Miniature Space-Variant Active Vision System:
Cortex-1

Benjamin B. Bederson
June 1992

A dissertation in the Department of Computer Science submitted to the faculty of the
Graduate School of Arts and Sciences in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at New York University

Approved:

Eric Schwartz
Research Advisor

Page 1 of 86 GOOGLE EXHIBIT 1011

© Copyright 1992
by Benjamin B. Bederson
All Rights Reserved

Page 2 of 86

Abstract

We have developed a prototype miniaturized active vision system whose sensor architecture is based on
a logarithmically structured space-variant pixel geometry. A space-variant image’s resolution changes
across the image. Typically, the central part of the image has a very high resolution, and the resolution
falls off gradually in the periphery. Our system integrates a miniature CCD-based camera, pan-tilt
actuator, controller, general purpose processors and display. Due to the ability of space-variant sensors
to cover large work-spaces, yet provide high acuity with an extremely small number of pixels, space-
variant active vision system architectures provide the potential for radical reductions in system size and
cost. We have realized this by creating an entire system that takes up less than a third of a cubic foot.
In this thesis, we describe a prototype space-variant active vision system (Cortex-I) which performs
such tasks as tracking moving objects and license plate reading, and functions as a video telephone.

We report on the design and construction of the camera (which is 8 x 8 x 8mm), its readout, and
a fast mapping algorithm to convert the uniform image to a space-variant image. We introduce a new
miniature pan-tilt actuator, the Spherical Pointing Motor (SPM), which is 4 x 5 x 6cm. The basic idea
behind the SPM is to orient a permanent magnet to the magnetic field induced by three orthogonal coils
by applying the appropriate ratio of currents to the coils. Finally, we present results of integrating the
system with several applications. Potential application domains for systems of this type include vision
systems for mobile robots and robot manipulators, traffic monitoring systems, security and surveillance,
telerobotics, and consumer video communications.

The long-range goal of this project is to demonstrate that major new applications of robotics will
become feasible when small low-cost machine vision systems can be mass-produced. This notion of
“commodity robotics” is expected to parallel the impact of the personal computer, in the sense of opening
up new application niches for what has until now been expensive and therefore limited technology.

iii

Page 3 of 86

Acknowledgements

This work is the result of a collaborative effort. It was a pleasure to have had the opportunity to work
with such fine minds as I found in Eric Schwartz (my thesis advisor), Richard Wallace (my colleague
and constant teacher), and Ping-Wen Ong (my fellow student and supporter).

Eric has been doing research leading up to this project for at least ten years. He found the funding
for it, and had many of the critical ideas that got it moving. The Spherical Pointing Motor was his
original idea, and only through (literally) years of bouncing it off each other, did we get it right.

Richard is largely responsible for the digital signal processing in the system. If it weren’t for him,
we wouldn’t have a video display. He had infinite patience in helping me work through problems. He
was always available to assist me, and helped to keep the project well directed.

Ping-wen came through at the last minute to integrate his license plate tracking software to work
with Cortex-I. In addition, he was a motivating force in my studying Chinese. While not directly
critical to this project, studying Chinese helped me keep my sanity during various traumas — such as
when the first prototype went flying through the air as I got a great electric shock — a few hours before
we departed for Chicago where Cortex-I was first publicly demonstrated.

Everyone at the NYU Robotics Lab was always optimistic and supportive as Cortex-I slowly took
shape. Bud Mishra, especially, had good ideas, and was kind enough to read this thesis twice.

And of course, I thank my family, friends, and cat (Tria) who have had to put up with me as I've
been counting down the months to finish this, and start the next phase of my life.

iv

Page 4 of 86

Contents

Page 5 of 86

List of Figures

Page 6 of 86

vi

Chapter 1

Introduction

Computer vision is a field that typically requires very fast and expensive machines. By using a radically
different image architecture along with novel imaging and actuation technologies, we have created a
system that we strongly believe will allow us not to solve vision problems better than before, but to
solve them dramatically faster, smaller and cheaper.

The key innovation is the use of space-variant images' which are images whose resolution changes
across the image. The central part of the image has a very high resolution and the resolution falls off
gradually in the periphery. The main advantage of this type of image is the small amount of data it
contains while maintaining a high field width and central resolution.

This thesis discusses image processing with space-variant images, and a miniature space-variant active
vision system, Cortex-I, that integrates a camera, a two degree-of-freedom motor to actuate the camera,
and a loosely coupled parallel computing architecture to process the images and control the motor and
camera.

1.1 Motivation

Traditionally, very little computer vision research has focused on real-time systems. Typical systems
spend several seconds or even minutes on solitary images. This approach has not produced a general
real-time device. Part of the problem is the philosophy often followed of “we need to do basic research,
so we’ll write the necessary software and the hardware will eventually catch up.”

This ignores the fundamental problem of bandwidth. Using a standard 512 x 512 image at video
rates of 30 frames per second, 8 megapixels per second need to be processed. Even with specialized
image-processing hardware (e.g., DataCube’s MaxVideo system), the best general-purpose systems are
still processing only the simplest scenes successfully in real-time. It is not likely that any technology in
the near future will be able to supply the required processing power.

This problem is not unavoidable because typically, only a small part of the image contains the feature
being examined at the moment. What is needed is a way to selectively focus attention on the interesting
part of the image while maintaining some level of awareness of the rest of the image so interesting events
can be recognized as such and then attended to.

Multiresolution images supply the opportunity to reduce bandwidth while allowing focusing of atten-
tion on one region and awareness of a wider field. Two relevant parameters of an image are the field width
and the resolution. The field width specifies how large a portion of the scene is contained in the image.
The resolution specifies how much information is contained in a fixed portion of the image. Neither of
these parameters can be arbitrarily reduced without severely degrading the system performance. The
human visual system solves the bandwidth problem without compromising either field width or foveal

1Emphasized words are defined in Appendix 77

Page 7 of 86

CHAPTER 1. INTRODUCTION 2

resolution. It does so with the use of the retina, which is a space-variant sensor. It has a resolution that
is high in the center (called the fovea), low in the periphery and it changes smoothly between them.

Any system that uses a space-variant sensor must aim the sensor properly. Since space-variant sensors
only have high resolution in the fovea, the current region of interest must be continuously tracked or
foveated. Such a sensor must be mounted in a device that can aim the sensor with precision. A system
with this capability is an example of an active or attentive vision system.

A logmap sensor is a useful type of space-variant sensor that is modelled on the human visual system
(see Section 1.3). The space complexity aspect of logmap sensors is particularly attractive and has
been analyzed in detail [?]. In this work, a spatial quality measure, @5, for sensors is defined to be
the ratio of its work-space to maximal resolution. Logmap sensors can each achieve comparable Q)5 to
conventional uniform sensors that are one to four orders of magnitude larger. Image simulation of the
human space-variant architecture suggests that this ratio may be as high as 10,000 : 1 [?]. In current
implementations of space-variant machine vision systems, logmap sensors with between 1000 and 2000
pixels have comparable @5 to conventional sensors in the range of 256 x 256 to 512 x 512, a compression
of between 60 : 1 to 250 : 1. Moreover, as shown in [?], Qs grows exponentially with the number of
pixels in the logmap sensor, thus providing a highly favorable route to upgrading sensor quality. The
high compression ratios cited above for the human visual system derive from the fact that human acuity,
which is roughly one-arc minute in the fovea, when extrapolated over a 120 degree visual field, yields
a constant resolution sensor with roughly 0.2 gigapixels. The logmap sensor with comparable @, has
roughly 10* to 10° pixels.

In this discussion, compression refers to the ratio of the number of pixels in a conventional uniform
sensor to that of a space-variant sensor with the same ;. The issue of image compression, in the
conventional (e.g. JPEG) usage is an independent issue not addressed in this thesis, but we point out
that a form of progressive video coding, in which a video image is represented by a sequence of logmap
images, is one application that has benefitted from the high compression ratio of the logmap transform. If
each logmap image is centered on a different point in the video image and clipped so that we preserve the
highest frequency information available at each point in the video picture, we can progressively construct
a video image of increasing detail. Rojer [?] reported some experiments with progressive logmap video
coding, and discussed the problem of selecting the best sequence of gaze points.

A space-variant sensor requires pointing the sensor at the region of interest. If the sensor is not
pointed (or foveated) properly, the desired object will fall somewhere on the periphery of the sensor
resulting in a lower resolution image. So it is important to develop efficient eye movement mechanisms.

A sensor movement system must find interesting objects, track them as they move, and account for
movement of the device the sensor is mounted in. A short description of the way the human system
solves the second two parts of this problem follows. It should be noted that the human visual system
is able to track objects and foveate on them to within the accuracy of the retina’s highest resolution.
There are four principal types of eye movements as reviewed by Robinson [?].

1. Saccades: These are discrete movements and move the eye quickly (300° - 400°/second) from one
fixation point to another. They also correct errors of the pursuit system. There is a large latency
(150 ms) between fixations. There are typically less than four saccades per second.

2. Pursuit Eye Movements: The pursuit system tracks moving targets and keeps the current
target foveated. It has a latency of 50ms.

3. Vergence: This controls the depth that the two eyes fixate on together. It is the slowest system
and has a latency of over 200ms.

4. Vestibular Systems: The Vestibular Ocular Reflex and Optokinetic Reflex systems maintain
the gaze of the eye, counteracting for head movements. Ie., if the head moves to the right, the
eye moves to the left. This is one of the fastest types of eye movement and has a latency of only
14ms. These get sensory input from the semicircular canals that effectively constitute an angular
inertial accelerometer with a frequency range from 0.017 to 17Hz.

Page 8 of 86

CHAPTER 1. INTRODUCTION 3

In addition to these four systems, there is a fifth type of movement known as physiological nystagmus.
This is a small higher frequency jitter at 30 to 80Hz. These movements are very important to the low-
level visual process, but are not an issue in the larger movements of object tracking with which we are
concerned here.

In our work, we focus on saccadic motions which are the simplest to implement and are used for both
attention and tracking.

The mapping of the retina to the visual cortex is another very important characteristic of the human
visual system. Pioneering work by Hubel and Wiesel [?, ?] showed how some low-level feature detection
performed on the retinal image was mapped to the V1 area in the visual cortex. Then Schwartz showed
in [?, 7] that the mapping from the retina to the visual cortex takes a very specialized form. Specifically,
the retina can be looked at as a polar coordinate system where each point represents one photo-sensitive
cell. Tt gets mapped to what is essentially a rectangular coordinate system in the visual cortex. This
can be represented mathematically by a complex logarithm and is depicted graphically in Figure 1.1.
This mapping is called the logmap.

The point in retinal space, P;, can be denoted re?® and the point in cortical space, P, can be denoted
by the complex number z + iy. If we take the log of Py, we get:

log(ret’) = logr + i

Substituting
z=logr and y=286,
we get '
log(re?) = x + iy
or,

IOg(Pl) = PQ.

So the natural logarithm of a point in polar coordinates is transformed to a point in rectangular coor-
dinates.

This mapping has some interesting geometric properties. Specifically, fovea-centered circles get
mapped to vertical lines and radial lines get mapped to horizontal lines. This has the effect of trans-
forming scale and rotation in fovea-centered retinal images to translation in cortical images. For many
computer vision applications, it is easier to recognize translation of an object than scaling or rotation,
so this provides another justification for a complex log sensor geometry. However, since objects get
distorted as they move away from the fovea, it is practical to use a tracking system to keep the object
of interest centered on the fovea. In the present work, we do not attempt to make use of these geomet-
ric features of the complex log mapping, but rather, we use this mapping for its inherent bandwidth
reduction.

One problem in using an analytic space-variant mapping, such as the logarithm is the existence of
a singularity at the origin of the coordinate system. Figure 1.1b shows this singularity. The left points
of each triangle in the range all represent the same single point in the domain. Our solution to this
problem is to introduce a small real constant, @, into the mapping and to use a map function of the
form log(z +). The constant, «, is used in an analagous fashion in models of the human visual system:
it is a measure of the size of the central linear representation of the human fovea [?]. There are still
difficulties with the log(z +) mapping because there is a discontinuity in the range. This discontinuity,
however, is much easier to handle than the singularity in the original mapping.

As can be seen in Figure 1.1d, the pixels on the edge are cut off in different places yielding 3, 4, and
sometimes 5-sided pixels. This makes operations such as convolution difficult as it is not immediately
clear how to handle the missing and extra adjacent pixels. We discuss a solution to this problem in
Section 1.4

We have assumed that an interesting object has been located. But how do we find interesting objects
throughout the visual field? This question is a very important one and is called attention. Yarbus [?]

Page 9 of 86

CHAPTER 1. INTRODUCTION 4

e

(d)

Figure 1.1: This shows the complex logmap, log(z) in a) and b) and its relative, the mapping, log(z + @)
in ¢) and d). It can be seen that the log(z + &) map results from cutting the hatched region out of the
log(z) map. Note that rings centered around the fovea in the domain get mapped to vertical lines in the
range and radial lines get mapped to horizontal lines. Here, P; gets mapped to P». The log(z) map has
a singularity in the center while the log(z + @) map has a discontinuity along the vertical meridian.

Page 10 of 86

CHAPTER 1. INTRODUCTION)

examined this problem in humans by tracking eye movements in individuals as they examined a scene.
From this and other experiments, Yarbus showed that individuals tend to have consistent eye movement
patterns that are different across individuals. He also showed that with supervision and a high-level
goal, eye movement patterns (mainly saccades) could be controlled. For instance, in one experiment,
Yarbus showed a picture to a subject and asked the subject to remember the position of the people and
objects in the room, the response was a very unfocused scan covering the entire image. On the other
hand, when the subject was requested to estimate how long the unexpected visitor had been away from
the family, the response was to spend almost all the time examining the faces of the people. These
experiments are important because they show how low-level control of the visual system is influenced
by high-level processes.

An excellent review of selective fixation methods in both human and computational systems can be
found in Abbott [?]. Two researchers not covered in this review are Rojer and Califano.

Rojer [?] addressed the issue of attention using space-variant images and showed several strategies
for determining where to look next. He first compared several heuristic algorithms for attention. He
quantified the results for attention by random fixation with and without inhibition, attention from a
spatial derivative, and attention based on motion and regions. He then introduced a variation on the
Hough transform that he calls the Collapsed Hough transform. It allows the feature to be of high
dimension while using a “motor space” of only two dimensions, the minimum necessary to control
fixation. He demonstrates results with this method to locate faces in a natural scene.

Califano et. al. [?] introduces a technique for foveation based on a two-level resolution system. They
have implemented three modes of attention. One detects conflicts between object models, typically
occurring when multiple objects differ only upon examination at a higher resolution. The second looks
for areas that are not currently covered by any hypothesis. The last explores previously unexamined
areas, much as some of Rojer’s heuristic procedures do.

1.2 Background

Researchers have been examining the problems associated with space-variant sensors and active vision
for many years, both in theoretical and practical ways.

On the theoretical side, Aloimonos et. al. looked at many of the shape-from-X problems [?], proving
that an active search strategy is more efficient than a passive one, and that ill-posed and nonlinear
problems become well-posed and linear. Tsotsos analyzed the relative complexity of active versus passive
search [?]. He claims that an active search strategy may gain improvements in computation time based
on worst-case time complexity functions he derived using hypothesize-and-test strategies.

Many groups have built active vision systems to experiment with some of these ideas. Krotkov [?]
built what is often regarded as the first “robot head”. Many other groups as detailed in Chapter ??
followed suit. The four groups described here have all built working systems that use some sort of
multi-resolution technique, or in Dickmanns case, multiple foveation points.

At the Universities of Genoa and Pisa in Italy, Van der Spiegel et. al. and Sandini et. al. are
doing collaborative work with Bajcsy at the University of Pennsylvania [?, ?, 7, ?, ?]. They have built
a space-variant sensor and are working on geometrical and tracking algorithms for it.

Van der Spiegel et. al. has been developing a VLSI space-variant sensor based on the complex-log
map, log(z). It is based on Charge Coupled Device (CCD) technology. They fabricated a working chip
that produces images with 30 rings of 64 pixels each with a uniform fovea of 102 pixels. Each pixel gives
a linear output in response to incident light intensity.

Because CCD technology will not allow direct connection between greatly different sized components,
the design must be broken up into several stages, each normalizing its data before passing it on to the
next. In addition, there is a limit to the size of the photo-sensitive area. These characteristics led to
a design consisting of three sets of ten rings. Each new set of rings has twice as many pixel cells, each
half as big as the previous set necessitating different clocks for each set of rings. The design also has a

Page 11 of 86

CHAPTER 1. INTRODUCTION 6

“blind spot” where the signals necessary for the center of the chip access it. The blind spot is actually
one ray that is the width of 2.5 pixels.

Sandini et. al. simulated logmap images by sub-sampling uniform images. They have examined
three problems: 1) recognition of arbitrarily scaled and rotated 2D shapes; 2) tracking of a moving
target; and 3) evaluation of distance of an object using optical flow. All three problems take advantage
of the space-variant structure of the image. These experiments only used the peripheral pixels and did
not take into account the uniform fovea. They did, however, simulate the blind spot accurately.

The first problem Sandini examined is based on the standard complex logmap that converts rotation
and scaling to translation for foveated scenes. Using simple binary objects, they implemented a template
matching algorithm based on cross-correlation and achieved a recognition rate of 97% for 50 objects that
were arbitrarily rotated and scaled. They claim that the errors are largely due to the blind spot.

The second problem, that of tracking a moving target, was examined with the intent of seeing how the
low resolution of the image affected the system. The target used was a bright spot over a dark background
moving in parabolic and circular paths. The target was identified by subtracting the background velocity
(computed directly from the known camera motion) from the optic flow. This yielded a velocity estimate
for the target that was located by computing the center of mass. The camera was then positioned based
on the velocity of the target. When the error reached a threshold, a “saccade” was performed correcting
the error.

For the third problem, they assumed the camera was moving with pure translation towards a foveated
object with constant speed. They wanted to compute the distance of the object from the camera. The
optical flow vectors for this situation are radial pointing outwards for a uniform image. For the logmap
image, however, the vectors are horizontal lines since radial lines get mapped to horizontal lines in the
log(z) map that they use. The vector’s amplitude is constant across the image and is proportional to
the distance the object has moved.

These preliminary experiments show how the geometrical structure of the logmap image affects some
basic vision problems. The low resolution of the image does not seem to be a problem for this simple
situation, although the blind spot does cause some difficulties.

Dickmanns and Graefe at the Universitit der Bundeswehr Miinchen [?] have shown their real-time
vision system to work in non-trivial difficult situations. Their approach is to maintain a world model
of the situation, focus processing on selected regions, and use the temporal proximity of the images to
incrementally process each new image. They find that the faster they run the system, the easier the
processing becomes. As the images get closer together temporally, the difficulty of the correspondence
problem decreases as the images change less and less between frames. They have demonstrated three
working systems. One drives a car autonomously on an autobahn construction site. Another balances a
stick in one-dimension on a moving cart. The third docks a vehicle on an airbed.

