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plest way to find a consistent labelingafelational structure (we shall often say
"labeling of a scene") is to apply a depth-fitete searctof the labeling possibili-
ties,as in the backtracking algorithm (11.1).

Label an object in accordance with unary constraints.

Iterate until a globally consistent labeling is found:

Given the current labeling, label another object
consistently—in accordance with all constraints.

If the object cannot be labeled consistently, backtrack
and pick a new label fapreviously labeled object.

This labeling algorithm can be computationally inefficient. First, it does noi
prune the search tree very effectively. Second, if it is used to generate all cc
sistent labelings, it does not recognize important independences in the labels. T
is, it does not notice that conclusions reached (labels assigned) in part of the t
search are usable in other parts without recomputation.

In a serial relaxation, the labels are changed one object at a time. After ea
such change, the new labeling is used to determine which object to process nt
This technique has proved useful in some applications [Feldman and Yakimovs
1974).

Assign all possible labels to each object in accordance with

unary constraints.

Iterate until a globally consistent labeling is found:
Somehow pick an object to be processed.
Modify its labels to be consistent with the current
labeling.

A parallel iterativealgorithm adjusts all object labels at once; we have set
this approach in several places, notably in the "Waltz filtering algorithr8éof
tion 9.5.

Assign all possible labels to each object in accordance with
unary constraints.
Iterate untilaglobally consistent labeling is found:

In parallel, eliminate from each object's label set
those labels that are inconsistent with the current
labels of the rest of the relational structure.

A less structured version of relaxation occurs when the iteration is replace
with an asynchronous interactioaf labeled objects. Such interaction may be impl
mented with multiple cooperating processes or in a data base with "demons" (A
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pendix 2). This method of relaxation was used in MSYS [Barrow and Tenenbaur
1976]. Here imagine that each object is an active process that knows its own lab
set and also knows about the constraints, so that it knows about its relations wi
other objects. The program of each object might look like this.

If I have just been activated, and my label set is not
consistent with the labels of other objects in the
relational structure, thehchange my label set to be
consistent, elsesuspendnyself.

Whenever change my label set, | activate other objects
whose label set may be affected, thsnspendnyself.

To use such a set of active objects, one can give each one all possible lab
consistent with the unary constraints, establish the constraints so that the obje
know where and when to pass on activity, and activate all objects.

Constraints involving arbitrarily many objects (i.e., constraints of arbitrarily
high order) can efficiently be relaxed by recording acceptable labelings in a grag
structure [Freuder 1978]. Each object to be labeled initially corresponds to a noc
in the graph, which contains all legal labels according to unary constraints. Highe
order constraints involving more and more nodes are incorporated successively
new nodes in the graph. At each step the new node cons$rainpagated;that is,
the graph is checked to see if it is consistent with the new constraint. With the ir
troduction of more constraints, node pairings that were previously consistent me
be found to be inconsistent. As an example consider the following graph colorin
problem: color the graph in Fig. 12.8 so that neighboring nodes have differer
colors. It is solved by building constraints of increasingly higher order and pro-
pagating them. The node constraints are given explicitly as shown in Fig. 12.8i
but the higher-order constraints are given in functional implicit form; prospective
colorings must be tested to see if they satisfy the constraints. After the node co
straints are given, order two constraints are synthesized as follows: (1) make
node for each node pairing; (2) add all labelings that satisfy the constraint. Th
result is shown in Fig. 12.8b. The single constraint of order three is synthesized
the same way, but now the graph is inconsistent: the ma¥€lz!'Red,Green" is
ruled out by the third order legal label set (RGY,GRY). To restore consistency th
constraint is propagated through node (Y,Z) by deleting the inconsistent labeling
This means that the node constraint for node Z is now inconsistent. To remec
this, the constraint is propagated again by deleting the inconsistency, in this ca:
the labeling (Z:G). The change is propagated to node (X,Z) by deleting (X,z
Red,Green) and finally the netwoikconsistent.

In this example constraint propagation did not occur until constraints of
order three were considered. Normally, some constraint propagation occurs aft
every order greater than one. Of course it may be impossible to find a consiste
graph. This is the case when the labels for bideour example are changed from
(G,Y) to (G,R). Inconsistency is then discovered at order three.

It is quite possible that a discrete labeling algorithm will not yield a unique la-
bel for each object. In this case, a consistent labeling exists using each label for t
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Fig. 12.8 Coloringagraph by building constraints of increasingly higher order.

object. However, which of an object's multiple labels goes with which of another

object's multiple labels is not determined. The final enumeration of consistent la-
belings usually proceeds by tree search over the reduced set of possibilities remain
ing after the relaxation.

Convergence propertiesf relaxation algorithms are important; convergence
means that in some finite time the labeling will "settle down" to a final value. In
discrete labeling, constraints may often be written so that the label adjustment
phase always reduces the number of labels for an object (inconsistent ones are e
iminated). In this case the algorithm clearly must converge in finite time to a con-
sistent labeling, since for each object the label set must either shrink or stay stable
In schemes where labels are added, or where labels have complex structure (suc
as real number "weights" or "probabilities"), convergence is often not
guaranteed mathematically, though such schemes may still be quite useful. Som
probabilistic labeling schemes (Section 12.4.3) have provably good convergence
properties.
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It is possible to use relaxation schemes without really considering the
mathematical convergence properties, their semantics (What is the semantic
weights attached to labels—are they probabilities?), or a clear definition of wk
exactly the relaxation is to achieve (What is a good set of labels?). The fact t
some schemes can be shown to have unpleasant properties (such as assi
nonzero weights to each wfo inconsistent hypotheses, or not always converging
to a solution), does not mean that they cannot be used. It only means that tl
behavior is not formally characterizable or possibly even predictable. As relaxati
computations become more common, the less formalizable, less predictable,
less conceptually elegant forms of relaxation computations will be replaced
better behaved, more thoroughly understood schemes.

12.4.3 A Linear Relaxation Operator and a Line Labeling Example

The Formulation

We now move away from discrete labeling and into the realm of continuot
weightsor supposition valuesn labels. In Sections 12.4.3 and 12AA we fol
closely the development of [Rosenfeld et al. 1976]. Let us require that the sum
label weights for each object be constrained to sum to unity. Then the weights
reminiscent of probabilities, reflecting the "probability that the label is correct.
When the labeling algorithm converges, alabel emerges with a high weight if it c
curs in a probable labeling of the scene. Weights, or supposition values, are in
hard to interpret consistently as probabilities, but they are suggestive of likelihoa
and often can be manipulated like them.

In what follows p refers to probability-like weights (supposition values)
rather than to the value afprobability density function. Let a relational structure
with n objects be given by,ai= 1, ..., n, each with m discrete labels \\, .4, X
The shorthang, (X) denotes the weight, or (with the above caveats) the "probe
bility" that the labelX (actually k for some k) is correct for the object Bhen the
probability axioms lead to the following constraints,

0<AX<1 (12.14)
I A00=1 (12.15)
A

The labeling process starts with an initial assignment of weights to all labe
for all objects [consistent with Eqgs. (12.14) and (12.15)]. The algorithm is parall
iterative: It transforms all weights at once into a new set conforming to Eq:
(12.14) and (12.15), and repeats this transformation until the weights converge
stable values.

Consider the transformation as the application of an operator to a vector of
bel weights. This operator is based on dmenpatibilitiesof labels, which serve as
constraints in this labeling algorithm. A compatibility py looks like a conditional
probability.

Ep, XX)=1 foral /j, X (12.16)
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Pa(X|X)=1 iff X=X, elseO. (12.17)

Thely X |X) may be interpreted as the conditional probability that objelts la-

bel X given that another object aj has label X'. These compatibilities may be gatt

ered from statistics over a domain, or may reflect a priori belief or information.
The operator iteratively adjusts label weights in accordance with other

weights and the compatibilities. A new weight(X) is computed from old weights

and compatibilities as follows.

p,) =Zcul l. Pn (X]X)/>,(X"} (12.18)

The Cy are coefficients such that
| =1 (12.19)
i

In Eq. (12.18), the inner sum is the expectation that objdtas labek, given the
evidence provided by object a,, p, (X) is thus a weighted sum of these expecte
tions, and theCy are the weights for the sum.

To run the algorithm, simply pick the @gnd Cy , and apply Eq. (12.18) re-
peatedly to the/?, until they stop changing. Equation (12.18) is in the form of a ma
trix multiplication on the vector of weights, as shown below; the matrix elements
are weighted compatibilities, ti&yPy.The relaxation operator is thus a matrix; if it
is partitioned into severalomponentatrices, one for each set of non-interacting
weights, linear algebra yields proofs of convergence properties [Rosenfeld et a
1976]. The iteration for the reduced matrix for each component does converge
and converges to the weight vector that is the eigenvector of the matrix with eiger
value unity. This final weight vector is independent of the initial assignments of la-
bel weights; we shall say more about this later.

An Example

Let us consider the input line drawing scen&igf 12.9a used in [Rosenfeld
et.al. 1976]. The line labels given in Section 9.5 allow several consistent labels a
shown in Fig. 12.9b-e, each witdifferent physical interpretation.

In the discrete labelling "filtering" algorithm presented in Section 9.5 and
outlined in the preceding section, the relational structure is imposed by the neigk
bor relation between vertices induced by their sharing a line. Unary constraints ar
imposed through a catalog of legal combinations of line labels at vertices, and th
binary constraint is that a line must not change its label between vertices. The algt
rithm eliminates inconsistent labels.

Let us try to label the sides of the trianglea-, anda3in Fig. 12.9 with the
solid object edge labels {>, <;,—}. To do this requires some "conditional prob-
abilities" for compatibilities py{\ |X"), so let us use those that arise if all eight in-
terpretations of Fig. 12.9 are equally likely. Remembering that

p{X\Y)= P‘{;])? (12.20)
p
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Fig. 12.9 A triangle and its possible

labels, (a) Edge names, (b) Floating.

(c) Flap folded up. (d) Triangular hole.
© (e) Flap folded down.

and taking p(X, Y) to mean the probability that labels Xand Foccur consecutively
in clockwise order around the triangle, one can derive Table 12.2. Of course, w
could choose other compatibilities based on any considerations whatever as long
Egs.(12.16) and (12.17) are preserved.

Table 12.2 shows that there are two noninteracting components>{ and
{ +,<}. Consider the first component that consists of the weight vector
W >), P\(-)>Pi(>), Pi(-), P3(>), />3(-)I (12.21)

The second is treated similarly. This vector describes weights for the subpopule
tion of labelings given by Fig. 12.9b and c¢. The matrix M of compatibilities has
columns of weightegd:>.

Cn/Mi(>|>) c,i/>2i(>1>)
CILPII(>]-) CAP2\(>\-)
C\2p\I(>\>) C2P2I(>\>)
M C\2Pni>\-) C22P2li>\-) (12.22)
CI3/>13(>I>) G3/>23(>I>)

CnPn(>\-) C23/>23(>]-)
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Table 12.2

X, V2 Pk, *2> [>0ilAy)

> > >4 %
> | 1
J— > /
- - ¢ 6
> < 0 0
> 4+ 0 0
- < 0 0
- + 0 0
< > 0 0
+ > 0 0
< - 0 0
+ — 0 0
< <

< 4+ L !
+ <

+ + §

=

If we let ¢, =’hfor all /j, then

10/31/, 2B I3
0110 10
AN3/310 h /3
= 10 0 110 (12.23)
% B " /3 1 0
10 10 0 1

An analytic eigenvector calculation (Appendix 1) shows that the M of Eq.
(12.23) yields (for any initial weight vector) the final weight vector of

Pl4, 14, 34, % % 4] (12.24)

Thus each line of the population in the component we chose (Fig. 12.9b and ¢)
label > with "probability"¥4, —with "probability"'A. In other words, from an ini-

tial assumption that all labelings in Fig. 12.9b and c were equally likely, the syster
of constraints has "relaxed" to the state where the "most likely" labeling is that ¢
Fig. 12.9b, the floating triangle.

This relaxation method is a crisp mathematical technique, but it has som
drawbacks. It has good convergence properties, but it converges to a solution ¢
tirely determined by the compatibilities, leaving no room for preferences or loca
scene evidence to be incorporated and affect the final weights. Further, the alg
rithm perhaps does not exactly mirror the following intuitions about how relaxa-
tion should work.
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1. Increase p,(k) if high probability labels for other objects are compatible with
assignment oh to a,.

2. Decrease,(A) if high probability labels are incompatible with the assignment
of A to a,.

3. Labels with low probability, compatible or incompatible, should have little
influence on /?,(A).

However, the operator of this section decreases /?,(A) the most when other labe
have both low compatibility and low probability. Thus it accords with (1) above,
but not with (2) or (3). Some of these difficulties are addressed in the next section

12.4.4 A Nonlinear Operator

The Formulation

If compatibilities are allowed to take on both positive and negative values,
then we can express strong incompatibility better and obtain behavior more like
(1), (2), and (3) just above. Denote the compatibility of the event "label k on a"
with the event "label k on a" by ty (A.). If the two events occur together often,
r,jshould be positive. If they occur together rarelysiould be negative. If they
are independent, ry should be 0. T¢wrelation coefficienbehaves like this, and
the compatibilities of this section are based on correlations (hence the the notatio
r,j for compatibilities). The correlation is defined using the covariance.

covtf, Y) = p(X, Y)-p(X)p(Y)
Now defineaquantity a which is like the standard deviation
*X) =[P - (POT (12.25)

then the correlation is the normalized covariance

This allows the formulation of an expression precisely analogous to Eq.
(12.18),0nly thatr,j instead of py is used to obtain a means of calculating the posi-
tive or negative change in weights.

<73A) = £<v [£ njik, k')pFHK"] (12.27)
In Egs. (12.27)—(12.29) the superscrlpts indicate iteration numbers. The weigh
change (Eg. 12.27) could be applied as follows,
Pi*HK)=pM()  + gqM(K) (12.28)

but then the resultant label weights might not remain nonnegative. Fixing this in ¢
straightforward way yields the iteration equation

) I+ /*) A
PY "(A)- E g(;))ﬁrr,\a()(i]y] H2.29)
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The convergence properties of this operator seem to be unknown, and li
the linear operator it can assign nonzero weights to maximally incompatible labe
ings. However, its behavior can accord with intuition, as the following example
shows.

An  Example

Computing the covariances and correlations for the set of labels of Fi
12.9b-e yields Table 12.3.

Figure 12.10 shows the nonlinear operatde@{12.29) operating on the ex-
ample of Fig. 12.9. Figure 12.10 shows several cases.

1. Equal initial weights: convergenct apriori probabilities(%, % %, %).
2. Equal weights in the componefit,—}. convergence to "most probable"
floating triangle labeling.

3. Slight bias toward féaplabeling is not enough to overcome convergence to the
"most probable" labeling, as in (2).

4. Like (3), but greater bias elicits the "improbable" labeling.

5. Contradicatory biases toward "improbable" labelings: convergence to "mos
probable” labeling instead.

6. Like (5), but stronger bias toward one "improbable" labeling elicits it.

7. Bias toward one of the componerits—}, {<,+ } converges to most prob-
able labeling in that component.

8. Like (7), only biased to less probable labelling in a component.

12.4.5 RelaxationasLinear Programming

The Idea

Linear programming (LP) provides some useful metaphors for thinking
about relaxation computations, as well as actual algorithms and a rigorous ba
[Hummel and Zucker 1980]. In this section we follow the development of [Hinton

1979].
Table 12.3

Xi Xz cov(X), Xp) cor(Xi, Xp)
> > "I64 s

> - 264 5A/105
- > % 5/VT05
> <
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To put relaxation in terms of linear programming, we use the following trans
lations.

LABEL WEIGHT VECTORS => POINTS IN EUCLIDEAN N-SPACE. Each
possible assignment of a label to an object fg/othesisto which a weight
(supposition value) is to be attached. With N hypotheses, an N-vector
weights describes a labeling. We shall call this vector a (hypothesis or labe
weightvector.For m labels and objects, we need at most Euclidean wm-space

CONSTRAINTS =$> INEQUALITIES. Constraints are mapped iimiear ine-
qualitiesin hypothesis weights, by way of various identities like those of "fuzz
logic" [Zadeh 1965]. Each inequality determines an infinite half-space. Th
weight vectors within this half-space satisfy the constraint. Those outside ¢
not. The convex solid that is the set intersection of all the half-spaces includ
those weight vectors that satisfy all the constraints: each represents a "cc
sistent” labeling. In linear programming terms, each such weight vector is
feasiblesolution. We thus have the usual geometric interpretation of the linei
programming problem, which is to find the best (optimal) consistent (feasible
labeling (solution, or weight vector). Solutions should hianeger-valued(1-

or 0-valued) weights indicating convergence to actual labelings, not probabili
tic ones such as those of Sectitih4.3,0r the one shown in Fig. 12.10c, case 1.

¢ HYPOTHESIS PREFERENCES ="> PREFERENCE VECTOR. Often somk

hypotheses (label assignments) are preferred to others, on the basi®of
knowledge, image evidence, and so on. To express this preference, make
N-dimensional preference vector, which expresses the relative importan
(preference) of the hypotheses. Then

» Thepreferenceof alabelingis the dot product of the preference vectol
and the weight vector (it is the sum for all hypotheses of the weight o
each hypothesis times its preference).

» The preference vector definepraference directiom /N-space. The op-
timal feasible solution is that one "farthest" in the preference direc-
tion. Let x and y be feasible solutions; they are /V-dimensional weight
vectors satisfying all constraints. af= x - y has a component in the
positive preference direction, then x is a better solution than y, by the
definition of the preference of a labeling.

It is helpful for our intuition to let the preference direction define a "down-
ward" direction in N-space as gravity does in our three-space. Then we wish
pick the lowest (most preferred) feasible solution vector.

e LABELING => OPTIMAL SOLUTION. The relaxation algorithm must solve

the linear programming problem—find the best consistent labeling. Under th
conditions we have outlined, the best solution vector occurs generally at a ve
tex of the N-space solid. This is so because usually a vertex will be the "lowes
part of the convex solid in the preference direction. It is a rare coincidence th.
the solid "rests on a face or edge," but when it does a whole edge or face of 1
solid contains equally preferred solutions (the preference direction is normal 1
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the edge or face). For integer solutions, the solid should be the convex hull
integer solutions and not have any vertices at noninteger supposition values.

The "simplex algorithm” is the best known solution method in linear pro-
gramming. It proceeds from vertex to vertex, seeking the one that gives the o
timal solution. The simplex algorithm is not suited to parallel computation, how-
ever, so here we describe another approach with the flavor of hill-climbing optim
zation. Basically, any such algorithm moves the weight vector around in //-spac
iteratively adjusting weights. If they are adjusted one at a time, serial relaxation
taking place; if they are all adjusted at once, the relaxation is parallel iterative. Tt
feasible solution solid and the preference vector define a "cost function" over ¢
TV-space, which acts like a potential function in physics. The algorithm tries tc
reach an optimum (minimum) value for this cost function. As with many optimi-
zation algorithms, we can think of the algorithm as trying to simulate (in N-space
a ball bearing (the weight vector) rolling along some path down to a point ¢
minimum gravitational (cost) potential. Physics helps the ball bearing find the
minimum; computer optimization techniques are sometimes less reliable.

Translating Constraints to Inequalities

The supposition values, or hypothesis weights, may be encoded into the i
terval [0,1], with 0 meaning "false,'l meaning "true." The extension of weights
to the whole interval is reminiscent of "fuzzy logic," in which truth values may be
continuous over some range [Zadeh 1965]. As in Sedtio#.3,we denote suppo-
sition values by?(+)//, A, B, and Care label assignment events, which may be
considered as hypotheses that the labels are correctly assigned. ~, V, apd="
<=> are the usual logical connectives relating hypotheses. The connectives allc
the expression of complex constraints. For instance, a constraint might be "Lak
x as '/ i"d only if z is labeled V or qis labelled V." This constraint relates
three hypotheses: h\. (xis "/")s-h(zis "w>"), hy. (gis "v"). The constraint is
then/?,<="> (hV hy).

Inequalities may be derived from constraints this way.

1. Negationp(H) = 1- p{~(H)).

2. Disjunction. The sums of weights of the disjunct are greater than or equal
one.p(A\J B\l.. .V C) gives the inequalityp{A) + p{B) + ... + p(C) >
1.

3. Conjunction.These are simply separate inequalities, one per conjunct. In pi
ticular, a conjunction of disjunctions may be dealt with conjunct by conjunct,
producing one disjunctive inequality per conjunct.

4. Arbitrary expressions.These must be put into conjunctive normal form
(Chapter 10py rewriting all connectivessA's and Vs. Then (3) applies.

As an example, consider the simple caswvofhypotheses A and B, with the
single constraint that A => B. Applying rulésthrough 4 results in the following
five inequalities inp(A) andp(B); the first four assure weight®ja]. The fifth
arises from the logical constraint, since A =>Bis the same as BV '(A).

Scene Labeling and Constraint Relaxation 423
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0<p(A)
p(A) <1
O”p(B)
p(B) « 1
p(B) + (-p(A) >l or P(B)>p(A)
These inequalities are shown in Fi.11.As expected from the => con-
straint, optimal feasible solutions exist at: (1,1XA/B)\ (0,1) or (~(A),B); (0,0)
or (~(A), ~(B)). Which of these is preferred depends on the preference vector. I

both its components are positive, (A,B) is preferred. If both are negative, ("(A
~(B)) is preferred, and so on.

