PROCEEDINGS

2003 International Conference on Multimedia and Expo

Volume II of III

6-9 July 2003 Baltimore Marriott Waterfront Hotel Baltimore, Maryland, USA

Sponsored by

The Institute of Electrical and Electronics Engineers Signal Processing Society Computer Society Circuits and Systems Society Communications Society

Meta's Exhibit No. 1004 Page 001

Copyright ©2003 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved. Copyright ©2003 by the Institute of Electrical and Electronics Engineers, Inc.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Signal Processing Society, the IEEE Computer Society, the IEEE Circuits and Systems Society, the IEEE Communications Society, or the Institute of Electrical and Electronics Engineers, Inc.

> IEEE Catalog Number 03TH8698 ISBN 0-7803-7965-9 Library of Congress 2003106102

Editorial production by Billene Mercer and Conference Management Services

Cover photograph by Richard Nowitz through the Baltimore Area Convention and Visitors Bureau Cover production by Lance Cotton

CHAIRMAN'S WELCOME

Dear ICME 2003 attendees,

On behalf of the Organizing committee, let me welcome you all to the fourth International Conference on Multimedia and Expo (ICME 2003). The first three ICME conferences were held in New York, Tokyo, and Lausanne. We are honored to have been chosen by the Steering Committee to host this conference and its attendees. Baltimore city around the 4th of July takes a very festive look, and I am sure you will have a great time attending the meeting, going to the ball game, and enjoying the sights and food available in the vicinity. The ICME conference is jointly sponsored by four IEEE societies: Circuits and Systems, Communications, Computer, and Signal Processing. You will see that the technical program broadly reflects the common research interests of the four societies. In putting this conference together, the organizing committee faced major challenges due to the threat of SARS. Many potential attendees from countries affected by SARS decided to opt out of the meeting due to potential travel limitations. Also, the cancellation of ICASSP 2003 caused many last minute additions/changes to the technical program.

I would not have been able to organize this meeting without help from trusted friends and colleagues. First of all, I would like to thank the technical program chair, Professor K. J. (Ray) Liu for working tirelessly to put together a very strong technical program. He had to work almost every day until early May to accommodate changes to the technical program due to additions of papers from ICASSP 2003. Thanks Ray! In addition, during the course of program formulation cycle, Ray and the four technical program vice-chairs, Professor S.F. Chang, Dr. R. Civanlar, Dr. J. Ostermann and Professor J. Sorenson put in endless hours for ensuring a smooth reviewing process. Thanks to the members of the program committee for coming up with an exceptional program. Special thanks are due to Professor Y. Wang for coordinating the organization of many interesting special sessions. The local arrangements chair, Professor T. Tran, was on top of things that are critical to the success of a meeting the size of ICME 2003. The assistance provided by the publicity chair, Professor M. Wu, helped the conference to be on the radar screens of members of the four societies for nearly a year. Thanks are due to Professor B.S. Manjunath for arranging the tutorials, to Professor A. Rangarajan for handling issues related to publications, and to Dr. Zheng for handling the important duties of the financial chair with great care. The registration chair, Dr. D. Turaga, and the exhibit chair, Dr. S. Der, put in a considerable amount of time in handling their responsibilities. The liaisons to Europe and the Far East, Professors T. Ebrahimi and S. Furui, helped us to keep the conference in the minds and hearts of multimedia researchers in these two important regions. Finally, I would not have volunteered to be the General Chairman of this conference if Billene Mercer and her team were not available to help me organize it. Billene, Lance, Bryan, Chris, and Stephanie at Conference Management Services were on top of things throughout the gestation period, almost taking all the worry off me! Thanks guys.

Enjoy the conference, the ball game, the food, and your visit to Baltimore. Rama Chellappa General Chair

> LINDA HALL LIBRARY Kansas City, Mo.

iii

CI

ers, Inc.

ibraries are permitted rticles in this volume d in the code is paid . For other copying, ons Center, 445 Hoes)2003 by the Institute

2

7-21-03 62

cover and title page. ublished as presented e endorsement by the Circuits and Systems mics Engineers, Inc. Dear ICME 2003 attendees

On behalf of the Organizin Multimedia and Expo (ICN and Lausanne. We are hon and its attendees. Baltimor have a great time attending in the vicinity. The ICME c Communications, Compute reflects the common resea organizing committee facec countries affected by SARS cancellation of ICASSP 20(

I would not have been able First of all, I would like to tirelessly to put together a v May to accommodate chan Thanks Ray! In addition, of program vice-chairs, Profes put in endless hours for encommittee for coming up v for coordinating the organi

ICASSP-3.4 *: A NECESSARY AND SUFFICIENT CONDITION FOR THE BIBO STABILITY OF I - 841 GENERAL-ORDER BODE-TYPE VARIABLE-AMPLITUDE WAVE-DIGITAL EQUALIZERS Behrouz Nowrouzian, University of Alberta, Canada; Arthur T.G. Fuller, Nortel Networks, Canada; M. N. S. Swamy, Concordia university, Canada
ICASSP-3.5 *: DETECTION OF EEG BASIC RHYTHM FEATURE BY USING BAND RELATIVE
ICASSP-3.6 *: OPTIMIZED LOCAL DISCRIMINANT BASIS ALGORITHM I - 849 Kamyar Hazaveh Hesarmaskan, Kaamran Raahemifar, Ryerson University, Canada
ICASSP-3.7 *: DISCRETE PROBABILITY DENSITY ESTIMATION USING MULTIRATE DSP I - 853 MODELS Palghat P. Vaidyanathan, Byung-Jun Yoon, California Institute of Technology, United States
ICASSP-3.8 *: ON THE LEAST SQUARES SIGNAL APPROXIMATION MODEL FOR
ICASSP-3.9 *: A PROBABILISTIC APPROACH FOR BLIND SOURCE SEPARATION OF
ICASSP-3.10 *: ON EFFICIENT IMPLEMENTATION OF OVERSAMPLED LINEAR PHASE

VOLUME II

SS-L5: SMART CAMERAS

.