They define their task as looking “for the inherent structure and ... to find a computer architecture
which is well matched to the task of visual motion control.” [?, p. 224]. The most important concept
is that of temporal continuity which is the basic idea that if two pictures of a natural scene are taken
within a few milliseconds of each other, they will normally be very similar to each other. They have
found that most features don’t move more than a pixel or two between frames.

Another important concept is that the appropriate behavior of a system typically depends on only on
a small number of features. Only the area of the image containing these features needs to be examined.
This area is often less than 10% of the whole image. In a dynamic system, the location of these features
in usually known with fairly good precision since they probably change very little between successive
images. This approach influences the choice of hardware as each region of interest is best processed
in different ways. A dynamic system is better off with a coarse grained parallelism with one processor
handling each region of interest. Massively parallel SIMD machines, on the other hand, are not well
suited to this approach since they would have to process all pixels the same way. They would waste 90%
of their time processing the uninteresting regions. In addition, SIMD machines have no mechanism for
processing different regions with different algorithms at the same time.

The final idea in the work of Dickmanns and Graefe is that of a world model. Their systems work in

Page 12 of 86

CHAPTER 1. INTRODUCTION 7

limited domains, and are not intended to work generally. The autonomous vehicle, for instance, works
only on autobahns in good condition without other cars. Because of this, a world model can be accurately
created that describes what is likely to be seen and how objects in the model are likely to act and react.
The vehicle system knows about lane divider lines in the road, the edge of the road, side roads, road
curvature, etc. It can predict how things are likely to change based on system state parameters (i.e., the
speed of the vehicle). With each new image, the locations and shapes of the features can be accurately
predicted and the world model can be updated.

The world model of Dickmanns and Graefe is a full 3D model while the images are 2D perspective
projections of the world. The conversion from the 2D projection to 3D is non-unique. They solve this by
first taking the 2D projection of the world model to estimate where the features are. They use knowledge
based feature detection on the image (to be described shortly), and finally use a recursive least squares
state estimation technique to bypass the non-unique inversion of the perspective projection and update
the world model. This is a Kalman filtering [?] approach based on the Jacobian of the image features.

The world model technique runs into problems in at least three situations that are: 1) analyzing
the scene at startup; 2) losing the location of features due to extreme circumstances; and 3) when new
objects appear in the scene. The initialization is not difficult because that is not time critical. The other
two situations, however, are very difficult problems that have not been substantially addressed in this
work.

Their knowledge based feature detection is based on the world model. They predict the approximate
location of the feature and use a controlled correlation technique to locate the feature precisely. This
substantially reduces the cost compared to a standard correlation. They only check a small area sur-
rounding the predicted location of the feature. They reduce the problem to one dimension by checking
a path orthogonal to the expected orientation of the feature. The result is an extremely fast updating
of feature position and shape.

The architecture of the system is based on up to fourteen 8086-based single board computers. Each
processor examines a single region of interest. There is also one system processor that coordinates
communication between the other processors. There is one wide-angle camera to examine the periphery
and one camera with a telephoto lens to examine specific details. They both have pan and tilt control.
The system has a video bus that can transmit up to four images simultaneously.

They have autonomously driven a small van at speeds of up to 60 mph on an autobahn construction
site with no other vehicles. The van has run 20 km without human intervention in clear and moderately
rainy weather. It is able to enter the road from acceleration strips, switch lanes, and go on and off exit
ramps.

This approach clearly has merit and has been demonstrated to work in a variety of relatively unclut-
tered environments where a fairly simple and accurate model of the world exists. Its ability to generalize
to complex systems was not demonstrated.

A large research group directed by Brown and Ballard at the University of Rochester [?] are exploring
some of the basic concepts of active vision systems centering on eye and body movements. Their stated
goals are to study real-time vision in cognition and movement.

Their system, called “The Rochester Robot”, consists of two cameras mounted on a Puma robot.
Each camera has separate pan and common tilt control. The Puma can move the “head” in a two meter
radius with six degrees of freedom.

Their approach in fighting the bandwidth problem is to use special-purpose hardware. They are using
a DataCube MaxVideo image processing system for low-level image processing and a 128 processor BBN
Butterfly computer. They incorporated a second camera to have two different resolutions. One camera
has a high fieldwidth and low resolution while the other has low fieldwidth and high resolution. They
also talked about building a pyramid architecture with five levels of 64 x 64 images where each level
subsamples the input image at a different rate.

One of the problems they have examined is that of automatically maintaining vergence on an object
as the body moves. They are also studying saccade and pursuit mechanisms. Finally, they are exploring

Page 13 of 86

CHAPTER 1. INTRODUCTION 8

the difference between self and world motion. They note that fixating systems have effective space-
variant resolution due to blurring in the periphery. However, this is based on the finite integration times
of the photo-sensitive elements of the sensor. It is not clear if egomotion is rapid enough to cause such
blurring.

They create a depth map for a foveated object via motion parallax by moving the head sideways
while fixating on a point. Objects in front of the point appear to move in the opposite direction of the
head motion while objects behind the point move in the same direction as the head. The velocity of the
object motion is proportional to the distance from the fixation point. By computing the disparities of
the images taken from different positions (that they don’t discuss), a depth map relative to the fixated
point can be computed.

Another technique they discuss uses self-motion for dynamic segmentation. While moving and fix-
ating on a point, the object that is fixated on becomes isolated because everything around it moves and
blurs. They process this by computing a weighted average of input images over time. There are some
potential problems with this technique as it is dependent proper fixation. They did not demonstrate
any results with this technique.

They have also been investigating pursuit of moving objects. Their technique is based on correlating
the image with a filter, which they can do very fast with the DataCube. However, their DataCube
system can only perform up to 8 x 8 correlation at video rates. The result is that only small features
that move slowly can be tracked.

Olson and Potter [?] have explored the problem of real-time vergence control: maintaining the gaze
of two cameras on a single point in world coordinates. The Rochester Robot has one dominant eye that
is under the control of the saccade and pursuit mechanisms. The dominant eye foveates an object, and
the other eye is then aimed at the foveated object. The basic control loop grabs the left and right images,
estimates the disparity, and re-aims the second eye. The difficult problem here is how to compute the
disparity in real-time. They use a mechanism based on the Cepstral filter described by Yeshurun and
Schwartz [?].

The Cepstral filter is computed by taking the power spectrum of the Fourier Transform of the log
of the power spectrum of the Fourier Transform of the input image. The input image is a window from
the left and right images spliced together. The results are peak values at (+(w + dj), £d,) where dj
and d, are the estimated horizontal and vertical disparities and w is the width of one image window.
By analyzing the algorithm and implementing it very carefully on a Sun 3/260, they were able to speed
it up from 2.6 seconds to under 0.1 seconds, which is fast enough for their system.

The Cepstral filter can be described in a couple of ways. Yeshurun and Schwartz describe it as
extracting a periodic term in the log power spectrum of the original and shifted image. This periodic
term corresponds to the disparity. Olson and Potter, on the other hand, prefer to think about it as a
variation of the autocorrelation function where the log favors the signal with the broadest spectrum.
These are impulses, so the result is an autocorrelation-like function that enhances sharp changes and is
thus easier to interpret.

They have demonstrated results, but state that they still need to address the issue of the appropriate
window size for the filter. They also want to work on integrating vergence with the saccadic and pursuit
movements of the dominant eye. Although the individual parts of the Rochester Robot all work, they
have not yet been fully integrated and have been tested only on simple geometric objects.

At the David Sarnoff Research Center, Burt built a working discrete approximation to a logmap space-
variant sensor with a Laplacian pyramid approach. He [?] describes the sensor along with algorithms
for its use in foveating, tracking, and interpretating objects.

A Gaussian pyramid is a set of images, each one half the resolution of the one before. A Laplacian
pyramid is created by taking the difference between each level of a Gaussian pyramid. A full Laplacian
pyramid contains all of the information in the original image. Burt’s pyramidal approach is to take a set
of Laplacian pyramid images and extract a window of the same size from each one. The result, called
a truncated pyramid, is a set of images that take a finer and finer look at a smaller and smaller portion
of the image. This approach is depicted in Figure 1.2. He constructed special-purpose hardware that

Page 14 of 86

CHAPTER 1. INTRODUCTION 9

30 O @] o O O [e] O O @] [] [] [] [] [] O [e] O O O O O O @] O

4 O @] o Q [] [] [] [] [O O O o
5 o ° ° ° . ° o
Pyramid
Levels

Figure 1.2: This shows the truncated pyramid structure used by Peter Burt. Each successive level
represents a lower resolution image. The filled in circles represent pixels present in the pyramid. Notice
that there are a constant number of pixels in the pyramid at each level where they cover a larger area
at each level. This figure adapted from [?, p. 980].

computes this type of truncated pyramid. Crowley [?, ?] also investigated pyramids for computer vision.
He showed how multiple resolution pyramids can be used to match stereo scan lines.

The use of this architecture is based on coarse to fine analysis of an image. First, Burt picks a window
size that can be processed by the CPU quickly. A window size of 16 x 16 is reasonable. His algorithm
examines the image at the lowest level as this represents a low resolution representation of the entire
image. If there is any evidence of a region of interest, then it examines the next level where a smaller
area at higher resolution is represented. The algorithm climbs the pyramid in this manner with each new
level directing the processing to a more specific area until the highest level is reached and the feature
is fully processed. Assuming the original image is 512 x 512 = 252,144, and examining one window per
frame, a feature will be fixated with the highest resolution after traversing all six levels. This involves
processing 6 x 16 x 16 = 1536 pixels, an effective data reduction of 252,144/1, 536 ~ 164.

This technique effectively replaces mechanical eye movements with electronic ones. Instead of phys-
ically moving a sensor, a region is examined within a fixed sensor. This technique obviously is much
faster than a mechanical system, but is limited to examining scenes that fit within the limited field of a
single image.

This architecture is able to track moving targets from a moving platform, such as when viewing a
moving car from an airplane. A traditional approach is to analyze the motion between each pair of
successive frames. This is computationally expensive and error prone if the relative motion of the object
is small compared to the camera. Instead, if the relative motion of the background can be computed,
then it can be subtracted out between successive frames and the slowly moving object will stand out.
This is similar to how the human system operates. If a person is looking out a car window, s/he will
often track a fixed object at which point relatively slowly moving objects will stand out.

The algorithm used to estimate the background motion is to first pick a level in the pyramid, k. The
algorithm computes the displacement between frames 1 and 2 at level k. This is a relatively simple step
because of the reduced resolution at this level. This computed displacement is a first-order estimate that
can then be refined. Frame 2 is now shifted by this displacement but because of the low resolution, will
not match exactly with frame 3. The algorithm computes the displacement at level k—1 and this process
continues it reaches a good estimate. With nearly constant velocity, only two or three iterations have
been needed to lock onto the background motion at full image resolution. As pointed out by Ballard
and Brown, the foveated objects can then be recognized by dynamic segmentation.

Burt is using a pyramidal architecture that approximates a discrete version of a complex log mapping,
log(z). This architecture allows him to choose the resolution appropriate for the current task, but with
that comes the extra burden of always having to choose the correct level to use. This system is not
mounted on a movable platform and no real-time results of the overall system were reported.

A fairly common solution to the problem of not having enough resolution and field-of-view at the

Page 15 of 86

CHAPTER 1. INTRODUCTION 10

same time is to use two cameras, one with a large field-of-view, and one with a small one. Burt [?, p.
979] points out that this approach will give trouble when attempting to foveate an object. Suppose that
an interesting feature is seen in the periphery and the system needs to foveate on it. Since only low
resolution data is available, a rough estimate can be made to re-aim the camera, but it is possible that
the feature will still be outside the fovea. There will be no new information and thus it something of a
hit or miss situation. This is opposed to a smoothly space-varying sensor (such as one with a logmap
architecture) where after the first movement, even if the feature is not fully foveated, it will fall on a
higher resolution portion of the sensor that will enable the system to make a second movement based
on more accurate information. The system will quickly converge yielding a well-foveated feature.

1.3 Space-variant images

A space-variant image sensor is characterized by an irregular pixel geometry. We have experimented
with several sensor designs, the common features of which are large scale changes between the smallest
and largest pixels, wide field of view, and a pixel population far smaller than that of a conventional
uniform image sensor. One such space-variant sensor is the complex log mapping, log(z + @), in which
the pixel pattern approximates the sensor geometry of the human eye [?, ?].

We often want to display a logmap image on a TV screen, or to compute one from a TV image. Thus
we can formally define the logmap as a mapping from a TV image, I(i,j), where i € {0,...,NROWS—1}
and j € {0,...,NCOLS — 1}. Let L(u,v) be the logmap, with v € {0,...,NSPOKES — 1} and v €
{0, ..., NRINGS — 1}.

The forward mapping from TV image space to logmap space is specified by the spoke and ring lookup
tables, S(i,j) and R(i, j) (Figure 1.3), where again i € {0,..., NROWS—1} and j € {0,...,NCOLS—1}.
Let a(u,v) be the area (in TV pixels) of a logmap pixel (u,v).

a(u,v) = Z 1|S(,j) =wand R(i,j) = v. 1)

4,3

The logmap (or forward map) image (Figure 1.4c) is defined by

a(u

L(u,v) = #) S 16,9) | 86, 5) = wand Rli,j) = v. @)

The inverse map, illustrated in Figure 1.4b, is
L7Y(6,5) = L(S(, 5), R(3, 5))- 3)

The relationship between a space-variant image and the lookup tables S(i, j) and R(i, j) is illustrated
by comparing Figure 1.3 with Figure 1.4. The values in the lookup tables depict the row and column
addresses of pixels in the space-variant image array. We observe that if n is the number pixels for which
a(u,v) > 0, then n < NSPOKES x NRINGS, and we define NPIXELS = n.

We present a fast algorithm to compute the logmap from a TV image using S(i,j) and R(i,j) in
Section 2.4.

1.4 Space-variant image processing

We are able to perform standard image processing algorithms on logmap images with the use of a con-
nectivity graph. We define the connectivity graph, G = (V, E), to be the graph whose vertices, V', stand
for sensor pixels and the edges, E, represent the adjacency relations between pixels. Associated with a
vertex p is a pixel address (u,v). Thus we write (u(p), v(p)) for a pixel coordinate identified by its graph
vertex, or p = ¢(u,v) for a vertex identified by its pixel coordinate. Then, V = {po, ..., PNPIXELS—1}-

Page 16 of 86

CHAPTER 1. INTRODUCTION 11

00|01 |02 0,17 [0,18 | 0,19
1011 (12|13 1415 1,14 (1,15 1,16 | 1,17 1,18 | 1,19
20|21 |22 |23 |24|25|26|27 212213 (2,14 [2,15|2,16 | 2,17 [2,18 | 2,19
30(31 (32|33 |34(35|36|37]38 3,11(3,12(3,13 3,14 [3,15(3,16 | 3,17 3,18 | 3,19

40|41 |42 |43 44|45 |46 |47 |48 |49 |410[411(412|4,13|4,14[415(4,16|4,17 (4,18 |4,19

50|51 (52|53 |54|55|56|57]|58]|59 |510[511(512|513 5,14 (515|516 517 (5,18 |5,19

60|61 (62|63 |64|65|66|67]|68]|69 610[611(612|6,13(6,14(6,15(6,16|6,17(6,186,19

70|71 |72 |73 |74|75|76|77|78]|79 |710|7.11|712|7,13|7,14|7,15|7,16 | 7,17 7,18 |7,19

80|81 (82|83 |84|85|86|87|88]|89 810[811(812|8,13(8,14(8,15(8,16|8,17(8,18|8,19

90|91 (92|93 |94|95|96|97]|98]99 910[9,11(9,12|9,13(9,14(9,15(9,16|9,17(9,18|9,19

10,0{10,1 [10,2[10,3| 10,4105 (10,6 | 10,7| 10,8 10,11(10,12{10,13(10,14(10,15(10,16/10,17|10,18{10,19
11,0(11,1 (11,2 (11,3 11,4115 [116 [117 11,12(11,13{11,1411,15(11,16(11,17/11,18(11,19
12,0(121 (122 123 | 124|125 12,14[12,15(12,16(12,17|12,18[12,19
b 13,0131 (132 13,17/13,18(13,19

Figure 1.3: a) The lookup tables S(i,5) and R(i,j) combined into one figure. b) The forward map
space. The correspondence between inverse and forward map pixels is shown.

Page 17 of 86

CHAPTER 1. INTRODUCTION 12

Figure 1.4: A sample of a) a TV image, I(i,j), b) The inverse logmap image L~'(i,4), and ¢) The

forward logmap image L(u,v).

D
3T
DRISHERD
DDA
KRN
DB
NOD
e

SIS
S
SIS RSO
RS

o

IXIXIX)
S00%
.,;4,&'1&‘»-6

0N0%%

SR
J 4‘%:‘)?‘@%,«‘..;. &

DR
SRE
RIS
7

=
&5
s

I
PRDAZNEE
WANTASTASTE
NEK

NI
AN
\Va

7oK

Ay

N

Xk
AR
AR
KD

NN

VANY;

gﬁ

>
AV Z AN
AV
BEETK]
iy

Figure 1.5: The connectivity graph for a log(z + a) sensor geometry. Circles stand for graph vertices
and lines stand for graph edges. The diameter of the circles in the inverse map is proportional to the
area of the pixel. The graph explicitly represents the neighbor relations across the vertical meridian. a)

The inverse map; and b) The forward map.

Page 18 of 86

CHAPTER 1. INTRODUCTION

13

N \,\'

FA\, 5

SRy
N

SN
R
)

I\

\N
3
SN

0
Y/
‘V

oﬁ’)

7
A

=}
N
B

1=

“ o
S
=X

5
\

S

AV N

s
v/

¥

&
g‘
7

S

Figure 1.6: a) The image from a sensor having a random pixel geometry. b) The connectivity graph for

this sensor.

The definitions of S(4,5) and R(%,5) do not constrain the mapping. Let Er be the set of edges
representing connections between adjacent pixels in the forward map. The edge (p,q) € Er provided
(u(p),v(p)) is a neighbor of (u(g),v(q)). For the log(z +) mapping (Figure 1.1c) Er does not contain
the connections across the vertical meridian. To obtain all the connections in the sensor, we place the
inverse image adjacency relations in the edge set Ey:

(p7 q) € EI

provided 3 i, j, k, [such that

(i) = u(p), R(i,) = v(p) and W
S(k,1) = u(q), R(k,1) = v(q) and

(4,7) is a neighbor of (k,!)

