of innovative design features in 1998 [56]. To avoid problems at the SiC MOS interface, vertical
junction !eld effect transistors (JFETs) were also developed [57], leading to the commercialization of
4H-SiC power JFETs in the mid 2000s [50]. After steady improvement of MOS channel mobility and
oxide reliability, 4H-SiC power DIMOSFETs have also been commercially available since 2010 [35, 58].
Figure 1.3 shows a picture of a 100 mm wafer after processing of SiC power MOSFETs. However, these

100 mm wafer
(Power MOSFETs processed)

Figure 1.3 100 mm 4H-SiC wafer after processing of power MOSFETs. Reproduced by courtesy of T.
Nakamura (Rohm).
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SiC power switching devices require further improvement in performance and cost reduction. The market
is slowly growing as these devices become more cost-effective. As far as ultrahigh-voltage switching
devices are concerned, 12–21 kV thyristors, IGBTs, and BJTs have been demonstrated [59–62].

1.3 Outline of This Book
As a result of the rapid progress in SiC growth and device technologies in the last decade, some SiC power
devices are now in commercial production. The major bene!ts of SiC devices include lower power dissi-
pation, smaller size, and simpli!ed cooling units of power converters. A number of academic studies on
the materials science and device physics of SiC have been carried out, adding substantially to the scien-
ti!c knowledge in this area. In this book, fundamental physics, present understanding, and unaddressed
issues in SiC technology are summarized.

The outline of the chapters is as follows:

Chapter 2 describes the unique crystal structures and physical properties of SiC, and compares SiC with
Si and other semiconductors.

Chapter 3 focuses on bulk growth of SiC for wafer production. The basic principles and technology
development for sublimation growth are explained.

Chapter 4 gives the basics of homoepitaxial growth of hexagonal SiC by CVD. Doping control and
defects in SiC epitaxial layers are presented.

Chapter 5 is devoted to techniques used to characterize the electrical and optical properties of SiC. Detec-
tion of various defects in SiC and the nature of these defects are also described.

Chapter 6 discusses device processing technologies, such as ion implantation, etching, MOS interface,
and metallization. Both fundamental issues and practical considerations are given.

Chapter 7 describes the basic physics of power diodes, especially SBDs and pin diodes, and gives
examples of SiC-based diodes and their performance.

Chapter 8 explains the structure, design, and performance of unipolar power switching devices, such as
MOSFETs and JFETs. The oxide/SiC issues are also addressed.

Chapter 9 deals with bipolar power switching devices, such as BJTs, IGBTs, and thyristors.
Chapter 10 describes basic issues in the optimization of power devices, including design of blocking

voltage, edge termination. A performance comparison of various Si, SiC, and GaN devices is also
given.

Chapter 11 introduces applications of SiC devices in power systems. Basic circuits and operation of
power conversion, motor drive, inverter, DC–DC converter, power supply are described.

Chapter 12 focuses on specialized SiC devices other than power devices. The devices include
high-frequency devices, high-temperature devices, and sensors.

In a book this size it is dif!cult to completely cover the entire !eld of SiC materials and devices. The
authors have tried to focus on the fundamental science and the state-of-the-art technology. For example,
the description of solution growth of SiC boules, the heteroepitaxial growth of 3C-SiC, the theoretical
study on defects in SiC, and latest device development is not very extensive. For additional detail, please
see the related books [63–69], review papers, and conference proceedings.
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