SS-L5.1: A CORE FOR AMBIENT AND MOBILE INTELLIGENT IMAGING APPLICATIONS
SS-L5.2: ARCHITECTURES FOR DISTRIBUTED SMART CAMERAS
SS-L5.3: DISTRIBUTED VIDEO ARRAYS FOR TRACKING, HUMAN IDENTIFICATION, ANDII - 9 ACTIVITY ANALYSIS Kohsia Huang, Mohan Trivedi, University of California, San Diego, United States
SS-L5.4: LEARNING CROSS-MODAL APPEARANCE MODELS WITH APPLICATION TO TRACKING II - 13 John Fisher, Trevor Darrell, MIT, United States
SS-L5.5: EYE SOCIETYII - 17 Jacky Mallett, V. Michael Bove, Jr., MIT Media Laboratory, United States

.

MD-L3: MULTIMEDIA RETRIEVAL

MD-L3.1: SUPPORT VECTOR MACHINES FOR REGION-BASED IMAGE RETRIEVAL
MD-L3.2: TOWARDS INTELLIGENT STRING MATCHING IN QUERY-BY-HUMMINGII - 25 SYSTEMS Charles 'Parker, Oregon State University, United States
MD-L3.3: HIERARCHICAL MATCHING FOR RETRIEVAL OF HAND-DRAWN SKETCHESII - 29 Wing Ho Leung, Tsuhan Chen, Carnegie Mellon University, United States
MD-L3.4: EVENT-BASED HOME PHOTO RETRIEVALII - 33 Joo-Hwee Lim, Institute for Infocomm Research, Singapore; Philippe Mulhem, IPAL, Singapore; Qi Tian, Institute for Infocomm Research, Singapore
MD-L3.5: EFFICIENT DATABASE FACILITIES FOR CONTENT-BASED FLASH RETRIEVALII - 37 Bo Feng, Qing Li, Jun Yang, Wenyin Liu, Jian Zhai, City University of Hong Kong, Hong Kong SAR of China
MCN-L3: NETWORK ADAPTIVE TECHNIQUES
MCN-L3.1: RATE ALLOCATION FOR FGS CODED VIDEO USING COMPOSITE R-D ANALYSISII - 41 Hui Cheng, Sarnoff Corporation, United States; Xi Min Zhang, Yun-Qing Shi, New Jersey Institute of Technology, United States; Anthony Vetro, Huifang Sun, Mitsubishi Electric Research Laboratories, United States
MCN-L3.2: OPTIMIZED SOURCE AND CHANNEL CODING FOR VIDEO TRANSMISSIONII - 45 OVER ADSL
Nicola Franchi, Marco Fumagalli, Rosa Lancini, CEFRIEL - Politecnico di Milano, Italy
MCN-L3.3: JOINTLY OPTIMAL REFERENCE FRAME & QUALITY OF SERVICE SELECTIONII - 49 FOR H.26L VIDEO CODING OVER LOSSY NETWORKS Gene Cheung, Connie Chan, Hewlett-Packard Laboratories, Japan
MCN-L3.4: DYNAMIC LOAD BALANCING ACROSS MIRRORED MULTIMEDIA SERVERSII - 53 Ashwatha Matthur, Padmavathi Mundur, University of Maryland, Baltimore County, United States
MCN-L3.5: AN EFFECTIVE BURSTINESS ESTIMATION MODEL FOR VBR VIDEO STREAMII - 57 Hongliang Li, Guizhong Liu, Yongli Li, Zhongwei Zhang, Xi'an Jiaotong University, China
HSMS-L2: MULTIMEDIA SOFTWARE AND ARCHITECTURES
HSMS-L2.1: ADVANCED 3D SIGNAL PROCESSING FOR VIRTUAL TEAM USERII - 61 ENVIRONMENTS
Oliver Schreer, Nicole Atzpadin, Serap Askar, Peter Kauff, Heinrich-Hertz-Institut, Germany
HSMS-L2.2: DATA STORAGE AND DELIVERY PROTOCOLS TO SUPPORT INTERACTIVE
HSMS-L2.3: SCALABILITY OF CLOSED-LOOP VIDEO DELIVERY SERVICEII - 69 Wei Shu, Min-You Wu, University of New Mexico, United States

HSMS-L2.4: INTERMEDIATE VARIABLE ELIMINATION IN A GLOBAL CONTEXT FOR A 3DII - 73 MULTIMEDIA APPLICATION

David Atienza, Universidad Complutense, Spain; Marc Leeman, K.U. Leuven, Belgium; Francky Catthoor, IMEC, Belgium; Geert Deconinck, K.U. Leuven, Belgium; Jose Manuel Mendias, Universidad Complutense, Spain; Vincenzo De Florio, K.U. Leuven, Belgium

HSMS-L2.5: A FAST LAYOUT ALGORITHM FOR VISUAL VIDEO SUMMARIESII - 77 Andreas Girgensohn, FX Palo Alto Laboratory, Inc., United States