The connectivity graph edge set, E, may be E = Er or E = E; U Ep, depending on the map.
Resulting from the discretization of the complex log function log(z + «) in the tables S(i, j) and R(i, j),
some of the 8-adjacent neighbors in the forward map correspond to nonadjacent pixels in the inverse

map. In this case, we chose £ = Er U Ep.

The algorithm to compute the connectivity graph first allocates one vertex, p, for each pixel (u,v).
The graph edges in Er are just the 8- or 4- edges from the forward map image. The graph edges in
Er are computed by scanning the lookup tables S(i,j) and R(i, j) with a 2 x 2 operator. The following
algorithm, compute_inverse_map_edges, finds the edges E; for the 4-neighbors.

Page 19 of 86

CHAPTER 1. INTRODUCTION 14

Algorithm: compute_inverse_map_edges

Function: Computes the edges from the inverse map for the connectivity graph.
Input: Spoke and ring look-up-tables, S(i, j) and R(%,7)

Output: Inverse map edges, Ey

Er = {}
For each TV pixel (i, 7)
u=5(i,J)
v = R(i, J)
For each ((]/:,l) €e{(i+1,5),06,7+1),6@-1,7),06j-1)}

If (u #w or v # z) and e = (¢(u,v), p(w, 2)) € Er
Then E; = E; U {e}.
End For
End For

The compute_inverse_map_edges algorithm can be changed in a trivial way to pick up 8-neighbors.
Another detail is that some points (4,7) may be outside the domain of the map, and S(¢,5) and R(3, 5)
are undefined at those points. Also, this simplified algorithm does not take into account the fact that
not all points (k,) lie inside the bounds of the TV image.

Each graph vertex, p, in the connectivity graph is represented by a constant size data structure in
memory. The graph edges are represented by one field containing a list of pointers. The structure for p
may also contain fields such as the pixel array coordinates (u(p), v(p)), the pixel area a(p) = a(u(p),v(p)),
etc. We define the pixel centroid u(p) to represent the centroid of the TV pixels that map to p.

1

uip) = oos > @@,5)7 | S3,5) = u(p) and R(i,5) = v(p). (5)
i,
We define the set of neighbors of p to be denoted by
Np) ={al (p,q) € E}. (6)

The centroid and neighbors of a pixel are useful in writing image processing operations on space-
variant images. For example, we can define a simple edge detector as

1 2
e(p) = Vo) qe%:(p)(L(p) - L(g))" (7)

Note that the use of the neighbor-list allows us to define image processing operations on pixels having
different numbers of neighbors. This eliminates the need for special cases for pixels at the boundary of
the image.

We use the pixel centroid, u(p), to take into account the relative differences in pixel size. We illustrate
this with a plane-fitting edge operator. Given m = |[N(p)| + 1 points

{ro,---;rm-1} ={pP} UN(p) ®)

and their gray values, L(r), we fit a plane L = a-(i, j,1)T to minimize some error measurement. Applying
the least squares error criteria for linear equations, we can find a plane by solving for

A =aB where A = (L(To), e ,L(rm)), B = (N(IO) l"'(;m)) (9)

Page 20 of 86

CHAPTER 1. INTRODUCTION 15

The solution of a for |N(p)| > 2 is
a=ABTBBT)! (10)

If not all points are colinear, then (BBT)~! always exists. Since M = BT(BBT)~! is constant for each
pixel, p, we precompute and store this matrix M(p) for each graph vertex p. At run time, we only need
to compute AM(p) for every graph node p.

A simple relaxation procedure, the soap bubble algorithm, is also defined naturally on the connectivity
graph. If p is a seed point, then L;1(p) = L(p), otherwise,

1
Liya(p) = TFING)| L(p) + e%()Lt(Q) . (11)

The definitions given so far have expressed functions of a pixel and only its immediate neighbors.
Sometimes a local operator may map from a larger neighborhood, however. One operation helpful in
defining such operations is the A5 function.

Na(p) ={r|re€N(q) and ¢ € N(p) and r € N'(p)}. (12)

We can define a space-variant sensor geometry that is not a complex logarithm, but is the result of a
stochastic process. We define this map by selecting seed points randomly from a density function defined
so that more points will be in the center of the image. We then create the map by growing each seed
point until its neighbor is met using a simple relaxation procedure. The map is called the random map
and is illustrated in Figure 1.6. To obtain the connectivity graph for this mapping, we use only £ = Ej.

One application for the random map would be to use it with large area CCD image sensors with
defective pixels. Large CCD sensors (1K x1K or 2K x 2K pixels) are extremely expensive because of their
low production yield. These sensors are much cheaper when they have defective pixels. We could create
a random map with the associated connectivity graph for each of these sensors, skipping the bad pixels.
This would allow for a very high resolution camera that would not be prohibitively expensive. We also
could modify the log(z + &) mapping to skip bad pixels in such a sensor.

A variety of space-variant sensor geometries have been discussed. Some have been simulated and
some have been fabricated [?, ?, 7,7, ?, ?]. We can define a connectivity graph for any of these mappings,
and then use our image processing library directly on these sensors. The connectivity graph provides a
generic approach to image processing on an unconstrained sensor geometry [?].

1.5 System description

The Cortex-I (Figure 1.7) integrates a custom miniature logmap camera, pan-tilt actuator, controller,
general purpose processors, and display. The entire system takes up a volume less than a third of a cubic
foot.

The camera (Chapter 2) consists of a miniature commercially available CCD image sensor and a
custom lens assembly mounted in the actuator. The camera image is mapped to a logmap image
with a fast algorithm described in Section 2.4. Its maximum resolution is 0.175 degrees per pixel and its
horizontal field of view measures 33°. The sensor has a fixed focus 4mm lens with a manually changeable
aperture (3 sizes). Imaged objects more than 40 mm away from the lens are in focus. The system outputs
up to 30 frames per second and measures 256 gray levels per pixel. The camera head (CCD and lens
assembly) measures only 8 x 8 x 10 mm. A driver board controls the camera, providing timing signals
to the sensor and converting analog sensor data to 8-bit digital data.

A preliminary actuator called the Platform Pantilt (Chapter 3) moves a platform by raising and
lowering two shafts with linear stepper motors that are attached to the platform with universal joints.
This actuator was built as a fall-back position before the Spherical Pointing Motor was operational. The
Platform Pantilt measures 7.5 x 7.5 x 12 ¢cm and can move at rotational velocities up to 100°/sec.

Page 21 of 86

CHAPTER 1. INTRODUCTION 16

Figure 1.7: Cortex-I. Its dimensions are 14 x 22 x 22 cm.

The Spherical Pointing Motor (SPM) replaces the Platform Pantilt because of its superior accuracy,
speed, and size. The SPM (Chapter ??) is a novel pan-tilt actuator using three orthogonal motor
windings to achieve open-loop pan-tilt actuation of the camera sensor in a small, low-power package.
The SPM can orient the sensor through approximately 60° pan and tilt, at speeds of several hundred
degrees per second. It measures 4 x 5 x 6 cm and its mass is 170 grams.

The controller consists of a camera driver, a 2 MIPS programmable microcontroller (Motorola
MC68332), a video display driver, a 12 MIPS digital signal processor (Analog Devices AD2101) DSP
that maps the uniform camera image to a space-variant image, and an optional DSP board that acts as
a video telephone. The actuator and camera are mounted to the chassis (14 x 22 x 22 ¢m) and connected
by twisted-pair cables. The prototype is powered from a standard 110 Volt AC line, but uses less than
25 watts and could be battery powered.

The microcontroller controls the SPM and runs the application software. The MC68332 may be
connected to a host processor for applications development, to upload sensor data, or to receive pan-tilt
commands. The MC68332 is a 32-bit 16 MHz microcontroller integrating peripheral controls, such as
programmable digital control lines and timing signals, directly on chip. We connected 192 Kbytes RAM
and 128 Kbytes EPROM to the microcontroller. The microcontroller inputs the logmap data via a high
speed serial interace from the DSP.

We have implemented image processing demonstrations in the microcontroller ROM. A simple motion
tracking program, that turns the camera to center the observed motion field, runs at 16 frames per second
(fps). The ROM also contains a test pattern, image binarization (22 fps) and a motor motion demo.
We also use the connectivity graph [?], to implement image smoothing (3 fps), edge detection (2 fps)
and connected components (1 fps), illustrating both the generality of the programming model and the
limitations of the microcontroller in the current prototype.

The Analog Devices 2101 digital signal processor (DSP) reads the uniform CCD image and maps it
to a space-variant image. It outputs the logmap over a high-speed serial connection. The DSP board
combines an AD 2101 12 MHz DSP having two 2 MHz serial ports, 8 Kbytes internal RAM, 80 Kbytes
external RAM, and 64 Kbytes boot EPROM. A second identical DSP board functions as a video display
driver, generating an RS-170 video output suitable for display on a standard TV monitor. An optional
third DSP board is used as a video transmitter that can send 4 frames per second of logmap images over

Page 22 of 86

CHAPTER 1. INTRODUCTION

a standard voice-grade telephone line.
Several applications using Cortex-I are described in Chapter ?7.

Page 23 of 86

17

Chapter 2

Camera

2.1 Introduction

The first problem to solve in building Cortex-I is how to acquire logmap images. We have pursued two
routes to solve this problem. The first is to develop a custom VLSI sensor chip with a logmap geometry
that will return a logmap image directly. The second is to use a commercially available sensor chip that
returns conventional rectangular images and map them into logmap images.

The main advantages of a custom logmap sensor chip are the high frame rate and small resultant
system size. This is because the geometry of the chip performs the mapping intrinsically. The sensor
layouts that we have designed consist of several thousand pixels on chip, and this is a very small amount
of pixels to digitize. It is likely that custom sensor chip could support rate of thousands of frames per
second, contingent on the ambient light intensity. However, at the present time, we do not have a fully
working space-variant chip.

The main advantages of an off-the-shelf conventional (uniform) sensor chip are low price, high image
quality, and immediate availability. Because uniform sensors have been refined for many years and are
produced in great quantities, they have extremely high quality which is difficult to match with custom
sensor chips. The image from a uniform sensor, however, must be mapped to a logmap image according
to the definitions in Section 1.3, and this is computationally expensive since the final logmap image size
of thousands of pixels must be supplied through a read-out bottleneck of hundreds of thousands of pixels
on the chip. However, with careful design of the readout and logmap emulation algorithms, we have
achieved frame rates of up to 30 frames per second, without resorting to excessively complex readout
electronics.

We are currently developing a custom logmap sensor chip in collaboration with Synaptics, Inc. The
first prototype based on CMOS technology has about 500 pixels and does not work to our satisfaction.
Figure 2.1 shows some images from this chip. We are currently working on both improving the quality
of the image, and increasing the number of pixels.

We also developed a camera based on a uniform sensor chip designed to be mounted on the Spherical
Pointing Motor. It uses a low-resolution area CCD sensor, and returns a digital image directly to the
computer in our vision system which is then mapped to a logmap image. We made two lenses. One has
a fixed field of view (Figure 2.2) and the other has an actuated two position zoom lens (Figure 2.3).

Most other computer vision researchers have used off-the-shelf video cameras for their vision systems.
This is certainly a reasonable route to take as it avoids the cost and time involved in developing a custom
camera. One group [?, ?, 7], however, has developed a custom CCD logmap sensor. Like us, they have
found it a very time consuming and difficult path. Their current sensor has approximately 2,000 pixels
and returns reasonable images.

So why build our own camera? Simply stated, the reason is size. This includes both the size of the
camera head, and the necessary associated readout electronics. Even the smallest commercial cameras

18
Page 24 of 86

CHAPTER 2. CAMERA 19

L]

Figure 2.1: Images from our custom logmap sensor chip. They are the logmap images from the chip,
and have not been mapped back to scene coordinates. They are scenes of a) an all black scene, b) a
horizontal edge with the top half black and the bottom half white, and ¢) an all white scene. The circle
in the center of the images is an artifact of the chip geometry.

Figure 2.2: The fixed field of view camera. It consists of a four element lens assembly attached directly
to a CCD sensor.

Page 25 of 86

CHAPTER 2. CAMERA 20

Figure 2.3: The zoom camera. It consists of a six element zoom lens assembly including a coil to actuate
the zoom lens. It is attached directly to the CCD sensor. It is shown a) with and b) without the light
baffle.

available today have camera heads that are several centimeters long and weigh hundreds of grams. To
satisfy the goals of this project, we need a camera head that is about one centimeter long and that
weighs a couple of tens of grams. Because we are using space-variant images where the high-resolution
part of the image is along the optical axis, we can use lenses that have lower quality off the optical axis,
as long as the optical quality falls off slower than the resolution of space-variant image. This enables us
to make a smaller camera than is available commercially.

In addition, most industrial video cameras output a standard analog RS-170 video signal which
entails further electronics to digitize the data and grab the frame. Our camera readout circuitry avoids
this entire step by digitizing the sensor data and putting it directly on the processor’s data bus.

We designed the camera to fulfill several design criteria. They are:

e The camera head had to be very small and light in order to be actuated by the SPM.

e In order to minimize the associated electronics, the camera should be read out in a digital form
suitable for input directly to a computer. By avoiding a standard analog video signal, the system
is greatly simplified.

e It must have sufficient field of view and resolution to satisfy our benchmark’s requirements. Our
chosen problem is to track a moving car and read the license plate on it. The fixed field of view
lens does not have sufficient resolution to read the license plate at large enough distances. The
zoom lens, however, can be used to track the car in the wide angle position, and read the license
plate in the telephoto position.

e Because we use the camera to generate space-variant images, it is not necessary for the lenses we
use to maintain high optical quality across the entire field.

In this chapter, we discuss the details of the optics, the electronic readout of the camera, and a fast
algorithm to map the uniform image to a logmap image.

Page 26 of 86

CHAPTER 2. CAMERA 21

Figure 2.4: Tllustration of imaging an object with a simple biconvex lens.

2.2 Camera optics

The optics of a camera consists of the elements necessary to focus the light from an external scene to
make an image on a sensor. In our case, this includes the lenses to focus the light, the lens housing to
hold the lenses and an actuator to move the zoom lens. Some of the issues in designing such a system
are the field of view of the lens, optical quality across the field of view, availability of lenses, and the
zoom mechanism. In this section, we examine these issues in the design of our camera.

One of the simplest optics designs consists of a single biconvex lens. Such a system, depicted in
Figure 2.4, produces an inverted image at a distance

m' = (mf)/(m— f) (13)

from the lens [?, P. 46] where f is the focal length of the lens, m is the object distance and m' is the
image distance. Since the sensing element is a fixed distance from the lens, we would like m' to be
constant. If m is large compared to f, then m' will not vary by much as m varies. By building a camera
with a small enough focal length, we can avoid including a focusing mechanism as the image will always
be in focus.

For this or any optics system, the system must be designed so that in coordination with the sensor
being used, we obtain the desired field of view. The best way to determine the field of view of a camera
is to simulate the path of light rays from outside the camera through the lenses to the sensor. Because
the surfaces and index of refraction of each lens element is known, it is possible to compute the refractive
path of each ray across each surface. This is a process called ray-tracing. Using a commercial ray-tracing
package, we determined that a 4 mm focal length lens with our sensor would yield a 33° field of view,
which is about what we wanted.

Unfortunately, such a simple optical system has severe chromatic aberrations. This means that the
focal length of the lens is different for different wavelengths of light resulting in different image planes
for different colors. For us, this would mean an out of focus image since real-world scenes are not
monochromatic.

Chromatic aberrations can be corrected by adding more lens elements [?, P. 157-163]. The design
of such systems is rather complicated, and rather than reinvent the wheel, we use such a lens system
from the eyepiece of a telescope. This lens system, known as an orthoscopic lens assembly, makes up
the entirety of our fixed field of view lens. The mechanical drawing of the camera with these lenses is
shown in Figure 2.5. This camera head is 8 x 8 x 10 mm and weighs less than 6 grams.

This camera was meant to be used to test our system, and in that it was successful. We were able
to test the pan-tilt actuation of the camera, the electronic readout, and image processing in the space-
variant domain. The field of view and resolution are not high enough, however, to solve our license plate

Page 27 of 86

CHAPTER 2. CAMERA 22

All dimensions are
in millimeters

Changeable
aperture

Lenses— \ CCD

Figure 2.5: Mechanical drawing of the fixed field of view camera. The 4 element lens is a 4 mm
orthoscopic lens that is corrected for chromatic aberrations.

problem well. When the license plate is far enough away to track its motion (i.e., when the entire license
plate is in the field of view), there is barely enough resolution to read the characters on it. We could
solve this problem by using either a higher resolution sensor or having a lens with controllable field of
view. We chose the latter.

2.2.1 Zoom lens

We designed a zoom lens capable of operating between a 4 and 13 mm focal length. This corresponds
to a 33° and a 10° field of view, respectively, which is sufficient to solve our license plate problem. The
lens is actuated between positions with a solenoid. Some of the issues in designing this zoom lens are its
focusing, the lens availability, the brightness across the field of view, and the mechanical assembly and
actuation.

The simplest zoom lens can be built by just moving a single lens, such as the one depicted in
Figure 2.5, between the object and the image. The image will change magnification, but the focal plane
of the image will move significantly, according to Equation 13. The situation can be improved by adding
two lenses (Figure 2.6). Here, as the middle negative lens moves between the two outer positive lenses,
the overall focal length changes, and while the focal plane still moves, its motion is greatly reduced. The
focal plane is at the same position for exactly two different zoom positions. This can be adjusted so
that the two positions are the minimum and maximum zoom, which is what we use since we can actuate
it only to these two positions. This type of zoom lens system is examined in great detail by Bergstein
[?, ?]. Our zoom lens system is based on that in Figure 2.6 with the modification that the last lens is
replaced with the orthoscopic lens of the fixed field of view camera to improve the chromatic aberrations.
In addition, an internal aperture is added to limit light reflecting off the walls of the lens housing.

In designing the zoom lens, we were limited by the availability of commercial lenses. Because of the
extreme difficulty of finding very small lenses meeting our specifications, we had to build the zoom lens
somewhat larger than we had anticipated. One solution to this problem is the custom manufacturing
of small lenses ourselves. We are able to make plano-concave and biconcave lenses using optical quality
epoxy with a release agent so the epoxy does not stick to the mold. We pour the epoxy into brass tubing
and place metal spheres of the appropriate diameter on the ends of the tubing. The epoxy dries and we
remove the spheres, leaving a lens inside the tubing. We have made some prototype lenses using this
technique and are in the process of making a new zoom lens assembly with them.

One problem with multiple element lenses such as the zoom lens is internal reflection of light off of
the inside of the lens housing. This occurs most often with light entering the lens assembly at large

Page 28 of 86

CHAPTER 2. CAMERA 23

W¢
Figure 2.6: Tllustration of zoom lens. The image plane moves as the magnification of the lens changes.
(Adapted from [?, P. 275])

L, A A

angles. This can be greatly reduced by inserting an aperture stop in the lens between lens elements.
This is a disk of metal that blocks all light rays very near the edge of the lenses where most of the
unwanted light is.