A Solution Method

Here we describe (in prose) a search algorithm that can find the optimal feas
ble solution to the linear programming problem as described above. The descri
tion makes use of the mechanical analogy of an TV-dimensional solid of feasibl
solutions, oriented in TV-space so that the preference vector induces a "downwar:
direction in space. The algorithm attempts to move the vector of hypothesi
weights to the point in space representing the feasible solution of maximum prefe
ence.lt should be clear that this is a point on the surface of the solid, and unless tf
preference vector is normal to a face or edge of the solid, the point is a uniqgt
"lowest" vertex.

To establish a potential that leads to feasible solutions, one needs a meast
of the infeasibility of a weight vector for each constraint. Define the amount a vec
tor violates a constraint to be zero if it is on the feasible side of the constraint hy
perplane. Otherwise the violation is the normal distance of the vector to the hype
plane. If h, is the coefficient vector of tH& iyperplane (Appendix 1) and w the
weight vector, this distance is

d,=wsh, (12.30)

B vepr)

i,0) fretonna
AMAE SXAN>N

Fig. 12.11 The feasible region for two
hypothese®A and B and the constraint A
p(Q)>0 B. Optimal solutions may occur at the
threevertices.The preferred vertex will
be that one farthest in the direction of
the preference vector, or lowest if the
p{P)>0 preferencevector defines "down."
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If we then define the infeasibility as

[ =1~- (12.31)
/2
then dl/ddj = d, is the rate the infeasibility changes for changes in the violatio
The force exerted by each constraint is proportional to the normal distance frc
the weight vector to the feasible region denned by that constraint, and tends to
the weight vector onto the surface of the solid.

Now add a weak "gravity-like" force in the preference direction to make th
weight vector drift to the optimal vertex. At this point an optimization progran
might perform as shown in Fig. 12.12.

Figure 12.12 illustrates a problem: The forces of preference and constrail
will usually dictate a minimum potential outside the solid (in the preference dires
tion). Fixes must be applied to force the weight vector back to the closest (presu
ably the optimum) vertex. One might round high weight% nd low ones to 0, or
add another local force to draw vectors toward vertices.

Examples

An algorithm based on the principles outlined in the preceeding section w
successfully used to label scenes of "puppets” such as Fig. 12.13 with body p.
[Hinton 1979].

The discrete, consistency-oriented version of line labeling may be extend:
to incorporate the notion of optimal landings. Such a system can cope with the «
plosive increase in consistent labelings that occurs if vertex labels are included
cases of missing lines, accidental alignment, or "two-dimensional" objects such
folded paper. It allows modeling of the fact that human beings do not "see" i
possible interpretations of scenes with accidental alignments. If labelings are giv

@ (b)

Fig. 1212 In (a), the weight vector moves from Sto rest at T, under the com-
bined influence of the preferences and the violated constraints. In (b), conver-
gence is speeded by making stronger preferences, but the equilibrium is farther
away from the optimal vertex.
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bestset;
BOT TRUNK NECIBI
BOT NECK HEALCI
BOT HEAD NECK31
TOP UPPERARM TRUNAI LOWERARI®#4
TOP LOWERARM UPPERARDM2 HAND-
TOP UPPERARM TRUNAI LOWERARIG2
TOP LOWERARM UPPERARR2 HANDH2
TOP HAND LOWERARBI2
TOP THIGH TRUNKAI CALFJ4
BOT CALF THIGH 13 FOOT-
BOTTHIGH TRUNKAI CALFL4
BOT CALF THIGH K2 FOOT-

UPPERARND2 F2 THIGH 13 K2
TRUNKI

Itrytointerpret [trunk as upright importance”];
Itrytointerpret [thigh as upright importances];

1. bestset;

A2 TOPTRUNK NECk
BOT NECK HEACCI
BOT HEAD NECIBI

TOP THIGH TRUNKW2 CALFE3
TOP CALF  THIGHD3  FOOF
TOP THIGH TRUNKA2 ~CALFE3
FOOHI

TOP CALF  THIGHF3
TOP FOOT CALFG3

UPPERARM2 KI
TRUNK

THIGH D3 F3

TOP UPPERARM TRUNKA2 LOWERARNI3

BOT LOWERARM UPPERARM2  HAND-

BOT UPPERARM TRUNK A2 LOWERARM L3

BOT LOWERARM  UPPERARM KI

Lbestset;

Al TOPHEAD NECK3I
TOP NECK HEADAI  TRUNKC2
TOP TRUNK NECKBI  UPPERARMHI JI
TOP THIGH TRUNKC2 CALFE3
TOP CALF  THIGHD3 FOOT-
TOP THIGH TRUNKC2 CALF G3
TOP CALF THIGHF3 FOOT-
TOP UPPERARM TRUNKC2 LOWERARM
TOP LOWERARM UPPERARMHI  HAND-
TOP LOWERARM TRUNK C2 LOWERARM K4
BOT LOWERARM  UPPERARM J| HAND L6
80T HAND LOWERARM K4

THIGH D3 F3

Fig. 12.13 Puppet scenes interpreted by linear programming relaxation, (a)
shows an upside down puppet, (b) is the same input along with preferences to in-
terpret the trunk and thighs as upright; these result in an interpretation with trunk
and neck not connected. In (c), the program finds only the "best" puppet, since it

was only expecting one.
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costs,then one carinclude labelsfor missing linesandaccidental alignmeras
high-cost labels, rendering them usabletundesirable. Alsoin ascene-analysis
system using real data, local evidence for edge appearance can enhance the a |
likelihood thataline should beaaparticular label. If such preferences can be ex-
tracted along withthelines in a scene,theevidencecan beused by theline
labeling algorithm.

The inconsistency constrainfer line labelsmay beformalized asfollows.
Each line and vertex has one lalvel consistent labeling; thus for each line L and
vertex/,

| p(L has label LLABEL)= 1 (12.32)

all line labels

| pU has label VLABEL)= 1 (12.33)

all vertex labels

Of course,theVLABELS andLLABELS in theabove constraints mube
forced to be compatible (if L has LLABEL, JLABEL must agree with it). &lame
L and a verteXatits end,

p (L has LLABEL) = | p(J has label VLABEL) (12.34)
all VLABELS
giving LLABEL loi.

This constraint also enforceébhecoherence rulgaline maynotchangeits label
betwen vertices).

Using these constraints, linear programming relaxation latiblettiangle
example of Fig. 12.7 as shown in Fig. 12.14, which shows three cases.

1. Preference 0.%or eachof the three junction label assignments (hypotheses)
correspondingto thefloating triangle,0 preferencefor all other junction and
line label hypotheses: converges to floating triangle.

2. Like (1), butwith equal preferences giveo the junction labeldor thetri-
angular hole interpretation, 0 to all other preferences.

3. Preference8to the convex edge label for a 2 overrides the three preferences
1/2for the floating triangle of case (1). All preferences but these four were 0.

Some Extensions

The translationof constraintsto inequalities described above dasst
guarantee that they produeeset ohalf-spaces whose intersecti@sthe convex
hull of the feasible integer solutions. They can produce "noninteger opfiona,"
which supposition valuesre notforced to 1 or 0.This is reminiscentof the
behavior of the linear relaxation operator of Secti@.3,and may not be objec-
tionable.If it is, some effort must be expended to cope with it. Here is an exampl

Sec. 72.4 Scene Labeling and Constraint Relaxation 427

Page 439 of 539



428

> < - 4

P@,=» ¢ o«

.. ..p(@:+)

(b)
After 10 After 20 After 30 to 40

Case iterations iterations iterations

065 022 001 0.14 0.90 007 0 004 0.99 0 0 0 A

0.65 022 001 0.14 0.90 007 0 0.04 0.99 0 0 0 ! \

0.65 022 001 0.14 090 0.07 0 0.04 0.99 0 0 0 /I <\
)] 0.39 0389 0 0 014 095 0 0 0 0.99 'r r A

0.39 0.89 0 0 014 095 0 0 0 0.99

039 0.89 0 0 014 095 O 0 0 0.99 0 o / >\
(3) 0.56 0.48 0 0.05 081 023 0 0 0.99 0 0 O

0 0.34 0 0.99 0 015 0 0.99 0 0 0 0.99

0.56 048 0 0.05 081 023 0 0 0.99 0 0 O

©

Fig. 12.14 As in Fig. 12.10, the triangle of (a) is to be assigned labels, and the changing
label weights are shown for three cases in (c) using the format of (b). Supposition values
for junction labels were used as well, but are not shown. All initial supposition values
were 0.

of the problem. Assume three logical constrair{@ A B),~(BA C), and ~(CA
A). Suppose A, B, and Chave equal preferences of unity (the preference vectc
(1,1,1)).Translating the constraints yields

p(A) +p(B) <1

p(B) +p(C) <1 (12.35)

p{C) +p(A) <1

The best feasible solution has a total preferenc®/afand is
p(A) =p(B) =p(C) =4 (12.36)

Here the "best" solution is outside the convex hull of the integer solutions (Fi
12.15).

The basic way to ensure integer solutions is to use stronger constraints tt
those arising from the simple rules given above. These may be introduced at fii
or when some noninteger optimum has been reached. These stronger constre
are calledcuttingplanessince they cut off the noninteger optima vertices. In the
example above, the obvious stronger constraint is

puU) +p(B) +p(C) <1 (12.37)
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R P(B) =0
p(A) DiA)

A)+p{B)<-\
P(A)+p{B) P(A) +p(B) +p(C) < 1

P(C)

PW)=0
p{B)+p(C)<1
P(B) P(B)

@ ()

Fig. 12.15 (a) shows part of the surface of the feasible solid with constraiffs& B),

-<(B & C), > (C & /4), and the non-integer vertex where the three halfspaces intersect.
(b) shows a cutting plane corresponding to the constraint "at most one of A, B, or C" that
removes the non-integer vertex.

which says that at most one of A, B, and Cis true (this is a logical consequence o
the logical constraints). Such cutting planes can be derived as needed, and can t
guaranteed to eliminate all noninteger optimal vertices in a finite number of cuts
[Gomory 1968; Garfinkel and Nemhauser 1972]. Equality constraints may be

introduced as two inequality constraints in the obvious way: This will constrain the

feasible region to a plane.

Suppose that one desires "weak rules," which are usually true but which can
be broken if evidence demands it? For each constraint arising from such a rule,
add a hypothesis to represent the situation where the rule is broken. This
hypothesis is given a negative preference depending on the strength of the rule
and the constraint enhanced to include the possibility of the broken rule. For
example, if a weak rule gives the constraint P V Q, create a hypothesis H
equivalent to ~{P\J Q) = (~(P) A '((?)), and replace the constraint with PV Q\J
H. Then by "paying the cost" of the negative preference for //, we can have nei-
ther P nor Qtrue.

Hypotheses can be created as the algorithm proceeds by having demon-like
"generator hypotheses." The demon watches the supposition value of the genera
tor, and when it becomes high enough, runs a program that generates explicit
hypotheses. This is clearly useful; it means that all possible hypotheses do not nee«
to be generated in advance of any scene investigation. The generator can be given
preference equal to that of the best hypotheses that it can generate.

Relaxation sometimes should determine a real number (such as the slope of
a line) instead oftruth value. A generator-like technique can allow the method to
refine the value of real-valued hypotheses. Basically, the idea is to assign a
(Boolean-valued) generator hypothesis to a range of values for the real value to be
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determined. When this generator triggers, more hypotheses are generated to g
finer partition of the range, and so on.

The enhancements to the linear programming paradigm of relaxation giv
some idea of the flexibility of the basic idea, but also reveal that the method is n
at all cut-and-dried, and is still open to basic investigation. One of the questior
about the method is exactly how to take advantage of parallel computation capab
ties. Each constraint and hypothesis can be given its own processor, but hc
should they communicate? Also, there seems little reason to suppose that |
optimization problems for this form of relaxation are any easier than they are fc
any other multidimensional search, so the method will encounter the usual pro
lems inherent in such optimization. However, despite all these technical detai
and problems of implementation, the linear programming paradigm for the relax:
tion computation is a coherent formalization of the process. It provides a relativel
"classical" context of results and taxonomy of problems [Hummel and Zucke
1980].

12.5 ACTIVE KNOWLEDGE

430

Active knowledgesystems [Freuder 1975] are characterized by the use of prc
cedures as the elementary units of knowledge (as opposed to propositions or d
base items, for instance). We describe how active knowledge might work, becau
it is a logical extreme of the procedural implementation of propositions. In fact
this style of control has not proven influential; some reasons are given below.

Active knowledge is notionally parallel and heterarchical. Many different
procedures can be active at the same time depending on the input. For this rea
active knowledge is more easily applied to belief maintenance than to planning;
is very difficult to organize sequential activity within this discipline. Basically, each
procedure is responsible for a "chunk" of knowledge, and knows how to manage
with respect to different visual inputs. Control in an active knowledge system i
completely distributed. Active knowledge can also be viewed as an extension ¢
the constraint relaxation problem; powerful procedures can make arbitrary de
tailed tests of the consistency between constraints.

Each piece of active knowledge (program module) knows which other
modules it depends on, which depend on it, which it can complain to, and so fortl
Thus the choice of "what to do next" is contained in the modules and is not mac
by an exterior executive.

We describe HYPER, a particular active knowledge system design which il
lustrates typical properties of active knowledge [Brown 1975]. HYPER provides ¢
less structured mechanism for construction and exploration of hypotheses the
does LP-relaxation. Using primitive control functions of the system, the user ma
write programs for establishing hypotheses and for using the conclusions <
reached. The programs are "procedurally embedded" knowledge about a proble
domain (e.g. how events relate one to another, what may be conjectured or i
ferred from a clue, or how one might verify a hypothesis).

When HYPER is in use on a particular task in a domain, hypotheses ai
created, or instantiated, on the basis of low-level input, high-level beliefs, or an
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reason in between. The process of establishing the initial hypotheses leads tc
propagation of activity (creation, verification, and disconfirmation of hypotheses).
Activation patterns will generally vary with the particular task, in heterarchical
fashion. A priority mechanism can rank hypotheses in importance depending o
the data that contribute to them. Generally, the actions that occur are conditione
by previous assumptions, the data, the success of methods, and other factc
HYPER can be used for planning applications and for multistep vision processin
as well as inference (procedures then should generate parallel activity only und:
tight control). We shall thus allow HYPER to make usaobntext-oriented data
base (Section 13.1.1). It will use the context mechanism to implement "alternativ
worlds" in which to reason.

12.5.1 Hypotheses

A HYPER hypothesis is the attribution of a predicate to some arguments; its nam
is always of the form (PREDICATE ARGUMENTS). Sample hypothesis names
could be (HEAD-SHAPED REGION1), (ABOVE A B), (TRIANGLE (X1,Y1)
(X2,Y2) (X3,Y3)). A hypothesis is represented as a data structure with four com-
ponents; thetatus,contents,context,and links of the hypothesis.

The statusrepresents the state of the HYPER's knowledge of the truth of the
hypothesis; it may be T(rue), F(alse), (in either case the hypothesis has been e
blished) or P(ending). Thecontentsare arbitrary; hypotheses are not just truth-
valued assertions. The hypothesis was asserted in the data-base context giver
context. The links of a hypothesis H are pointers to other hypotheses that he
asked that H be established because they need H's contents to complete their ¢
computations.

12.5.2 HOW-TO and SO-WHAT Processes

Two processes are associated with every predicate P which appears as the predic
of a hypothesis. Their names are (HOW-TO P) and (SO-WHAT P). In them is em
bedded the procedural knowledge of the system which remains compiled in fror
one particular task to another in a problem domain. (HOW-TO P) expresses ho
to establish the hypothesis (P arguments). It knows what other hypotheses mu
be established first, the computations needed to establish (P arguments), and
forth. It has a backward-chaining flavor. Similarly, (SO-WHAT P) expresses the
consequences of knowing P: what hypotheses could possibly now be establishi
using the contents of (P arguments), what alternative hypotheses should be e
plored if the status of (P arguments)Fisand so on. The feeling here is of forward
chaining.

12.5.3 Control Primitives

HYPER hypotheses interact throughimitive controlstatementswhich affect the
investigation of hypotheses and the ramification of their consequences. The prim
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tives are used in HOW-TO and SO-WHAT programs together with other gener:
computations. Most primitives have an argument called priority, which expresse
the reliability, urgency, or importance of the action they produce, and is used |
schedule processes in a nonparallel computing environment (implemented a:
priority job queue [Appendix 2]). The primitives are GET, AFFIRM, DENY, RE-
TRACT, FAIL, WONDERIF, and NUDGE.

GET is to ascertain or establish the status and contents of a hypothesis.
takes a hypothesis H and priority PRI as arguments and returns the status and ¢
tents of the hypothesis. If H's status is T or F at the time of execution of the stat
ment, the status and contents are returned immediately. If the status is P (pel
ing), or if H has not been created yet, the current HOW-TO or SO-WHAT progran
calling GET (call it CURPROG) is exited, the proper HOW-TO job (i.e., the one
that deals with H's predicate) is run at priority PRI with argument H, and a link i
planted in H back to CURPROG. When H is established, CURPROG will be reac
tivated through the link mechanism.

AFFIRM is to assert a hypothesis as true with some contents
AFFIRM (H,CONT,PRI) sets H's status to T, its contents to CONT, activates its
linked programs and then executes the proper SO-WHAT program on it. Th
newly activated SO-WHAT programs are performed with priority PRI.

DENY is to assert that a hypothesis with some contents is false
DENY(H,CONT,PRI) is like AFFIRM except that no activation though links oc-
curs,and the status of H is of course set to F.

ASSUME is to assert a hypothesis as true hypothetically.
ASSUME(H,CONT,PRI) uses the data base context mechanism to create a ne
context in which H is AFFIRMED; the original context in which the ASSUME
command is given is preserved in the context field of H. H itself is stored into ¢
context-dependent item named LASTASSUMED; this corresponds to remembe
ing a decision point in PLANNER. By using the information in LASTASSUMED
and the primitive FAIL (see below), simple backtracking can take place in a tree ¢
contexts.

RETRACT (H) establishes as false a hypothesis that was previously AS
SUMEd. RETRACT is always carried out at highest priority, on the principle that it
is good to leave the context afmistaken assumption as quickly as possible. Infor-
mation (including the name of the context being exited) is transmitted back to th
original context in which H was ASSUMEd by passing it back in the fields of H.

FAIL just RETRACTSs the hypothesis that is the value of the item LASTAS-
SUMED in the present context.

WONDERIF is to pass suggested contents to HOW-TO processes fc
verification. It can be useful if verifying a value is easier than computing it from
scratch, and is the primitive that passes substantive suggestions. WONDERIF(F
CONT, H2, PRI) approximates the notion "H2 wonders if HI has contents
CONT."

NUDGE is to wake up HOW-TO programs. NUDGE(H,PRI) runs the
HOW-TO program on H with priority PRI. It is used to awaken hypotheses that
might be able to use information just computed. Typically it is a SO-WHAT pro-
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gram that NUDGESs others, since the SO-WHAT program is responsible for usin
the fact thathypothesis is known.

12.5.4 Aspects of Active Knowledge

The active knowledge style of computation raises a number of questions or pro
lems for its users.

A hypothesis whose contents may attain a large range can be established
some contents and thus express a perfectly good fact (e.g., that a given location
an x-ray does not contain evidence for a tumor) but such a fact is usually of littl
help when we want to reason about the predicate (about the location of tumors
The SO-WHAT program for a predicate should be written so as to draw conclu
sions from such negative facts if possible, and from the conclusions endeavor
establish the hypothesis as true for some contents. Usually, therefore, it would ¢
the status of the hypothesis back to P and initiate a new line of attack, or at its di
cretion abandon the effort and start an entirely new line of reasoning.

Priorities

A major worry with the scheme as described is that priorities are used t
schedule running of HOW-TO and SO-WHAT processes, not to express the i
portance (or supposition value) of the hypotheses. The hypothesis being inves
gated has no way to communicate how important it is to the program that operat
on it, so it is impossible to accumulate importance through time. A very significan
fact may lie ignored because it was given to a self-effacing process that had no w
of knowing it had been handed something out of the ordinary.

The obvious answer is to make a supposition value a field of the hypothesit
like its status or contents—a hypothesis should be given a measure of its impc
tance. This value may be used to compute execution priorities for jobs involving it
This solution is used in some successful systems [Turner 1974].

Structuring Knowledge

One has a wide choice in how to structure the "theory" of a complex prob:
lem in terms of HYPER primitives, predicates, arguments, and HOW-TO and SO
WHAT processes. The set of HOW-TO and SO-WHAT processes specify the con
plete theory of the tasks to be performed; HYPER encourages one to consider t
interrelations between widely separated and distinct-sounding facts and conje
tures aboutaproblem, and the structure it imposes on a problem is minimal.

Since HOW-TO and SO-WHAT processes make explicit references to on
another via the primitives, they are not "modular” in the sense that they can easi
be plugged in and unplugged. If HOW-TO and SO-WHAT processes are invoket
by patterns, instead of by names, some of the edge is taken off this criticism. R
moving a primitive from a program could modify drastically the avenues of activa-
tion, and the consequences of such a modification are sometimes hard to foresee
a program that logically could be running in parallel.

Writing a large and effective program for one domain may not help to write a
program for another domain. New problems of segmenting the theory into predi
cates,and quantifying their interactions via the primitives, setting up a priority
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structure, and so forth will occur in the new domain, and it seems quite likely that
little more than basic utility programs will carry over between domains.

121

12.2

12.3

124
12.5
12.6

12.7
12.8

12.9
12.10

12.11

12.12

12.13

12.14

EXERCISES

In the production system example, write a production that specifies that blue re
gions are sky using the opponents color notation. How would you now deal with
blue regions that are lakes (a) in the existing color-only system; (b) in a system
which has surface orientation information?