VRI-P1: VIRTUAL REALITY AND IMAGING II

VRI-P1.1: MPEG-4: ONE MULTIMEDIA STANDARD TO UNITE ALLII - 81 Kostas Karpouzis, Amaryllis Raouzaiou, Paraskevi Tzouveli, Spiros Ioannou, Stefanos Kollias, National Technical University of Athens, Greece
VRI-P1.2: SMALL CYLINDRICAL DISPLAY FOR ANTHROPOMORPHIC AGENTSII - 85 Takahito Kawanishi, Masaru Tsuchida, Shigeru Takagi, Hiroshi Murase, NTT Corporation, Japan
VRI-P1.3: EFFICIENT, REALISTIC METHOD FOR ANIMATING DYNAMIC BEHAVIORS OF 3DII - 89 BOTANICAL TREES Hitoshi Kanda, Jun Ohya, Waseda University, Japan
VRI-P1.4: AUGMENTED REALITY WITH OCCLUSION RENDERING USINGII - 93 BACKGROUND-FOREGROUND SEGMENTATION AND TRIFOCAL TENSORS Hee Lin Wang, National University of Singapore, Singapore; Kuntal Sengupta, Advanced Interfaces, Inc., United States; Rajeev Sharma, Penn State University, United States
VRI-P1.5: 3D SHAPE MODELING BY COLOR PHASE STEPPING LIGHT PROJECTIONII - 97 Lijun Jiang, Shiqian Wu, Dajun Wu, EePing Ong, Susanto Rahardja, Institute for Infocomm Research, Singapore
VRI-P1.6: RELIEF OCCLUSION-ADAPTIVE MESHES FOR 3D IMAGINGII - 101 Angus Siu, Rynson Lau, City University of Hong Kong, Hong Kong SAR of China
VRI-P1.7: COLLABORATIVE VIRTUAL ENVIRONMENTS: GOING BEYOND VIRTUAL REALITYII - 105 Roberta Gomes, Guillermo Hoyos-Rivera, Jean-Pierre Courtiat, LAAS-CNRS, France
VRI-P1.8: EFFICIENT 3D OBJECT SIMPLIFICATION AND FRAGMENTED TEXTURE SCALINGII - 109 FOR ONLINE VISUALIZATION Irene Cheng, University of Alberta, Canada

MCN-P4: ROBUSTNESS, ERROR CONCEALMENT AND LOSS RECOVERY

MCN-P4.1: SPATIAL-TEMPORAL ERROR CONCEALMENT WITH SIDE INFORMATION FORII - 113 STANDARD VIDEO CODECS

Wenjun Zeng, PacketVideo Corporation, United States

MCN-P4.2: NODE SELECTION FOR A FAULT-TOLERANT STREAMING SERVICE ON AII - 117 PEER-TO-PEER NETWORK

Hyunjoo Kim, Seoul National University, Republic of Korea; Sooyong Kang, Hanyang University, Republic of Korea; Heonyoung Yeom, Seoul National University, Republic of Korea

MCN-P4.3: SOFT DECISION UNEQUAL ERROR PROTECTION SCHEME FOR MPEG ADANCEDII - 121 AUDIO CODING

Thenghong Yeo, National University of Singapore, Singapore; Wai Choong Wong, Dong-Yan Huang, Institute for Infocomm Research, Singapore

MCN-P4.4: A RATE-DISTORTION OPTIMIZED ERROR CONTROL SCHEME FOR SCALABLEII - 125 VIDEO STREAMING OVER THE INTERNET Fan Zhai, Randall Berry, Thrasyvoulos Pappas, Aggelos Katsaggelos, Northwestern University, United States
MCN-P4.5: A NEW FAMILY OF CHANNEL CODING SCHEMES FOR REAL-TIME VISUAL
MCN-P4.6: A FAST ALGORITHM TO FIND THE REGION-OF-INTEREST IN THE COMPRESSEDII - 133 MPEG DOMAIN Gaurav Agarwal, Alwin Anbu, Aniruddha Sinha, Motorola India Electronics Ltd., India
MCN-P4.7: QUALITY OF PROTECTION FOR MOBILE MULTIMEDIA APPLICATIONSII - 137 Chui Sian Ong, Klara Nahrstedt, Wanghong Yuan, University of Illinois, Urbana-Champaign, United States
MCN-P4.8: PROGRESSIVE IMAGE TRANSMISSION BY ADAPTIVE INTERPOLATIONII - 141 Timothy Shih, Louis Lin, Jen-Shiun Chiang, Tamkang University, Taiwan
MCN-P4.9 *: A SPATIAL-DOMAIN ERROR CONCEALMENT METHOD WITH EDGE RECOVERYII - 145 AND SELECTIVE DIRECTIONAL INTERPOLATION Wei-Ying Kung, Chang-Su Kim, CC. Jay Kuo, University of Southern California, United States
MCN-P4.10 *: A PDE-BASED METHOD FOR RINGING ARTIFACT REMOVAL ON GRAYSCALE
MA-P2: NETWORKED MULTIMEDIA
MA-P2.1: REPLICATION STRATEGIES FOR PEER-TO-PEER BASED MULTIMEDIAII - 153 DISTRIBUTION SERVICE Zhe Xiang, Qian Zhang, Wenwu Zhu, Zhensheng Zhang, Microsoft Research Asia, China
MA-P2.2 *: MULTIMEDIA LEARNING OBJECTS FOR DIGITAL SIGNAL PROCESSING INII - 157 COMMUNICATIONS Amir Asif _{t,} York University, Canada
MA-P2.3: ISSUES IN THE TRANSMISSION, ANALYSIS, STORAGE AND RETREIVAL OF
MA-P2.4: ENCODING MULTIMEDIA PRESENTATIONS FOR USER PREFERENCES AND
MA-P2.5: VIDEO STREAMING ON EMBEDDED DEVICES THROUGH GPRS NETWORK
MA-P2.6: WEBTELOP: DYNAMIC TV-CONTENT AUGMENTATION BY USING WEB PAGESII - 173 Qiang Ma, Katsumi Tanaka, Kyoto University, Japan
MA-P2.7: TRANSLATION CAMERA ON MOBILE PHONEII - 177 Yasuhiko Watanabe, Kazuya Sono, Kazuya Yokomizo, Yoshihiro Okada, Ryukoku University, Japan
MA-P2.8: USING CAMERA MOTION TO IDENTIFY DIFFERENT TYPES OF AMERICANII - 181 FOOTBALL PLAYS Mihai Lazarescu, Svetha Venkatesh, Curtin University of Technology, Australia

t., .

.