The aperture stop increases the vignetting of the lens, which is the reduced illumination of the image
plane in the periphery of the image. This is because light entering the lens assembly at large angles
gets cut off by the stop that otherwise would end up in the periphery of the image. In our case, the
vignetting is not very severe, and can by compensated for in software.

The mechanical assembly holding the lenses had to be designed to allow a very small force to actuate
the central lens element while not allowing light to leak into the system. At the same time, the lenses
must all be adjustable so the system can be focused. A mechanical drawing of the assembly we designed
is in Figure 2.7. We mounted the two outer lenses on threads so they are easily focusable. The central
lens slides inside the lens housing, attached to two pins that connect to a a small cylinder outside the
housing. This lens is actuated by applying current to a coil of wire wrapped around it. There are two
press-fit rings that act as stops to control the limits of motion of the central lens. Two pieces of polarized
plastic are put in the lens assembly, one fixed and one rotatable, to control the light intensisty. A thin
cylindrical baffle fits over the entire assembly to block light from leaking in the slots. The zoom lens is
pictured with and without the baffle in Figure 2.3.

The zoom lens is actuated with a small solenoid. A coil of wire is wound around the small cylindrical
sheath attached to the zoom lens by pins. Because the camera is mounted directly against the pole of the
permanent magnet in the rotor of the SPM, applying current to the coil results in a force on the zoom
lens in either direction depending on the polarity of the current. Although the zoom lens is moderately
well-focused throughout its range, we only have the capability of actuating it to two positions, one at
each end of its range of motion.

Images taken using the zoom lens are in Figure 2.8.

2.3 Image sensor

In designing our camera, we had to choose between two image sensor technologies, CMOS and CCD.
They are both silicon-based VLSI technologies, and both are able to transduce light to voltages. In this
section, we discuss the basics of these technologies and explain the details of the hardware and software

Page 29 of 86

CHAPTER 2. CAMERA 24

| 23.0 .
I 7 |
T j % !
.
Ay /Ag |
7 —— / i
.
=
.
| =
15.0 | h
©) ! domeem @ P
77777
% Notes:
N\ L — (D Lens slides on pins

© Lens in other position
@) Sliding lens stops

@ Fixed polaroid

©) Rotating Polaroid

® Aperture stop

7
)

All measurements in mm
Figure 2.7: Mechanical drawing of the zoom camera.

we developed to use the sensor.

2.3.1 Sensor technologies

CMOS image sensors are based on bipolar junction transistors (BJT’s) which are inherently light sensitive
(Figure 2.9). If the base of a BJT is not connected, the current through the transistor will be proportional
to the light incident on it. We can increase the dynamic range of the sensor by taking the logarithm of
this current. We take this logarithm by connecting two field effect transistors to the BJT [?]. The chip
we are making with Synaptics uses this approach.

A CMOS image sensor consists of an array of VBJT’s with an addressing scheme that allows each
transistor to be accessed directly. The result of this scheme is that an image frame may be read from the
sensor by scanning through each transistor sequentially. The next frame can be read directly without
delay. The maximum frame rate is determined by the speed with which each transistor can be addressed.
CMOS image sensors are usually fast and easy to use, but they are relatively large. The smallest pixel
in our current design is 10 microns.

CCD image sensors, on the other hand are denser with pixel sizes down to 5 microns, resulting in
their more common usage. They work by accumulating charge, proportional to the incident light, in an
electronic “bucket”. Each bucket must accumulate (or integrate) charge before it can be read out. This
results in a different usage than CMOS sensors. Between each frame read out, the CCD must integrate
light. Thus, the maximum frame rate is determined not only by the readout speed (or scan time), but
also by the integration time.

CMOS sensors are usually capable of addressing each pixel individually. CCD sensors, however, work
by shifting the contents of each row of pixels vertically through the other pixels to the edge of the array
where they are either read out through a horizontal shift register, or stored in a frame buffer on chip for
future readout. During this shifting process, as the image is passed through every pixel in its column,

Page 30 of 86

CHAPTER 2. CAMERA 25

Figure 2.8: The same scene imaged with the zoom lens in four different positions (manually actuated).

Vee
Field
Effect
Transistors
Td O Vout

Collector

Base ——Bipolar

Emitter Junction

//// Transistor

Incident

Figure 2.9: A vertical bipolar juction transistor hooked up with two field effect transistors to produce a
photo cell with a logarithmic output.

Page 31 of 86

CHAPTER 2. CAMERA 26

k—— 165 cycles —
‘ ‘ ‘ Line clock

L
‘ M ‘ M ‘ N Pixel clock

K——1 192 pulses

]
gud b LJUUL

Figure 2.10: Timing signals used to control the CCD image sensor.

the sensor continues to integrate light. This results in vertical smearing where each pixel has an influence
on every other pixel in its column, where the amount of influence is proportional to the ratio of scan
time to integration time. Because of this, some CCD sensor chips have a frame buffer that is not light
sensitive to which the image is shifted very quickly. The image can then be read from this frame buffer
relatively slowly without affecting image quality. In this case, there is still some vertical smearing, but
it is greatly reduced because the transfer time to the frame buffer is very small.

2.3.2 Timing signals

A CCD needs many different signals to control its readout and light integration. As already stated, each
pixel in the CCD consists of an electronic “bucket” accumulating charge. If the light intensity is too
great, or the integration time is too long, the bucket can overflow into its neighbors. Thus, one pixel
can influence its neighbors. This is called blooming. Many CCD sensors have an antiblooming control
where the top portion of the bucket is discarded at regular intervals. This eliminates blooming for all
but the most intense illuminations, or longest integration times.

We chose the smallest rectangular image sensing device commercially available, which is a CCD
sensor without an on-chip frame buffer. It is the Texas Instruments TC211 device and contains an array
of 165 x 192 pixels in an 8 x 8 mm 6 pin DIP package. The six pins of the chip are power, ground,
line clock (TAG), pixel clock (SRG), anti-blooming clock (ABG), and output. Each frame is read out
by putting one pulse on SRG for each pixel, and reading the voltage at the output. At the end of each
line, a pulse is put on TAG. After a frame is completely read out, a clock is put on ABG while the chip
integrates light after which the next frame is read out in the same manner. These timing signals are
described in detail in Figure 2.10.

We developed a printed circuit board that in coordination with a processor, generates the signals
for, and digitizes the output from the CCD. It does not generate the optional anti-blooming clock. The
schematic diagram for the circuit is in Figure 2.11. It reads the CCD at a maximum pixel rate of 2.5
MHz which corresponds to 75 frames per second. Because the CCD needs an integration time that is
usually at least equal to the scan time, the usable frame rate is no more than 32 frames per second.

The circuit reads the CCD one row at a time, storing the digitized data in a FIFO buffer that the
processor then reads. It has two inputs to accomplish this, RESET and START. RESET initializes the
circuit, clearing the FIFO. START starts the circuit readout of one row of the CCD into the FIFO.
Because the FIFO is dual-ported, after one pixel time, the processor can start reading that row from
the FIFO. The CCD automatically shifts each row down one row when TAG is pulsed, so each time the
processor reads a row, it gets the next row from the CCD. The circuit does not do anything at the frame
level. Rather, it is up to the processor to read the correct number of rows and then let the CCD integrate
for a fixed amount of time before reading the next frame. A description of the system architecture and

Page 32 of 86

27

CHAPTER 2. CAMERA

IINDAID TVYIIODIA

Figure 2.11: Schematic diagram for CCD driver board.

Page 33 of 86

CHAPTER 2. CAMERA 28

the processors used to read from the CCD driver board can be found in Chapter ?7.

The circuit is divided into a digital and an analog section. The above mentioned part of the circuit
is all digital. The analog part converts the signals to the necessary levels, and amplifies and digitizes
the CCD output to be stored in the FIFO.

2.3.3 Vertical smearing

The CCD we use has a significant image degradation problem called vertical smearing. The processor
must read the CCD as quickly as possible because the CCD continues to integrate light as the image is
shifted out of the chip. Each pixel that is read out actually consists of itself plus a fraction of all other
pixels in that column. The vertical smearing increases with the ratio of scan time to integration time.
We model the vertical smearing exactly for static scenes with a linear algebraic system, enabling us
to elminate the smearing in software. We use the definitions of TV and logmap images of Section 1.3.
Because each pixel read out is a linear combination of the original pixel and all the other pixels in that
column, the original pixel value can be retrieved by solving a set of linear equations. Let us call the
pixel that is read out from the CCD I'(i, j) and the actual pixel value before it is read out I(4,5) where
i€{0,...,NROWS — 1} and j € {0,...,NCOLS — 1}. Then for each column, j, we have a set of pixels,
I'(i,7), and want to calculate the actual values, I(%,j). We say the integration to scan-time ratio is
INT_SCAN : 1. This means that a read out pixel, I'(¢,5), contains INT_.SCAN/(INT_SCAN + 1) of the
actual pixel value, I(i,j), and 1/(INT_SCAN + 1) of all the other pixels in the column. We can write
this as
INTSCAN 1 NRQR!

I'd) = N scan+1 %9 + NROWSONT SCAN 1) ;) Ik,) (14)

We must solve these NROWS linear equations in NROWS unknowns for the actual pixel values, I(i,j).
This must be done separately for each column. This can be done off-line and then calculating each actual
pixel, I(i,), would involve NROWS multiplications and NROWS additions. Because we are interested
in logmap images that are derived from the original TV image, we do not want to desmear the original
TV image. Instead, we examine the vertical smearing problem in the logmap domain where we find an
approximate solution.

In logmap images, each pixel is the average of many TV image pixels and these pixels come from
multiple columns. Again, we want to find the actual logmap pixel value (which is the average of actual
TV pixel values) from the read out logmap pixel values (which are the averages of readout TV pixel
values), and we want to do this without referring to the TV pixels themselves. We call a read out
logmap pixel, L'(u,v), and an actual logmap pixel, L(u,v), where u € {0,...,NSPOKES — 1} and
v € {0,...,NRINGS — 1}. These are defined by Equation 2 of Section 1.3. Now we can solve for the
actual value of a logmap pixel analagously to rectangular pixels. From Equation 14, we write

P = g S (wrsoar 6+
v 1 NROWS—1

NROWS(INT_SCAN + 1) kz:% I(k,)|

S(i,j) =w and R(i,j) =v) (15)
L(wv) = (.NT_S'EI,‘“SiﬁTa(u,U) " 1.3)] (S(i,9) = w and R(i,) = v)

1 " NROWS—1
T NROWS(INT SCAN + Da(u, v) ZJ l;) I(k,j)|
(SG.j) = uand R, j) =v) 1)

Page 34 of 86

CHAPTER 2. CAMERA 29

X

4
4
7/

)

Figure 2.12: Elimination of vertical smearing. Actual logmap pixel L(u,v) is calculated from read out
logmap pixel L'(u,v) and a weighted sum of all other logmap pixels sharing TV pixels in the same
columns.

INT_SCAN

! = _—
Dluv) = iNTscan 1w+
1 NROWS—1
NROWS(INT_SCAN + 1)a(u, v) EJ: ;} I(k,j) |
(S(i,7) = u and R(4,j) = v) (17)

The second term of Equation 17 represents the sum of TV pixels in the same column as the logmap
pixel L(u,v). This is represented in Figure 2.12. This can not be calculated in terms of logmap pixels
exactly because some logmap pixels have only some of their TV pixels in the same column as L(u,v).
In addition, each TV column is weighted differently depending on the number of TV pixels in a column
of L(u,v).

We approximate Equation 17 using only logmap pixels. We use weighted logmap pixels where the
weight of each pixel is the total number of TV pixels from that logmap pixel corresponding to TV pixels
in L(u,v). We define the weights, W (u,v,w, z), for each logmap pixel, L(u,v), using the total weight,
Wror(u,v), to scale each logmap pixel as defined in Equations 18 and 20. Note that the definition for
Wror(u,v) counts only the TV pixels in a column that map to L(u,v).

Page 35 of 86

CHAPTER 2. CAMERA 30

NROWS—1
Wror(u,v) = Y > 1|S(i,j) =uand R(i,j) = v and (18)
ij k=0
S(k,j) # invalid (19)
W(u,v,w,x) = Z 1| S(i,j) = w and R(i,j) = v and
i,k
S(k,j) =w and R(k,j) == (20)

We can rewrite Equation 17 using this approximation to get

(uv) = —NTSCAN 0yt 1 N
“Y = INTSCAN + 1Y ™ (INTSCAN + 1)Wror(a, 0)

NROWS—1 NCOLS—1

o> W, k,l)- Lk,1) (21)
k=0 =0

The result of this approximation is that pixels are smeared horizontally no more than the width of any
logmap pixel sharing TV pixels in the same column. This is because logmap pixels sharing TV pixels in
the same column may extend to other columns not covered by the original logmap pixel. This, however,
is a large improvement over the original vertical smearing that extended over the full height of each
column.

The implementation of this desmearing approach is complicated by the use of the logmap. In the
rectangular case, each column of TV pixels can be solved independently because each TV pixel in a
column depends only on other TV pixels in the same column. Logmap images, on the other hand, have
no columns. Each logmap pixel depends on the set of logmap pixels sharing TV pixels in the same
column as itself. The other logmap pixels in this set, however, do not generally depend on the same
set of pixels. This means that there is no way to solve the desmearing problem for any subset of the
image. Instead, the entire image must be desmeared in one step. Referring to Equation 21, this involves
solving NPIXELS linear equations with NPIXELS unknowns where NPIXELS is the number of pixels in
the logmap image.

This at first may seem a daunting task, but the matrix to solve is sparse. For our logmap, there are
1,376 pixels. The number of pixels that each pixel depends on varies with the particular pixel, but varies
from 12 to 246 with a mean of 86. This means that an average row in the matrix of linear equations will
have only 86/1376 or 6% non-zero entries.

An image can be desmeared by taking advantage of the sparseness of the matrix and by doing most
of the computation off-line. Equation 21 can be rewritten as a matrix problem, AX = b, where X is the
unknown actual logmap pixel values (L(u,v) in a 1D vector form), b is the known read-out logmap pixel
values (L' in a 1D vector form), and A is the matrix of coefficients multiplying X. We first invert 4
off-line using sparse matrix inversion techniques ([?, P. 72-81]). To desmear a given image, we vectorize
it into b, then just compute the result, X = A~'b. This still requires a large amount of computation.
Fortunately, A~! is also sparse and thus b only needs to be multiplied with non-zero entries of A1,
This can be sped up further by eliminating near-zero values of A~!. Figure 2.13 shows the result of
applying these desmearing techniques to an image taken with our camera. Results are shown using the
full A~!, using only values of A~! whose absolute values are greater than 0.001, and greater than 0.01.
Severe degradation along the vertical meridian results for the last case. The vertical meridian is the
most sensitive area because here, there are the most pixels in a column. Because each pixel depends on
so many other pixels, their weights are small. Results showing timing and the number of elements in
A~! used are shown here where the execution time is for a SUN Sparc 2.

Page 36 of 86

CHAPTER 2. CAMERA 31

Figure 2.13: a) Image from miniature camera with vertical smearing; b) desmeared image; ¢) desmeared
image using only |A~!| > 0.001; d) using only |A~!| > 0.01.

AT cutoff | % of A~ used | Execution time
— 30% 1.36 seconds

.001 8% 0.58 seconds

.01 3% 0.19 seconds

2.3.4 Electrical noise

One of the biggest difficulties in obtaining a high quality image from the sensor is electrical noise. Noise
comes from two main sources, electromagnetic interference (EMI) and noise in the readout circuit due
to high frequency digital circuitry. The noise in the circuit can be greatly reduced through standard
noise reduction techniques [?], such as using separate power supplies for the digital and analog parts of
the circuit, using ground planes in the circuit, and placing related parts near each other.

EMI is especially bad in our case because the camera is mounted in the SPM approximately 20 cm
from the readout circuit. To make matters worse, extremely thin wires (40 gauge) must be used to
connect to the CCD in the SPM. This is because when the SPM moves the camera, it must also bend
the wires attached to the camera. The connecting wires must be highly compliant in order to maximize
the accuracy of the motor. The very thin wire is used for approximately 5 cm. We reduced the EMI by
using twisted pair cables for the connections to the CCD. This entails twisting each signal wire with a
ground wire.

Page 37 of 86

CHAPTER 2. CAMERA 32

In addition to these design techniques, we designed and had manufactured a printed circuit board
for the readout circuit. This board substantially reduced the noise compared with the wire wrap boards
we were using before.

2.3.5 Future Designs

In the future, the camera would be most improved by using a higher resolution image sensor. Because
a higher resolution sensor will very likely be larger physically, the optics would have to be redesigned
because the field of view and the off-axis optical quality would have to be increased. This would also
necessitate using more computational power to compute the larger logmap.

The zoom lens could be further miniaturized. Its current large size is due to the unavailability of
certain small lenses. In the future, we expect to be able to manufacture any lens we need ourselves with
epoxy as discussed. In addition, the lens housing could be miniaturized. We made the lens assembly
with threads for all the lenses so it would be easily adjustable. By replacing the threads with press fit
joints, the assembly could be made substantially smaller.

The image quality could be improved by using a differential transmission scheme for the CCD output
signal. A surface mount differential output op-amp would be connected directly to the CCD. This makes
positive and negative outputs that would be twisted together. The circuit board would then convert this
back to a regular signal for use by the rest of the circuit. The advantage of this technique is that both
the positive and negative signals are affected the same way by EMI and when the signals are combined
back together, the noise is subtracted out.

2.4 Fast logmap computation

The final step in using the miniature camera is to map the uniform output image into a logmap image
using the look-up-tables S(i,j) and R(4,) of Section 1.3. This can be done by averaging the TV pixels
that map to each logmap pixel as specified by S(i,j) and R(i, 7). This approach, however, is relatively
slow requiring several instructions per TV pixel.

We have developed a fast algorithm to compute the logmap based on a run-length mapping!. This
algorithm avoids accessing the look-up-tables for each pixel and it executes with an average of just over
one instruction per TV pixel. The S(i,7) and R(4,j) look-up-tables are first run-length encoded off-line
with the algorithm run_length encode. The CCD image is then mapped, line by line, as it is read out
into the logmap image with the algorithm fastmap.

The algorithm run_length_encode analyzes S(i,j) and R(i,j) in raster order to find the runs, or
sequences of length £ in which

S(i,j)=---=S(i,j+£~1)

and
R(i,j)=---=R(i,j + £ —1).

We partition the raster scan of the TV image into a sequence of NRUNS runs where run_len[k] is the
length of the kth run and run_addr[k] is the address of the logmap pixel of the kth run.