This theorem was posed as a challenge for a clausal automatic theorem prov
[Henschen etl. 1980]. It is obviously true: what problems does it present?

{[3X)(Vy)(Pix) <> Piy)))
<=>[[GX)QX)} <> [(W(PK)D}<">
{[(3*)(VIO(G(X) <> Q(¥))]
<MI(3X)PW] <> KVyKQiy)II}

Prove that the operatorkd.(12.18)takes probability vectors into probability vec-
tors, thus deriving the reason for Eq.(12.19).

Verify (12.23).
How do thesy of (12.18) affect the labeling? What is their semantics?

If events A andYalwaysco-occur, then p(X, Y) = p(X) = p(Y). What is the
correlation in this case? If A'land Knever co-occur, what values of p(X) and p(Y)
produce a minimum correlation? If Aand Fare independent, how is p(X, Y) re-
lated to p (X) and p (Y3 What is the value of the correlation of independent Jand
r?

Complete Table 12.3.

Use only the labels of Fig. 12.9b and c to compute covariances in the manner ¢
Table 12.3.What do you conclude?

Show that Eq.(12.29) preserves the important properties of the weight vectors.
Think of some rival normalization scheme£¢p(12.29) and describe their pro-
perties.

Implement the linear and nonlinear operators of Section 12.4.3 and 12.4.4 and ir
vestigate their properties. Include your ideas from Exercise 12.10.

Show a case that the nonlinear operat@&gof12.29) assigns nonzero weights to
maximally incompatible labels (those withe = — 1).

How can a linear programming relaxation such as the one outlined in sec. 12.4.

cope with faces or edges of the feasible solution solid that are normal to the prefer:
ence direction, yielding several solutions of equal preference?

In Fig.12.11,what (P, Q) solution is optimal if the preference vector is (1,4)?
(4,1)? (-1,1)? (1,-0?
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Goal Achievement 13

Goal Achievement and Vision

Goals and plans are important for visual processing.
Some skilled vision actually is like problem solving.
Vision for information gathering can be part of a planned sequence of actions.

Planning can be a useful and efficient way to guide many visual computations,
even those that are not meant to imply "conscious" cognitive activity.

The artificial intelligence activity often callgulanningtraditionally has dealt

with "robots" (real or modeled) performing actions in the real world. Planning has
several aspects.

Avoid nasty "subgoal interactions" such as getting painted into a corner.

Find the plan with optimal properties (least risk, least cost, maximized "good-
ness"of some variety).

Derive a sequence of steps that will achieve the goal from the starting situation.

Remember effective action sequences so that they may be applied in new situ:
tions.

Apply planning techniques to giving advice, presumably by simulating the
advisee's actions and making the next step from the point they left off.

Recover from errors or changes in conditions that occur in the middle of a plan.
Traditional planning research has not concentrated on plans with information

gathering steps, such as vision. The main interest in planning research has bee
the expensive and sometimes irrevocable nature of actions in the world. Our goal i
to give a flavor of the issues that are pursued in much more detail in the planning
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literature [Nilsson 1980; Tate 1977; Fahlman 1974; Fikes and Nilsson 1971; Fik
etal. 1972a; 1972b; Warren 1974; Sacerdoti 1974; 1977; Sussman 1975].

Planning concerns an active agent and its interaction with the world. Th
conception does not fit with the idea of vision as a passive activity. However, ol
claim of this book is that much of vision is a constructive, active, goal-oriente
process, replete with uncertainty. Then a model of vision as a sequence of dt
sions punctuated by more or less costly information gathering steps becomes
compelling. Vision often is a sequential (recursive, cyclical) process of alternatir
information gathering and decision making. This paradigm is quite common |
computer vision [Shirai 1975; Ballard 1978; Mackworth 1978; Ambled. 40975].
However, the formalization of the process in terms of minimizing cost or maximiz
ing utility is not so common [Feldman and Sproull 1977; Ballard 1978; Garve
1976]. This section examines the paradigms of planning, evaluating plans wi
costs and utilities, and how plans may be applied to vision processing.

13.1 SYMBOLIC PLANNING

In artificial intelligence, planning is usually a form of problem-solving activity in-
volving a formal "simulation" of a physical world. (Planning, theorem proving,
and state-space problem solving are all closely related.) There is an agent (
"robot") who can perform actions that transform the state of the simulated worl
The robot planner is confronted with an initial world state and a set of goals to |
achieved. Planning explores world states resulting from actions, and tries to finc
sequence of actions that achieves the goals. The states can be arranged in ¢
with initial state as the root, and branches resulting from applying different actior
in a state. Planning is a search through this tree, resulting in a path or sequenc
actions, from the root to a state in which the goals are achieved. Usually there
metric over action sequences; the simplest is that there be as few actions as pr
ble. More generally (Section 13.2), actions may be assigned some cost which 1
planner should minimize.

13.1.1 Representing the World

This section illustrates planning briefly with a classical example—block stacking. |
one simple form there are three blocks initially stacked as shown on the left in Fi
13.1,to be stacked as shown.

This task may be "formalized" [Bundy 1978] using only the symbolic objects
Floor, A, B, and C. (A formalization suitable for a real automated planner must |
much more careful about details than we shall be). Assume that only a single blc
can be picked up at a time. Necessary predicates are CLEAR (X) which isatrue
block may be put directly on ~“Tand which must be true before Zmay be picked u
and ON Qf, Y), which is true if Xis resting directly on Y. Let us stipulate that th
Floor is always CLEAR, but otherwiseGNQT,Y)is true, Yis not CLEAR. Then
the initial situation in Fig. 13.1 is characterized by the following assertions.
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Floor Floor
Initial stacks Goal stack Fig. 13.1 A simple block stacking task.

INITIAL STATE: ON(C,A), ON (A, Floor), ON(B, Floor),
CLEAR (C), CLEAR (B), CLEAR (Floor)

The goal state is one in which the following two assertions are true.
GOAL ASSERTIONS: ON(A,B), ON(B,C)

With only these rules, the formalization of the block stacking world yields a very
"loose" semantics. (The task easily translates to sorting integers with some r
strictions on operations, or to the "sedation" task of arranging blocks horizontall
in order ofsize,or ahost of others.)

Actions transform the set of assertions describing the world. For problems ¢
realistic scale, the representation of the tree of world states is a practical proble
The issue is one of maintaining several coexisting "hypothetical worlds" and re:
soning about them. This is another version of the frame problem discussed in s
12.1.6.0ne way to solve this problem is to give each assertion an extra argumer
naming the hypothetical world (usually called a situation [Nilsson 1980; McCarthy
and Hayes 1969]) in which the assertion holds. Then actions map situations to si
ations as well as introducing and changing assertions.

An equivalent way to think about (and implement) multiple, dependent, hy-
pothetical worlds is with a tree-structuredntext-oriented dathase.This idea is a
general one that is useful in many artificial intelligence applications, not just sym
bolic planning. Such data bases are included in many artificial intelligence
languages and appear in other more traditional environments as well. A conte)
oriented data basactslike a tree of data bases; at any node of the tree is a set «
assertions that makes up the data base. A new data base (context) may be spav
from any context (data base) in the tree. All assertions that are true in the spaw
ing (ancestor) context are initially true in the spawned (descendant) contex
However, new assertions added in any context or deleted from it do not affect i
ancestor. Thus by going back to the ancestor, all data base changes performec
the descendent context disappear.

Implementing such a data base is an interesting exercise. Copying all asst
tions to each new context is possible, but very wasteful if only a few changes a
made in each context. The following mechanism is much more efficient. The roc
or initial context has some set of assertions in it, and each descendant contexi
merely an addist of assertions to add to the data base amelete listof assertions
to delete. Then to see if an assertion is true in a context, do the following.

1. If the context is the root context, look up "as usual."”

2. Otherwise, if the assertion is on the didtlof this context, returrirue. If the
assertion is on théeletedlist of this context, return false.
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3. Otherwise, recursively apply this procedure to the ancestor of this context.

In a general programming environment, contexts have names, and there
the facility of executing procedures "in" particular contexts, moving around thi
context tree, and so forth. However, in what follows, only the ability to look ug
assertions in contexts is relevant.

13.1.2 Representing Actions

Represent an action as a triple.
ACTION ::= [PATTERN, PRECONDITIONS, POSTCONDITIONS].

Here the pattern gives the name of the action and names for the objects with wh
it deals—its "formal parameters." Preconditions and postconditions may use tt
formal variables of the pattern. In a sense, the preconditions and postconditio
are the "body" of the action, with subroutine-like "variable bindings" taking
place when the action is to be performed. The preconditions give the world stat
in which the action may be applied. Here the preconditions are assumed simply
be a list of assertions all of which must be true. The postconditions describe tt
world state that results from performing the action. The context-oriented dat
base of hypothetical worlds can be used to implement the postconditions.

POSTCONDITIONS ::= [ADD-LIST, DELETE-LIST].
An action is then performed as follows.

1. Bind the pattern variables to entities in the world, thus binding the associate
variables in the preconditions and postconditions.

2. If the preconditions are met (the bound assertions exist in the data base),
the next step, else exit reporting failure.

3. Delete the assertions in the delete list, add those in the add list, and exit r
porting success.

Here is the Move action for our block-stacking example.

Move Object Xfrom YtoZ
PATTERN PRECONDITIONS  DELETE-LIST  ADD-LIST

Move(X,Y,Z) CLEAR(X) ON(X,Y) ON(X,Z)
CLEAR (2) CLEAR(Z) CLEAR (Y)
ON(X,Y)

Here X, Y, and Z are all variables bound to world entities. In the initial state
of Fig. 13.1, MovegC,A Floor) binds Zto C, Yto A, Zto Floor, and the precondi-
tions are satisfied; the action may proceed.

However, notice two things.
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1. The action given above deletes the CLEAR (Floor) assertion that always<
should be true. One must fix this somehow; putting CLEAR (Floor) in the
add-list does thpb, but is a little inelegant.

2. What about an action like Move(C,A(,C)? It meets the preconditions, but
causes trouble when the add and delete lists are applied. One fix here is to ke
in the data base ("world model") a set of assertions such as Diff¢reBY,
Different (A,Floor), . . . , and to add assertions such as Different {X,Z) to the
preconditions of Move.

Such housekeeping chores and details of axiomatization are inherent in af
plying basically syntactic, formal solution methods to problem solving. For now,
let us assume that CLEAR (Floor) is never deleted, and that Move(A', Y,Z) is ap
plied only if Zis different from Xand Y.

13.1.3 Stacking Blocks

In the block-stacking example, the goal is two simultaneous assertions, ON(A,B
and ON(i?,C). One solution method proceeds by repeatedly picking a goal to worl
on, finding an operator that moves closer to the goal, and applying it. In this case ¢
only one action the question is how to apply it—what to move where. This is
answered by looking at the postconditions of the action in the light of the goal. The
reasoning might go like this: ON(Z?,C) can be made tr¥is iB and ZisC. That is
possible in this state if Yis A; all preconditions are satisfied, and th©yd&,C)
can be achieved with one action.

Part of the world state (or context) tree the planner must search is shown il
Fig. 13.2, where states are shown diagrammatically instead of through sets of asse
tions.Notice the following things in Fig. 13.2.

1. Trying to achieveON (B, C) first is a mistake (Branch 1).

2. Trying to achieve ON(A,B) first is also a mistake for less obvious reasons
(Branch 2).

3. Branches 1and 2 show "subgoal interaction." The goals as stated are not ir
dependent. Branch 3 must be generated somehow, either through backtrac
ing or some intelligent way of coping with interaction. It will never be found by
the single-minded approach of (1) and (2). However, if ON(C,Floor) were
one of the goal assertions, Brar&leould be found.

Clearly, representing world and actions is not the whole story in planning. In-
telligent search of the context is also necessary. This search involves subgoal sele
tion, action selection, and action argument selection. Bad choices anywhere ca
mean inefficient or looping action sequences, or the generation of impossible
subgoals. "Intelligent" search implies a meta-level capability: the abiliypms-
gram to reason about its own plans. "Plan critics" are often a part of sophisticate:
planners; one of their main jobs is to isolate and rectify unwanted subgoal interac
tion [Sussman 1975].
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((Wove KB, C, fT)

Branch 1

A
(03
Bran:h2
Branch 3

Fig. 13.2 A state tree generated in planning how lo slack three blocks.

Intelligent choice of actions is the crux of planning, arain®jor research is-
sue.Several avenues have been and are being tried. Perhaps subgoals may be
dered by difficulty and achieved in that order. Perhaps planning should proceed
various levels of detail (like multiresolution image understanding), where the stre
tegic skeleton of a plan is derived without details, then the details are filled in b
applying the planner in more detail to the subgoals in the low-resolution plan.
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13.1.4 The Frame Problem

All planning is plagued by aspects of the frapreblem(introduced in Section
12.1.6).

1. ltisimpractical (and boring) to write down in an action all the things that stay
the same when an action is applied.

2. Similarly, it is impractical to reassert in the data base all the things that rema
true when an action is implied.

3. Often an action has effects that cannot be represented with simple add &
delete lists.

The add and delete list mechanism and the context-oriented data ba
mechanism addressed the first two problems. The last problem is more troubl
some.

Add and delete lists are simple ideas, whereas the world is a complex place.
many interesting cases, the add and delete lists depend on the current state of
world when the action is applied. Think of actions TURNBYU) and MOVEBY(2)
in a world where orientation and location are important. The orientation and loce
tion after an action depend not just on the action but on the state of the world ju
before the action.

Again, the action may have very complex effects if there are complex deper
dencies between world objects. Consider the problem of the "monkey and ban
nas,"where the monkey plans to push the box under the bananas and climb or
to reach them (Fig. 13.3). Implementation of realistically powerful add and delet:
lists may in fact require arbitrary amounts of deduction and computation.

K A

4,
i V

Fig. 13.3 Actions may have complex
effects.
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This quick precis of symbolic planning does not address many "classical”
topics, such as learning or remembering useful plans. Also not discussed are: pla
ning at varying levels of abstraction, plans with uncertain information, or plans
with costs. The interested reader should consult the References for more inform:
tion. The next section addresses plans with costs since they are particularl
relevant to vision; some of the other issues appear in the Exercises.

13.2 PLANNING WITH COSTS

Decision making under uncertainty is an important topic in its own right, being of
interest to policymakers and managers [Raiffa 1968]. Analytic techniques that car
derive the strategy with the "optimal expected outcome" or "maximal expected
utility" can be based on Bayesian models of probability.

In [Feldman and Sproull 1977] these techniques are explored in the contex
of action planning for real-world actions and vision. As an example of the tech-
nigues, they are used to model an extended version of the "monkey and banana
problem of the last section, with multiple boxes but without the maddening pulley
arrangement. In the extended problem, there are boxes of different weights whic
may or may not support the monkey, and he can apply tests (e.g., vision) at sorr
cost to determine whether they are usable. Pushing weighted boxes costs sor
effort, and the gratification of eating the bananas is "worth" only some finite
amount of effort. This extended set of considerations is more like everyday deci-
sion making in the number of factors that need balancing, in the uncertainty in-
herent in the universe, and in the richness of applicable tests. In fact, one migtr
make the claim that human beings always "maximize their expected utility," and
if one knew a person's utility functions, his behavior would become predictable.
The more intuitive claim that humans beings plan only as far as "sufficient ex-
pected utility" carbecast as a maximization operation with nonzero "cost of plan-
ning."

The sequential decision-making model of planning with the goal of maximiz-
ing the goodness of the expected outcome was used in a travel planner [Sprot
1977]. Knowledge of schedules and costs of various modes of transportation anc
the attendant risks could be combined with personal prejudices and preferences
produce an itinerary with the maximum expected utility. If unexpected situations
(canceled flights, say) arose ®ute, replanning could be initiated; this incremen-
tal plan ramification is a natural extension of sequential decision making.

This section is concerned with measuring the expected performance of plan
using a single number. Although one might expect one number to be inadequate
the central theorem of decision theory [DeGroot 1970] shows essentially that one
number is enough. Using a numerical measure of goodness allows comparisor
between normally incomparable concepts to be made easily. Quite frequently nu
merical scores are directly relevant to the issues at stake in planning, so they ai
not obnoxiously reductionistic. Decision theory can also help in the procags of
plying a plan—the basic plan may be simple, but its application to the world may be
complex, in terms of when to declare a result established or an action unsuccessft
The decision-theoretic approach has been used in several artificial intelligence an
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vision programs [Feldman and Yakimovsky 1974; Bolles 1977; Garvey 1976; Bal-
lard 1978; Sproull 1977].

13.2.1 Planning, Scoring, and Their Interaction

For didactic purposes, the processes of plan generation and plan scoring are co!
sidered separately. In fact, these processes may cooperate more or less intimatel
The planner produces "sequences" of actions for evaluation by the scorer. Each a
tion (computation, information gathering, performing a real-world action) has a
cost, expressing expenditure of resources, or associated unhappiness. An actic
has a set of possible outcomes, of which only one will really occur when the action is
performed. A goalis a state of the world with an associated "happiness" or utility.
For the purposes of uniformity and formal manipulation, goals are treated as (null)
actions with no outcomes, and negative utilities are used to express costs. Then tr
plan has only actions in it; they may be arranged in a strict sequence, or be in loops
be conditional on outcomes of other actions, and so forth.

The scoring process evalutes the expected utility of a plan. In an uncertain
world, a plan prior to execution has only an expected goodness—something migh
go wrong. Such a scoring process typically is not of interest to those who would use
planners to solve puzzles or do proofs; what is interesting is the result, not the
effort. But plans that are "optimal” in some sense are decidedly of interest in real-
world decision making. In a vision context, plans are usually useful only if they
can be evaluated for efficiency and efficacy.

Scoring can take place on "complete" plans, but it can also be used to guide
plan generation. The usual artificial intelligence problem-solving techniques of
progressive deepening search and branch-and-bound pruning may be applied t
planning if scoring happens as the plan is generated [Nilsson 1980]. Scoring can b
used to assess the cost of planning and to monitor planning horizons (how fal
ahead to look and how detailed to make the plan). Scoring will penalize plans that
loop without producing results. Plan improvements, such as replanning upon
failure, can be assessed with scores, and the contribution of additional steps (sa
for extra information gathering) can be assessed dynamically by scoring. Scorinc
can be arbitrarily complex utility functions, thus reflecting such concepts as "risk
aversion" and nonlinear value of resources [Raiffa 1968].

13.2.2 Scoring Simple Plans

Scoring and an Example

A simple plan is a tree of nodes (there are no loops). The nodes represent ac
tions (and goals). Outcomes are represented by labeled arcs in the tree. A probabi
ity of occurrence is associated with each possible outcome; since exactly one out
come actually occurs per action, the probabilities for the possible outcomes of any
action sum to unity.

The score ofaplan is its expectedtility. The expected utility of any node is re-
cursively defined as its utility times the probability of reaching that node in the
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plan, plus the expected utilities of the actions at its (possible) outcomes. The prc
bability of reaching any "goal state" in the plan is the product of probabilities of
outcomes forming a path from the root of the plan to the goal state.

As an example, consider the plan shown in Fig. 13.4. If the plaigof3.4

Table not located

Table located
P13 PU
. Do not
Find telephone . Telephone No telephone
shape find t;z:;;;l;one there there

Fig. 13.4 This plan to find a telephone in an office scene involves finding a table first
and looking there in more detail. The actions and outcomes are shown. The probabilities
of outcomes are assigned symbols (P10, etc.). Utilities (denoted by U:) are given for the
individual actions. Note that negative utilities may be considered costs. In this example,
decision-making takes no effort, image processing costs vary, and there are various penal-
ties and rewards for correct and incorrect finding of the telephone.
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has probabilities assigned to its outcomes, we may compute its expected utilit
Figure 13.5 shows the calculation. The probability of correctly finding the tele-
phone is 0.34, and the expected utility of the plan is 433.

Although the generation @fplan may not be easy, scoring a plan is a trivial
exercise once the probabilities and utilities are known. In practice, the assignme
of probabilities is usually a source of difficulty. The following is an example using

0.95
N Do not
Find telephone find telephone Telephone No telephone
shape shape there there

Fig. 13.5 As for Fig. 13.4. U: gives the utility of each action. E(U): gives the expected
utillity of the action, which depends on the outcomes below it. Values for outcome proba-
bilities are given on the outcome arcs.
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the telephone-finding plan and some assumptions atbeetests. Different as-
sumptions yield different scores.

Computing OutcomBrobabilities: AnExample
This example relies heavily on Bayes' rule:

P(B\A)P(A) = P(AAB) = P(A\B)P(B). (13.1)
Let usassumea specific apriori probability that the scene contaiasele-
phone.
P\ = apriori probability of Telephone (13.2)

Also assume that something is known about the behavior of the various tests in t
presenceof what they are looking for. This knowledge may accrue from experi-
mentstosee how ofterthetable test found tables when telephor{estables)

were and were not present. Let us assume that the following are known probabi

ties.

Pi = P(table located|telephoria scene) (13.3)

Ps = P(table located|no telephorire scene) (13.4)
Either there is a telephone or there is not, and a table is located or it is not, so

P, = a priori probability of no telephone 1 — P\ (13.5)

Pi, = P(no table located |telephone in scerel — P; (13.6)

P(, = P(no table located |no telephone in scene) — Ps (13.7)
Similarly with the "shape test" for telephones: assume probabilities

P, = P (telephone shape located | telephone) (13.8)

Po= P(telephone shape located |no telephone) (13.9)
with

Ps=I-P;, Po=I-Ps (13.10)
as above.