SS-L6: MOVING FROM FEATURES TO SEMANTICS USING COMPUTATIONAL MEDIA AESTHETICS

SS-L6.1: ACTIVE CAPTURE: INTEGRATING HUMAN-COMPUTER INTERACTION ANDII - 185 COMPUTER VISION/AUDITION TO AUTOMATE MEDIA CAPTURE Marc Davis, University of California, Berkeley, United States

SS-L6.2: SEMANTIC PRINCIPAL VIDEO SHOT CLASSIFICATION VIA MIXTURE GAUSSIANII - 189 Hangzai Luo, Jianping Fan, Jing Xiao, University of North Carolina, United States; Xingquan Zhu, University of Vermont, United States

SS-L6.3: HORROR FILM GENRE TYPING AND SCENE LABELING VIA AUDIO ANALYSISII - 193 Simon Moncrieff, Svetha Venkatesh, Curtin University of Technology, Australia; Chitra Dorai, IBM T. J. Watson Research Center, United States

SS-L6.4: DOCUMENTING LIFE: VIDEOGRAPHY AND COMMON SENSEII - 197 Barbara Barry, Glorianna Davenport, MIT Media Laboratory, United States

MSCP-L2: MULTIMEDIA SECURITY AND CONTENT PROTECTION II

MSCP-L2.1: MULTI-LAYER KEY MANAGEMENT FOR SECURE MULTIMEDIA MULTICASTII - 205 COMMUNICATIONS

Yan Sun, K. J. Ray Liu, University of Maryland, United States

MSCP-L2.2: A SECURE AND ROBUST APPROACH TO SCALABLE VIDEO AUTHENTICATIONII - 209 Qibin Sun, Dajun He, Zhishou Zhang, Qi Tian, Institute for Infocomm Research, Singapore

MSCP-L2.3: A CONTENT-BASED IMAGE AUTHENTICATION SYSTEM WITH LOSSLESS DATAII - 213 HIDING

Dekun Zou, New Jersey Institute of Technology, United States; Chai Wu, IBM T. J. Watson Research Center, United States; Guorong Xuan, Yun-Qing Shi, New Jersey Institute of Technology, United States

AIVP-L4: SOURCE AND CHANNEL CODING

AIVP-L4.1: JOINT TEMPORAL-SPATIAL RATE CONTROL FOR ADAPTIVE VIDEO TRANSCODING...II - 225

Shan Liu, Samsung Information Systems America, United States; C.-C. Jay Kuo, University of Southern California, United States

Seonghwan Jang, Nikil Jayant, Georgia Institute of Technology, United States

AIVP-L4.3: SOURCE-CHANNEL PREDICTION IN ERROR RESILIENT VIDEO CODINGII - 233
Hua Yang, Kenneth Rose, University of California, Santa Barbara, United States

AIVP-L4.4: SINGLE-PASS DISTORTION-SMOOTHING ENCODING FOR LOW BIT-RATE VIDEOII - 237 STREAMING APPLICATIONS

Tao Chen, Zhihai He, Sarnoff Corporation, United States

AIVP-L4.5: MPEG-4 RATE CONTROL ALGORITHM USING LAPLACE PARAMETER ESTIMATION II - 241 Cheng-Yu Pai, William E. Lynch, Concordia University, Canada

AIVP-L5: IMAGE CODING AND ENHANCEMENT

AIVP-L5.1: MINMAX OPTIMAL SHAPE CODING USING SKELETON DECOMPOSITIONII - 245 Haohong Wang, Northwestern University, United States; Guido Schuster, Hochschule Fur Technik, Switzerland; Aggelos Katsaggelos, Northwestern University, United States

AIVP-L5.2: SOFT-PARTITION-BASED WEIGHTED SUM FILTERS FOR IMAGE ENHANCEMENTII - 249 Min Shao, Kenneth E. Barner, University of Delaware, United States

Yibin Yang, Lilla Böröczky, Philips Research USA, United States

AIVP-L5.4: OPERATIONAL RATE-DISTORTION OPTIMAL BIT ALLOCATION BETWEEN SHAPEII - 257 AND TEXTURE FOR MPEG-4 VIDEO CODING

Haohong Wang, Northwestern University, United States; Guido Schuster, Hochschule Fur Technik, Switzerland; Aggelos Katsaggelos, Northwestern University, United States

AIVP-L5.5: A FAST FULL SEARCH EQUIVALENT ENCODING METHOD FOR VECTORII - 261 QUANTIZATION BY USING APPROPRIATE FEATURES

Zhibin Pan, Koji Kotani, Tadahiro Ohmi, Tohoku University, Japan

MD-P3: VIDEO ANALYSIS

MD-P3.1: A NOVEL BALL DETECTION FRAMEWORK FOR REAL SOCCER VIDEOII - 265
Xinguo Yu, Institute for Infocomm Research, Singapore; Qi Tian, Kongwah Wan, Laboratories for Information Technology,
Singapore

MD-P3.3: A BALL TRACKING FRAMEWORK FOR BROADCAST SOCCER VIDEO.......II - 273 Xinguo Yu, Institute for Infocomm Research, Singapore; Changsheng Xu, Qi Tian, Laboratories for Information Technology, Singapore; Hon Wai Leong, National University of Singapore, Singapore

MD-P3.4: A DETECTOR TREE OF BOOSTED CLASSIFIERS FOR REAL-TIME OBJECTII - 277 DETECTION AND TRACKING

Rainer Lienhart, LuHong Liang, Alexander Kuranov, Intel Corporation, United States

MD-P3.5: CREATING AUDIO KEYWORDS FOR EVENT DETECTION IN SOCCER VIDEO......II - 281 Min Xu, Namunu Maddage, Changsheng Xu, Institute for Infocomm Research, Singapore; Mohan Kankanhalli, National University of Singapore, Singapore; Qi Tian, Institute for Infocomm Research, Singapore

Shunsuke Kamijo, Masao Sakauchi, University of Tokyo, Japan

MD-P3.7: MULTIMODAL APPROACH TO MEASURING EXCITEMENT IN VIDEOII - 289 Alan Hanjalic, Delft University of Technology, Netherlands