The algorithm fastmap first zeros the logmap. It then goes through the TV image in raster order
and through the runs in linear order. For each run, k, it adds run_len[k] TV pixels to the logmap pixel
indexed by run_addr[k]. After the entire image has been mapped, the resulting logmap image must be
normalized. For each logmap pixel, L(u,v), we set L(u,v) = L(u,v)/a(u,v). fastmap shows the pixels
in each run being summed in a loop. However, in practice we avoid the overhead associated with each
loop iteration by unrolling the loops. We call a routine, map,, which consists of n inline summing
statements of the form *1m_addr += I(tv_index++).

1Patent pending.

Page 38 of 86

CHAPTER 2. CAMERA 33

The number of runs, NRUNS, depends on the mapping function given by the look-up-tables S(4, j)
and R(i, 7). For a wide variety of interesting mappings, such as the logmap, NRUNS <« NROWS x NCOLS,
and NSPOKES x NRINGS « NROWS x NCOLS. Let us assume that the statements in fastmap that
add the TV pixel to the logmap pixel and increment the TV pixel address takes one assembly language
instruction. Let us also assume that we either unroll the loop computing each run (or use a DSP processor
with zero-overhead loops) so that there is no overhead during each run. If the overhead between each run
takes b instructions, then the mapping will take NROWS x NCOLS+bx NRUNS+2 x NSPOKES x NRINGS
instructions, or 1 + groXiRUNS. 4 2xNSPOKESXNRINGS jnstructions per TV pixel.

Our system uses a TV image of 165 x 192 = 34,650 pixels and there are 6,074 runs. The logmap
image is 34 x 56 = 1904 pixels, and the number of “overhead” instructions between each run, b, is 4.
Then the mapping takes 1.81 instructions per TV pixel.

Page 39 of 86

CHAPTER 2. CAMERA 34

Algorithm: run_length_encode

Function: This creates the run length and address tables for a mapping based on the spoke and
ring look-up-tables.

Input: S(i,7) and R(37,j) look-up-tables

Output: Run length table, run_len and run address table, run_addr.

length « 0
run_index <+ 0
old_address + -1
For each TV pixel, (i,j), in raster order
If ((j = NCOLS-1) OR (R(i,j) = invalid)) Then
address + -1
spoke « 0 { a(spoke,ring) must equal 0 }
ring < NSPOKES/2
Else
address « S(i,j) x NRINGS +R(i,j)
spoke + S(i.j)
ring < R(ij)
End If
If (((j > 0) AND (address # old_address)) OR (j = NCOLS-1)) Then
run_len[run_index] < length
run_addr[run_index] + old_spoke x NRINGS + old_ring
run_index < run_index + 1
length «+ 1
Else
length < length + 1
End If
old_address < address
old_spoke + spoke
old_ring < ring
End For
NRUNS < run_index

Page 40 of 86

CHAPTER 2. CAMERA 35

Algorithm: fastmap

Function: This maps the uniform TV image, I(4,), to the logmap image, L(u,v). It uses the run
length and address tables computed by run_length_encode.

Input: run_len and run_addr run tables
TV image, I(i, j)

Output: Logmap image, L(u,v)

tv_index < 0 { The TV image, I, is accessed in raster order with the index,
tv_index. }
For each pixel p € L { Zero logmap }
L(p) < 0
End For

For each run, k
Im_addr < address_of(L) + run_addr[k]
For [=0 to (run_len[k] — 1)
{ The next two lines can be written with one C instruction,
*1m_addr += I(tv_index++). Note that the '*Im_addr’ no-
tation denotes the memory location referenced by Im_addr }
*Im_addr < *Im_addr + I(tv_index)
tv_index < tv_index + 1
End For
End For
For each pixel p € L { Normalize logmap }

L(p) + L(p) / a(p)
End For

Page 41 of 86

Chapter 3

Platform Pantilt

3.1 Introduction

Once we have a miniature camera for acquiring space-variant images, we need a method of actuating
the camera. We would like a pan-tilt mechanism that is accurate, fast, small, inexpensive and has low
power requirements.

We have constructed two new actuators meeting these requirements. The first is called the Platform
Pantilt, a pan-tilt actuator based on two linear stepper motors (Figure 3.1) described in this chapter.
The second actuator, the Spherical Pointing Motor (SPM), incorporates both pan and tilt into a single
two degree of freedom motor (Figure ??). It consists of three orthogonal motor windings in a permanent
magnetic field, configured to move a small camera attached to a gimbal. It is an absolute positioning
device and is run completely open loop. It is described in Chapter ??. Both of these actuator designs
are different than traditional pan-tilt actuators in that they avoid the inefficiencies involved with one
motor moving another motor.

Pan-tilt mechanisms have been a source of inspiration and frustration to computer vision researchers.
One source of inspiration is nature, since humans and animals rely on their pan-tilt apparatus to achieve
wide field-of-view visual sensing.

The argument from nature is not by itself a compelling reason to build robot eyes that pan and
tilt. The alternative to mechanical pan-tilt action is electronic scanning, i.e. computer control of a
fixed set of cameras having a combined wide field-of-view. Selective attention can be implemented
by a variety of addressing methods, for example the inverted pyramid of Burt [?, ?]. Such “software
pan-tilt” mechanisms are considerably more convenient and reliable than their motorized counterparts,
but we argue that they ultimately are more expensive. A large sensor, which is required to efficiently
use software pan-tilt, has a quadratically increasing pixel load. The alternative to providing the extra
processor bandwidth and memory needed for such an approach is to physically move the sensor, as is
the usual choice in “active-vision” approaches. It is our opinion that at the current state of technology,
this is a considerably more economical approach.

Given today’s inexpensive CCD camera arrays, electronic scanning may appear at first glance to be
superior to the mechanical approach. Certainly such electronic pan and tilt is faster than mechanical
pan and tilt. It also is more reliable, as there are no moving parts involved. But there are several
arguments in favor of using mechanical actuation. They are:

cost We have shown at least one example in which the mechanical approach is less expensive. Our
prototype SPM carries a camera having a 33 degree field of view. The actuator can pan and tilt
the camera through a range of 60 degrees in each axis, resulting in an overall field of view of
93 degrees in each axis. To achieve the same result for the same CCD array in a nonmechanical
configuration, we would have to build an array of 9 CCD sensors and lenses, arranged so that their

36
Page 42 of 86

CHAPTER 3. PLATFORM PANTILT 37

Figure 3.1: The Platform Pantilt. This stepper motor based actuator is capable of positioning a load of
80 grams, for example a small video camera. Dimensions are 7.5 x 7.5 x 12 cm.

fields-of-view are adjacent. Even at the current low prices, 9 CCDs and lens assemblies cost an
order of magnitude more than the parts in the SPM. The cost of CCDs increases exponentially
with size. Of course, with either approach there is an electronic circuit driving the system. For the
SPM, this circuit consists of a motor driver and PWM controller, plus the components necessary
to digitize the camera signal. For the fixed array of cameras, the electronics for the camera signals
must be repeated 9 times, so we claim that the cost of support electronics is comparable in either
case.

registration A system with multiple image sensors would have to be very carefully calibrated in order
to register the multiple images. Without knowing precisely how the external world mapped onto
each sensor in relation to the other sensors, it would be very difficult if not impossible to use such
a system.

optics Using space-variant images with the fovea at the center of the image, and thus in line with the
optical axis of the lenses allowed us to miniaturize the camera in a way that would not otherwise
have been possible. Our miniature camera has severe off-axis optical degradation. The low reso-
lution in the sensor periphery, however, is lower than the optical resolution which makes an ideal
match for our system. This would not work, however, in a system where the foveation point was
changed electronically to points off the optical axis, because the optical resolution would be lower
than the sensor resolution. New lenses would have to be designed that have high resolution in the
periphery. It would be much harder to design such lenses that would be as small as our current
lenses.

custom sensor We plan on replacing our uniform off-the-shelf sensor with a custom sensor that has
an intrinsic logmap geometry. We have built our entire software platform with this in mind, never
using the original uniform TV image. We will therefore be able to make this replacement without
changing our software substantially. Once we have a true logmap sensor, it will no longer be
possible to control the foveation point electronically.

Page 43 of 86

CHAPTER 3. PLATFORM PANTILT 38

Note: Gonlometer sits
directly on top of
rotation stage

Goniometer
(ti]lt)

Rotation
Stage
(pan)

Figure 3.2: Photo and illustration of a traditional motor-on-motor design. Actuator from Klinger Scien-
tific. Dimensions are 10 x 11 x 22 cm (not including the camera or the rack-mounted controller/driver).

The simplest and most obvious pan-tilt mechanism uses a two-stage motor-on-motor (MOM) design.
The first motor turns the mechanism through one degree of freedom, usually pan, and the second through
the other d.o.f, usually tilt. The second motor must be powerful enough to move the camera sensor. The
first must move both the camera and the second motor. The MOM design therefore usually consists of
one larger motor and one smaller one. Such a design is inefficient because, as we show, it is not necessary
to carry one motor on top of another one. An example of such a design is the pan-tilt actuator available
from Klinger Scientific (Figure 3.2).

The traditional solution to the inefficiencies of the MOM design is a parallel approach. This typically
involves two motors which through some kind of linkage, actuate the rotor without having one motor
moving the other. However, linkages are bulky and are difficult to make accurately. The Platform Pantilt
is based on this method.

The Platform Pantilt moves a platform by raising and lowering two shafts with linear stepper motors
that are fixed to the platform. The platform is attached to the base at a third point by a fixed shaft.
All the shafts have some flexibility with different kinds of joints. This design is similar in some respects
to the six degree of freedom Stewart platform [?, ?, ?]. The Platform Pantilt measures 7.5 x 7.5 x 12
cm and can move at rotational velocities up to 100°/sec. The precision is somewhat limited, however,
due to the use of stepper motors.

3.2 Background

One source of frustration is acquiring or building, then calibrating and controlling the mechanism itself.
Until recently, no manufacturers have provided pan-tilt mechanisms specifically designed for computer
control of cameras. Low-speed inexpensive motorized pan-tilt camera platforms are now available, for
example from Edmund Scientific (catalog number F38,485), but these have no computer controls. Remote
control pan-tilt devices intended for security camera applications, for example the Graystone Model
V370PT, tend to be too slow (6 degrees per second) and too heavy (16 1bs.) for many robotic applications.
Few of these devices have computer controls or position feedback information. The motion picture

Page 44 of 86

CHAPTER 3. PLATFORM PANTILT 39

industry has also developed computer controlled pan-tilt devices. One example is the Kaleidoscope
Hothead II, made by Shepperton Film Studios. Although a digital interface is available, this device is
intended to carry a large load such as a 35mm motion picture camera, and although it achieves relatively
high speed (140°/sec), it is very expensive. Another source of pan-tilt mechanisms is the lighting industry,
which applies them to stage lighting, exhibitions and advertising. A high-speed computer controlled
pan-tilt mechanism for stage lights is available from Multiline, but its bracketing and high cost make it
unappealing for robot vision. A number of manufacturers (for example Aerotech, Daedel, Unislide, and
Klinger Scientific) make computer controlled mechanisms that can be assembled into pan-tilt devices.
Better suited for manufacturing and optics applications, the high resolution of these devices (less than
1 arc minute) makes them overkill for many computer vision applications and contributes to their high
cost.

Perhaps because of their familiarity and availability, if not their generality and programmability,
robot arms have often been the choice of vision researchers trying to actuate their cameras. Baloch and
Waxman used a 5-axis robot arm mounted on top of a mobile robot as a camera pointing mechanism
[?]. Allen also reported mounting a TV camera on a robot arm [?]. Raviv used a cartesian manipulator
to implement camera pan, tilt, roll and translation [?].

Finally, a number of researchers including ourselves have embarked on building their own pan-tilt
devices from scratch. Krotkov built what is now recognized as the first robot head, a computer controlled
mechanism for moving two cameras [?]. Abbot and Ahuja report an 11 degree of freedom mechanism
to control pan, tilt, vergence, horizontal translation, and lens parameters [?, ?]. From Osaka University,
Kawarabayashi et. al. report building an active vision “head” to control pan, tilt, vergence, zoom and
focus parameters of a pair of cameras [?]. Dickmanns also reports a “fast” two-axis pan-tilt device
carrying two cameras, one with a wide-angle view and the other telephoto, mounted atop their robotic
automobile [?]. At Harvard, Clark and Ferrier constructed a seven degree-of-freedom “head” to control
pan, tilt, and the vergence, focus and aperture of two cameras [?]. At least one two-eye system, the
Rochester Robot, contains independent pan controls for two cameras on a tilting platform, in contrast
to other systems in which vergence is coupled [?]. The pan-tilt mechanism in all of these designs is a
MOM design.

Although many vision researchers are also interested in controlling parameters other than pan and
tilt, we have restricted our attention in this thesis to these two degrees of freedom. We only mention
here that pan-tilt mechanisms are not the whole story. We would like to build inexpensive computer
controls for such camera parameters as focus, zoom, and aperture. In some cases it may be desirable
to control camera roll and XY Z translation as well. With two or more cameras present, as in a stereo
vision system, we would like to control the vergence angle between the camera as well as their baseline
separation. These interesting subjects will remain outside the scope of the present discussion.

In this chapter we motivate the design and analyze the forward and inverse kinematics of the Platform
Pantilt in order to prove that the linkage is mechanically sound.

3.3 Mechanism

The Platform Pantilt consists of a moving platform atached to a base with one fixed shaft and two shafts
driven by linear stepper motors (Figure 3.1). The mechanism linking the stepper motors to the platform
needs to transmit force and allow rotation while maintaining a 1-1 correspondence between motor and
platform positions. This is accomplished by a combination of four universal joints and one pin joint.

Our original design had only one universal joint on each shaft. This, however, does not work because
as the platform is rotated, the horizontal component of the distance between the joints decreases. The
two-dimensional case depicted in Figure ?? shows what goes wrong with only one joint on the drive
shaft. The shafts are rigidly fixed perpendicular to the base and to the platform. The distance between
the joints is fixed. When the drive shaft extends, the angle between the drive shaft and the base must
decrease which it cannot do.

Page 45 of 86

CHAPTER 3. PLATFORM PANTILT 40

/,f]Platform\\

**************** Fixed Shaft---
--Drive Shaft------f----------

~Note: Not 90
degrees

a) b)

Figure 3.3: A non-working two-dimensional mechanism in two different positions with one pin joint on
each shaft. Note that in b), the lower right angle is not fixed at 90° as it should be.

One technique to overcome this problem, as is done with a Stewart Platform [?, 7, ?, ?], is to attach
the drive shafts to the base and to the platform with spherical joints (See Figure). Although this works in
the two dimensional case, it does not work in three dimensions because the forward kinematics problem
does not have a unique solution. The simplest description of the problem occurs when both drive shafts
are fixed at the same height. In this configuration, the platform will have one uncontrollable degree of
freedom as it rotates around the fixed shaft. This problem could be resolved by constraining the passive
rotation of one of the motors to a single degree of freedom. However, this technique is not well-suited
to miniaturization for two reasons: 1) It is difficult to build very small gimbal joints that could support
the motor and platform; and 2) The motors themselves must be rotated which means that the motors
must be large enough to counter their own rotational inertia.

The technique we have chosen avoids the problem of rotating the mass of the motors. The motors
are fixed perpendicular to the base, and an extra joint is added to the drive shafts. Figure ?? illustrates
the two dimensional case. Here, as the drive shaft extends and retracts (corresponding to hy increasing
and decreasing in length), point C' moves straight up and down. Point B is a fixed distance, s, from
point C, and a fixed distance, d, from the fixed point A. So, point B moves along the point defined by
the intersection of the two circles centered at A and C with radii d and s, respectively. Although there
are two solutions for the point B, only one of them is physically attainable.

The straightforward extension of this mechanism to three dimensions by adding another drive shaft
rigidly linked with two universal joints to the platform does not work. The platform would have one
degree of uncontrollable freedom for all sets of drive shaft positions. The solution is to constrain one of
the drive shaft linkages to two dimensions. This is easily done by replacing the lower universal joint on
one of the drive shafts with a single degree of freedom pin joint. With this modification, the mechanism
has no singularities. This is depicted in Figure ?7?.

With this approach, the kinematics are most easily analyzed by first looking at the two dimensional
case and then extending the solution to three dimensions.

3.4 Forward kinematics in two dimensions
The forward kinematics problem for the two dimensional system (Figure ??7) can be simply stated as
“Given hy, what is ©17” That is, given the motor position, what is the angle of the platform. We define

the origin to be at the bottom of the fixed shaft and we use homogeneous coordinates. We define the
angle of the platform using the motor position and then solve using the known constraints. The angle

Page 46 of 86

CHAPTER 3. PLATFORM PANTILT 41

I
I
‘ S [
[l S e e
e e R o
C F-===-Fixed Shaft----=
« \ﬁj_‘,, ____.]---=~Drive Shaft-._
| P PP ,r ~
| [NEUUURSSEEEL
; h1
I I
V‘\ O * _ N 0 b
a) b) c)

Figure 3.4: A two dimensional version of the mechanism we use shown in three positions. All the
connections between the shafts and the platform and base are rigid. The dashed line between points A
and B represents a fixed distance and does not represent a physical connection.

Y
| |
D T p——— ‘
// l=-----Platform
]
e
V4 Y A
7/ | |
// : S
o | |
4 ;‘\ D "¢ v
‘ <« ~Y--Drive shaft 1
Fixed - opoomees - 1 —
Shaft ‘ ! T
£l hi
,,*I 3‘/ | |
o ‘ 1 S
rive = B
Shaft 2" e Rase
o /

Figure 3.5: left) The three dimensional mechanism we use. Note that circles at points A, B,D and E
denote universal joints with two degrees of freedom while the line at point C' denotes a pin joint with
only one degree of freedom. right) The coordinate system used in this section.

Page 47 of 86

CHAPTER 3. PLATFORM PANTILT 42

of the platform is:

, = sin~" (By%“ly) (22)

where A is the fixed point (0,%,1) and B is dependent on the motor position. C' is the variable point
(d,h1,1). We can calculate B by taking the vector (0, s, 1) rotated about an angle ¢, and adding it to
point C' where ¢ is constrained by the fact that point B is a fixed distance d from point A.