There are a few points to make: First, it is not necessary to know exactly thes
probabilities in order to score theplan; one coulduserelated probabilities and
Bayes' rule. Other useful probabilities are of the form

P (telephongtelephone shape located).

In some systems [Garvey 1976] these are assuimbd available directly. This
section showshow toderive them from known conditional probabilities that
describe the behavior of detectors given certain scene phenomena.

Second, notice the assumption that although both the outcome of the tab
test and the shape test depend on the presence of telephones, they are taken 1
independent of each other. That is, having found a table tells us nothing about tl
likelihood offindinga telephone shape. Independence assumptions such as this ¢
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useful to limit computations and data gathering, but can be somewhat unrealist
To account for the dependence, one would have to measure such quantities as

P(telephone shape found|table located).
Now to compute some outcome probabilities: Consider the probability
P, = P (table located) (13.11)
Let us write

TL for Table Located
TNL for Table Not Located.

A table may be located whether or not a telephone is in the scene. In terms
known probabilities, Bayes' rule yields

Pu”PiPi + PsPi (13-12)
Then
P, = />(TNL) = \~P, (13.13)
Calculating Rz shows a neat trick using Bayes' Rule:
P, = P (telephone |TNL) (13.14)

That is, P13 is the probability that there is a telephone in the scene given tt
search for a table was unsuccessful. This probability is not known directly, but
p _ P(telephone and TNL)
B P(TNL)
P (TNL and telephone)
Pn
- [P (TNL |telephone) P (telephone) ] 132N
Pn
[P4P\]
Pn

Then, of course

Pu-1-Pn (13.16)

Reasoning in this way using the conditional probabilities and assumptior
about their independence allows the completion of the calculation of outcome pr
babilities (see the Exercises). One possibly confusing point occurs in calculation
Pys, which is

P\s= P (telephone shape foufidble located) (13.17)

By assumption, these events are only indirectly related. By the simplifying assum
tions of independence, the shape operator and the table operator are indepen
in their operation. (Such assumptions might be false if they used common ima
processing subroutines, for example.) Of course, the probability of success of ee
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depends on the presence of a telephone in the scene. Therefore their performai
is linked in the following way (see the Exercises). (Write TSL for Telephone Shape
Located.)

Pl; = P(TSL|TL) P (TSL | telephone) P (telephone |TL) (13.18)
+P(TSL|no telephone)Pino telephone|TL)

13.2.3 Scoring Enhanced Plans

The plans of Section 13.2.2 were called "simple" because of their tree structure
complete ordering of actions, and the simple actions of their nodes. With a riche
output from the symbolic planner, the plans may have different structure. For ex
ample, there may be OR nodes, any one of whose sons will achieve the action
the node; AND nodes, all of which must be satisfied (in any order) for the action t
be satisfactorily completed; SEQUEN®@&es which specify a set of actions and a
particular order in which to achieve them. The plan may have loops, sharet
subgoal structure, or goals that depend on each other. How enhanced plans are
terpreted and executed depends on the scoring algorithms, the possibilities
parallel execution, whether execution and scoring are interleaved, and so fortt
This treatment ignores parallelism and limits discussion to expanding enhance
plans into simple ones.

It should be clear how to go about converting many of these enhanced plar
to simple plans. For instance, sequence nodes simply go to a unique path of a
tions. Alternatively, depending on assumptions about outcomes of such action:
(say whether they can fail), they may be coalesced into one action, as was tt
"threshold, find blobs, and compute shapes" action in the telephone-finding plan.

Rather more interesting are the OR and AND nodes, the order of whost
subgoals is unspecified. Each such node yields many simple plans, depending «
the order in which the subgoals are attacked. One way to score such a plan is
generate all possible simple plans and score each one, but perhaps it is possible
do better. For example, loops and mutual dependencies in plans can be dealt w
in various ways. A loop can be analyzed to make sure that it contains an exit (suc
as a branch of an OR node that can be executed). One can make ad hoc assul
tions that the cost of execution is always more than the cost of planning [Garve
1976],and score the loop by its executable branch. Another idea is to plan incre
mentally with a finite horizon, expanding the plan through some progressive
deepening, heuristic search, or pruning strategy. The accumulated cost of goir
around a loop will soon remove it from further consideration.

Recall (Figs. 13.4 and 13.5) that the expected utilitgpian was defined as
the sum of the utility of each leaf node times the probability of reaching that node
However, the utilities need not combine linearly in scoring. Different monotonic
functions of utility express such different conceptions as "aversion to risk" or
"gambling addiction." These considerations are real ones, and nonlinear utilitie!
are the rule rather than the exception. For instance, the value of money is notor
ously nonlinear. Many people would pay $5 for an even chance to win $15; not st
many people would pay $5,000 for an even chance to win $15,000.
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One common way to compute scores based on utilities is the "cost/benefit
ratio. This, in the form "cost/confidence" ratio, is used by Garvey in his planning
vision system. This measure is examined in Section 13.2.5; roughly, his "cost
was the effort in machine cycles to achieve goals, and his "confidence" approx
mated the probability of a goal achieving the correct outcome. The ultility of correc
outcomes was not explicitly encoded in his planner.

Sequential plan elaboration or partial plan elaboration can be interleaved wit
execution and scoring. Most practical planning is done in interaction with the
world, and the plan scoring approach lends itself well to assessing such intera
tions. In Section 13.2.5 considers a planning vision system that uses enhance
plans and a limited replanning capability.

A thorny problem for decision making is to assess the cost of plaits@if
The planning process is given its own utility (cost), and is carried only out as far a
is indicated. Of course, the problem is in general infinitely recursive, since there i
also the cost of assessing the cost of planning, etc. If, however, there is a knov
upper bound on the utility of the best achievable plan, then it is known that infinite
planning could not improve it. This sort of reasoning is weaker than that needed 1
give the expected benefits of planning; it measures only the cost and maximui
value of planning.

Another more advanced consideration is that the results of actions can t
continuous and multidimensional, and discrete probabilities can be extended 1
probability distribution functions. Such techniques can reflect the precision of
measurements.

An obviously desirable extension to a planner is a "learner," that car
abstract rules for action applicability and remember successful plans. One approa
would be to derive and remember ranges of planning parameters arising during e
ecution; a range could be associated with a rule specifying appropriate action. TF
problem is difficult and the subject of current research.

13.2.4 Practical Simplifications

The expected utility calculations allow plans to be evaluated in a more or les
"realistic" manner. However, in order to complete the calculations certain proba
bilities are necessary, and many of these reflect detailed knowledge about the i
teraction of phenomena in the world. It is thus often impractical to go about a full-
blown treatment of scoring in the style of Section 13.2.2. This section present
some possible simplifications.

Of course, in many planning problems, such as those whose costs are nil or
relevant, or all of whose goals are equally valuable, there is no need to address u
ity of plans at all. Such plans are typically not concerned with expenditure of real
world or planning resources.

Independence of various probabilities is one of the most helpful and per
vasive assumptions in the calculation of probabilities. An example appeared in Se
tion 13.2.2 with the table and telephone shape detectors.

Certain information can be ignored. Garvey [Garvey 1976] ignores failure in-
formation. His planning parameters include the "cost" of an action (strictly nega:
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tive utilities reflecting effort), the probability of the action "succeeding," and the
conditional probability that the state of the world is correctly indicated, given suc-
cess.Related to ignoring some information is the assumption that certain out-
comes are more reliable than others. For instance, the decision not to plan pa
"failure" reports means that they are assumed reliable.

Non-Bayesian rules of inference abound in planners [Shortliffe 1976]; the
idea of assigning a single numerical utility score to plans is by no means the onl
way to make decisions.

13.2.5 A Vision System Based on Planning

Overview

This section outlines some features of a working vision system whose action:
are controlled by the planning paradigm [Garvey 1976]. As with all large vision
systems, more issues are addressed in this work than with the planning paradigm
a control mechanism. For one thing, the system uses multisensory input, includin
range and color information. An interactive facility aids in developing and testing
low-level operators and "strategies" for object location. The machine-usable
representation of knowledge about the objects in the scene domains and how the
could be located is of course a central component.

The domain is office scenes (Fig. 13.6). For the task of locating different ob-
jects in such scenes, a "uniform strategy" is adopted. That is, the vision task is a
ways broken down into a sequence of major goals to be performed in order. Suc
uniform strategies, if they are imposed on a system at all, tend to vary with
different tasks, with different sensors or domain, or with different research goals.

Garvey's uniform strategy consists of the following steps.

1. Acquiresome pixels thought to be in the desired region (the area of scene mal
ing up the image of the desired object).

Fig. 13.6 The planning vision system
uses input scenes such as these, imaged
in different wavelengths and with a
rangefinder.
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2. Verifyto some confidence that indeed the region was the desired one.
3. Boundthe region accurately.

The outline the plan generation, scoring, and execution used in the syste
are described in the following paragraphs. The plans generated by the system
typically enhanced versions of plans like the telephone finder. Plan scorin
proceeds as expected for such plans; allowances are made for the enhanced ser
tics of plan nodes. A "cost/confidence" scoring function is used, and various pra
tical simplifications are made that do not affect the planning paraitigih

An Example Plamandlts Execution

The system's plans are enhanced plans, in the sense of S&cidhAc-
tions can be AND, OR or SEQUENCE actions, and shared plan structure and lo
are permitted. Loops that contain only internal, planning actions would never tel
minate. However, a loop with an OR node can terminate (has an exit) if one of tr
subactions of the OR is executable. A plan for locating a chair in an office scene
shown in Fig. 13.7. In Fig. 13.7, the acquire-validate-bound strategy is evident i
the two SEQUENCE subgoals of the Find Chair main goal, which is an AND goal
The loop in the plan is evident, and makes sense here because often planning
done for information gathering, not for real world actions.

As noted in Section13.2.3, an enhanced plan may not be completely
specified. If it is to be executed one subgoal at a time (no parallelism is allowed
sequences of subactions must be determined for its AND and OR actions.
Garvey's planner, these sequences are determined initially on the basis of apri
information, but the partial results of actions are "fed back," so that dynami
rescoring and hence dynamic reordering of goal sequences is possible. For exe
ple, if one subgoal of an AND action fails, the AND actismbandoned. Thus this
planner is to some degree incremental.

In execution, Fig. 13.7 might result in the sequence of actions depicted il
Fig. 13.8. The acquisition phase of object location has the most alternatives, !
plan generation effort is mainly spent there. Acquisition proceeds either directly c
indirectly. Direct acquisition is the classification of input data gathered from a ran
dom sampling of a window in the image; the input data are rich enough to allov
basic pattern recognition techniques to identify the source of individual pixels.

Indirect acquisition is the use of the location of other "objects" (really
identified regions) in the scene to locate the desired region. The desired regic
might be found by "scanning" vertically or horizontally from the already identified
region, for instance. The idea is a planning version of a common one (e.g., tt
geometric location networks of Section 10.3.2): use something already located
limit and direct search for something else.

Plan Generation

A plan such as Fig. 13.7 is "elaborated" from the basic Find Chair goal by re
cursively expanding goals. Some goals (such as to find a chair) are not directly ex
cutable; they need further elaboration. Elaboration continues until all the subgoa
are executable. Executable subgoals are those that analyze the image, run filt
and detectors over parts of it, and generate decisions about the presence or abs¢
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© ()

Fig. 13.8 The plan of Fig. 13.7 finds the most promising execution sequence for finding

the chair in the scene of Fig. 13.6: find the seat first, then scan upwards from the seat
looking for the back. Acquisition of the seat proceeds by sampling (a), followed by

classification (b). The Validation procedure eliminates non-chair points (c), and the

Bounding procedure produces the seat region (d). To find the back, scanning proceeds in
the manner indicated by (e) (actually fewer points are examined in each scan). The back
is acquired and bounded, leading to the final location of the chair regions (f).
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Fig. 13.8 (com.)

of image phenomena. This straightforward elaboration is akin to macro expansic
and is not a very sophisticated planning mechanism (the program cannot critici
and manipulate the plan, only score it). A fully elaborated plan is presented fi
scoring and execution.

The elaboration process, or planner, has at its disposal several sorts
knowledge embodied as modules that can generate subgoals for a goal. Some
general (to find something, find all its parts); some are less general (a chair ha
back and a seat); some are quite specific, being perhaps programs arising from
earlier interactive method-generation phase. The elaborator is guided by inform
tion stored about objects, for instance this about a tabletop:

OBJECT PROPERTIES RELATIONS

Table TOP  Hue:26-58 Supports Telephone 0.6
Sat.: 0.23-0.32  Supports Book 0.4
Bright.: 18-26  Occludes Wall 1
Height: 26-28
Orient.:-7-7

Here the orientation information indicates a vertical surface normal. The
planner knows that it has a method of locating horizontal surfaces, and the pli
elaborator can thus create a goal of direct acquisition by first locating a horizont
plane. The relational information allows for indirect acquisition plans. The elabora
tor puts direct and indirect alternatives under an OR node in the plan. Informatic
not used for acquisition (height, color) may be used for validation.

Loops may occur in an elaborated plan because each newly generated goz
checked against goals already existing. Should it or an equivalent goal already ¢
ist, the existing goal is substituted for the newly generated one. Goals may th
have more than one ancestor, and may depend on one another.
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At this stage, the planner does not use any planning parameters (cost, ut
ties, etc.); it is strictly symbolic. As mentioned above, important information
about execution sequences in an enhanced plan is provided by scoring.

Plan Scoring and Execution

The scoring in the vision plan is a version of that explained in Sections 13.2
through 13.2.4. Each action @plan is assumed either to succeed if8pcating
an object or to fail. Each action may report either sucess) or failure. An ac-
tion is assumed to report failure correctly, but possibly to be in error in reportin
success. Each action has three "planning parameters" associated with it. They
C, its "cost" (in machine cycles), PC'S") the probability of it reporting success
and P(S\"5"), the probability of success given areport of success.

As shown earlier, the product

P(S\"S")P("S") (13.19)

is the probability that the action has correctly located an object and reported st
cess.This product is called the "confidence" of the action. An action has structur
as shown in Fig. 13.9.

The score of an action is computed as

score= n (13.20)
confidence
The planner thus must minimize the score.

The initial planning parametersf an executable action typically are deter-
mined by experimentation. The parameters of internal (AND, OR, SEQUENCE
actions by scoring methods alluded to in Sections 1313.2,3,and the Exercises
(there are a few idiosyncratic ad hoc adjustments.).

It may bear repeating that planning, scoring, and execution are not separat
temporally in this sytem. Scoring is used after the enhanced plan is genevated
derive asimple plan (with ordered subgoals). Execution can affect the sobres
nodes,and so execution can alternate with "replanning” (really rescoring result
ing in areordering). Recaltheexampleof failure of anAND or SEQUENCE
subgoal, which can immediately fail the entire goal. More generally, the entire go
and ultimately the plan may be rescored. For instance, the parameters of a succi
ful action aremodified by setting thecost of the executed actiobo O and its
confidence to its second parameter, P(S\"S").

Given ascored plan, execution is then easy; the execution program starts
the top goal of the plan, working its way down the best path as defined by the scol
of nodesit encounters. Whemnexecutable subgoas found (e.g. "lookfor a
green region")jt is passed to an evaluation function that "runs" the action asso
ciated with the subgoal.

The subgoalis either achievedr not; in either case, information abadits
outcomeis propagated backipthe plan. Failurdas easy;afailed subgoalofan
AND or SEQUENCE goal fails the goal, and this failuspropagatedA failed
subgoal of an OR goal is removed from the plan. The use of success information
more complex, involving the adjustment of confidences and planning paramete
illustrated above.
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Exercises

P ("success") 1-P ("success")

Detector reports Detector reports
"success" “failure”
P (object I"success" \-P (object|"success")
. Object not
Object present present
Correctly Incorrectly
decide object decide object
present present

Fig. 13.9 This is the microslructure of a node ("action") of Garvey's planning

system in terms of simple plans. Think of actions as being object detectors which
announce "Found" or "Not Found." Garvey's planning parameters are
PO'Found") and P(Object is there|"Found"). Confidence in the action is their
product; it is the probability of correctly detecting the object. All other outcomes

are lumped together and not used for planning.

After the outcome of a goal is used to adjust the parameters of other goals

the plan is rescored and another cycle of execution performed. The execution cs
use knowledge about the image picked up along the way by prior execution. This i
how results (such as acquired pixels) are passed to later processing stages (such
the validation process). Such a mechanism can even be used to remember succe
ful subplans for later use.

EXERCISES

13.1 Complete the computation of outcome probabilities in the style of Section 13.2.2,

13.2

using the assumptions given there. Check your work by showing (symbolically)
that the probabilities of getting to the terminal actions ("goal states") of the plan
sum to 1.

Assume in Section 13.2.2 that the results of the "table" and "telephone shape'
detectors are not independent. Formulate your assumptions and compute the nev
outcome probabilities for Fig. 13.4.
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133

134

135

13.6

13.7

13.8

13.9

13.10

Show that
Biakaic) 10\0)-PBAAACHP(AC)

Band Care independent if PiB A C) = PiB) PiC). Assuming that Band Care
independent, show that

P(B\C) = PiB)
PiBAC)A) = PIiB\A)PIC\A)
PIBVAAC)) = PIiB\A)

Starting from the fact that
PIAAB) = PIAABAO + PIAABAI-O)

show how P\s was computed in Section 13.2.2.

A sequence DiN) dl detectors is used to detect an object; the detectors eithe
succeed or fail. Detector outputs are assumed independent of each other, beil
conditioned only on the object. Using previous results, show that the probability of
an object being detected by applying a sequence of N detectors D iN) is recursivel
rewritable in terms of the output of the first detector D\ and the remaining se-
guence ON—1) as

P(oio(ny-P(DW)PIO\DINA))

Consider scoring a plan containing an OR node (action). Presumably, each subgc
of the OR has an expected utility. The OR action is achieved as soon as one of tt
subgoals is achieved. Is it possible.to order the subgoals for trial so as to maximiz
the expected utility of the plan? (This amounts to a unique "best" rewriting of the
plan to make it a simple plan.)

Answer question 13.7 for an AND node; remember that the AND will fail as soon
as any ofts subgoals fails.

What can you say about how the cost/confidence ratio of Garvey's planner is re
lated to the expected utility calculations of Section 13.2.2?

You are at Dandy Dan's used car@ansumer Reports sajsat the a priori proba-
bility that any car at Dandy Dan's is a lemon is high. You know, though, that to test
a car you kick its tire. In fact, with probability:

Pi"C" | C) : akick correctly announces "creampuff* when the
car actually is a creampuff

P("C"|L) : akick incorrectly announces "creampuff' when
the car is actually a lemon

PiL) . the a priori probability that the car is a lemon

Your plan for dealing with Dandy Dan is shown below; give expressions for the
probabilities of arriving at the nodes labeled Si, S2F2uand F3. Give numeric
answers using the following values

Pi"C"\C) = 0.5, Pi"C"\L) = 0.5, PiL) = 0.75
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Kick reports Kick reports
"creampuff" "lemon”

Kick reports
"creampuff"

Chevy is a
creampuff

Ex. 13.10

13.11 Two bunches of bananas are in a room with a monkey and a box. One of the
bunches is lying on the floor, the other is hanging from the ceiling. One of the
bunches is made of wax. The box may be made of fimsy cardboard. Given that:

KWH) = 0.2: probability that the hanging bananas are wax
P(WL) = 0.8: probability that the lying bananas are wax
P(C) = 0.5: probability that the box is cardboard

Uieat) = 200: utility of eating a bunch of bananas

C(walk) = —10:cost of walking a unit distance

C(push) = -20: cost of pushing the box a unit distance
C(climb) = —20: cost of climbing up on box

(@) Analyze two different plans for the monkey, showing all paths and calcula-
tions. Give criteria (based upon extra information not given here) that
would allow the monkey to choose between these plans.
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(b) Suppose the monkey knows that the probability that the box will collapse i
inversely proportional to the cost of pushing the box a unit distance (anc
that he can sense this cost after pushing the box 1 unit distance). F
example,

P(C) = 1.0- [C(push) x 0.01]
P(C(push) = 10)=0.1
P(C(push) = 20) = 0.1
P(C(push) = 100) = 0.1

Repeat part(a) (in detail).
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Some
Mathematical Tools
Appendix 1

Al.1 COORDINATE SYSTEMS

Al1.1.1 Cartesian

The familiar two- and three-dimensional rectangular (Cartesian) coordinate sy
tems are the most generally useful ones in describing geometry for computer
sion. Most common is a right-handed three-dimensional system (Fig. ALL). Tt
coordinates of a point are the perpendicular projections of its location onto tl
coordinate axes. The two-dimensional coordinate system divides two-dimensior
space into quadrants, the three-dimensional system divides three-space into
tants.

A1.1.2 Polar and Polar Space

Coordinate systems that measure locations partially in terms of angles are in m;
cases more natural than Cartesian coordinates. For instance, locations with res

~T

Fig. Al.l Cartesian coordinate systems.
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to the pan-tilt head of a camera or a robot arm may most naturally be described
ing angles. Two- and three-dimensional polar coordinate systems are shown in |

Al.2.
Cartesian Coordinates Polar Coordinates
X p cos9
p sin0
2\iA
bc*+?) P
tan’' 9

Cartesian Coordinates Polar Space Coordinates
Y, 2) (p cos £, p cd3,p cos £)
>+ Py p

cos t

In these coordinate systems, the Cartesian quadrants or octants in which points
are often of interest because many trigonometric functions determine only an ¢
gle modulolT12 or TT (one or two quadrants) and more information is necessery
determine the quadrant. Familiar examples are the inverse angle functions (s
as arctangent), whose results are ambiguous between two angles.