MD-P3.8: LEARNING TO IDENTIFY VIDEO SHOTS WITH PEOPLE BASED ON FACEII - 293 DETECTION Rong Jin, Alexander Hauptmann, Carnegie Mellon University, United States
MD-P3.9 *: MULTI MOVING PEOPLE DETECTION FROM BINOCULAR SEQUENCES
MD-P3.10 *: VIDEO SHOT SEGMENTATION USING SINGULAR VALUE DECOMPOSITIONII - 301 Zuzana Èerneková, Constantine Kotropoulos, Ioannis Pitas, Aristotle University of Thessaloniki, Greece
MCN-P5: MULTIMEDIA STREAMING ARCHITECTURES
MCN-P5.1: HHMSM: A HIERARCHICAL HYBRID MULTICAST STREAM MERGING SCHEMEII - 305 FOR LARGE-SCALE VIDEO-ON-DEMAND SYSTEMS Hai Jin, Dafu Deng, Huazhong University of Science and Technology, China
MCN-P5.2: L-TFRC: AN END-TO-END CONGESTION CONTROL MECHANISM FOR VIDEOII - 309 STREAMING OVER THE INTERNET Zhen Li, Purdue University, West Lafayette, United States; Guobin Shen, Shipeng Li, Microsoft Research Asia, China; Edward Delp, Purdue University, West Lafayette, United States
MCN-P5.3: COOPERATIVE CACHE FRAMEWORK FOR VIDEO STREAMING APPLICATIONSII - 313 Chen-Lung Chan, National Tsing Hua University, Taiwan; Shih-Yu Huang, Ming Chuan University, Taiwan; Jia-Shung Wang, National Tsing Hua University, Taiwan
MCN-P5.4: STREAMING MPEG-4 AUDIOVISUAL OBJECTS USING TCP-FRIENDLY RATEII - 317 CONTROL AND UNEQUAL ERROR PROTECTION Toufik Ahmed, Ahmed Mehaoua, University of Versailles, France; Vincent Lecuire, University Henri Poincaré - Nancy, France
MCN-P5.5: BETTER AUDIO PERFORMANCE WHEN VIDEO STREAM IS MONITORED BY TCPII - 321 CONGESTION CONTROL Longin Jan Latecki, Kishore Kulkarni, Jaiwant Mulik, Temple University, United States
MCN-P5.6: GNUSTREAM: A P2P MEDIA STREAMING SYSTEM PROTOTYPEII - 325 Xuxian Jiang, Yu Dong, Dongyan Xu, Bharat Bhargava, Purdue University, United States
MCN-P5.7: ON THE EFFICIENT USE OF VIDEO-ON-DEMAND STORAGE FACILITYII - 329 Jun Guo, Peter Taylor, Moshe Zukerman, University of Melbourne, Australia; Sammy Chan, K. S. Tang, Eric Wong, City University of Hong Kong, China
MCN-P5.8: AN ARCHITECTURE FOR COMPONENTIZED, NETWORK-BASED MEDIAII - 333 SERVICES Michael Harville, Michele Covell, Susie Wee, Hewlett-Packard Laboratories, United States
AIVP-P6: IMAGE CLASSIFICATION AND DETECTION
AIVP-P6.1: DYNAMIC THRESHOLD METHOD FOR SCENE CHANGE DETECTIONII - 337 Sungju Youm, Woosaeng Kim, Kwangwoon University, Republic of Korea
AIVP-P6.2: IMAGE CLASSIFICATION USING SPATIAL RELATIONSHIP MATRIX BASED ONII - 341 COLOR SPATIO-HISTOGRAM Woosaeng Kim, JiYoon Kim, Kwangwoon University, Republic of Korea
AIVP-P6.3: SPORTS VIDEO CLASSIFICATION USING HMMSII - 345 Xavier Gibert, Huiping Li, David Doermann, University of Maryland, College Park, United States

i.

ł

Shaohua Zhou, Rama Chellappa, University of Maryland, United States; Baback Moghaddam, Mitsubishi Electric Research Laboratories, United States AIVP-P6.5: REAL-TIME AUTOMATIC VEHICLE MANAGEMENT SYSTEM USING VEHICLEII - 353 TRACKING AND CAR PLATE NUMBER IDENTIFICATION HwaJeong Lee, Daehwan Kim, Daijin Kim, SungYang Bang, Pohang University of Science and Technology, Republic of Korea AIVP-P6.6: EMBEDDED SLCCA FOR WAVELET IMAGE CODING......II - 357 Jungiang Lan, Xinhua Zhuang, University of Missouri-Columbia, United States AIVP-P6.7: FGS ENHANCEMENT LAYER TRUNCATION WITH MINIMIZED INTRA-FRAMEII - 361 **OUALITY VARIATION** Jian Zhou, University of Washington, United States; Huairong Shao, Chia Shen, Mitsubishi Electric Research Laboratories, United States; Ming-Ting Sun, University of Washington, United States AIVP-P6.8: DETERMINING A SCENE'S ATMOSPHERE BY FILM GRAMMAR RULESII - 365 Ava Aner-Wolf, Weizmann Institute of Science, Israel AIVP-P6.9 *: TRACKING MULTIPLE MANEUVERING POINT TARGETS USING MULTIPLEII - 369 FILTER BANK IN INFRARED IMAGE SEQUENCE Mukesh Zaveri, Uday Desai, S. N. Merchant, Indian Institute of Technology, Bombay, India **ICASSP-4: INDEXING, SEGMENTATION, AND RETRIEVAL** ICASSP-4.1 *: AUTOMATIC RELEVANCE FEEDBACK FOR VIDEO RETRIEVAL......II - 373 Paisarn Muneesawang, Naresuan University, Thailand; Ling Guan, Ryerson University, Canada

ICASSP-4,2 *: 2-D FUNCTIONAL AR MODEL FOR IMAGE IDENTIFICATIONII - 377 Miki Haseyama, Isao Kondo, Hokkaido University, Japan