B =(0,s,1) - [rot ¢] - [trans C]

where
cos¢p sing 0
[rot ¢] = | —sing cos¢p O
0 0 1
and
1 0 0
trans C]=1| 0 1 0
C, Cy 1

Then, expanding B and substituting d = C, and h; = C}, we can rewrite
B=(d—ssing, h; +scosg, 1). (23)
Because B is a fixed distance d from point A, we add the constraint
(Bs — Az)2 + By — Ay)2 =d

and plug in the equations for B, and By, using A, =0 and A, =k to get

(d — ssing)? + (hy + scos¢p — k) = d°. (24)
We now want solve for ¢. Expand Equation ??, plugging in h; = Cy, k = A, and d = C, to get

—25C, sin ¢ + 8% sin® ¢ + (Cy — Ay)* + 2s(Cy — Ay) cos ¢ + s° cos” ¢ = 0

—2dC, si 25(C, — A =—(C, —A)? -5
sin ¢ + 2s(C, y) COS @ (Cy vy) s

~

a b c
asing +bcosp =c (25)
Using the triangle in Figure ?7a, we can write

m

Sin¢gp = ———
¢ m2+1

cos¢p =

o~ Sm —
+

Equation ?? becomes
am

\/m2+1+\/m2+1 -
(am +b)?* _ ,
Tm2+1l

a’m? 4+ 2abm + b —c*m? = =0

(a® — A)m? + (2ab)m + (B* —*) =0

Page 48 of 86

CHAPTER 3. PLATFORM PANTILT 43

Figure 3.6: a) Triangle used to solve Equation ??. b) Triangle used to solve Equation ?7.

o —2ab £ \/4a2b? — 4(a® — 2)(b% — ¢?)

2(a® — ¢?)
= —2ab £ 2¢va? + b? — 2
B 2(a? — c?)

We can now solve directly for ©; using Equation ??. From Equation ?7, we have the value for B,. We
know that A, =k, and Cy = h;. Then,

0, — sin ! (h1 + sc;sqﬁ — k)

O, =sin~

1 <h1 —k+s/\/m2+1>
d

3.5 Inverse kinematics in two dimensions

The inverse kinematics problem for the two dimensional system can be stated by “Given ©;, what is
h1?” This is solved similarly to the forward kinematics problem. Now we know point B and we must
find point C' in order to find h;.

hl = Cy

where
C =(0,-s,1) - [rot ¢] - [trans B]

C =(B; —ssing,B, —scos¢,1)
and we know that C, = d. We can expand C to get
B, —ssing =d

We can write B as
B = (d,0,1) - [rot ©4] - [trans A],

B =(A; +dcos©q,Ay +dsinOq,1)

Page 49 of 86

CHAPTER 3. PLATFORM PANTILT 44

We also know that Cy = hy, so we can expand C,, plugging in for By and get
hy = Ay +dsin®; — scos¢ (26)
We know sin ¢, but need cos ¢. We can find it by using the triangle in Figure ??b. Then we can see that

/82 — (B, — d)?/s?

S

cos ¢ =
Plug this in to Equation 7?7 and get

(B — d)?

hi = A, +dsin®; —4/s2 — 3

S

Plug in for B, and get

hy = Ay +dsin®; — é\/s‘1 — (ay + dcos© — d)?

3.6 Forward kinematics in three dimensions

The forward kinematics in three dimensions can be calculated in an analogous manner to the two
dimensional case, but the math becomes extremely messy so an alternative approach is used. We
assume the two dimensional case has already been solved and thus we know the position of point B.
Then, given hs, we want to know Q.

@y = sin~! (1)@'%’4”) 27)

Point A is known to be (0, %,0, 1), and point E is (0, ha,d,1). Then, as point D is a fixed distance from
points E, A, and B, it can be solved for by computing the intersection of the three spheres centered at
those points. The equations describing these spheres are:

(Dy - Ew)2 + (Dy - Ey)2 + (D - EZ)2 =5 (28)
(Dy — Ag)? + (Dy — A’ + (D, — A)? =& (29)
(D, — B,)*> + (D, — B,)* + (D, — B,)? = 2d° (30)

The solution for point D involves solving these three quadratic equations and three unknowns, D,, D
and D, as follows. Expand these equations, rewriting the constants and we get:

R

D2+ D} +D?+aD, +bDy+cD. =d (31)
D+ D, +D?+eD,+ fDy+gD,=h (32)
D3+ D: + D?+iD, + jD, + kD, =1 (33)
where

a = =2FE,

b = —2E,

¢ = =2F,

d = s°—E.-E,-E}

e = —24,

Page 50 of 86

CHAPTER 3. PLATFORM PANTILT 45

= -24,

—24,

d> — A5 — A2 — A2
2B,

-2B,

-2B,

= 2d°-B.-B) - B’

o, S Q
(1|

— ™ .
Il

Subtract Equation ?? from Equation ?? and Equation ?? from Equation ?? to get rid of the quadratic
terms. We end up with equations for two planes.

(a—e)Dy+(b—f)Dy+(c—9)D,=d—h (34)
(e—i)Dy+(f —j)Dy +(9—k)D. =h—1 (35)
The intersection of these two planes is a line, so we find its parametric equation and plug it into
one of the original spheres (Equation ??). Note that because of the choice of the coordinate system,

a=e =g =k =0, and thus the coefficients of D, in Equation ?? and of D, in Equation ?? go to zero.
Now pick two points, gg and ¢; on this line.

d—h h—1
q0y=O = oz = ——, oz = ———
C —1

h—1 d—h—(b—h=D/(f—j

Note that these equations are not solvable when the denominator is equal to zero which occurs only at
extreme positions. Now go + (g1 — o) on t € [—00, 00] is the parametric formula for the line satisfying
Equations ?? and ??. This can be plugged into Equation ?? to get one quadratic equation in ¢, which
because E, = 0, is equal to

[qu + t(le - QOw)]2 + [q0y + t(qu - qu) - Ey]2 + [q0z + t(le - q0z) - Ez]2 =S
Solve for ¢t and plug into go + t(g1 — go) to get point D, and finally plug into Equation ?? to get O,.

2

3.7 Inverse kinematics in three dimensions

Fortunately, the inverse kinematics problem in three dimensions is much easier than the forward one.
We want to find hs given Os.

hy = E,
We get E by taking the vector (0,—s,0,1) rotated ; and 1, about the x and z axes, respectively, and
adding it to point D, where point D is calculated by taking the vector (0,0,d,1) rotated ©; and O,
about the z and x axes, respectively, and adding it to point A.

D = (0,0,d,1) - [rotx O] - [rotz O4] - [trans A]
= (dsin©,sin O,k — dsin ©2 cosO1,dcos Oq,1)

where
cos® sin®

0 0 0
—sin® cos® 0
1
0

cos® sin®
—sin® cos®
0 0

[rotx O] = and [rotz ©] =

0 0
0 0

S oo
_= o oo
o oo

Page 51 of 86

CHAPTER 3. PLATFORM PANTILT 46

a)
Figure 3.7: The limits of motion in two dimensions.

E = (0,—s,0,1)-[rotx ¢1] - [rotz o] - [trans D] (36)
(Dg + scosypy sinte, Dy — scostpy costha, D, — ssiny) (37)

Now we have the constraints £, = 0 and E, = d, so we get

E,.=d = ¢y, = sin~! (7dcos (;)2 — d)

—dsin ©4 sin ©

_ =1 2 1
E, =0 = ¢y =sin <—scos¢1)

Finally, we can plug ¢ and 1) into E, in Equation ??

hy = k—dsin®ycos®; —
(g (dcos®2 —d)) .1 —d sin Oy sin ©4
s cos | sin —— = "))cos|{sin
s V82 — (dcos Oz — d)?

3.8 Limits of motion

The limits of motion are depicted in Figure ??. The counterclockwise rotation is limited by the universal
joints that can not rotate more that 90°. To achieve this, length s must be greater or equal to length d.
The clockwise rotation achieves its maximum when points A, B, and C' are colinear. This occurs when
cos® =d/(d + s). So,

Omax = 9007

d
P -1
Omin cos (d+ s) .

and

Page 52 of 86

CHAPTER 3. PLATFORM PANTILT 47

Figure 3.8: Simulation of the forward kinematics equations of this section. The Platform Pantilt is
shown in four different positions.

3.9 Simulation of kinematics

To verify the correctness of the equations of this section, we implemented a software graphics simulation
of both the forward and inverse kinematics. Figure ?? shows the solution of the forward kinematics
problem with the Platform Pantilt shown in several positions.

3.10 Prototype Platform Pantilt

The prototype Platform Pantilt was made with miniature 1" diameter linear stepper motors. The linear
motion has a maximum travel of 1.875" and travels 0.004 inches/step. At a maximum of 550 steps per
second, the motors can travel 2.2 linear inches/second. Our prototype motor has the following geometry
(where the constants refer to Figure 77).

Page 53 of 86

CHAPTER 3. PLATFORM PANTILT

Parameter | Value
d 1.9 cm
S 2.8 cm
k 6.4 cm

48

The total size of the Platform Pantilt is 7.5 x 7.5 x 12 ¢cm. The platform has the maximum rotation,
010z = 90° when A,ue, = 6.1cm and the minimum rotation, ©,,;, = —66° when h,,;, = 2.0cm. So the

average theoretical maximum rotational velocity is equal t0 (4

214°/sec.

- G)mzn)/(hmaz

— humin) - 2.2in/sec =

In practice, because stepper motors’ strength is inversely proportional to their speed, they some-
times miss steps at high velocity. Thus the Platform Pantilt can be run reliably only at about 100

degrees/second.

Page 54 of 86

Chapter 4

Spherical Pointing Motor

To overcome the limitations of the parallel motor approach, we designed and built the Spherical Pointing
Motor! (SPM), a miniature single direct drive motor with two degrees of freedom. The SPM is capable
of panning and tilting a load of 6 grams, for example, the CCD-based camera described in Chapter 2, at
rotational velocities of up to several hundred degrees per second. Consisting of only wire wound around
a metal form, a simple gimbal, and a small permanent magnet, the SPM is arguably the smallest and
least expensive possible device capable of pointing a camera accurately and at high speed.

4.1 Spherical pointing motor theory

The Spherical Pointing Motor is an absolute positioning device, designed to orient a small camera sensor
in two degrees of rotational freedom. The basic idea is to orient a permanent magnet to the magnetic
field induced by three orthogonal coils by applying the appropriate ratio of currents to the coils. A simple
way to understand this device follows: The net magnetic field of the three coils may be visualized as
defining a vector (dipole) oriented at angles (O, ®) on the unit sphere. The angles (0, ®) are determined
by the three coil currents. The rotor dipole then aligns itself with the net coil field to provide the
actuation.

We have built two types of SPMs: one having the coils on the inside, free to rotate on a gimbal inside
a fixed magnetic field, (Figure ??); the other having the coils on the outside and the magnets attached
to the gimbal inside the coils (Figure ??). It is possible to build the smallest possible motor using the
external coil design, so that is the approach we focus our attention on.

In this chapter, we look at the transfer function taking input current to pan and tilt angles. We
point out some design constraints on the configuration of the coils and the permanent magnets, and
show why the external coil design is preferable to the internal one. We discuss calibration of the motor,
its dynamics and control.

Both designs are constrained by two principles that affect the range of motion of the motor. The
SPM is meant to be used as a pointing device. As such, it has a home position, defined as the initial
resting position from which the motor can make pan or tilt excursions of limited extent. Assuming that
we want the home position to be centered within the possible excursions, we are led to the following
constraints:

1. The permanent magnets must be positioned so that the field they define is orthogonal to both axes
of rotation of the gimbal when it is in home position.

2. The camera must be positioned on the rotor so that its optical axis is orthogonal to both axes of
rotation of the gimbal when it is in home position. Note that this is equivalent to being aligned

1Patent application #07/731,639, entitled “Spherical Pointing Motor” was submitted to the U.S. Patent office in 1991.

49
Page 55 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 50

Figure 4.1: The Spherical Pointing Motor. At the center is a miniature camera consisting of a single
CCD sensor chip and a lens assembly that fits on the rotor of this motor.

Camera

Coils .

Coil A
(Home Position)

s Permanent
o Magnets

|

1

~— Gimbal

Coil C
(Left/Right)

Figure 4.2: left) Illustration of the internal spherical pointing motor shown in its home position. right)
Labels for the three coils.

Page 56 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 51

/
ys Camera and
ys “% gimbal fit
/ /) inside coil
ys cylinder
// }/
/ /
Vi
ﬁ 0
\
y Permanent
/f // magnet
anasge
//
/
wosssss
/ A =
4 /
i { 9 -
/ /
/ " 4
Y
Coil A Coil B Coil C
(Home Position) (Up/Down) (Left/Right)

Figure 4.3: top) Illustration of the external spherical pointing motor shown in its home position. bot-
tom) Labels for the three coils.

Page 57 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 52

Current Loop

AFl
[

X X X XixXpX X X

X | X X X X X X|X

F4 X | X X X X X X|[|X FR
e e A e e - ————

X | X X X X X X|X

X | X X X X X X|X

X X X XIX X X X
‘ N ' F3
v F3 Uniform

Magnetic
Axis of Rotation Field

Figure 4.4: Torque on a current loop. left) Current loop rotates about horizontal axis with clockwise
current. Uniform magnetic field normal to the page. Forces F2 and F4 are aligned with the axis and
produce no net force. Forces F1 and F3 rotate the coil so that the coil encloses as many magnetic field
lines as possible which occurs when the normal to the plane of the coil is aligned with the magnetic field.
right) The same loop, but viewed from the side. (Adapted from [?, P. 541])

with the permanent magnetic field if the first design constraint is satisfied.

These design principles arise because the motor is limited to two mechanical degrees of freedom and
because the motor rotation cannot be controlled about an axis aligned with the permanent magnetic
field. To understand why this is so, we must examine the electromagnetic principle that provides the
torque to move the motor.

The torque on the rotor comes from the basic electromagnetic principle that there is always an
induced force on a current-carrying wire in a permanent magnetic field. Further, there will be a torque
on a current-carrying wire loop in a permanent magnetic field in such a direction that the loop will move
to make the normal to the plane of the loop align with the magnetic field. This is shown in Figure ?7?.

Given a coil of wire in a uniform magnetic field B, the torque T exerted on the coil is the cross
product

T=nxB (38)

where @ is the magnetic dipole moment having direction perpendicular to the plane of the coil and
magnitude
|| = NeA (39)

where N is the number of windings in the coil, ¢ is the current in the wire, and A is the area enclosed
by the coil [?, ?]. The sign of & is determined by the direction of current in the wire loop. When a
nonzero current ¢ flows through the loop, there will be a torque on the loop so that the loop will rotate
to its minimum energy configuration where 7 = 0, i.e. m is aligned with B. Note that in the SPM,
the permanent magnetic field is not uniform around the area of the coil. This difference is discussed in
Section ?7.

Equation ?? implies that the torque is maximum when the angle between @t and B, ¥ = 90 and
drops to nothing when ¥ = (0. When the coil is at position ¥ = 0, it is at its minimum potential energy
and there is no force on it. Because of this relationship between torque and angle, the friction of the
bearings must be minimized. The precision of the motor is inversely related to the amount of friction in
the bearings. This is because fine movements of the motor occur at very small angles where the torque
is very small, and such fine movements must overcome the friction of the bearings.

Page 58 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 53

Camera

Coils
\yﬁ Coil A

7 Permanent —
o Magnets

|

Coil B

Gimbal

Coil C

Figure 4.5: left) The internal coil motor panned 90° so that tilting is not possible. right) The coil
labels for the motor in this position. Notice how coils A and C have swapped orientations.

If the first design constraint is not satisfied, then it is not possible to both pan and tilt the motor
from the home position. Coils A and B control the tilting while coils A and C' control the panning
(Figures 7?7 and ??). When the motor has panned 90°, coil B has kept its original orientation with
respect to the magnets, but coils A and C have swapped their relative orientation. This is depicted in
Figure ?? for the internal coil motor and the analog for the external coil motor is in Figure ??. In this
position, the pan angle is controlled, but there is no way to control the tilt angle in this orientation (vice
versa for the external coil design). This is because the axis of rotation is aligned with the magnetic field
and no torque can be exerted around this axis. This is illustrated in Section ??7. Without the first design
constraint, the home position could be as depicted in Figure ?? in which case the motor could not be
tilted along the vertical meridian.

The second design constraint stems from assuming that the two degrees of freedom desired for the
camera are pan and tilt. If instead roll (rotation about the optical axis) and either pan or tilt is desired,
then the second design constraint is not necessary. This constraint comes directly from the mechanical
degrees of freedom available. If pan and tilt are desired, the camera’s optical axis must be orthogonal
to the two degrees of mechanical freedom.

The design constraints result in an undesirable effect for the internal coil motor. Because the first
design constraint requires that the permanent magnets must also be positioned orthogonally to both axes
of rotation, the optical axis of the camera must be aligned with the permanent magnetic field. Since
the camera is between the two permanent magnets, its field of view will be obscured by the magnets.
Therefore, some method of looking over the magnets must be found. This could possibly be done with
mirrors, or as depicted in Figures ?? and ??, the camera could be mounted on a stalk. This gives the
external coil motor a clear advantage because the camera is located in the center of the motor. This not
only decreases the moment of inertia, but also allows the camera to be rotated around the focal point
of the lens which is usually desired for machine vision applications.

4.2 Theoretical Calculation of motor position

We can calculate the relation between motor orientation and coil currents by realizing that the current
in each coil induces a magnetic field normal to the plane of the coil, and that the magnetic fields from

Page 59 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 54

Y4 Camera and
P gimbal fit
/ inside coil
/, A cylinder
// /% g
/)

% Permanent

s I/ magnet

Figure 4.6: The external coil motor tilted 90° so that panning is not possible.

the three coils add vectorially. Thus, the ratio of the coil currents determines the motor orientation.
Applying a set of currents to the coils creates a torque on the rotor that will turn it to the position of
lowest potential energy, so the SPM is an absolute positioning device. In this section, we assume ideal
coils, i.e., they are perfectly symmetrical, have the same number of turns, and are the same size. We
drop these assumptions in Section ?7.

4.2.1 Position given currents

From Equation 7?7, we know that the torque on the rotor is proportional to the sine of the angle between
the normal to the coil and the permanent magnetic field. If & is aligned with B, pointing in either the
same or the opposite direction, there is no torque. However, when when they are pointing in the same
direction, the potential energy is minimum and the coil is in a stable resting state. If they are pointing
in opposite directions, the potential energy is maximum and the coil is in an unstable resting state. If
the coil is slightly perturbed, it will swing around 180° to reach the minimum potential energy state.

We will use the external coil motor as an example, but the following derivation applies equally to
the internal coil motor. We talk about torque on the magnets for the external coil motor, but an equal
torque acts on the coils for the internal coil motor. For example, the torque on the magnets due to coil
A for the external coil motor is equivalent to the torque on coil A for the internal coil motor.

We will use the coil labels shown in Figure ?7?. As the torque from each coil is dependent on the
motor orientation, we must calculate when the sum of the torques due to all three coils vanishes. The
destination position of the motor results from satisfying the equation

TA+TB+T7c =0 (40)

where T4, T, and T¢ are the torques on the rotor due to coils A, B, and C. We define the coordinate
system we will use in Figure ??. Here, both the permanent magnetic field and the home position are
defined to lie in the direction of the positive x-axis. © (or tilt angle) is defined as the positive rotation
about the z-axis and ® (or pan angle) is defined as the negative rotation about the y-axis.