A1.1.3 Spherical and Cylindrical

The spherical and cylindrical systems are shown in Fig. A 1.3.

Fig. A1.2 Polar and polar space
coordinate systems.
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Fig. A1.3 Spherical and cylindrical
coordinate systems.

Cartesian Coordinates Spherical Coordinates
X psin0cos9.

y psin0sin9=xtan0
z pcosO

tan

cos

Cartesian Coordinates Cylindrical Coordinates

X rcos9
y rsin9
O+
tan’! 0

Al1.1.4 Homogeneous Coordinates

Homogeneous coordinates are a very useful tool in computer vision (and corr
puter graphics) because they allow many important geometric transformations t
be represented uniformly and elegantly (see Section A 1.7). Homogeneous coort
nates are redundant: a point in Cartesian «-space is represented by a line in hon
geneous (n + 1)-space. Thus each (unique) Cartesian coordinate poir
corresponds to infinitely many homogeneous coordinates.

Cartesian Coordinates Homogeneous Coordinates
*v, 2 (Wx, wy, wz, w)

2. (Xv Y, Z, W)
w
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Here X, y, z, andv are real numbers, wx, wy, amez are the products of the two
reals,and x/wand so on are the indicated quotients.

Al.2. TRIGONOMETRY

Al1.2.1 Plane Trigonometry
Referring to Fig. A 1.4, define

sine: sin (A) (sometimes sin A) = —
Cc
cosine: cos (A) (or cos A) =
c
tangent: tan (A) (ortan A) = 4
b

The inverse functions arcsin, arccos, and arctan (also writteh sos®, tan?)
map a value into aangle. There are many useful trigonometric identities; some of
the most common are the following.

an A= SIN

cosﬁLﬁS\: -t'an((-x\)

sin (X +y) —sin (x) cos (y) + cos (x) sin (y)
cos (x +y) =cos (X) cos () sin (x) sin (y)

tan (x) + tan (y)

tan (x xy) — 1 + tan (x) tan(y)

In any triangle with angles A, B, C opposite sides a, b, ¢, the Law of Sines holds:

a b [
sin A sin B sin C

as does the Law of Cosines:

a2

b? + ¢ -2bc cos A

b cos C + c cos B

a

C  Fig. Al.4 Plane right triangle.
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A1.2.2. Spherical Trigonometry

The sides of a spherical triangle (Fig. A1.5) are measured by the angle they sul
tend at the sphere center; its angles by the angle they subtend on the face of 1
sphere.
Some useful spherical trigonometric identities are the following.
sinA sinB _ sinC
sin a sin b sinc
cosb cos (c +9)

cosa = cosb cose + smb simes 4=
COS0

Where tan 9 = tan lzosA,
cosA =—o0sB cos C + sinB sin C cos a

Al1.3. VECTORS

Sec. AT.3

Vectors are both a notational convenience and a representation of a geometric cc
cept. The familiar interpretation of a vector v as a directed line segment all@ws for
geometrical interpretation of many useful vector operations and properties. A
more general notion of an ~-dimensional vector v & W, .... V) is that of an
[7-tuple abiding by mathematical laws of composition and transformation. A vector
may be written horizontally (a row vector) or vertically (a column vector).

A point in «-space is characterized by its n coordinates, which are often writ-
ten as a vector. A point at X, Y, Z coordinates X, y, and z is written as a vector
whose three components are (X, Y, z). Such a vector may be visualized as
directed line segment, or arrow, with its tail at the origin of coordinates and its
head at the point at (X, y, z). The same vector may represent instead the directi
in which it points—toward the point (X, y, z) starting from the origin. An impor-
tant type of direction vector is the normal vector, which is a vector in a direction
perpendicular to a surface, plane, or line.

Vectors of equal dimension are equal if they are equal componentwise. Vec
tors may be multiplied by scalars. This corresponds to stretching or shrinking the
vector arrow along its original direction.

Xx = (kX\, kx2, .., AN

Fig. A1.5 Spherical triangle.
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Vector addition and subtraction is denned componentwise, only between vecto
of equal dimension. Geometrically, to add two vectors x and y, put y's tail at x'
head and the sum is the vector from x's tail to y's head. To subtract y from x, p
y's head at x's head; the difference is the vector from x's tail to y's tail.

Xty=Gdxy % VY .., % xV,)

The length (or magnitude) of a vector is computed by an "-dimensional version ¢
Euclidean distance.

|x]= (x,2 +X22 + oo + an)»

A vector of unit length is a unit vector. The unit vectors in the three usual Carte
sian coordinate directions have special names.

i= (1,0, 0)
j=1(0,10)
k= (0,0, 1)

The inner (or scalar, or dot) product of two vectors is defined as follows.
X oy = [X|]lylcosO -xyi +Xy> + - +X)Y,
Here 9 is the angle between the two vectors. The dot product of two nonzer
numbers is 0 if and only if they are orthogonal (perpendicular). The projection of
onto y (the component of vector x in the direction y) is
X|cos0 = X}

Other identities of interest:

X L] y = y 'X
X-(y +2) = x-y + x-z
A(x-y) = (X9 -y= x- Uy)
x x=|xf
The cross (or vector) product of two three-dimensional vectors is defined a
follows.
XX Y= (Y3 - XYz XY - X3, X\ - XY
Generally, the cross product of x and y is a vector perpendicular to both x and
The magnitude of the cross product depends on the angle 0 between the two v«
tors.
Ix x y|= [x|ly|sin0

Thus the magnitude of the product is zero for two nonzero vectors if and only f
they are parallel.
Vectors and matrices allow for the short formal expression of many symbolic
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expressions. One such example is the formal determinant (Section A 1.4) whi
expresses the definition of the cross product given above in a more easily reme

bered form.
]k
XxXxy=dets X% X
y\ yi  y?>
Also,
x Xy=-y X X

XX(yxz) = xXy+xyx Xz
XX XY)= XXX Y=y XXy
ixj=k
jx k=i
kxi=j
The triple scalar product is x * (y x z), and is equivalent to the value of thi
determinant

X X *3
det y\ yi ~3
z) %2 73

The triple vector product is
XX (YX2)= (X*2)y- (Xey)z

Al.4. MATRICES

A matrix A is a two-dimensional array of elemeritté; has m rows and columns
it is of dimension m x «, and the element in the /th row and y'th column may b
named ay. If mor n = 1, a row matrix or column matrix results, which is often
called a vector. There is considerable punning among scalar, vector and mat
representations and operations when the same dimensionality is involvedd Xthe
1 matrix may sometimes be treated as a scalar, for instance). Usually, this pract
is harmless, but occasionally the difference is important.

A matrix is sometimes most naturally treated as a collection of vectors, an
sometimes an m r matrix Mis written as

M=[@ & ** * a,

Sec. ATA  Matrices 471
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or

where the a's are column vectors and the b's are row vectors.

Two matrices A and B are equal if their dimensionality is the same and the
are equal eiementwise. Like a vector, a matrix may be multiplied (eiementwise) t
a scalar. Matrix addition and subtraction proceeds eiementwise between matric
of like dimensionality. For a scalé and matrices A, B, and Cli#e dimensional-
ity the following is true.

A=B +*C ifa= bijtc 1</<m,

Two matrices A and B are conformable for multiplication if the number of
columns of A equals the number of row8oT he product is defined as

C = AB where an element, ésdefined by g¢= £ ™y
k

Thus each element of Cis computed as an inner product of a row of A with
column of B. Matrix multiplication is associative but not commutative in general.
The multiplicative identity in matrix algebra is called the identity matrixig.all
zeros except that all elements in its main diagonal have tde =1 if /=y, else
a; = 0). Sometimes the n xidentity matrix is written /,,.

The transpose of an m x n matrix A is the n x m matfisuth that the

ijth element of A is they',/th element of A A™=AAis  symmetric.
The inverse matrix of an n R matrix 4is written™'®. If it exists, then

AAL =ACA =
If its inverse does not exist, an n A&matrix is called singular.
With k and p scalars, and A, B, and C m x n matrices, the following ar
some laws of matrix algebra (operations are matrix operations):
A+B=B+A
(A+B)+C=A+ (B +C)
k(A + B) = KA + kB
(k +p)A =KkA +pA
AB j* BA in general
(AB)C = A(BC)
AB + C) = AB +AC
(A +B)C =AC + BC
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Sec. ATA

AikB) = k(AB) = (kA)B
WA = Al, = A
{A +BY) =A™+ BT
(AB)'= B'AT
(AB)~ = BJA

The determinant of an n x n matrix is an important quantity; among oth:
things, a matrix with zero determinant is singular. Let Ay be the {) x («— 1)
matrix resulting from deleting the /th row andyth column from an nmatrix A.
The determinant of & x 1 matrix is the value of its single element. For n > 1,

detA=Jt a-.j (-D'"Vdeti4;
i=\

for any j between 1 and n. Given the definition of determinant, the inverse ol
matrix may be defined as

(-H~rdetn,
Koo detA

In practice, matrix inversion may be a difficult computational problem, bu
this important algorithm has received much attention, and robust and efficie
methods exist in the literature, many of which may also be used to compute
determinant. Many of the matrices arising in computer vision have to do wi
geometric transformations, and have well-behaved inverses corresponding to
inverse transformations. Matrices of small dimensionality are usually quite comg
tationally tractable.

Matrices are often used to denote linear transformatiomspi (column)
matrix X of dimensiom is post (pre) multiplied by an n x n matrix A, the result X
= XA (X' = AX) is another row (column) matrix, each of whose elements is
linear combination of the elementsXfthe weights being supplied by the values
of A. By employing the common pun between row matrices and vectors, x' =
(x' = AX) is often written for a linear transformation of a vector x.

An eigenvector of an n x1matrix A is a vector v such that for some scélar
(called an eigenvalue),

\A = \v

That is, the linear transformation A operatew orst as a scaling operation. A ma-
trix hasn eigenvalues, but in general they may be complex and of repeated valt
The computation of eigenvalues and eigenvectors of matrices is another comp
tional problem of major importance, with good algorithms for general matrices b
ing complicated. The n eigenvalues are roots of the so-called characteristic poly
mial resulting from setting a formal determinant to zero:

det (A - k) = 0.
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Eigenvalues of matrices up to 4 x 4 may be found in closed form by solving the
characteristic equation exactly. Often, the matrices whose eigenvalues are of in
terest are symmetric, and luckily in this case the eigenvalues are all real. Many al-
gorithms exist in the literature which compute eigenvalues and eigenvectors both
for symmetric and general matrices.

.5. LINES

An infinite line may be represented by several methods, each with its own advan-
tages and limitations. An exampleafepresentation which is not often very use-

ful is two planes that intersect to form the line. The representations below have
proven generally useful.

A1.5.1 Two Points

A two-dimensional or three-dimensional line (throughout Appendix 1 this short-
hand is used for "line in two-space" and "line in three-space"; similarly for "two
(three) dimensional point") is determined by two points on it, xI and x2. This
representation can serve as well for a half-line or a line segment. The two points
can be kept as the rows of a (2 x n) matrix.

Al1.5.2 Pointand Direction

A two-dimensional or three-dimensional line (or half-line) is determined by a
point x on it (its endpoint) and a direction vector v along it. This representation is
essentially the same as that of Section A 1.5.1, but the interpretation of the vector
is different.

A1.5.3 Slope and Intercept

A two-dimensional line can often be represented by the Y value b where the line
intersects the Kaxis, and the slope m of the line (the tangésirafiination with

the xaxis). This representation fails for vertical lines (those with infinite slope).
The representation is in the form of an equation making explicit the dependence of
von x:

y=mx +b
A similar representation may of course be based on the X intercept.

Al1.5.4 Ratios

A two-dimensional or three-dimensional line may be represented as an equation of
ratios arising from two points xI = {x\, y\, z\) and x2 =, (4, z)on the line.

X- X M~y - W .- z- 1z

XX\ yi-y\ zi~ 2\
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A1.5.5 Normal and Distance from Origin (Line Equation)

This representation for two-dimensional lines is elegant in that its parts have useft
geometric significance which extends to planes (not to three-dimensional lines)
The coefficients of the general two-dimensional linear equation represent a two
dimensional line and incidentally give its normal (perpendicular) vector and its
(perpendicular) distance from the origin (Fig. A1.6).

From the ratio representation above, it is easy to derive (in two dimensions’
that

(x - x) sin0O - (y-y cos9=0
so for
d = —(x\ sin 9 —ycos 9),
X sin9—y cos 94-d=0

This equation has the form of a dot product with a formal homogeneous vecto
xY,\):
(xy, 1) ¢ (sinf?, -cos0, d) =0

Here the two-dimensional vector (sin 9, —cos 9) is perpendicular to the line (itis
unit normal vector, in fact), and dis the signed distance in the direction of the nor
mal vector from the line to the origin. Multiplying both sides of the equation by a
constant leaves the line invariant, but destroys the interpretation of d as the dis
tance to the origin.

This form of line representation has several advantages besides the interpr:
tations of its parameters. The parameters never go to infinity (this is useful in th
Hough algorithm described in Chapter 4). The representation extends naturally t
representing ~-dimensional planes. Least squared error line fitting (Section A 1.9
with this form of line equation (as opposed to slope-intercept) minimizes errors
perpendicular to the line (as opposed to those perpendicular to one of the coorc
nate axes).

| Fig. A1.6 Two-dimensional line with
normal vector and distance to origin.
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A1.5.6 Parametric

It is sometimes useful to be able mathematically to "walk along" a line by varying
some parameter t. The basic parametric representation here follows from the tw
point representation. If x| and x2 are two particular points on the line, a genera
point on the line may be written as

= x|l + Kx2-xl)

In matrix terms this is
x=[t \)L

where L is the 2 x n matrix whose first row is x2xI) and whose second is xI.
Parametric representations based on points on the lines may be transformed by 1
geometric point transformations (Section A1.7).

Al1.6. PLANES

476

The most common representation of planes is to use the coordinates of the plai
equation. This representation is an extension of the line-equation representatic
of Section Al.5.5. The plane equation may be written

ax +by+cz+d=0

which is in the form of a dot product x ¢p = 0. Four numbers given by
p = {a, b, c, d) characterize a plane, and any homogeneous point x = {X,y, z, v
satisfying the foregoing equation lies in the plane. In p, the first three numbers
{a, b, ¢) form a normal vector to the plane. If this normal vector is made to be ¢
unit vector by scaling p, then d is the signed distance to the origin from the plane
Thus the dot product of the plane coefficient vector and any point (in homogene
ous coordinates) gives the distance of the point to the plane (Fig. A1.7).

Fig. A1.7 Distance from a point to a plane.
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Three noncollinear points x|, x2, x3 determine a plan€o find it, write

xI
X2 8]
X3 P=o0

0 001 1

If the matrix containing the point vectors can be inverted, the desired vector p
thus proportional to the fourth column of the inverse.
Three planes pi, p2, p3 may intersect in a point x. To find it, write

pi p2 p3 0
0= [0001]
1

If the matrix containing the plane vectors can be inverted, the desired point p
given by the fourth row of the inverse. If the planes do not intersect in a point, th
inverse does not exist.

Al.7 GEOMETRIC TRANSFORMATIONS

This section contains some results that are well known through their central plas
in the computer graphics literature, and illustrated in greater detail there. The idk
is to use homogeneous coordinates to allow the writing of important transforme
tions (including affine and projective) as linear transformations. The transforma
tions of interest here map points or point sets onto other points or point sets. Th
include rotation, scaling, skewing, translation, and perspective distortion (poin
projection) (Fig. A1.8).

A point x in three-space is written as the homogeneous row four-vecto
(%, Y, z, w), and postmultiplication by the following transformation matrices ac-
complishes point transformation. A set of m points may be represented as
m X 4 matrix of row point vectors, and the matrix multiplication transforms all
points at once.

Al1.7.1 Rotation

Rotation is measured clockwise about the named axis while looking along the a
toward the origin.
Rotation by9about the “axis:

10 )
0 cos9 -sin9 0
0 sinfl cosO O
0 0 0 1
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(dj (e) ()

Fig. A18 Transformations: (a) original, (b) rotation, (c) scaling, (d) skewing,
(e) translation, and (f) perspective.

Rotation by9 about the Faxis:

cos9 0 sin9 O
0 1 0 0
-sin9 0 cos9 0
0 0 1

Rotation by9 about the Zaxis:

cos9 -sin0 0 O
sin9 cos9 0 O
0 0 10
0 0 01

Al1.7.2 Scaling

Scaling is stretching points out along the coordinate directions. Scaling can
transform a cube to an arbitrary rectangular parallelepiped.
Scale by 3 S, and $in the X, Y ,and Zdirections:

k 0 od
0 Sy O

0 0 S, 0
0 0 o i
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Al1.7.3 Skewing

Skewing is a linear change in the coordinates of a point based on certain of its oth
coordinates. Skewing can transform a square into a parallelogram in a simple cas

Rotation is a composition of scaling and skewing (Section Al.7.7).
Al.7.4 Translation

Translate a point by (t, u, v):
f 0
0
1
u v i1
With a three-dimensional Cartesian point representation, this transformation is a
complished through vector addition, not matrix multiplication.

OR©°
ool

|

0
0
t

Al1.7.5 Perspective

The properties of point projection, which model perspective distortion, were
derived in Chapter 2. In this formulation the viewpoint is on the positive Zaxis at
(0,0,/, 1) looking toward the origin: facts like a "focal length". The visible world
is projected through the viewpoint onto the B image plane (Fig. A1.9).

Y

X Fig. AL9 Geometry of image formation.

Sec. A1.7 Geometric Transformations 479

Page 490 of 539



480

Similar triangles arguments show that the image plane point for any world
point (x, Yy, zJsgiven by

w = fe Ty
f-z'f-z
Using homogeneous coordinates, a "perspective distortion" transformation car
be written which distorts three-dimensional space so that after orthographic projec
tion onto the image plane, the result looks like that required above for perspective
distortion. Roughly, the transformation shrinks the size of things as they get more
distant in Z. Although the transformation is of course linear in homogeneous coor-
dinates, the final step of changing to Cartesian coordinates by dividing through by
the fourth vector element accomplishes the nonlinear shrinking necessary.
Perspective distortion (situation of Fig. A1.9):

O R~ OO

H—IQOO

O o Or
O O - O

Perspective from a general viewpoint has nonzero elements in the entire fourtt
column, but thidsjust equivalent to a rotated coordinate system and the perspec-
tive distortion above (Section A1.7).

A1.7.6 Transforming Lines and Planes

Line and plane equations may be operated on by linear transformations, just a
points can. Point-based parametric representations of lines and planes transform |
do points, but the line and plane equation representations act differently. They
have an elegant relation to the point transformation. If T\s a transformation matrix
(3x3 for two dimensions, 4 x 4 for three dimensions) as defined in Sections
AlL.7.1 to AL.7.5, then a point represented as a row vector is transformed as

and the linear equation (line or plane) when represented as a column vector v i
transformed by

A1.7.7 Summary

The 4 x4 matrix formulation is a way to unify the representation and calculation of
useful geometric transformations, rigid (rotation and translation), and nonrigid
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(scaling and skewing), including the projective. The semantics of the matrix ar
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another ro
vector, transformations may be concatenated by repeated matrix multiplicatiol
Such composition of transformations follows the rules of matrix algebra (it is assc
ciative but not commutative, for instance). The semantics of

X' = XABC

is that X' is the vector resulting from applying transformation A to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 x4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrice
are just the matrices expressing the inverse transformations, and are easy
derive.

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

Sec. AT.8

The aim of this section is to explore the correspondence between world and ima
points. A (half) line of sight in the world corresponds to each image point. Camer.
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to i
image point. Given an inverse perspective transform and the knowledge that a vi
ble point lies on a particular world plane (say the floor, or in a planar beam o
light), then its precise three-dimensional coordinates may be found, since the lir
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
z
Translate Zoom
Fig. ALIO The 4x 4 homogeneous
transformation matrix.
Camera Calibration and Inverse Perspective 481

Page 492 of 539



482

x
N

o

A1.8.1 Camera Calibration

This section is concerned with the "camera model"; the model takes the form of
4 x 3 matrix mapping three-dimensional world points to two-dimensional image
points. There are many ways to derive a camera model. The one given here is e¢
to state mathematically; in practice, a more general optimization technique such ¢
hill climbing can be most effective in finding the camera parameters, since it car
take advantage of any that are already known and can reflect dependencies betwe
them.
Let the image plane coordinates be f/ant\ in homogeneous coordinates an

image plane point is (u,v,t). Thus

T
t

Call the desired camera model matrix C, with elements Cy and column four-
vectorsCj. Then for any world point (x, y, z) a Cis needed such that

xy, zDC= (u, v, 1)
So
u=(xvy,z YHYC\
v= (%Y, 21)C,
t= (xy,z, 1)G

Expanding the inner products and rewritingruUt= 0 andv — Vt= 0,
XCu +yG + zG + CA\ - UxG, - UyG; - UzGz- UC;3=0

XCy +yC22+ zC32+ Cip- VXGr VyGy ~ VzG - KCg- 0

The overall scaling of Cis irrelevant, thanks to the homogeneous formulation, sc
C43 may be arbitrarily set to 1. Then equations such as those above can be writte
in matrix form:

y 2 1 o 0 0 vy Uz |
0o 0 o0x y Z v vy v U\
y2 22 1 c21
U
0 0 0 1 -vxr v _oynnocag
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Eleven such equations allow a solutiimm C. Two equations resufor every
associationofan (x,y, z)point with a (U, V) point. Suchanassociation mudte
established using visible objects of known location (often plémetthe purpose).
If more than5*h such observations are usedeast-squared-error solutido the
overdetermined systemmay beobtainedby using a pseudo-inverseo solvethe
resulting matrix equation (Section A 1.9).