ICASSP-4,3 *: INVARIANT CONTENT-BASED IMAGE RETRIEVAL BY WAVELET ENERGYII - 381 SIGNATURES

Chi-Man Pun, University of Macau, Macao SAR of China

ICASSP-4.4 *: A ROBUST STATISTIC METHOD FOR CLASSIFYING COLOR POLARITY OFII - 385 VIDEO TEXT

Jiqiang Song, Min Cai, Michael R. Lyu, Chinese University of Hong Kong, China

ICASSP-4.5 *: DYNAMIC-SEGMENTATION-BASED FEATURE DIMENSION REDUCTION FORII - 389 QUICK AUDIO/VIDEO SEARCHING

Akisato Kimura, Kunio Kashino, Takayuki Kurozumi, Hiroshi Murase, NTT Corporation, Japan

ICASSP-4.6 *: A TRAINABLE RETRIEVAL SYSTEM FOR CARTOON CHARACTER IMAGES......II - 393 Miki Haseyama, Atsushi Matsumura, Hokkaido University, Japan

ICASSP-4.7 *: HISTOGRAM-BASED IMAGE RETRIEVAL USING GAUSS MIXTURE VECTORII - 397 QUANTIZATION

Sangoh Jeong, Stanford University, United States; Chee Sun Won, Dongguk University, Republic of Korea; Robert M. Gray, Stanford University, United States

ICASSP-4.8 *: COLOR IMAGE SEGMENTATION USING DENSITY-BASED CLUSTERINGII - 401 Qixiang Ye, Wen Gao, Chinese Academy of Sciences, China; Wei Zeng, Harbin Institute of Technology, China

SS-L7: VIDEO SEGMENTATION FOR SEMANTIC ANNOTATION AND TRANSCODING

SS-L7.2: MOTION-BASED SELECTION OF RELEVANT VIDEO SEGMENTS FOR VIDEOII - 409 SUMMARISATION

Nathalie Peyrard, Patrick Bouthemy, IRISA/INRIA, France

SS-L7.3: A STATISTICAL FRAMEWORK FOR FUSING MID-LEVEL PERCEPTUAL FEATURES INII - 413 NEWS STORY SEGMENTATION

Winston Hsu, Shih-Fu Chang, Columbia University, United States

SS-L7.4: OBJECT-BASED CODING FOR LONG-TERM ARCHIVE OF SURVEILLANCE VIDEO......II - 417 Anthony Vetro, Mitsubishi Electric Research Laboratories, United States; Tetsuji Haga, Kazuhiko Sumi, Mitsubishi Electric Corp, Japan; Huifang Sun, Mitsubishi Electric Research Laboratories, United States

SS-L7.5: OBJECT AND EVENT DETECTION FOR SEMANTIC ANNOTATION ANDII - 421 TRANSCODING

Marco Bertini, Università di Firenze, Italy; Rita Cucchiara, Università di Modena e Reggio Emilia, Italy; Alberto Del Bimbo, Università di Firenze, Italy; Andrea Prati, Università di Modena e Reggio Emilia, Italy

MCN-L4: WIRELESS MULTIMEDIA II

MCN-L4.1: CROSS-LAYER PROTOCOL DESIGN FOR REAL-TIME MULTIMEDIA APPLICATIONSII - 425 OVER 802.11B NETWORKS

Syed Khayam, Shirish Karande, Michael Krappel, Hayder Radha, Michigan State University, United States

MCN-L4.2: AN END-TO-END TCP-FRIENDLY STREAMING PROTOCOL FOR MULTIMEDIAII - 429 OVER WIRELESS INTERNET

Fan Yang, Nanjing University, China; Qian Zhang, Wenwu Zhu, Ya-Qin Zhang, Microsoft Research Asia, China

MCN-L4.3: RATE ADAPTATION TRANSCODING FOR VIDEO STREAMING OVER WIRELESSII - 433 CHANNELS

Zhijun Lei, Nicolas D. Georganas, University of Ottawa, Canada

MCN-L4.4 *: INTERACTIVE VIDEO CODING AND TRANSMISSION OVERII - 437 WIRED-TO-WIRELESS IP NETWORKS USING AN EDGE PROXY Yong Pei, James Modestino, University of Miami, United States

MCN-L4.5: LOW-LATENCY WIRELESS VIDEO OVER 802.11 NETWORKS USING PATHII - 441 DIVERSITY

Allen Miu, MIT, United States; John Apostolopoulos, Wai-tian Tan, Mitchell Trott, Hewlett-Packard Laboratories, United States

MD-L4: MULTIMEDIA SEMANTICS

Dinh Quoc Phung, Svetha Venkatesh, Curtin University of Technology, Australia; Chitra Dorai, IBM T. J. Watson Research Center, United States