Let us examine the torque due to coil A. In home position, the magnetic field, B = (1, 0, 0), and coil
A has the magnetic dipole moment, 14 = NaAata(1, 0, 0). We use here, the constant K4 = NaAa.
To calculate the torque from coil A at position (0, ®), we rotate 4 by © around the z-axis and then

Page 60 of 86

CHAPTER 4.

SPHERICAL POINTING MOTOR

95

—— > Home Position

— 1B

Positive torque in
0 direction (tilt)

Positive torque in
¢ direction (pan)

Figure 4.7: The coordinate system used for calculations. The permanent magnetic field and the home
position both lie on the direction of the positive x-axis.

by ® around the y-axis, yielding the new dipole moment, &z’

o, =

Then,

TA

Kata(1, 0, 0) - [rot£(0)] - [roty ()]
Kata(cos©cos®, sin®, —cos O sin ®)

By xB
Kata(0, —cos@sin®, —sin®)

We can calculate the torque from coils B and C similarly.

op =

B

and

-

1226

TC

Kgpep(0, 1, 0) - [rotz(©)] - [roty (®)]
Kptp(—sin© cos®, cos O, sin O sin P)
fip xB

Kptp(0, sin®sin®, —cosO)

Keoue(0, 0, 1) - [rotz(0)] - [roty (@)]
Kot (sin®, 0, cos @)

o x B

Kecue(0, cos®, 0)

Finally, we calculate the position using Equation ?7?.

Kata(0, —cos®sin®, —sin®) + Kptp(0, sin®@sin®, —cosO) +

This results in the solution

C]

Page 61 of 86

Koo (0, cos®, 0) =0

(S22

—KBLB
Katy

CHAPTER 4. SPHERICAL POINTING MOTOR 56

_ Kcie
d = t 1 42
an (KBLBSin(")—KALACOS@> (42)

Thus, the position of the motor (0, ®) can be calculated given the currents applied to the three coils.

4.2.2 Currents given position

Given a desired motor position, we would like to calculate the coil currents necessary to attain that
position. As previously stated, because there are three coils and only two mechanical degrees of freedom,
the motor position depends upon the ratio of the currents in the coils. Thus, we can fix one of the coil
currents, and calculate the other relative currents. Then the scale of the three currents will control the
torque with which the motor is moved to the specified position. Note that the three degrees of freedom
corresponding to the three coil currents are (0, ®), and magnitude of the torque, |7].

Assume ¢4 constant. Then from Equations ?? and ?7,

-K
g = KBA tatan © (43)
—Kata, .
e = % (sin® tan © + cos ©) tan & (44)
c

The three currents are then scaled so that the largest current magnitude is set to a maximum, t,,4-
That is,

max(|eal, |e]; ltc]) = tmaz
Figure 7?7 shows plots of the calculated currents vs. position for each of the three coils along with the
actual currents produced from the calibration procedure described in Section ?7.

4.2.3 Illustration of design constraint

Using these definitions for © and ®, we can now explain the first design constraint more thoroughly
which is that the permanent magnet must be positioned so that the field it defines is orthogonal to both
axes of rotation of the gimbal when it is in home position. As previously stated, this constraint comes
from the fact that when the motor is panned 90° (i.e., ® = 90°), there is no control of the tilt (i.e., © is
undefined).

Here we show that setting ® = 90° results in © being undefined. The case where K4 or K or K¢
equals 0 represents a motor with one or more coils missing. This is a trivial case, so we assume that
Ka,Kp,Kc > 0. Now plug ® = 90° into Equation ??, and we get

_ Kcoie
tan™? =90°
an (KBLBsinG—KALAcosG))

Kcie

Kpipsin® — K 414 cos © -
This implies that ¢, # 0 and that

Kpitpsin® — K t4c080 =0

Kata

tan © = Knin

Equate this to the definition of tan © in Equation ?? to get
Kata —Kptp

Kpitp Kata

(KALA)2 = —(KBLB)2
This is satisfied only when t4 = ¢g = 0. But by Equation ??, tan © is defined by (—Kptp)/(Kata)
which is undefined when ¢4 = tp = 0. Therefore, when ® = 90°, © is undefined.

Page 62 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 57

4.3 Calibration

The calculation of motor position for specified currents would be accurate in the ideal case where all three
coils were perfectly symmetrical, had the same number of turns, and were the same size. In practice,
none of these assumptions could be satisfied. Thus, the calculated currents give only an approximation
to the actual position of the motor.

The motor must be calibrated to associate motor positions with the related set of currents that moves
the motor to these positions. Only a small number of calibration points are necessary (depending on
the desired precision of the motor) since points between the calibrated positions can be approximated
with linear interpolation.

We developed a procedure for automatic calibration of the SPM. It is based on image feedback from
a camera mounted on the rotor of the motor. It assumes that a calibrated image sensor and lens are
used, i.e., that it is known how many degrees each pixel subtends, and that this is constant throughout
the field-of-view. The calibration algorithm uses a scene of black dots on a white backgound. For each
motor position that is to be calibrated, the algorithm moves the motor approximately to that position
using the calculated currents of Section ??. The algorithm analyzes the image and uses the position of
the relevant dot to calculate the actual position of the motor. It then associates this position with the
coil currents and stores it in a look-up-table, calib.

The workspace of the motor is larger than the field of view of the camera, so the scene must consist
of more than one dot. To make the calibration procedure as automatic and as easy to use as possible, we
do not want to measure the scene externally. Instead, the algorithm should work with only approximate
knowledge of the positions of the dots. The only requirement is that there are enough dots so that the
entire workspace of the motor is covered, and that it is possible to view the dots in pairs so that the
position of one dot can be determined by its position relative to that of a previously determined one. In
this way, the position of each dot can be precisely measured automatically by the calibration procedure.
The scene used to calibrate the prototype motor is shown in Figure ?7.

The algorithm, calibrate, calibrates the SPM with a multiple dot scene and it uses the the algorithms
center_dot, find_dot and centroid. It assumes the scene is arranged so that the center dot is initially
approximately centered in the motor workspace, and thus in the camera field of view when the motor is
in home position. A data structure is used supplying information about the arrangement of the scene.
The algorithms are specified for space-variant images as defined in Chapter 1. The constants are defined
in Appendix ??. For each dot in the calibration pattern, the data structure contains:

dot_scene table
Description |

Variable

motor_init | (©,®) position of where to initially move the motor for this point. This
position should be defined so that the new dot and a previously calibrated
dot are both in the field of the view of the camera when the motor is moved
to this position.

new_coord | Estimated position of new dot in scene at motor position, motor_init
old_coord | Estimated position of previously calibrated dot in scene at motor position,

motor_init
old_id Index into this data structure to identify which previously calibrated dot is

used

In these algorithms, the dot is defined as a single connected component whose values are below a
threshold that is assumed to have been previously computed. Three routines are called that are not
explicitly defined here. soap_bubble uses a standard relaxation technique to fill in the undefined values
of the calibration table, calib. median filter applies a standard 5 x 5 median filter to calib to eliminate
bad points. smooth applies a standard 3 x 3 smoothing filter to calib to smooth noise.

Page 63 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 58

= N\ ~
e - ~ s ~ N
v - N / LI N
Ve N \
/ / ! \ / ’ N \
/ s \ \ / / \ \
e e
v/ \ I \ 7 N
l—— S -~ - =Xy
V- - Ny A - — -
//\ \\ ///\\ /\\\ // /\\\
NN N [NN 4 / N
o ~ NS s NN s \ \
7
/ | So . A D \ \
! | Iy Iy | \
e . e | e
| | o o I !
\ \ //’_‘\\/)//’_‘\\ ! !
\ - AN < A ~ / /
v VEEENEERN VN N /
~ V7 s NN o N \ s
>4 g S ~ > L
- P - _ - 7
I\ , \ N)
e e
\ | |
| / \ \ ,
\ N I ! \ \ ; /
N
\ N [/ . \ | 4 /
\ ~ \ / \ | // /
Ny ~ /7 N - Ve
N Sy - L =
R O P A
\ - /
N Ve
~N -

Figure 4.8: The solid dots comprise the scene used to calibrate the SPM. The nine smaller dashed circles
are not part of the calibration pattern, but represent the field of view of the camera when centered on
each dot. The single large dashed circle is also not in the scene, but represents the workspace of the
motor. The entire workspace of the motor is covered by the small dashed circles.

Page 64 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 59

The prototype SPM has been calibrated using calibrate and the scene depicted in Figure ??. The
results are shown in Figure 7?7 along with the ideal case where the currents for each coil are shown over
a workspace of £30° in © and ®.

Page 65 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

60

Algorithm: calibrate

Function: This calibrates the SPM, creating a look-up-table associating coil currents with specific
motor positions. This is accomplished automatically, imaging a scene with multiple
dots. For each position to be calibrated, the motor is moved to that position using the
calculated values. The dot is then searched for starting at its estimated position. Its
actual position is determined and then associated with the motor position and entered
in the calibration table.

Input: dot_scene table
Output: Calibration table: calib[®, ®] holds currents for each coil at each calibrated motor posi-
tion.

For each calibration point, [k,I], in calib
caliblk,l] - undefined
End For
Move motor to (0,0), i.e., home position
For each dot in the scene, dot_index
Move motor to motor_init[dot_index]
Acquire image
{ Find absolute position of current dot }
zero_pt[dot_index] + find_dot(new_coord[dot_index])
If not the first dot Then
old_dot_position « find_dot(old_coord[dot_index])
zero_pt[dot_index] < zero_pt[dot_index] - old_dot_position +
zero_pt[old_id[dot_index]]
End If
(Center®, Center®) <« center_dot(new_coord[dot_index])
For each motor position, (0, @), to be calibrated with the new dot
Move motor to estimated position, (©, ®), using calculated table
Acquire image
{ Convert motor position to image position }
estimated_dot_position < (NROWS/2 - (Center® - ©)/DEG_PER_PIXEL,
NCOLS/2 - (Center® - ®)/DEG_PER_PIXEL)
new_dot_position <« find_dot(estimated_dot_position)
{ Convert new_dot_position to calib indices }
[k,]] < DIM_CALIB/2 + (new_dot_position - zero_pt[dot_index]) x
DEG_PER_PIXEL x DIM_CALIB / DEG_.OF_ WORKSPACE
If caliblk,I] = undefined Then
calib[k,I] « -1 x (Motor currents for each coil at this position)
Else
calib[k,I] < (calib[k,I] - (Motor currents for each coil
at this position))/2
End If
End For
End For
calib < soap_bubble(calib)
calib + median_filter(calib)
calib < smooth(calib)

Page 66 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

61

Algorithm: center_dot

Function: This moves the motor to center the dot in the image. It is an iterative process, moving
the motor to center the dot using the approximate values of the calculated motor position
look up table.

Input: Starting motor position, (0, ®)
Estimated dot position, p;, in logmap image, L

Output: Motor position that results in centered dot.

Do
Move motor to (O, D)
Acquire image
(dot_row, dot_col) < find_dot(p;)
© < O+ (dot_row - NROWS/2) x DEG_PER_PIXEL
® < P+ (dot_col - NCOLS/2) x DEG_PER_PIXEL
p1+ (NROWS/2, NCOLS/2)

While dot not centered

return(©, @)

Page 67 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

62

Algorithm: find_dot

Function: This finds the dot in the image starting at the specified location, searching outward.
When the dot is found, its centroid is computed and returned.

Input: Starting image location, p;, in logmap image, L

Output: Centroid of found dot in TV image coordinates.

For each pixel po€ L
visited[p2] < FALSE

End For

visited[p;] + TRUE

front < 0

back < 0

While ((L(p1) > threshold) AND (front < NPIXELS) AND (a(p;) > 0)) Do
For each neighbor po€ N (p;)

If (visited[ps] = FALSE) Then
visited[ps] + TRUE
recurse[back] « ps
back < back + 1

End If

End For

p1 4 recurse|[front]

front < front + 1
End While
return(centroid(p1))

Page 68 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

Algorithm: centroid

Function: This computes the centroid of a dot in an image given a point in the dot. It assumes
the dot is a single connected component of pixels below the threshold. It computes the
centroid in the logmap image, but weights the pixels by their area in TV pixels to get
the true centroid. It returns the result in TV image coordinates.

Input: Starting image location, p;, in logmap image L

Output: Centroid of found dot in TV image coordinates.

If (a(p1) = 0) Then
print(“Error: dot searched for at invalid point™)
return(error)
End If
For each point p,€ L
visited[p2] < FALSE
End For
visited[p;] « TRUE
p3< 0
front < 0
back + 0
total_weight < 0
Po+0 { TV image point }
Peenter < (NROWS/2, NCOLS/2)
Do
For each neighbor po€ N (p1)
If ((visited[p2] = FALSE) AND (L(p2) < threshold)) Then
weight < L(p2) x a(p2)
P, + P, + weight x u(p2) { Convert p, to TV coordinates }
total_weight < total_weight + weight
visited[ps] < TRUE
recurse[back] < p-
back < back + 1
End If
End For
P14 recurse|[front]
front « front + 1
While (front < back)
If (total_weight > 0) Then
Py = P, /total weight - Peenter
Else
Py = (0, 0)
End If
return(Py)

Page 69 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

Coil A

i i
/////II/I////// iy

U

il
\\\\\\\\\\\\\\ i
‘\&\\\ \\“\‘&“{\\\\

‘////// //////,,, I//lll///;,;/l’//l//////\\\\\\\\‘“\\\
wﬂ%@/ /f\\“\‘“\\\\“\\;\\e .
o ity
,,/',}l%{/’//’/,,,,%/'/’l{”l””"/ ,w%\\\\“\ i \\“&\‘{“\@\‘*\?&}&Q\
,/////////////,,, I// il // ,,/,l,,,///,"“\\‘ \\\ IR

A Q\Q““““\u\\\\\\\

7 iyl
V/ //////////////q///,//l/ ““‘“\““‘&‘\‘
0

il
I} iy
L Irlfl”ll;,"///" /, I ,

Coil B

CoilC

i
lo i
/,«/u//«,;«a,wm
il i
:,,;'a,w, m,w,,«,,,//,w %
i 7 "C, «m, ;»,/,;;«/'".,,

w, zw,u,«’u,,m:,‘,w 4
w,g;,,;, s
i

i

il \\\\\\“‘\\\\\“ 41,4
/l/,,{z,,,l l,l/,t\}\‘“\\\\\\\\ i
,,I;I
I
a
col coilB cailc
50 50 50
40 0 0
~N
)))
20 20] — 20|
10 wf AN 0
o M 30 % 0 %) 0 0) £ W % 3 0 0) £ W 50 3
b Theta Theta Theta
cola cain caic
/ //III/I
i
/ 'I// ‘ l/////'///lm”ll///llll/lll
i //’m\\\\\\\\‘\‘\\\\\\“\ y '”//'"
,z,,'/;:'//f:;,;ﬂ" fillihn
7
lll//lll ""l"""""“\ o \‘“‘“\‘\\\\\‘“\S ‘ . ::‘«4":2/17’1 i
v q’ ‘“‘ ‘& \\
R} ‘\\\ i
N \\\“ \\ ‘
\\\\\\\
(o4
col cailB cailc
snﬁ 50| 50l
40 0 0
——
L
£ 30| E os0p 2 00000 £ 30
——
20 O ZUM 20]
M O
10 0 0
o m 30 % 0 %) 0 0) £ W 5 3 0 0) W % 3
d Theta Theta Theta

Figure 4.9: a) Theoretical calculated currents vs. position for each of the three coils shown as a mesh
plot. b) The same as a) shown as a contour plot. ¢) Calibrated currents vs. position for each of the

three coils shown as a mesh plot. d) The same as ¢) shown as a contour plot. The data shown here is
for the +30° workspace in (©, ®).

Page 70 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 65

Impulse
>

Response

A

Time

Figure 4.10: Model of system response to a single impulse.

4.4 Dynamics and control

The dynamics of the SPM are that of a simple second order system. When a new set of currents are
applied to the coils, a torque is created that moves the rotor to the new position. We model this with a
single impulse (Figure ??). We are interested in finding a way to reduce the oscillatory response without
resorting to a closed-loop system.

We model the ringing of the SPM by using the fact (Section ??) that the torque on the rotor is
proportional to the sine of the angle between the current position and the destination position. Let us
call this angle ¥. The motor will accelerate towards the destination position with the torque decreasing
as it is reached. However, it will overshoot and ring around the final position. The torque on the rotor
is 7= ksin ¥, for some k. If we use the approximation sin ¥ &~ ¥, then the position of the motor will
follow Equation ?? [?, P. 228].

o dv 4’

K e =" 1

where ¢ is the damping constant and r is the rotational inertia of the rotor. The approximate solution
to this is

(45)

T = Ce™ /%" cos(wt +) (46)

where C' and f are constants, and the exponential function describes the magnitude envelope of the
ringing. The frequency of the ringing is w ~ \/k/r.

Page 71 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 66

SPM Ringing Control
(21,—4) —> (0,0): Input and filtered uncontrolled ringing
: : ‘ : : : ‘ ‘

""""""" Input signal
= Filtered signal

Ringing Amplitude (Degrees)

ey

-25.0

T T TS

—30.0 & P | |
0.0 0.5 1.0

o

Time (Seconds)

Figure 4.11: Uncontrolled ringing measurement taken by induced voltage on a separate pickup coil. The
input signal (combination of ringing and PWM) is shown along with the filtered signal that isolates the
ringing.

Page 72 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 67

We measured the ringing of the SPM by recording the induced voltage of the ringing on a pickup
coil of magnet wire that was placed adjacent to the SPM. The recording was made by amplifying the
induced voltage and digitizing this through the audio port of a Sun Sparcstation at a sample rate of 8
KHz. Because the SPM is controlled with Pulse-Width Modulation (PWM), the pickup coil not only
records the ringing (at approximately 60 Hz), but also records the PWM signal (at 1 KHz). The recorded
signal is filtered with an FF'T to isolate the ringing from the PWM in the induced signal. An example
of the ringing shows the result of moving the SPM, uncontrolled, about 20° (Figure ?7?).

This ringing can be greatly reduced by various open-loop control methods. Perhaps the simplest
strategy is to move the motor from the initial position to the destination position in small decreasing
increments at fixed time intervals. This way, maximum motor velocity is traded off for control. Including
the time it takes for ringing to stop, the controlled approach yields a faster average velocity. This method
is implemented by moving a fixed percentage of the distance between the current position and final
position at each step. This will decrease the motor movement with each step. The motor velocity can
then be controlled with either the percentage movement of each step, or the time interval between steps.
We use a constant time interval, and vary the percentage movement of each step to experiment with
different speeds. We call this the fized percentage control method.