A1.8.2 Inverse Perspective

Finding the world line correspondirtp animage point relieonthe fact thathe
perspective transformation matrix also affetiteez componentof a world point.
This informationislost when thezcomponent is projected away orthographically,
but it encodes the relation between the focal point and the z posftibe point.
Varying this third component references points whose world positions vary in zb
which project onto the same positiomtheimage. The line can be parameterized
by avariablep that formally occupiegheposition of that z coordinatén three-
space that has no physical meaning in imaging.
Write the inverse perspective transform! s

xy.phpi= Xy 1+ )

Rewriting this in the usual way gives these relations between tlyezjpoints on
the line.

= K fy’ fp ]
6c y, z, 1) =
Eliminating tinepgarametgp betweentheexpressiondor zandx and thosdor z
and>- leaves

Thus x,y, and zare linearly related; as expected, all points on the inverse persp
tive transform of an image point lie in a line, and unsurprisingly both the viewpoir
(0, 0, /) and the image poingx\y', 0) lie onit.

A camera matrixC determines the three-dimensional line tisahe inverse
perspective transfornof any image point. Scal€sothat G3; = 1, and letvorld
points be written x= (x,y, z, 1)and image pointst = (u, v, t)The actual image
points are then

u=uYy VvVH , sou = v+ Vit
: t /
Since
u= xC,
u = Ut= xC,
v=Vt= x&
t = xC3
Sec. AT.8 Camera Calibration and Inverse Perspective 483
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Substituting the expression for rinto that for wand vgives
UxGC; - xCi
WV\CG; = xC»,
which may be written
x(d - UG)=0
X(Cz- V&) =0

These two equations are in the form of plane equations. For any U, Kin the imac
and camera model C, there are determined two planes whose intersection gives
desired line. Writing the plane equations as

dX +bly +c\z +d\=0
ax +hy +ez+d=0
then
a, = Cy ChU a= C,- GV

and so on. The direction (X, /x, v) of the intersectiomwafplanes is given by the
cross product of their normal vectors, which may now be written as

X ix, v) = (& b\, C) x (&, b, o)
—(b\C— b,C\, C\a—0a\, a\b—ah\)

Then ifv 2 0, for any particulanz
b\ (Gzo +dy) - b (cjZQ- d)

‘o0~ z—:
a\b, — b\a
- A2(ci*0 + Al ~ QI (7270 ~ ¢
ab, - ba,

and the line may be written
X~% _Yy-JQ _z-¢&

X fiL \

A1.9. LEAST-SQUARED-ERROR FITTING

The problem of fitting a simple functional model to a set of data points is a com-
mon one, and is the concern of this section. The subproblem of fitting a straigh
line to a set of (x, y) points ("linear regression") is the first topic. In computer vi-
sion, this line-fitting problem is encountered relatively often. Modelfitting

methods try to find the "best" fit; that is, they minimize some error. Methods
which yield closed-form, analytical solutions for such best fits are at issue here
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Sec. A1.9

The relevant "error'to minimize is determined parthpy assumption®f depen-
dence between variableH. A is independenttheline may berepresenteds.y =
nvc+ 6 andtheerror definedas thevertical displacementf a point from theline.
Symmetrically, if xls dependent, horizontal error shdugdninimized. If neither
variableis dependentareasonable errdo minimize is theperpendicular distance
from pointsto theline. In this caseheline equatiorax + by + 1 =0 can hesed
with the method shown herer theeigenvector approactf Section Al.9.2may
be used.

A1.9.1 Pseudo-Inverse Method

In fitting an/? x 1 observations matriy by some linear model of/? parametedts
predictionis that thelinear model will approximate the actual data. Then

Y=XB+E

where X is an n x gormal independent variable matriB,is a p x Iparameter
matrix whose valuesare to bedetermined,and Erepresentsthe difference
betweenthepredictionandthe actualityit is an n x1 error matrix.

For exampleto fit astraight liney = mx + b tosome data®*-, y,) points,
form Yas a column matrix of thg

[l *i
1 %
X= Ix>

Now thetaskis tofind the parameteB (above,the b and nthat determine
the straight line) that minimizethe error. The error is the sum ofsqyared
difference fromtheprediction,or the sunof the elementsf E squaredor E'E (if
we do notmind conflatingtheone-element matrix witascalar).The mathemati-
cally attractive propertiesf the squared-error definitiorare almost universally
takento compensatéor whatever disadvantagéshas over whais really meanby
error (theabsolute valués much hardeto calculate with for example).

To minimizetheerror, simply differentiatet with respectto theelementof
B and set thalerivativeto 0. Thesecond derivativés positive: thisis indeeda
minimum. These elementwise derivativea®written terselyin matrix form. First
rewrite theerror terms:

E'E= (Y- XBY(Y- XB)
Y'Y - B'X'Y - Y'XB + B'X'XB
Y'Y - 2B'XY + B'X'XB

Least-Squared-Error  Fitting 485
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(here, the combined terms were 1 x 1 matrices.) Now differentiate: setting th
derivative to 0O yields

0=XXB - XY
and thus
B= (X'X)'Xv= Xy
where A"is called the pseudo-inverse of X.
The pseudo-inverse method generalizes to fitting any parametrized model
data (SectiorA 1.9.3).The model should be chosen with some care. For example
Fig. A1.11 shows a disturbing case in which the model above (minimize vertici

errors) is used to fit a relatively vertical swarnpoints. The "best fit" line in this
case is not the intuitive one.

A1.9.2 Principal Axis Method

The principal axes and momentsasfwarm of points determine the direction and
amount of its dispersion in space. These concepts are familiar in physics as 1
principal axes and moments of inertiaawarm of (possibly weighted) points is
translated so that its center of mass (average location) is at the origin, a symme
matrix M may be easily calculated whose eigenvectors determine the best-fit lir
or plane in a least-squared-perpendicular-error sense, and whose eigenvalues
how good the resulting fitis.

Given a set {xj row of vectors with weight&, define their "scatter matrix"
to be the symmetric matrix M, where x' = Ggj, x'?,):

M=£ xV
Mp=Y,44 1<k p<3

Define the dispersion of the x' in a direction v (i.e., "dispersion around tht
plane whose normal is v") to be the sum of weighted squared lengths of the x'
the direction v. This squared errof iE

E’= £ w- (X *v)?- v (£ WX'X)y'= vMv'

Fig. A1.11 A sel of points and the
' "best fit" line minimizing error in Y.
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Sec. A1.9

To find the direction of minimum dispersion (the normal to the best-fit line or
plane),note that the minimum of vMwaver all unit vectors v is the minimum
eigenvalue X\ of M. If vj is the corresponding eigenvector, the minimum dispel
sion is attained at v = vj. The best fit line or plane of the points goes through tt
center of mass, which is at the origin; inverting the translation that brought tt
centroid to the origin yields the best fit line or plane for the original point swarm.

The eigenvectors correspond to dispersions in orthogonal directions, and t
eigenvalues tell how much dispersion there is. Thus with a three-dimension
point swarm, two large eigenvalues and one small one indicate a planar swa
whose normal is the smallest eigenvector. Two small eigenvalues and one la
one indicate a line in the direction of the normal to the "worst fit plane”, or eiger
vector of largest eigenvalue. (It can be proved that in fact this is the best-fit line in
least squared perpendicular error sense). Three equal eigenvalues indicat
"spherical" swarm.

A1.9.3 Fitting Curves by the Pseudo-Inverse Method

Given afunction fix) whose value is known epointsXi, ..., X,, it may be use-
ful is to fit it with a function g(x) ofn parameters (b\, ..., op If the squared er-
ror at a point X, is defined as

(e,f-  \(x)-gu,)r
a sequence of steps similar to that of Section A 1.9.1 leads to setting a derivative
zero and obtaining

0=G'Gb- G'f
whereb is the vector of parameters, fthe vectonehlues of/(x), and
Bgixi)
dbi db:
c=9 _
e By(x,)
db»
As before, this yields
b= (G'G)~ G'f

Explicit least-squares solutions for curves can have nonintuitive behavior. |
particular, say that a general circle is represented

gtx,y) = X +y* +IDx + 2Ey +F
this yields values of A E, and .Fwhich minimize

&=+ Hix, y)
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for ninput points. The error term being minimized does not turn out to accord
with our intuitive one. It gives the intuitive distance of a point to the curve, but
weighted by a factor roughly proportional to the radius of the curve (probably nof
desirable). The best fit criterion thus favors curves with high average curvature
resulting in smaller circles than expected. In fitting ellipses, this error criterion
favors more eccentric ones.

The most successful conic fitters abandon the luxury of a closed-form solu:
tion and go to iterative minimization techniques, in which the error measure is ad
justed to compensate for the unwanted weighting, as follows.

e Ty
=1 VI y)

A1.10 CONICS

488

The conic sections are useful because they provide closed two-dimensional curve
they occur in many images, and they are well-behaved and familiar polynomials ¢
low degree. This section gives their equations in standard form, illustrates how th
general conic equation may be put into standard form, and presents some sam|
specific results for characterizing ellipses.

All the standard form conies may be subjected to rotation, translation, anc
scaling to move them around on the plane. These operations on points affect t
conic equation in a predictable way.

Circle:r = radius % +y' = r
— . . XV
Ellipse: a, b— major, minor axes ", 2
a
Parabola: (p, 0) = focus, p = directrix ¥ = Apx
Hyperbola: vertices (a, 0), asymptotes™ = *

The general conic equation is
A¢ +2Bxy + C¥ + 2Dx +2Ey + F = 0
This equation may be written formally as
\A B Dé X
xy 1) B C y =xMk =0
D E F
Putting the general conic equation into one of the standard fsgmmon ana-
lytic geometry exercise. The symmetric 3x 3 matrix Mmay be diagonalized, thus
eliminating the coefficients B, D, and E from the equation and reducing it to be
close to standard form. The diagonalization amounts to a rigid motion that puts th

conic in a symmetric position at the origin. The transformation is in fact the 3x3
matrix E whose rows are eigenvectors of M. Recall that if v is an eigenvector of M,

vM = Xv
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Then ifD isa diagonal matrix of the three eigenvalukg,A » 3>

but then

and Mhas been transformed by a similarity transformation into a diagonal matrix
such that

xDxX'= 0

This general idea is of course related to the principal axis calculation given in Sec-
tion Al.9.2, and extends to three-dimensional quadric surfaces such as the ellip-
soid, cone, hyperbolic paraboloid, and so forth. The general result given above has
particular consequences illustrated by the following facts about the ellipse. Given a
general conic equation representing an ellipse, its c&xgy.) is given by

BE-2CD
X = B%4AC
_ 2EA- BD
Y= manc
The orientation is
The major and minor axes are
-2G

(A +C) £ [BH#(A-CA*
where
G- F- {AX + Byt CY)

A1.11 INTERPOLATION
Interpolation fits data by giving values between known data points. Usually, the in-

terpolating function passes through each given data point. Many interpolation
methods are known; one of the simplest is Lagrangean interpolation.

Al.11.1 One-Dimensional

Given n + 1 points Gc,yj);x0 < X\ < eee < x  the idea is to produce an «th-
degree polynomial involving n % so-called Lagrangean coefficients. It is
fix) =2 LjX)yj
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* (%o Ki) + (x..Ki)

p>
—u Ky * IMi,K o)
\—ql<  »
Fig. A1.12 Four point lagrangean
| k >, interpolation on rectangular grid.
where Ljix) is they'th coefficient;
, Vo (XXp)  (X-XY) oo (X —Xj-i) (X-Xj4.\) o m(X—X,)
(Xj- XQ) (XJ- X)) me «(Xj- Xj-i) (Cj-Xji\) "me (X]j- X))

Other interpolative schemes include divided differences, Hermite interpola
tion for use when function derivatives are also known, and splines. The use of ap
lynomial interpolation rule can always produce surprising results if the function be
ing interpolated does not behave locally like a polynomial.

Al1.11.2 Two-Dimensional

The four-point Lagrangean method is for the situation shown in Fig. A1.12. Let/:
-1(*/, yj). Then

f(xo *+ gk +ph) = (I-/?) (I-<?)/oo + qi\~p) fio +p(X~q) /01 + Plfu

Al.12 THE FAST FOURIER TRANSFORM

490

The following routine computes the discrete Fourier transform of a one-
dimensional complex array Xin of length N 2°" and produces the one-
dimensional complex array XOut. It uses an array W of the N complex Nth roots c
unity, computed as shown, and an array Bits containing a bit-reversal table «
length N. N, LogN, W, and Bits are all global to the subroutine as written. If the
logical variable Forward is TRUE, the FFT is performed; if Forward is FALSE, the
inverse FFT is performed.

SUBROUTINE FFT(XIn, KOut, Forward)
GLOBAL W, Bits, N, LogN

LOGICAL Forward

COMPLEX XIn, Xout, W, A, B
INTEGER Bits

ARRAY(0:N) W, Bits, XIn, XOut
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DO (I = 0, N- 1) XOut(l) = XIn(Bits(D)
JOff = N/2
JPnt = N/2
JBk = 2
IOFF = 1
DO (1= I,LogN)
DO (IStart = 0, N— 1, JBk)
JWPnt = 0
DO (K = IStart, IStart+ 10ff-1)
WHEN (Forward)
A = XOut(K + 10f) * W(IWPnt) + XOut(K)
B = XOut(K + IOff) * W(IWPnt + JOff) + XOut(K)
FIN
ELSE
A = XOut (K + I0ff) * CONJG(W(IJWPnt)) + XOut(K)
B = XOut(K + I0ff) * CONJG(W(IWPnt + JOff)) + XOu
FIN
XOut(K) = A
XOut(K + I0f) = B
JWPnt = JWPnt + JPnt

FIN
... FIN
JPnt = JPnt/2
IOff = JBk
JBk = JBk* 2

... FIN
UNLESS (Forward)
DO (1= 0,N- 1) XOut(l) = XOut(l)/N
... FIN
END

TO INIT-W
Pi = 3.14159265
DO (K= 0,N-1)
Theta = 2* Pi/N
W(K) = CMPLX (COS(Theta* K), SIN (Theta* K))
FIN

FIN

TO BIT-REV
Bits(0) = 0
M=1
DO (I= 0,LogN-I)
DO (J= 0,M-1)
Bits(J) = Bits(J) *2
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BitsCJ + M) = Bits(J) + 1
... FIN
M = M*2
FIN
FIN

A1.13 THEICOSAHEDRON

Geodesic dome constructions provalaseful wayto partition thesphere (hence
the three-dimensional directions) into relatively uniform patchiéseresulting
polyhedra look like those of Figh1.13.

The icosahedromas 12vertices,20faces,and 30 edgesL etits center beat
the origin of Cartesian coordinates atet each vertexbe aunit distance fronthe
center. Define

t, thegolden ratio=

V7
a=
_ 1
b= \wit 5%
c:a4~2b:%-
d:a+b:—bm

A = angle subtendetby edgeatorigin = arccos(-"-

Fig. A1.13 Multifaceted polyhedra frontheicosahedron.
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Then

angle between radius and an edge = &rccos (b)
edge length = Ib
distance from origin to center of edgea

distance from origin to center of face \52

The 12 vertices may be placed at

(0, @, #o)
{#b, 0, #a)
(#a, #b, 0)

Then midpoints of the 20 faces are given by
/s(xd, #d, =d)
M 0, #a, =c)
/3(xc, 0, za)
/a(za, =c, 0)

To subdivide icosahedral faces further, several methods suggest themselves
the simplest being to divide each edge into n equal lengths and then corfstruct n
congruent equilateral triangles on each face, pushing them out to the radius of th
sphere for their final position. (There are better methods than this if more uniform
face sizes are desired.)

Al.14 ROOT FINDING

Since polynomials of fifth and higher degree are not soluble in closed form, numer-
ical (approximate) solutions are useful for them as well as for nonpolynomial func-

tions. The Newton-Raphson method produces successive approximations to a rea
root of a differentiable function of one variable.

Here X' is the /th approximation to the root, and f(x") féjl are the function

and its derivative evaluated at Xhe new approximation to the root i$x' The
successive generation of approximations can stop when they converge to a singl
value. The convergence to a root is governed by the choice of initial approximation
to the root and by the behavior of the function in the vicinity of the root. For in-
stance, several roots close together can cause problems.

The one-dimensional form of this method extends in a natural way to solving
systems of simultaneous nonlinear equations. Given n functignsaéh of n
parameters, the problem is to find the set of parameters that drives all the func-
tions to zero. Write the parameter vector x.
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Form the function column vector F such that

/m i(x
>2(x)
F(x) =
F.(X)
The Jacobean matrix 7is defined as
dFi  BFi BR
dx\  0x2 dx,
J=
dF, BF,
dx\ Bx,

Then the extension of the Newton-Raphson formula is
x4 = X r'(X)F(X)

which requires one matrix inversion per iteration.

EXERCISES

Al.l  xandy are two two-dimensional vectors placed tail to tail. Prove that the area of th
triangle they definés |x x y|/2.

Al .2 Show that points g in a plane defined by the three points x, y, and z are given by
qm [(y-x) X (z-xX)J =X *(y Xz)

Al .3 Verify that the vector triple product may be written as claimed in its definition.
Al .4 Given an arctangent routine, write an arcsine routine.
Al .5 Show that the closed form for the inverse 26@2 A matrix is

1 an —a\
det A -an a\\

Al .6 Prove by trigonometry that the matrix transformations for rotation are correct.
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ALl7

Al 8
Al 9
A1.10

AlLLll
Al1.12

A1.13

Al.14

Al .15

Al.16
Al1.17

Al.18

A1.19

Al1.20

Al 21
Al.22

What geometric transformation is accomplished when a” of a geometric transfor-
mation matrix A varies from unity?

Establish conversions between the given line representations.
Write a geometric transform to mirror points about a given plane.

What is the line-equation representation of a line LI through a point x and per-
pendicular to aline L2 (similarly represented)? Parallel to L2?

Derive the ellipse results given in Section A1.10.
Explicitly derive the values of &, and “minimizing the error term

in the general equation for a circle
¥ +y* +2Dx +IEy +F- 0

Show that if points and lines are transformed as shown in Section Al.7.6, the
transformed points indeed lie on the transformed lines.

Explicitly derive the least-squared-error solution for lines represented as ax + by
+ 1=0.

If three planes intersect in a point, is the inverse of

pl P2 p3 ol
0
0
1

guaranteed to exist?

What is the angle between two three-space lines?

In two dimensions, show that two lines u and v intersect at a point x given by x =
uxV.

How can you tell ifwo line segments (defined by their end points) intersect in the
plane?

Find a 4 x 4 matrix that transforms an arbitrary direction (or point) to lie on the Z
axis.

Derive a parametric representation for planes based on three points lying in the
plane.

Devise a scheme for interpolation on a triangular grid.
What does the homogeneous point (x, y, z, 0) represent?
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Advanced
Control Mechanisms
Appendix 2

This appendix is concerned with specific control mechanisms that are provided by
programming languages or that may be implemented on top of existing language
as aids to doing computer vision. The treatment hdvgd§ our aim is to expose

the reader to several ideas for control of computer programs that have beer
developed in the artificial intelligence context, and to indicate how they relate to
the main computational goals of computer vision.

A2.1 STANDARD CONTROL STRUCTURES

For completeness, we mention the control mechanisms that are provided as
matter of course by conventional research programming languages, such as Pasc
Algol, POP-2, SAIL, and PL/1. The influential language LISP, which provides a
base language for many of the most advanced control mechanisms in computer v
sion, ironically is itself missing (in its pure form) a substantial number of these
more standard constructs. Another common language missing some standard col
trol mechanisms is SNOBOL. These standard constructions are so basic to th
current conception aiserial von Neumann computer that they are often realized
in the instruction set of the machine. In this sense we are almost talking here ol
computer hardware.
The standard mechanisms are the following:

1. SequenceAdvance the program counter to the next intruction.
2. Branchinstruction.Go toaspecific address.

3. Conditionalbranch.Go to a specific address if a condition is true, otherwise, go
to the next instruction.

4. Iteration. Repeat a sequence of instructions until a condition is met.
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5. SubroutinesGo to a certain location; execute a set of instructions using a se
supplied parameters; then return to the next instruction after the subrouti
call.

All the standard control structures should be in the toolké mbgrammer.
They will be used, together with the data structures and data types supplied in
working language, to implement other control mechanisms. The remainder of tl
appendix deals with "nonstandard" control mechanisms; those not typically pr
vided in commercial programming languages and which have no close correlate:
primitive machine instructions. Nonstandard control mechanisms, although not
all domain-specific, have developed to meet needs that are not the "lowest cc
mon denominator" of computer programming. They impose their own view ¢
problem decomposition just as do the standard structures.

Less standard mechanisms aeeursionand co-routining. Co-routining can
be thought of as a form of recursion.

A2.1.1 Recursion

Recursion obeys all the constraints of subroutining, except that a routine may «
upon "itself." The user sees no difference between recursive and nonrecursi
subroutines, but internally recursion requires slightly more bookkeeping to be pr
formed in the language software, since typically the hardware of a computer dc
not extend to managing recursion (although some machines have instructions
are quite useful here).