MD-L4.3: INDEXING NARRATIVE STRUCTURE AND SEMANTICS IN MOTION PICTURESII - 453 WITH A PROBABILISTIC FRAMEWORK Brett Adams, Curtin University of Technology, Australia; Chitra Dorai, IBM T. J. Watson Research Center, United States: Svetha Venkatesh, Hung Bui, Curtin University of Technology, Australia SPATIAL CONTEXT MODELS Jiebo Luo, Amit Singhal, Eastman Kodak Company, United States; Weiyu Zhu, University of Illinois, United States MD-L4.5: SPORTS VIDEO CATEGORIZING METHOD USING CAMERA MOTION PARAMETERS......II - 461 Shin'ichi Takagi, Shinobu Hattori, Kazumasa Yokoyama, Akihisa Kodate, Hideyoshi Tominaga, Waseda University. Japan MHMII-L2: FACE, BODY, AND AUDIO-VISUAL ANALYSIS MHMII-L2.1: ROBUST REAL-TIME FACE DETECTION BASED ON COST-SENSITIVEII - 465 ADABOOST METHOD Yong Ma, Xiaoqing Ding, Tsinghua University, China MHMII-L2.2: A REAL-TIME PROTOTYPE FOR SMALL VOCABULARY AUDIO-VISUAL ASRII - 469 Jonathan Connell, Norman Haas, Etienne Marcheret, Chalapathy Neti, Gerasimos Potamianos, IBM T. J. Watson Research Center, United States; Senem Velipasalar, Princeton University, United States MHMII-L2.3: AUDIO-VISUAL TALKING FACE DETECTIONII - 473 Mingkun Li, Oakland University, United States; Dongge Li, Motorola Labs, United States; Nevenka Dimitrova, Philips Research, United States; Ishwar Sethi, Oakland University, United States Chung-Lin Huang, Chia-Ying Chung, National Tsing Hua University, Taiwan MHMII-L2.5: PRODUCT HMMS FOR AUDIO-VISUAL CONTINUOUS SPEECH RECOGNITIONII - 481 USING FACIAL ANIMATION PARAMETERS Petar Aleksic, Aggelos Katsaggelos, Northwestern University, United States MSCP-P1: MULTIMEDIA SECURITY AND CONTENT PROTECTION III MSCP-P1.1: CAPACITY FOR JPEG2000-TO-JPEG2000 IMAGES WATERMARKINGII - 485 Peter Hon Wah Wong, Gene Yick Ming Yeung, Oscar C. Au, Hong Kong University of Science and Technology, Hong Kong SAR of China MSCP-P1.2: DUAL SECURITY-BASED IMAGE STEGANOGRAPHYII - 489 Chun-Shien Lu, Academia Sinica, Taiwan MSCP-P1.3: THE SECURITY FLAWS IN SOME AUTHENTICATION WATERMARKING SCHEMES II - 493 Yongdong Wu, Feng Bao, Changsheng Xu, Institute for Infocomm Research, Singapore MSCP-P1.4: DIGITAL IMAGE WATERMARKING FOR JOINT OWNERSHIP VERIFICATIONII - 497 WITHOUT A TRUSTED DEALER Huiping Guo, Nicolas D. Georganas, University of Ottawa, Canada MSCP-P1.5: AN IMPROVED BLOCK DEPENDENT FRAGILE IMAGE WATERMARKINGII - 501 Feilong Liu, Yangsheng Wang, Chinese Academy of Sciences, China Gwenaël Doerr, Jean-Luc Dugelay, Eurécom Institute, France MSCP-P1.7: NEURAL NETWORK BASED STEGANALYSIS IN STILL IMAGESII - 509 Shaohui Liu, Hongxun Yao, Harbin Institute of Technology, China; Wen Gao, Chinese Academy of Sciences, China

MSCP-P1.8: ROBUST AUDIO WATERMARKING USING A CHIRP BASED TECHNIQUE......II - 513 Serhat Erküçük, Sridhar Krishnan, Mehmet Zeytinoglu, Ryerson University, Canada

MCN-P6: MULTIMEDIA DISTRIBUTION

MCN-P6.1: COMPARISON OF RATE ALLOCATION STRATEGIES FOR H.264 VIDEOII - 517 TRANSMISSION OVER WIRELESS LOSSY CORRELATED NETWORKS Stefano Gnavi, Marco Grangetto, Enrico Magli, Gabriella Olmo, Politecnico di Torino, Italy
MCN-P6.2: VIDEO DISTRIBUTION WITH EDGE STATIONS AND WI-FI DELIVERYII - 521 NETWORKS Min-You Wu, Wei Shu, University of New Mexico, United States
MCN-P6.3: A DYNAMIC MULTICASTING POLICY BASED ON PROXY CACHING
MCN-P6.4: ADMISSION CONTROL POLICIES FOR VIDEO ON DEMAND BROKERSII - 529 Bahjat Qazzaz, Javier Moreno, Yuan Yang Xiao, Porfidio Hernandez, Remo Suppi, Emilio Luque, Universidad Autonoma de Barcelona, Spain
MCN-P6.5: A NEW CONGESTION CONTROL ALGORITHM FOR LAYERED MULTICAST INII - 533 HETEROGENEOUS MULTIMEDIA DISSEMINATION Qiang Liu, Jeng-Neng Hwang, University of Washington, United States
MCN-P6.6: AN INTEGRATED NTP-RTCP SOLUTION TO AUDIO SKEW DETECTION ANDII - 537 COMPENSATION FOR VOIP APPLICATIONS Hugh Melvin, National University of Ireland, Ireland; Liam Murphy, University College Dublin, Ireland
MCN-P6.7: MULTI-STREAM VIDEO TRANSPORT OVER DIFFSERV WIRELESS LANS
MCN-P6.8: HIERARCHICAL HANDOFF SCHEMES OVER WIRELESS LAN/WAN NETWORKSII - 545 FOR MULTIMEDIA APPLICATIONS Syed Irtiza Ali, Hayder Radha, Michigan State University, United States
AIVP-P7: IMAGE COMPRESSION AND MODELING
AIVP-P7.1: ADAPTIVE RESOLUTION VECTOR QUANTIZATION TECHNIQUE AND BASICII - 549 CODEBOOK DESIGN METHOD FOR COMPOUND IMAGE COMPRESSION Takahiro Nakayama, Masahiro Konda, Koji Takeuchi, Koji Kotani, Tadahiro Ohmi, Tohoku University, Japan
AIVP-P7.2: A WAVELET PACKET IMAGE CODING ALGORITHM BASED ON QUADTREEII - 553 CLASSIFICATION AND UTCQ Xingsong Hou, Guizhong Liu, Xi'an Jiaotong University, China
AIVP-P7.3: A NOVEL COEFFICIENT SCANNING SCHEME FOR DIRECTIONAL SPATIAL
AIVP-P7.4: REDUCED COMPLEXITY SPATIO-TEMPORAL SCALABLE MOTION COMPENSATEDII - 561 WAVELET VIDEO ENCODING Deepak Turaga, Mihaela van der Schaar, Philips Research USA, United States
AIVP-P7.5: A DISCUSSION OF LEAKY PREDICTION BASED SCALABLE CODINGII - 565 Yuxin Liu, Zhen Li, Purdue University, United States; Paul Salama, Indiana University–Purdue University Indianapolis, United States; Edward Delp, Purdue University, United States