A second slightly more complicated open-loop control strategy based on traditional stepper motor
control theory, and also examined by Singer and Seering [?], yields better results than the fixed percentage
method. The idea, called the two step method, is based on the fact that the SPM rotor oscillates with
an approximately constant period. We give two impulses (Figure ??) 180° out of phase with each other
S0 as to cancel the ringing. We implement this by first stepping the motor to a point midway between
the initial and destination positions (determined from the calibration results of Section ??). We then
wait for the point where the rotor velocity is zero at which point we apply a second step to hold the
rotor at this position. The energy of the ringing will be largely dissipated, and the rotor will be at the
destination position. Although we don’t know exactly when to apply the second step, we can estimate it
by waiting half the period of oscillation. Because we model the system with a one-dimensional pendulum
when it actually is a two-dimensional problem, our estimation is not exact, but is a close approximation.
In practice, because neither the midpoint nor the time at which the currents are changed are exactly
correct, not all of the ringing energy is dissipated, and a little ringing of the same period remains, but
with vastly reduced amplitude (Figure ??). This approach is unusual in that it takes a constant time to
move any distance, where the time is half the period of oscillation. A sample result of this approach is
shown in Figure ?7.

A problem with the two-step control strategy is that the system response is not very robust, i.e., a
small uncertainty in the midpoint or delay timing results in relatively large uncontrolled ringing. We
compensated for this imprecision by various combinations of the previous two control strategies. The
first approach is to apply the two-step method twice, first moving to the midpoint, and then to the
destination point. This method theoretically also takes constant time, which is twice as long as the
two-step method. We call this approach the dual two-step method.

A final variation, called the multi two-step method, is to apply the two-step method multiple times
with logarithmically decreasing steps. The motor is always moved half way between its current position
and the destination position with the two-step method. This takes time O(log(¥)) where ¥ is the total
angular distance travelled.

Page 73 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

Figure 4.13: Model of system response with inexact timing to a dual impulse.

Page 74 of 86

Dual

Responses Impulse

Combined
Response

Time

Figure 4.12: Ideal model of system response to a dual impulse.

Inexact

Responses Impulses

Combined
Response

Time

68

69

CHAPTER 4. SPHERICAL POINTING MOTOR

SPM Ringing Control

0
,,,,,,,,7,, 1.
o
|- [4
T O
o
c S
o))
or < 1
£ Qe
> <3
- r o % 4
=
© m o
=
L1 o€ ‘
° 53
o
= { o
or | /) -
I |
! b
© 1 -
c ! s, 4
O ! o~
© ! ~ ~~
oL A 4
Il e
o Se—
c L — i
S I
© B -
= B
2 —— 4w
o SSay) o
AN S
(N D 1
. e
< B % D ——
I r S 1
- B A ——
N =g
-~ R ————C R 1
e
_ lﬂwwmWHMHMMMMHMMHHHHMHHNHHMMNMV
[— et]
PP P P P s i e e S S = T
o
© o © o o o © o o o o o ©
o e o o) o O o o) o o) o o) o
%) ~ I — - | — — 2 ~ X5)
| | | |

(seauba() spnidwy bBuibury

Time (Seconds)

Figure 4.14: Measurement of two-step open-loop control strategy to reduce SPM ringing. Results are
shown for the same movement of 21.4° with and without control. The motor currents are changed to

Because the

hold the motor at the final position when the motor is expected to have zero velocity.
midpoint and timing are not exactly correct, the ringing is not completely eliminated.

Page 75 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 70

We are currently investigating other control approaches advocated by Singer and Seering involving
three impulses to make a more robust strategy. Results from the open-loop control strategies we tested
are presented in Section ?7.

One of the motivating factors behind the development of the SPM was to make a motor that could
be run by an open-loop controller, and we have accomplished this task. However, if higher performance
is needed, a velocity or position sensor could be added to run the motor with a closed-loop control
strategy. This would allow the two-step control strategy to applied more accurately, as the zero-velocity
point would be known exactly. Not only would this increase the speed of the motor, but it would also
increase its accuracy. The motor’s supply currents could be 90° out of phase with the position, like in
traditional DC motors. This would result in always driving the motor at its maximum torque and thus
the torque would no longer be dependent on the difference between the current and destination position.
No closed-loop control strategies have been implemented yet.

4.5 Design Issues

We want to design the SPM to maximize its torque while minimizing its size and power usage. There
are several parameters that we have control over in this design. The diameter of the wire and the area,
number of turns, and voltage across the coil as well as the magnetic return path are the parameters that
most affect the design, and are the ones that we will discuss here.

Page 76 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 71

Figure 4.15: Simulation of magnetic circuit for the SPM left) without and right) with an iron magnetic
return path. The permanent magnet is in the center. A camera mounted on the magnet would be
looking towards the bottom of the page. The rectangles represent the coils of the motor. It can be seen
that without the magnetic return, only a small percentage of the magnetic field returns outside the coils,
but with the magnetic return, an efficiency of nearly 50% is achieved.

The first issue is the magnetic return path. Our magnetic circuit consists of a permanent magnet
that generates magnetic field lines with a geometry dependent on the type of material in its immediate
vicinity. Magnetic circuits can be described analogously to electric circuits. With electric circuits,
different materials have different resistances and the current will follow the path of least resistance. In
magnetic circuits, different materials have different permeability and the magnetic field will follow the
path of greatest permeability. Because there is only torque on a current loop if the magnetic field goes
through the loop and returns outside the loop, it is critical that the geometry of the motor is designed so
that the permanent magnetic field lines return outside the coil. Air has very low permeability while iron
has very high permeability. By adding an iron return path outside the motor, more magnetic field lines
will enclose the coil because the magnetic field lines will follow the path of highest permeability, resulting
in more torque. A simulation of the magnetic circuit for the external coil SPM with and without an iron
return path is shown in Figure ?7.

Now let us investigate the parameters of voltage (1), the number of turns in the coil (N), the area of
the coil (A), and the diameter of the wire (D). We know that 7« NtAB, and power, P = Vi¢. We want
to maximize the ratio /P while maintaining a minimum acceptable torque and maximum acceptable
power. The resistance of the wire is proportional to the number of turns of the coil and the area of the
coil, and it is inversely proportional to the square of the diameter of the wire, so we can write

NA
R x ﬁ
Because ¢t = V/R, we can rewrite the equation for current as ¢ o< (VD?)/(NA). Finally we can rewrite
the equations for torque, power and their ratio using only the input parameters:

T x VD*.B (47)
1%
2.—
P x VD~ (48)
T BNA

From these relationships, we can see that we want to maximize B and N while minimizing V. In doing
so, we must also maintain our torque and power requirements and adjust V', D, and A accordingly. The
values of these parameters for our prototype SPM are reported in Section ?7?.

Page 77 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 72

source. The PWM method is preferred for ease of use, although the variable current source technique
has the advantage that the currents, and thus the motor position, are independent of the temperature
of the motor.

The SPM controller we use is based on a Motorola M68332 microcontroller that is capable of creating
PWM signals. A Unitrode L293N power driver supplies the current for the motor. PWM means
driving the motor with a square wave of constant amplitude and period with a variable duty cycle. The
percentage of the period where the supply is high is called the duty cycle. A duty cycle of 0 gives no
current to the motor while a duty cycle of 100 gives maximum current. The inertia and inductance of
the coil effectively smooths the PWM supply. The polarity of the voltage on the coil also needs to be
controlled in order to position the motor everywhere on the unit sphere. The power driver allows us to
control the voltage polarity.

4.7 Prototype spherical pointing motor

The prototype SPM (Figure ??) is 4 x 5 x 6 cm, weighs 160 grams and is capable of actuating a 6
gram load. Its total workspace is approximately 60° in both the pan and tilt directions. The permanent
magnetic field is estimated at 1 Tesla with an efficiency of about 5%. The number of turns in the coil is
estimated. The maximum torque is computed here, where ¥ = 90°. This table shows the parameters of
the motor along with its calculated torque and power usage. The actual torque and power usage have
not been measured.

Coil Parameter | Value

Inside 630

30 gauge (= .000254 m)
0.000730 m?

15 Volts

210

016N - m or 2.30z - in
11 Watts

500

30 gauge

0.000993 m?

15 Volts

26.092

014N - m or 2.00z - in
9 Watts

420

30 gauge

0.00130 m?

15 Volts

220

.019N - m or 2.60z - in
10 Watts

Middle

Outside

= =~ I Wit w I e~ B B =~ vii_Jll w i~ Bavlin B =v B Wi S w I 4

4.7.1 Accuracy and precision measurements

The precision and accuracy of the SPM were measured by reflecting a laser diode off a reflective surface
attached to the rotor. The reflected beam’s movement is measured on a wall several feet away as
described below.

Page 78 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 73

The precision of the motor is defined as the angular distance between adjacent positions. If the
controller consisted of an analog variable current source, the motor’s precision would be infinite. As we
are using a digital PWM controller, the precision with which we can control the motor is limited by
the step size of the PWM duty cycle. The step size is dependent on the frequency of the PWM. Lower
frequencies have more precise control of the step. However, lower frequencies also introduce a choppiness
that vibrates the motor. We use a 1KHz frequency and are able to specify 4,000 steps in the duty cycle
(i-e., 4,000 different duty cycles). As the duty cycle of the PWM on a single coil with a specified polarity
changes between 0 and 100, the motor will turn at most 45°. Thus, we can position the motor to steps
no smaller than 45°/4000 = 0.011° or 0.68 minutes of arc.

The accuracy of the motor is defined as the repeatability of the motor. If the motor were balanced
so that gravity was not a factor, then its accuracy would be dependent only upon the friction of the
bearings. As there is no iron core, there is no hysteresis, and thus it is absolutely repeatable. Because
the motor, in fact, is not perfectly balanced, the motor position is not constant at different orientations
to gravity, but at a fixed orientation, the accuracy is dependent only upon the friction of the bearings.

We measured the motor’s accuracy with a laser setup (Figure ??) and found the motor to be accurate
to 0.15°. The camera mounted in our motor returns 192 x 165 pixels with a 33.6° horizontal field of
view. This is equivalent to 0.175° per pixel. For our camera and lens, the SPM is thus accurate to about
one pixel.

The procedure for measuring motor accuracy is as follows. The motor is set at a fixed position with
the rotor positioned at the place to be measured. The laser is then oriented so that the reflected beam
hits the wall at a right angle. This point on the wall is recorded. The rotor is moved away and then back
to the original position. The distance between the new reflected laser position and the original position
is measured, and the accuracy of the motor is calculated according to Equation ?7.

The measurement setup is illustrated in Figure ??. The motor is moved © degrees. The distance
from the motor to the wall is f, and e is the distance between the first and second laser position on the
wall. ® is the angular difference between the first and second motor positions. The solid lines represent
the first motor position, and the dashed lines represent the second. The relation between the laser point
movement and the accuracy of the motor is

® = —tan (=) (50)

4.7.2 Velocity measurements

We measured the average velocity of the motor for point to point motions since we have no ability to
measure instantaneous velocity. We recorded the velocity using the technique described in Section 77?7
for measuring the ringing. The motor controller was programmed to accept motion commands with
a specified control strategy over an RS-232 serial port. A program running on a Sun Sparcstation
controlled the SPM and automatically recorded and analyzed the results. For each control strategy, ten
measurements were made at each of ten different angular movements. The averaged results with error
bars showing the variance of each experiment are shown in Figures ??, 7?7, and ?7.
A summary of the control strategy measurements follows:

No control Base line for comparing control strategies.

Fixed percentage The motor is moved a fixed percentage of the distance between its current position
and the destination position with a fixed delay between each movement.

Page 79 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 74

f

Final Output _-
Laser Beam .- -

;/”\/25‘»’ N

Original Output
Laser Beam

Original
Motor Final
I t
Position Motor LI;};ET
Position
Beam

Figure 4.16: Illustration of our experimental setup for measuring motor accuracy. The laser beam is
reflected off the rotor onto a flat surface. The motor is then moved to a new position and back to
the original position. The new laser beam position is compared with the original position to see how
accurately the motor returned to the original position.

By making the percentage of movement per step small enough, the ringing can be completely
eliminated at the price of velocity. Results shown here are for a percentage selected such that the
total time to move was minimized.

Two-step The motor is moved to the midpoint between the initial and destination positions. After a
delay equal to half the period of the natural motor oscillation, the motor is moved to the destination
position.

The midpoint and delay used are an approximation to the ideal values. These result in good
results with a fixed time to move any distance, and a small amount of ringing at the end of
the movement. The ringing at the end of the motion does not depend on the amplitude of the
motor movement. Rather, it depends on the inaccuracy of the midpoint and delay calculations. A
calibrated look-up-table approach would be necessary to eliminate the ringing completely.

Dual two-step The two-step method is used to move first to the midpoint, and then to the endpoint.
This theoretically takes twice as long as the single two-step method, but actually results in slightly
better results because the resultant ringing is somewhat reduced.

Multiple two-step The two-step method is used multiple times, always moving halfway between the
current position and the destination position.

This theoretically takes time O(log(¥)) where ¥ is the angular distance between the initial and
destination positions. In practice, it produced very similar results to the dual two-step method.

Our measuring apparatus was fairly noisy, resulting in the high variance reported. It is clear that all
four control strategies provided substantial improvement over the uncontrolled performance. Of these,
the two-step methods are a little better than the fixed percentage approach. Because of the noise in our
measurements, it is not clear which two-step method is the best.

Page 80 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 75

SPM Control Strategy Results
1,75 Degrees Ringing (10 Pixels)
‘ ‘ \

2.0 ‘
No control strateqy
,,,,,,,,,,,,, Fixed percentage (% = 1/50)
,,,,,,,,,,, Two—step
,,,,,,,,,,,,,,,,, Dual two—step
[Multi two—step
1.5 |

Time (Seconds)
o
T
|

0.5 -

Movement (Degrees)

Figure 4.17: Results of different open-loop control strategies to reduce the ringing of the SPM. Times
reported are those after which amplitude of the ringing has been reduced to 1.75° (10 pixels in our
camera). Control strategies are discussed in the text.

Page 81 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR 76

SPM Control Strategy Results
0.70 Degrees Ringing (4 Pixels)
‘ ‘ \

2.0 ‘
No control strateqy
,,,,,,,,,,,,, Fixed percentage (% = 1/50)
,,,,,,,,,,, Two—step
,,,,,,,,,,,,,,,,, Dual two—step
[Multi two—step
1.5 |

Time (Seconds)
o
T

0.5 -

0.0

Q.0

Movement (Degrees)

Figure 4.18: Results of different open-loop control strategies to reduce the ringing of the SPM. Times
reported are those after which amplitude of the ringing has been reduced to 0.70° (4 pixels in our
camera).

Page 82 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

Time (Seconds)

2.0

o

0.5

0.0

SPM Control Strategy Results
0.35 Degrees Ringing (2 Pixels)
‘ ‘ \

I
No control strateqy

""""""" Fixed percentage (% = 1/50)

fffffffffff Two—step

————————————————— Dual two—step

— Multi two—step T
! ‘ ! ‘ ! ‘ !

0.0 50 10.0 15.0 20,0

Movement (Degrees)

7

Figure 4.19: Results of different open-loop control strategies to reduce the ringing of the SPM. Times
reported are those after which amplitude of the ringing has been reduced to 0.35° (2 pixels in our

camera).

Page 83 of 86

CHAPTER 4. SPHERICAL POINTING MOTOR

The results are summarized in the following table. For each control strategy, the time to move 2
degrees and to move 20 degrees are given for each of three ringing requirements. The times are specified

in milliseconds.

It should be stressed that the results from these two-step open-loop control strategies were obtained
with approximate calculated values for the mid-point and timing values. We fully expect that with a cali-
brated look-up-table approach, as with the position calibration of Section ??, we will obtain substantially

better results.

Page 84 of 86

| Ctrl Method

| -35° ringing | .70° ringing | 1.75° ringing |

No control 408/1480 | 110/1140 18/760
Fixed percentage 127/734 120/395 120/227
Two-step 332/445 83/334 16/143
Dual two-step 359,/208 96/155 18/100
Multi two-step 179/240 56/171 17/128

Page 85 of 86

79

BIBLIOGRAPHY 80

Bibliography

[1] A. Lynn Abbott. Selective fixation control for machine vision: A survey. In Proceedings of the IEEE
International conference on systems, man, and cybernetics, pages 1-6, October 1991.

[2] A. Lynn Abbott and Narendra Ahuja. Surface reconstruction by dynamic integration of focus,
camera vergence, and stereo. International Conference on Computer Vision, pages 532-543, 1988.

[3] A. Lynn Abbott and Narendra Ahuja. The university of illinois active vision system. Technical
Report CV-91-8-2, University of Illinois, Beckman Institute, 1991.

[4] Peter K. Allen, Billibon Yoshimi, and Aleksandar Timcenko. Real-time visual servoing. In Pro-
ceedings of the 1991 IEEFE International Conf. on Robotcs and Automation, pages 851-856, April
1991.

[5] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Intl. J. Computer Vision, 2:333-356,
1988.

[6] R. Bajcsy. Active perception. IEEE Proceedings, 76(8):996-1005, 1988.
[7] D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[8] Aijza A. Baloch, Allen M. Waxman, Aijza A. Baloch, and Allen M. Waxman. Visual learning:
adaptive expectations, and behavioural conditioning of the mobile robot mavin. Neural Networks,
4:271-302, 1991.

[9] Leonard Bergstein. General theory of optically compensated varifocal system. Journal of the Optical
Society of America, 48(3):154-171, 1958.

[10] Leonard Bergstein and Lloyd Motz. Two-component optically compensated varifocal system. Jour-
nal of the Optical Society of America, 52(4):353-362, 1962.

[11] P. J. Burt. Algorithms and architectures for smart sensing. Proc. DARPA Image Understanding
Workshop, pages 139-153, 1988.

[12] Peter. J. Burt. Attention mechanisms for vision in a dynamic world. 9th IEEE Intl. Conf. on
Pattern Recognition, pages 977-987, 1988.

[13] ed. C. Brown. The rochester robot. Technical Report 257, University of Rochester, 1988.

[14] A. Califano, R. Kjeldsen, and R. M. Bolle. Data and model driven foveation. 10th International
Conference on Pattern Recognition, Vol. 1, pages 1-7, 1990.

[15] G. M. Chaikin and C. F. R. Weiman. Image processing system. U.S. Patent No. 4,267,573, May
1981.

[16] J. J. Clark and N. J. Ferrier. Modal control of an attentive vision system. Second Intl. Conf.
Computer Vision, page 514, 1988.

[17] James L. Crowley. A Representation for Visual Information. PhD thesis, Carnegie-Mellon Univer-
sity, November 1981.

[18] James L. Crowley and Amy L. Lowrie. Multiple resolution representation and matching of stereo
scan lines, January 1985.

[19] N. Deo. Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall, 1974.

Page 86 of 86