A typical use of a recursive control paradigm in computer vision might be:

To Understand-Scene (X);

(
If Immediately-Apparent (X)
thenReport-Understanding-Of(X);
else
(SimplerParts— Decomposé€X);
ForEachPartin SimplerParts
Understand-Scen@art);
)
[)

Recursion is an elegant way to specify many important algorithms (such as tr
traversals), but in a way it has no conceptual differences from subroutining. A ro
tine is broken up into subroutines (some of which may involve smaller versions
the original task); these are attacked sequentially, and they must finish before tt
return control to the routine that invokes them.

A2.1.2 Co-Routining

Co-routines are simply programs that can call (invoke) each other. Most high-lev
languages do not directly provide co-routines, and thus they are a nonstand
control structure. However, co-routining is a fundamental concept [Knuth 197!
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and serves here as a bridge between standard and nonstandard control mect
isms.

Subroutines and their calling programs have a "slave-master" aspect: cor
trol is always returned to the master calling program after the subroutine has ca
ried out its job. This mechanism not only leads to efficiencies by reducing the
amount of executable code, but is considered to be so useful that it is built into tk
instruction set of most computers. The pervasiveness of subroutining has subt
effects on the approach to problem decomposition, encouraging a hierarchical su
problem structure. The co-routine relationship is more egalitarian than the
subroutine relationship. If co-routine A needs the services of co-routine B, it cal
call B, and (here is the difference) conversely, Bcan call A if Bneeds A's services

Here is a simple (sounding) problem [Floyd 1979]: "Read lines of text, until
a completely blank line is found. Eliminate redundant blanks between the words
Print the text, 30 characters to a line, without breaking words between lines." Thi:
problem is hard to program elegantly in most languages because the iterations i
volved do not nest well (try it!). However, an elegant solution exists if the job is
decomposed into three co-routines, calling each other to perform input, format
ting, and output of a character stream.

A useful paradigm for problem solving, besides the strictly hierarchical, is
that ofa"heterarchical" community of experts, each performijgb and when
necessary calling on other experts. A heterarchy can be implemented by cc
routines. Many of the nonstandard mechanisms discussed below are in the spirit
co-routines.

A2.2 INHERENTLY SEQUENTIAL MECHANISMS

Sec. A2.2

A2.2.1 Automatic Backtracking

The PLANNER language [Hewitt 1972] implicitly implemented the feature of
"automatic backtracking." The advisability of uniformly using this technique,
which is equivalent to depth-first search, was questioned by those who wished t
give the programmer greater freedom to choose which task to activate next [Sus
man and McDermott 1972].

A basic backtracking discipline may be provided by recursive calls, in which a
return to a higher level is a "backtrack.” The features of automatic backtracking
are predicated on an ability to save and reinstate the computational stpteasf
ess automatically, without explicit specification by the programmer.

Automatic backtracking has its problems. One basic problem occurs in sys
tems that perform inferences while following a particular line of reasoning which
may ultimately be unsuccessful. The problem is that along the way, perhaps mar
perfectly valid and useful computations were performed and many facts were adc
ed to the internal model. Mixed in with these, of course, are wrong deductions
which ultimately cause the line of reasoning to fail. The problem: After having re-
stored control to a higher decision point after a failure is noticed, how is the systen
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to know which deductions were valid and which invalid? One expensive way sug
gested by automatic backtracking is to keep track of all hypotheses that contribute
to deriving each fact. Then one can remove all results of failed deduction paths
This is generally the wrong thing to do; modern trends have abandoned the ai
tomatic backtracking idea and allow the programmer some control over what is re
stored upon failure-driven backtracking. Typically, a compromise is implemented
in which the programmer may mark certain hypotheses for deletion upon back
tracking.

A2.2.2 Context Switching

Context switching is a general term that is used to mean switching of general proc
ess state (a control primitive) or switching a data base context (a data access prin
tive). The two ideas are not independent, because it could be confusing for a pror
ess to put itself to sleep and be reawakened in a totally different data context.

Backtracking is one use of general control context switching. The most gen:
eral capability is a "general GO TO." A regular GO TO allows one to go only to a
particular location defined in a static program. After the GO TO, all bindings and
returnpoints are still determined by the current state of processing. In contrast,
general GO TO allows a transfer not only across program "space," but throug
program "time" as well. Just as a regular GO TO can go to a predefined prograr
label, a general GO TO can go to a "tag" which is created to save the entire state
a process. To GO TO such atag is to go back in time and recreate the local bindir
access, control, and process state of the process that made the tag.

A good example of the use of such power is given in a problem-solving pro-
gram that constructs complex structures of blocks [Fahiman 1974].

A2.3 SEQUENTIAL OR PARALLEL MECHANISMS

500

Some language constructs explicity designate parallel computing. They may actue
ly reflect a parallel computing environment, but more often they control a simulat-
ed version in which several control paths are maintained and multi-processe
under system control. Examples here are module and message primitives give
below and statements such as the CO-BEGIN, CO-END pairs which can bracke
notionally parallel blocks of code in some Algol-like language extensions.

A2.3.1 Modules and Messages

Modules and messages form a useful, versatile control paradigm that is relativel
noncommittal. That is, it forces no particular problem decomposition or methodo-
logical style on its user, as does a pure subroutine paradigm, for example. Messa
passing is a general and elegant model of control which can be used to subsur
others, such as subroutining, recursion, co-routining, and parallelism [Feldmat
1979].

There are many antecedents to the mechanism of modules communicatin
by messages described here. They include [Feldman and Sproull 1971; Hewitt ar
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Sec. A2.3

Smith 1975; Goldberg and Kay 1976; Birtwhistle et al. 1973]. In the formulatiol
presented by Hewitt, the message-passing paradigm can be extended down intc
lowest level of machine architecture. The construction outlined here [Feldm:
1979] is more moderate, since in it the base programming language may be u
with its full power, and itself is not module and message based.

A program is made up ohodules A module is a piece of code with associatec
local data. The crucial point is that the internal state of a module (e.g. its data)
not accessible to other modules. Within a module, the base programmi
language, such as Algol, may be used to its full power (subroutine calls, recursi
iteration, and so forth are allowed). However, modules may not in any sense "c
upon" each other. Modules communicate only by meamsesisagesA module
may send a message to another module; the message may be a request for se
an informational message, a signal, or whatever. The module to whom the m
sage is sent may, when it is ready, receive the message and process it, and
then itself send messages either to the original module, or indeed to any combi
tion of other modules.

The module-message paradigm has several advantages over subroutine
co-routine) calls.

1. If subroutines are in different languages, the subroutine call mechanisms mi
be made compatible.

2. Any sophisticated lockout mechanism for resource access requires the inter
coding of queues equivalent to that which a message switcher provides.

3. A subroutine that tries to execute a locked subroutine is unable to proce
with other computation.

4. Having a resource always allocated by a single controlling module great
simplifies all the common exclusion problems.

5. For inherently distributed resources, message communication is natur
Module-valued slots provide a very flexible but safe discipline for control
transfers.

Another view of messages is as a generalization of parameter lists in subrc
tine or coroutine calls. The idea of explicitly naming parameters is common in a
sembly languages, where the total number of parameters to a routine may be v
large. More important, the message discipline presents to a module a collection
suggested parameters rather than automatically filling in the values of paramete
This leads naturally to the use of semantic checks on the consistency of parame
and to the use of default values for unspecified ones, which asubstantial im-
provement on type checking. The use of return messages allows multiple-valu
functions; an answer message may have several slots. Messages solve the so-c
"uniform reference problem"—one need not be concerned with whether a
answer (say an array element) is computed by a procedure or a table.

There is yet another useful view of messages. One can view a message i
partially specified relation (or pattern), with some slot values filled in and som:
unbound. This is common in relational data bases [Astrahan et al. 1976] al
artificial intelligence languages [Bobrow and Raphael 1974]. In this view, a mes

Sequential or Parallel Mechanisms 501

Page 512 of 539



502

sage is a task specification with some recipient and some complaint departments
talk to about it. Various modules can attempt to satisfy or contract out parts of the
task of filling in the remaining slots. A module may handle messages containing
slots unknown to it. This allows several modules to work together on a task while
maintaining locality. For example, an executive module could route messages (ol
the basis of a few slots that it understands) to modules that deal with special aspet
of a problem using different slots in the message.

There is no apparent conflict between these varying views of messages. It i
too early in their development to be sure, but the combined power of these pare
digms seems to provide a qualitative improvement in our ability to develop vision
programs.

A2.3.2 Priority Job Queue

In any system of independent processes on a serial computer, there must be
mechanism for scheduling activation. One general mechanism for accomplishing
scheduling is the priority job queue. Priority queues are a well-known abstraction
[Aho et al. 1974]. Informally, a priority job queue is just an ordered list of
processes to be activated. A monitor program is responsible for dequeueinc
processes and executing them; processes do not give control directly to othe
processes, but only to the monitor. The only way for a process to initiate another i
to enqueue it in the job queue. It is easiest to implement a priority job queue if
processes are definable entities in the programming language being used; in othe
words, programs should be manipulable datatypes. This is possible in LISP anc
POP-2,for example.

If a process needs another job performed by another process, it enqueues tt
sub job on the job queue asdspenddself (it is deactivatedor put to sleep). The
subjob, when it is dequeued and executed by the monitor, must explicitly enqueue
the "calling" process i subroutining effect is desired. Thus along with usual ar-
guments tellingajob what data to work orgjob queue discipline implies passing
of control information.

Job queues are a general implementational technique useful for simulating
other types of control mechanisms, such as active knowledge (Chapter 12). Also, .
job queue can be used to switch between jobs which are notionally executing ir
parallel, as is common in multiprocessing systems. In this case sufficient informa-
tion must be maintained to start the job at arbitrary points in its execution.

An example of a priority job queue is a program [Ballard 1978] that locates
ribs in chest radiographs. The program maintains a relational model of the ribcage
including geometric and procedural knowledge. Uninstantiated model nodes
corresponding to ribs might be called hypotheses that those ribs exist. Associate:
with each hypothesis is a set of procedures that may, under various conditions, b
used to verify it (i.e., to find a rib). Procedures carry information about precondi-
tions that must be true in order that they may be executed, and about how to conr
pute estimates of their utility once executed. These descriptive components allow
an executive program to rank the procedures by expected usefulness at a give
time.
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Fig. A2.1 The rib-finding process in action (see text).
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There is an initial action that is likely to succeed (locating a particular rib that
is usually obvious in the x-ray). In heterarchical fashion, further actions use the
results of previous actions. Once the initial rib has been found, its neighbors (bot
above and below and directly across the body midline) become eligible for con
sideration.

Eligible rib-finding procedures correspond to short-term plans; they are all
put on ajob queue to be considered bgrecutivgprogram that must compute the
expected utility of expending computational energy on verifying one of the hy-
potheses by running one of flobs. The executive computes a priority on the jobs
based on how likely they are to succeed, using the utility functions and parametel
associated with the individual nodes in the rib model (the individual hypotheses)
and the current state khowledge.The executive not only picks a hypothesis but
also the procedure that should be able to verify it with least effort.

The hypothesis is either "verified," "not-verified,” or "some evidence is
found." Verifying a hypothesis results in related hypotheses (about the neighbor
ing ribs) becoming eligible for consideration. The information found during the
verification process is used in several ways that can affect the utility of other pro-
cedures.

The position of the rib with respect to instantiated neighbors is used to adjus
horizontal and vertical scale factors governing the predicted size of the ribcage
The position of the rib affects the predicted range of locations for other unfound
ribs. The shape of the rib also affects the search region for uninstantiated rib neigk
bors.

If some evidence is found for the rib, but not enough to warrant an instantia-
tion, the rib hypothesis is left on the active list and the rib model node is not in-
stantiated. Rib hypotheses left on the active list will be reconsidered by the exect
tive, which may try them again on the basis of new evidence.

The sequence of figures (Fi2.1, p. 503) shows a few steps in the finding of
ribs using this program. Figure A2.1a shows the input data. A2.1b shows rectan
gles enclosing the lung field and the initial area to be searched for a particular rit
which is usually findable. Only one rib-finding procedure is applicable for ribs with
no neighbors found, so it is invoked and the rib shown by dark boxes in Fig. A2.1k
is found. Predicted locations for neighboring ribs are generated and are used i
order by the executive which invokes the rib-finding procedures in order of ex-
pected utility (A2.1c-e). Predicted locations are shown by dots, actual locations by
crosses; in FigA2.1f, all modelled ribs are found. The type of procedure that
found the rib is denoted by the symbol used to draw in the rib. F&fuilé shows
the final rib borders superimposed on the data.

A2.3.3 Pattern Directed Invocation

Considerable attention has been focused recently on pattern directed systems (st
e.g., [Waterman and Hayes-Roth 1978]). Another common examplpatfern

directed system is the production system, discussed in Section 12.3. The ide
behind a pattern directed system is that a procedure will be activated not when i
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name is invoked, but when a key situation occurs. These systems have in comm
that their activity is guided by the appearance of "patterns” of data in either inpt
or memory. Broadly construed, all data forms patterns, and hence patterns gui
any computation. This section is concerned with a definition of patterns as somu
thing very much smaller than the entire data set, together with the specification
control mechanisms that make use of them.

Pattern directed systems have three components.

1. Adata structure or data base containing modifiable items whose structure m
be defined in terms of patterns

2. Pattern-directed modules that match patterns in the data structure

3. A controlling executive that selects modules that match patterns and activatt
them

A popular name for a pattern-directed proceduredesrmon.Demons were
named originally by Selfridge [SelfridgE959].They are used successfully in many
Al programs, notably in a natural language understanding system [Charniak 197z
Generally, a demon is a program which is associated vgtttarnthat describes
part of the knowledge base (usually the pattern is closely related to the form ¢
"items'" in a data base). When a part of the knowledge base matching the pattern
added, modified, or deleted, the demon runs "automatically." It is as if the demo
were constantly watching the data base waiting for information associated with ce
tain patterns to change. Of course, in most implementations on conventional cor
puters, demons are not always actively watching. Equivalent behavior is simulate
by having the demons register their interests with the system routines that acce
the data base. Then upon access, the system can check for demon activation col
tions and arrange for the interested demons to be run when the data base chang

Advanced languages that support a sophisticated data base often provii
demon facilities, which are variously known as if-added and if-removed pro-
cedures, antecedent theorems, traps, or triggers.

A2.3.4 Blackboard Systems

In artificial intelligence literature, a "blackboard" is a special kind of globally ac-
cessible data base. The term first became prominent in the contelergé pat-

tern directed system to understand human speech [Erman and Lesser 1975; Ern
et al. 1980]. More recently, blackboards have been used as a vision control syste
[Hanson and Riseman 1978]. Blackboards often have mechanisms associated w
them for invoking demons and synchronizing their activities. One can appreciat
that programming with demons can be difficult. Since general patterns are beir
used, one can never be sure exactly when a pattern directed procedure will be .
tivated; often they can be activated in incorrect or bizarre sequences not antic
pated by their designer. Blackboards attempt to alleviate this uncertainly by cor
trolling the matching process in two ways:

1. Blackboards represent the current part of the model that is being associat:
with image data;
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2. Blackboards incorporate rules that determine which specialized subsystems o
demons are likely to be needed for the cug@mtThis structuring of the data
base of procedures increases efficiency and loosely corresponds to a "mente
set."

These two ideas are illustrated by Figs. A2.2 and A2.3 [Hanson and Riseman
1978]. Figure A2.2 shows the concept of a blackboard as a repository for only
model-image bindings. Figure A2.3 shows transformations between model entities
that are used to select appropriate groups of demons.

Short Term Memory Long Term Memory
image specific model apriori general knowledge

Fig. A2.2 An implementation of the blackboard concept. Here the blackboard
is called Short Term Memory; it holds a patrtial inlerpretation of a specific image.
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Fig. A2.3 Pathsfor hypothesis flow, showing transformations between model entities
and the sortofknowledge needed for the transformations.
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Boundary, 75, 265
conditions for B-splines, 241
detection, 119-148
in binary images, 143
divide and conquer, 122
dynamic programming, 137-143
Hough algorithm, 123-131
evaluation, 288-291
as graph,131
representations, 232-247, 265-274
Branch and bound search:
backtracking improvement, 364
for boundaries, 136
Breakpoints in linear segmentation, 232

Calculus, predicate (See Predicate logic)
Camera model and calibration, 481-484
Cartesian coordinate system, 465

CAT imagery, 1, 56-59

Cell decomposition volume representation, 281

Centroid of volume, 285
Chain code, 235-237, 256, 258
area calculation, 236
derivative, 236
merging, 236
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Closure operator for sets, 282
Clustering:
motion detection, 217

parametric and non-parametric for pattern

recognition, 181-183
Co-routining, 498 (See also Control)
Coherence:

of knowledge representation, 320

rule for line-drawing interpretation, 297
Collision detection with optic flow, 201
Color, 31-35

bases,33-34

-space histograms, 153-155
Comb, dirac, 19, 40
Combining operators for volumes, 282
Compactness of region, 256
Completeness of inference system, 389
Complexity of graph algorithms, 359
Component, r-connected, 369, 380
Computer as research tool, 9
Concave line label, 296
Concavity tree of region, 258
Cone, generalized (See Generalized, cone)
Confidence:

planning, 415 (SealsoSupposition value in relaxation)

region growing, 164
Conic, 239, 488-489
Conjunctive normal form for logic, 388
Connect line label, 303
Connected:

component of graph, 369, 380

region, 150, 255
Connectives of logic, 385
Connectivity:

difference, 375

image, 36

matching, 372-375
CONNIVER, 322

Consolidation 102, (See also Pyramid)
Constraint (See also Relaxation)

Subject Index



inconsistency, 427
as inequality in linear programming, 423
labeling, 408-410
n-ary, 410
propagation, 299, 413-415
relaxation, 408-430
satisfaction for belief maintenance, 347
semantic, on region-growing, 160-164
Constructive solid geometry volume
representation, 282
Context:
data base, 440
switching, 500
Continuity of knowledge representation, 320
Contour:
following, 143-146
occluding, 101
Contrast enhancement, 71
Control, 315, 340-350, 497-502
bottom-up or data-driven, 341, 344-346
hierarchical and heterarchical, 341-346
in knowledge representations, 317
message passing, 501
mixed top-down and bottom-up, 344-346
structures, standard and nonstandard, 497-500
top-down, 342, 343-346
Convergence of relaxation algorithms, 414, 418
Conversions, logic to semantic nets, 332
Convex:
decomposition of region, 253
line label, 296
region, 258
Convolution, 25, 68
theorem, 30
Cooperative algorithms, 408-430
Coordinate systems, definitions and conversions,
465-468
Correctness of inference system, 389
Correlation, 25, 30, 66-70
binary search, 108
coefficient, 419
metrics, 362
non-linear for edge linking, 121
normalized, 68-70
periodic and aperiodic, 67
texture, 187
Correspondence problem, 89
Cost:
of planning, 452
in plans, 445-459
Crack edges, 78
Curvature:
boundary, 256
in evaluation function, 133
space curve, 276
Curve 231:
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detection. Hough algorithm, 126

fitting, 487

intersection, 247

segmentation techniques, 233-234
Cutting planes in linear programming, 428
Cylinder, generalized, 274-280
Cylindrical coordinate system, 466

Data:

base,398, 431,440

-driven control, 341-346

fitting, 239, 484-488

nodes in location networks, 336, 338

structure for boundaries, 158
Decision:

theory and planning, 446-453

trees for matching, 370-377
Decomposition:

region, 253

solid, 287
Default values in knowledge representations, 330,

334-335

Delete list, 440
Delta function, 18-19,40
Demon, 412, 429, 505
DeMorgan's laws, 387
Densitometer, 46
Density of image, 44, 74
Dependence, gray-level, 186-188
Depth:

-first search and variations, 136, 363-365, 372, 412

from optic flow, 201
Determinant, 473
Difference measurement in motion, 221
Digital images, 35-42
Digitizers, image, 45
DiracComb, 19, 40
Direction-magnitude sets, 270
Discrete:

images, 35-42

knowledge representation, 320

labeling algorithms, 410-415
Disparity, 21, 89,208
Dispersion of knowledge representation, 320
Distance:

on discrete raster, 36

image (See Image, range)
Distortion, perspective (See Projection, perspective)
Divergence theorem for mass properties, 288
Divide and conquer:

algorithms for CSG, 285

method for boundary detection, 122
Domain-dependent and -independent motion

understanding, 196-199,214-219

Drum scanner, 46
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Dual graph, 159
Dynamic programming and search, 137-143

Early processing, 63-65
Eccentricity of region, 255
Edge, 75
detection
in binary images, 143-146
from optic flow, 202-206
in pyramids, 109
following, 131-146
as blob finding, 143-146
as dynamic programming, 137-143
as graph search}3l — 143
labels,296-297
linking, 119-131
known approximate location, 121-122
problems with, 119-120
Hough algorithm, 123-131
operator, 64, 75-88
gradient, 76-80
Kirsch, 79
Laplacian, 76-79
performance, 77, 83-84
relaxation, 85-88
templates, 79
3-D performance, 81-83
profiles, 75

representation for surfaces, 266
strength in evaluation function, 133
thresholding, 80
Eigenvalues and eigenvectors, 473, 486-487
Element, texture, 166
Elongation of region, 255
Enclosing surface, 265
Energy, texture, 187
Engineering:
drawings, 291
knowledge, 407
Entropy, texture, 187
ERTS imagery, 46
Euclidean metric, 38
Euler number of region, 255, 266
Evaluation:
function for heuristic search, 133
mechanism in semanlic networks, 337
Existential quantifiers, 385

Extended inference, 315, 319, 322, 383, 395-396

texture, 184-186

vectors and space, 181
Field, television, 46
Figure-ground distinction, 4
Filtering, 25, 64-75

First order predicate logic (See Predicate logic)

Fitting data (See Data, fitting)
Flat-bed scanner, 46

Flying spot scanner, 45

Focal length, 19,479

Focus of expansion in optical flow, 199
Formal inference system, 390

Forward chaining, 342, 399

Fourier

descriptors, 238

filtering, 65

transform, 24-30, 490-492
Frame:

problem, 395, 444

system theory, 334-335
Frenet frame and formulae, 276
Function:

image, 18-19

logic, 385

Skolem, 387

G-Houghalgorithm, 128
Gamma, film, 45
Gaussian sphere, 101, 270
Generalized:
clipping, 284
cone, 274-280
matching to data, 278, 372-375
cylinder (See Generalized, cone)
image, 6, 14, 320
Geodesic tesselation, 271, 493
Geometric:
matching, 354
operations in location networks, 336
relations and propositions, 332
representations. 8, 227-311
structures and matching, 354
transformations, 477-481
Geometry theorem prover, 322
Gestalt psychology, 116
Goal achievement, 319, 346-347, 438-439
Goodness of fit, 273
Gradient:

Extensional concepts in knowledge representation, 328 edge operator, 76-80

Faces 271

for surface representation, 265, 271
Feature

classification and matching, 376-378
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space, 95, 301

techniques, 355

texture, 168, 189-193

use in Hough algorithm, 124
Grammar:

ambiguous, 172

Subject



array, 178-181

on pyramid, 179

shape, 173-174

stochastic, 172

texture, 172-181

tree, 175-178
Graph 131:

adjacency for regions, 159

algorithms, complexity, 359

association, 358,365-369

dual, 159

isomorphism, 357-359,364

matching, 355

r-connected component, 369,380
Gray level, 18, 23, 35

dependence matrices for texture, 186-188
Grazing incidence, 111

H&D curve, 44
Heart volume, 273
Heterarchical control, 341-346, 499
Heuristic search:
boundaries, 131-133
dynamicprogramming, 143
region growing, 157
Hierarchical (See also Pyramid)
abstractions, 505
control, 341-346
textures, 170
High-level:
models,317
motion detection, 196-199
vision, 2-6
Hill-climbing and matching, 355
Histogram, 70
equalization and transformation, 70
splitting for thresholds, 152
color space, 153-155
Homogeneous:
coordinate system, 467
regions, 150
texture, 188
Hough algorithm, 123-131
generalized, 128-131
refinements, 124
vanishing points, 191
Human body for motion understanding,
214-219
Hungry monkey planning problem, 445
Hypotheses, 343, 384, 422
active knowledge, 431
Hypothetical worlds, 432, 440

Iconic structures and matching, 353
Icosahedron, 492
IHS color basis, 33
Image (See also Imaging)
aerial, 1,335
CAT, 1,56-59
connectivity, 36
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digital, 35-42

digitizers, 45

distance on raster, 36

edges,75-88

ERTSorLANDSAT,46

formation, 17

function, 18-19

generalizedf,14,320

histogram, 70

intrinsic, 7, 14, 63

irradiance,23,73

orthicon,47

plane, 19

processing2,17,25

range, 52-56,64,88

sampling, 18,35

segmented, 7

sequence understanding, 207-222

ultrasound, 54

variance, 69
Imaging:

active, 14

devices42-59

geometry, 19-21

light stripe, 22

model, 17-42

monocular and binocular, 19-22

stereo, 20-22,52-54,88-93,98
Inconsistent labeling, 410 (See also Labeling)
Indexing property of semantic nets, 324
Inequalities in linear programming, 422, 427
Inference, 314, 319-321,383

bottom-up and top-down, 392

extended,315,319,322,383,395

rules of, 388

in semantimets,327

systems, formal and informal, 390

syllogistic, 321
Infinity, point at, 20
Informal inference system, 390
Inheritance of properties in knowledge

representation, 330, 335
Inhibitory local evidence in line drawings, 295
Intensional concepts in knowledge
representation, 328

Interaction graph for dynamic programming, 143

Interest operator, 69, 208
Interior operator, 282
Interpolation, 489-490
Interpretation:

matching, 352

region-growing, 160-164
Interpreter

production system, 398-399

semanticnet, 326,339
Intersection of strip trees, 244
Interval, sampling, 35
Intrinsic:

image,7,14,63

parameters, 63



Inverse: Local evidence in line drawings, 294

perspective (See Projection) Location networks, 335-340
relations, 331 Logarithmic filtering, 73
Irradiance, image, 23, 73 Logic (See Predicate logic)
Isomorphism, graph and subgraph, 357-359, Long-term memory, 400
364 . . ) Low-level:
Iterative region merging with semantics, 163 motion detection. 196
vision, 3-6

Job queue, 502-504

Manhattan metric, 36
Mass properties, 285
Matched filtering and Hough algorithm, 124

Kd-tree, 281, 287
Knowledge:
base,317,318-323

chunking, 334 Matching, 315, 352,398
engineering, 407 blocks world structures, 370-372
Knowledge representation, analogical and clique-finding, 366-369, 375
prepositional, 9, 314, 319-322 (See also complexity, 359
Active knowledge, Predicate logic, examples, 369-380
Procedural embedding, Productiop expectation-driven, 353
systems, Representation, Semantic nets) generalized cylinders, 372-375
geometric structures, 354
Labeling, 296-301,408-420 graphs, 355
compatibilities, 415 iconic structures, 353
consistent, inconsistent, optimal, 408, 410 knowledge representation, 319
discrete, 410-415 line drawings to primitives, 293
interpretation, 315, 353, 383, 408 linear structures, 378-380
lines, 296-301 metrics, 360-362, 375, 378
scene, 408-430 metrical in line drawing understanding, 294
tree search, 412 nondeterministic algorithm, 359
Lambertian surfaces, 94 optic flow, 208
LANDSAT imagery, 46 optimization, 354
Laplacian operator, 76-79 pattern (See Pattern, matching in production systems)
Laser rangefinders, 54 (See also Image, range) relational structures, 353, 355, 365-372
Learning, 315 rules in production system, 399-400
Least-squared error fitting, 484-488 templates and springs, 360-362
Legendre polynomial, 272 topological, for line drawings, 293
Light: Matrix algebra, 471-474
flux, 22 Matte reflectivity, 23
stripe imaging, 22 Maximal clique, 366
structured, 52-54 Medial axis transform, 252-253
Line: Membership array for region, 248
detection, Hough algorithm, 123 Memory, long-term and short-term, 400
drawing understanding, 265, 291-307 Merging:
drawings for motion understanding, 220-222 branches for backtracking improvement, 364
equation, 475 curve segmentation, 233
fitting, 484-487 regions, 155-160
labeling, 296-301 Message-passing (See Modules and messages)
labeling by relaxation416-421,428 Metric:
representations, 474-476 distance on raster, 36
segment, 232 matching, 360-362, 375, 378
transformation, 480 Minimum:
Linear: cost search for boundaries, 132
structure matching, 378-380 spanning tree for clustering, 217
transformation, 473 Model:
Linear programming for relaxation, 420-430 analogical and propositional, 319
Linking edges (See Edge, linking) -driven control, 342
518 Subject Index

Page 529 of 539



human body for motion, 217-219 Optic flow, 65, 102-105, 196, 199-206

in knowledge representation, 9, 317 Optical system analysis, 23
Modules and messages, 500-502 Optimal labeling, 410
Modus Ponens and Modus Tollens, 388 Optimization:
Moment of inertia, 255, 286, 473, 486 linear programming, 424-425
Monocular imaging (See Imaging) matching, 354
Motion, 195 (See also Optic flow) Orientation of surface (See Surface, orientation
adjacency and collision detection, 201 calculation)
body model, 214-219 Origami world, 300
common in sequence, 199, 208 Orthicon, image, 47
consistent match, 199 Orthographic projection (See Projection)
continuity, 197
depth, 201
human body, 214-219 PANDEMONIUM, 345
image sequences, 207-222 Parallel:
max!mun_] velo_cny, 198 computation, 64, 341, 360
moving light displays, 214-217 -iterative refinement in graph matching, 358, 378
qb_server,_ 206 -iterative relaxation, 64, 412
rigid bodies, 197, 210-214 parameter:
Mj::irface orientation and edge detection, 202 optimization as matching, 354
dimensional histograms, 153-155 space, .1?3
Parametric:

modal sensor, 453-459

R ) lustering, 183
resolution images, 100-110 (See also Pyramid) clustering

edge models, 80-81
line representation, 476
Parseval's theorem, 256
Partial:
knowledge in location networks, 339
matches, 360-362

Nearest-neighbor clustering, 183
Network:
interpreter, 326
representation, 391 (See also Semantic nets)

Newton-Raphson, 493 Partition:
Node types in semantic nets, 324-329 feature space in pattern recognition, 181
Noise, 65 Fourier space, 185
Nonclausal form, 385-387 (See also Predicate logicy ~ Semantic nets, 331, 391
Nondeterministic algorithms, 359 space, 150
Nonrigid: Pattern:
body motion understanding, 214-217 -directed invocation, 321, 504
solids, 264 matching data base (See Data, base)
Nonstandard: matching in production systems, 399-400
control structures, 499-507 (See also Control) recognition, 2, 181-184
inference (See Extended inference) texture, 166
Normalized correlation, 68-70 Performance, edge operators, 77, 83-84
NP-completeness, 359 Periodic:
NTSC, 34 correlation, 67

function, 237
Perspective (See Projection)

Object identification in line drawings, 294 Photography, 44-45
Occluding: Photometric stereo vision, 98
contour, 101 Picture element (pixel), 36
line label, 296 Piecewise polynomial, 240

Oct-tree, 281,287 Plane:
Office scene understanding, 453-459 curves and regions, 231

Operator (See Edge, Interest operator, Interior operator,cutting in linear programming, 428
Closure operator for sets, Planning Relaxation, representation, 476
etc.) transformation, 480

Opponent processes, 33 PLANNER, 322
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Planning, 314-319, 347, 438-445
cost of, 452
costs,445-459
edge linking, 121-122
example, 453-459
extended and-or graphs, 451
problem reduction, 394
symbolic, 439-445
Point:
at infinity, 20
membership, 246
projection (See Projection, perspective)
spread function, 28
Polar and polar space coordinate systems, 465
Polygon:
area calculation, 235
images for motion, 220-222
regions, 294
Polyhedra, 291
Polylines, 232-235
Pre-and postconditions in plans, 441
Predicate logic, 383-395
clauses and semantic nets, 390-392
decidability, 388
extensions [See Extended inference)
inference, 315
knowledge representation, 392-395
proof, 388
strengths and weaknesses, 393-394
syntax and semantics, 384-387
truth table, 386
Predicates in location networks, 336
Primitive:
solids in volume representation, 280. 282
volumes for line drawing understanding, 293
Principal axes:
for fitting data, 473, 486
of inertia of region, 255
Procedural embedding of knowledge, 321, 322, 406,
430-434 {See also Active, knowledge)
Processing, image, 17
Product of inertia of solid, 286
Production systems, 315, 383, 396-408
example, 401-406
rule matching, 399
strengths and weaknesses, 406-408
Projection:
inverse perspective, 481-484
orthographic, 20, 212
perspective, 19-20, 214, 479
Proof of logic, 388-390
Propagation of constraints (See Constraint)

Property inheritance (See Inheritance of properties in

knowledge representation)
Propositional model (See Representation)
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Prototype situations, 334
Pruning for backtracking improvement, 364
Pseudo-inverse for fitting, 485, 487
Psi-s curve, 237, 238, 256
Pyramid, 15 (See also Quad tree; Strip trees)
edge detection, 109
grammars, 179
multi-resolution, 65, 106, 249, 281
thresholding, 155

Quad tree, 249-252
area, 251
generation, 250

Quantifier, logical, 385

Radiance and gray levels, 22-23
Radiograph understanding, 321, 344-346, 502-504
Range image (see Image)
Ray casting, 280
Reciprocity failure of film, 44
Reconstruction, two-dimensional image, 56-59
Recursive procedure, 244, 498
Reflectance, 93-95
calculation, 73-75
functions, common, 23, 94
map, 96-98
models, 22-24
Region, 149-150,231
data structures for, 158
finding, by thresholding, 152-155
finding, local techniques, 151
growing and heuristic search, 157
growing and semantics, 160-164
homogeneous, 150
partition, 150

properties,254-261,376-377
representation, 232-254
by boundary, 232-247
decompositions, 253
medial axis transform, 252
non-boundary, 247-254
quad trees, 249
spatial occupancy array, 247
y-axis, 248
splitting and merging, 155-160
Regular:
sets and set operators, 231, 282-283
tesselation, 170
Relational:
functions and dynamic programming, 142
models, 9, 314, 317
semantic nets, 325, 330, 408
structures and matching, 353, 355, 365-372
Relaxation, 64 (See also Constraint)
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algorithms, convergence properties, 414
asynchronous, 412

convergence, 414

edge operators, 85-88

for optic flow, 208

labelling, 408-430

line labeling, 416-421,428

linear and non-linear operator example, 415-420

as linear programming, 420-430

optical flow, 103

serial and parallel iterative, 412

shape from shading, 99-102

stereo, 89
Representation:

actions in symbolic planning, 441

analogical and propositional, 9, 314, 319-322

conversion, 289

knowledge, 317-347 (See Knowledge)

matching, 352-355

predicate logic, 392-395

range of, 6-9

solids, 264

world in symbolic planning, 439
Resolution

gray levels, 35

pyramids, 15, 106-110

multiple in thresholding, 155

rule of inference, 389

spatial, 36-37

texture, 169

theorem proving, 388-390
Response, human spectral, 31

Scope of quantifier, 385

Scoring plans, 445-459

Search:
backtrack, 363-365, 372-375
depth-first, 412
graph, and region growing, 157
heuristic and variations, 132-136
tree, for labeling, 412

Segmentation, 7, 116 (See also Edge; Line; Region)

Semantic nets, 315-317, 323-340, 390, 396
arcs, 324
conversion with other representations, 332
examples, 334
indexing property, 324
inference, 327
nodes,324, 328
partitions, 331
predicate logic, 390-392
relations in, 325, 330
semantics and partitions, 331
Semantics:
of images and region growing, 160-164
of logic, 385
Semi-
decidability of logic, 388
regular tesselation, 171
Sentence of logic, 384
Serial:
computation, 341
relaxation, 412
Set
membership classification, 284

Rewriting rule (See Rule, Grammar, Production system) operations in location networks, 336

Rib-finding, 321,502-504

Rigidity assumption in motion understanding, 210
Root finding, 493

Rotation rigid transformation, 477

Rotational sweep, 274

Rule:

-based systems, 397 (See also Production systems)

inference, 388

production system, 398
rewriting, 172, 383, 398

for texture generation, 172-181

Sampling:
image, 18, 35
tesselation, 35
theorem, 39
Scaling matrix, 478
Scanner, digitizing, 45
Scene:
irradiance, 73
labeling, 408-430
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operations in three dimensions, 284
Shadow line label, 296
Shape, 228 (See also Three dimensional)
detection. Hough algorithm, 128-131
grammar, 173-174
properties of region254-261,376-377
recognition, 228-229
from shading, 65, 93, 99-102
from texture, 189-193
Shift theorem, 30
Short-term memory, 400
Signature of region, 257
Silhouette detection, Hough algorithm, 128-131
Similarity:
analysis in motion, 221
tree for regions, 261
Simplex algorithm, 423
Simulation with knowledge representation, 320
Skeleton (See Medial axis transform)
Skew:
symmetry, 306
transformation, 479
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Skilled vision, 347 T vertices, 294

Skolem function, 387 Tables, dynamic programming, 137-139
Slope density function of boundary, 256 Tangent to space curve, 276
Slots in frames, 334 Television cameras, 46-52
Smoothing image (See Consolidation) Template:
Solid (See Three dimensional) matching, 65
Spaces, color (See Color) and Springs for matching, 360-362
Spatial: Term in logic, 384
representations (See Three dimensional) Tesselation:
resolution, 36, 37 geodesic, 492
Spectral response, human eye, 31 regular and semiregular for texture, 170-172
Specular reflectivity, 23 (See also Reflectance, functions, sampling, 35
common) Texture, 166-168,404
Spherical: correlation, 187
coordinate system, 270, 466 element (texel), 166, 169, 188
function, 270 element placement tesselations, 170-172
harmonic surfaces, 271-274, 355 energy, frequency and spatial domain, 184-185
trigonometry, 469 features, 187-188
volume representation, 279 gradient and surface orientation, 168, 189-193
Splines (SeeB-spline) grammars, 172-181
Splitting: homogeneity, 188
curve segmentation, 233-234 pattern recognition, 181-184
regions, 155-160 resolution issues, 169
Statistical: shape and vanishing point from, 189-193
pattern recognition, 2, 181-184 statistical and structural models, 168, 170-181
texture model, 168 Theorem:
Stereo vision, 20-22, 52-548-93,98 convolution, 25
Stochastic grammars, 172 (See also Grammar) divergence, 288
Streaks and strokes, 134 ParsevaPs, 26, 256
Strip trees, 244-247 sampling, 39
STRIPS,396 shift, 30
Structural: Theorem proving by resolution, 388-390 (See also
matching, 355, 365-372 Predicate logic)
models of texture, 170-181 Thinning algorithms, 253 (See also Medial axis
Structured light, 52-54 transform)

Subgoals, 343,438 (Seealso Goal achievement; Planningjhree dimensional:
Subgraph isomorphism, 357-359, 375 (See also Graph) contour following in, 146

Supposition value in relaxation, 415, 419 decomposition, 287
Surface: edge operators, 81-83
direction-magnitude set, 270 image, 88-93
functions on Gaussian sphere, 270 model, 320
geometry and line-drawings, 301-307 objects, several representation, 264, 274-283
orientation calculation, 64, 93-102, 189-193, 202-206 primitives for line drawing understanding, 293
patches, 269 shapes, 228
representations, 265-274 structure from image sequence, 210-214
set of faces, 265 volume algorithms, 284
spherical harmonic, 271-274 Threshold:
from volume calculation, 288-291 determination from histogram, 152
Sweep representations of solids, 274-280 (See also Three multi-dimensional space, 153
dimensional) multiple resolution, 155
Syllogistic inference, 321 for region finding, 152-155
Symbolic planning, (See Planning) Token-type distinction, 328
Symmetry, skew, 306 Top-down (See Control and Inference)
Synchronization, 341 Topological connectivity and matching, 293, 372-375
522 Subject Index
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Torsion of space curve, 276 Vanishing point from texture, 191

Transformation: Variable nodes in semantic nets, 329
geometric, 477-481 Variance, image, 69, 208
lines and planes, 480 Vector algebra, 469-471
Translation rigid transformation, 479 Velocity (See Motion, Optic flow)
Translational sweep, 274 Vergeance, 21
Tree: Vertex:
grammars, 175-178 catalogues, 298, 300
quad, 249-252 types,295
rearrangement for backtracking improvement, 364 Vidicon, 48
search for labeling, 412 Viewpoint, (see Projection)
strip, 244-247 Virtual nodes in semantic nets, 328
Triangulation (See Stereo vision) Vision:
Trigonometry, plane and spherical, 468-469 high- and low-level, 2-6
Truth table, 386 as planning, 6-9
Tumor detection, 344-346 system organization, 352
Turtle algorithm for blob finding, 144 Volume (See Three dimensional)

TV (See Television cameras)

Two-dimensional shape (See Shape)

Type-token distinction, 328 Waltz filtering, 299 (See also Constraint; Labeling)
Well-formed formulae of logic, 385
Winged edge for surface representation, 266-267

Ultrasound, 54,273 Wire frame objects, 291
Unambiguous representation, 231 from projections, 211
Undecidability of logic, 388 World states in planning, 439

Units, meaningful, 116 (See Segmentation)
Universal quantifiers, 385

Unsatisfiability in logic, 388-389 Y-axis region representation, 248
Utility theory and planning, 446, 453 Y1Q color basis, 34
Subject  Index 523
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FIG. 2-7a

FIG. 2-8a

A painting by Louis Condax; courtesy of Eastman Kodak Company and the
Optical Society of America.

Courtesy of D. Greenberg and G. Joblove, Cornell Program of
Computer Graphics.

FIG. 2-

Courtesy of Tom Check
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FIG. 5-4a

Courtesy of Sam Kapilivsky. |

FIG. 5-4b

Courtesy of Sam Kapilivsky
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FIG. 5-4c
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Courtesy of Robert Schudv
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FIG. 11-3a

Courtesy of Robert Schudy.
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COMPUTED

DANA H. BALLARD -CHRISTOPHER M. BROWN

What information about scenes can be extracted from an image using only
basic assumptions about physics and optics?

How are images segmented into meaningful parts?

At what stage must domain-dependent, prior knowledge about the world be
incorporated into the understanding process?

How are world models and conceptual knowledge represented and used?

These and many other questions, inherent in this relatively new and fast-
growing field, are explored and answered in by

and The assemble crucial
material from many disciplines including artificial intelligence, psychology,
computer graphics, and image processing to form a practical text and
reference for anyone involved in building vision systems.

Ballard and Brown write in their preface, " has a strong
artificial intelligence flavor, and we hope this will provoke thought. The text
shows how both intrinsic image information and internal models of the world
are important in successful vision systems."

Divided into four parts, offers descriptions of objects at four
levels of abstraction:
Generalized images—images and image-like entities;
Segmented images—images organized into sub-images that are likely to
correspond to "interesting objects";
Geometrical structures—quantitative models of image and world structures;

Relational structures—complex symbolic descriptions of image and world
structures.
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