AIVP-P7.6: COMPRESSION OF SIDE INFORMATIONII - 569 Jean Cardinal, Université Libre de Bruxelles, Belgium
AIVP-P7.7: AN ADAPTIVE RATE CONTROL ALGORITHM FOR VIDEO CODING OVER
AIVP:P7.8: MAXIMUM-LIKELIHOOD MOTION ESTIMATION OF A HUMAN FACE
AIVP-P7.9 *: UNCONSTRAINED MOTION COMPENSATED TEMPORAL FILTERING (UMCTF)II - 581 FRAMEWORK FOR WAVELET VIDEO CODING Mihaela van der Schaar, Deepak Turaga, Philips Research USA, United States
AIVP-P7.10 *: A PERCEPTUALLY SIGNIFICANT BLOCK-EDGE IMPAIRMENT METRIC FORII - 585 DIGITAL VIDEO CODING Shan Suthaharan, University of North Carolina, Greensboro, United States
ICASSP-5: SIGNAL PROCESSING THEORY AND METHODS II
ICASSP-5.1 *: MAXIMUM LIKELIHOOD METHOD FOR BLIND IDENTIFICATION OFII - 589 MULTIPLE AUTOREGRESSIVE CHANNELS Zheng Fang, Yingbo Hua, University of California, Riverside, United States
ICASSP-5.2 *: CONSTANT BEAMWIDTH BEAMFORMER FOR DIFFERENCE FREQUENCY INII - 593 PARÅMETRIC ARRAY Khim Sia Tan, Woon Seng Gan, Jun Yang, Meng Hwa Er, Nanyang Technological University, Singapore
ICASSP-5.3 *: TIME DELAY ESTIMATION AND SIGNAL RECONSTRUCTION USINGII - 597 MULTI-RATE MEASUREMENTS Omid Jahromi, Parham Aarabi, University of Toronto, Canada
ICASSP-5.4 *: DETECTION FOR MIMO SYSTEMS WITH IMPRECISE CHANNEL KNOWLEDGEII - 601 Yunnan Wu, Sun-Yuan Kung, Princeton University, United States
ICASSP-5.5 *: CAPACITY ANALYSIS FOR PARALLEL AND SEQUENTIAL MIMO EQUALIZERSII - 605 Xinying Zhang, Sun-Yuan Kung, Princeton University, United States
ICASSP-5.6 *: TIME-DOMAIN METHOD FOR TRACKING DISPERSIVE CHANNELS IN MIMOII - 609 OFDM SYSTEMS Timo Roman, Mihai Enescu, Visa Koivunen, Helsinki University of Technology, Finland
ICASSP-5.7 *: OPTIMAL SAMPLING FUNCTIONS IN NONUNIFORM SAMPLING DRIVERII - 613 DESIGNS TO OVERCOME THE NYQUIST LIMIT Frank Papenfuß, University of Rostock, Germany; Y. Artyukh, E. Boole, Institute of Electronics & Computer Science, Latvia; D. Timmermann, University of Rostock, Germany
ICASSP-5.8 *: CONSTRAINED EM ESTIMATES FOR HARMONIC SOURCE SEPARATIONII - 617 Pamornpol Jinachitra, Stanford University, United States
ICASSP-5.9 *: BLIND CODE TIMING AND CARRIER OFFSET ESTIMATION FOR DS-CDMAII - 621 SYSTEMS Khaled Amleh, Hongbin Li, Stevens Institute of Technology, United States
ICASSP-5.10 *: BLIND RECOVERY OF MULTIPLE PACKETS IN AD HOC MOBILE NETWORKS

Leeds, United Kingdom; H. J. Muro-Lemus, Centro de Investigación y de Estudios Avanzados, Mexico

SS-L8: MULTIMEDIA AUTHORING AND PRESENTATION

.

SS-L8.1: AUTHORING MULTIMEDIA DOCUMENTS THROUGH GRAMMATICALII - 629 SPECIFICATIONS Jun Kong, Meikang Qiu, Kang Zhang, University of Texas, Dallas, United States
SS-L8.2: HIGH RESOLUTION MULTIMEDIA SLIDE SHOW COMPOSITION FOR VIDEO CDII - 633 AND DVD RENDERING Zhaohui Sun, Jonathan Riek, Alexander Loui, Eastman Kodak Company, United States
SS-L8.3: AUTHORING TOOLS FOR MOBILE MULTIMEDIA CONTENT
SS-L8.4: SHARING AND PRESENTING MULTIMEDIA AND CONTEXT INFORMATION WITHINII - 641 ONLINE COMMUNITIES USING MOBILE TERMINALS Heikki Keränen, Tapani Rantakokko, Jani Mäntyjärvi, VTT Electronics, Finland
SS-L8.5: USER-GENERATED CONTENT IN MOBILE MULTIMEDIA: EMPIRICAL EVIDENCE
MCN-L5: MULTIMEDIA STREAMING
MCN-L5.1: A PEER-TO-PEER ON-DEMAND STREAMING SERVICE AND ITS PERFORMANCE
Yang Guo, Kyoungwon Suh, Jim Kurose, Don Towsley, University of Massachusetts, Amherst, United States
MCN-L5.2: NETWORK-ADAPTIVE VIDEO STREAMING USING MULTIPLE DESCRIPTIONII - 653 CODING AND PATH DIVERSITY Joohee Kim, Russell Mersereau, Yucel Altunbasak, Georgia Institute of Technology, United States
MCN-L5.3: ENHANCING COOPERATIVE PLAYBACK SYSTEMS WITH EFFICIENTII - 657 ENCRYPTED MULTIMEDIA STREAMING Giancarlo Fortino, Wilma Russo, University of Calabria, Italy; Eugenio Zimeo, University of Sannio, Italy
MCN-L5.4: A PROTOCOL FOR ADAPTATION-AWARE MULTIMEDIA STREAMINGII - 661 Matthias Ohlenroth, Hermann Hellwagner, University Klagenfurt, Austria
MCN-L5.5: HYBRID VIDEO DOWNLOADING/STREAMING OVER PEER-TO-PEERII - 665 NETWORKS
Yufeng Shan, Shivkumar Kalyanaraman, Rensselaer Polytechnic Institute, United States
MA-L2: CAPTURING AND INDEXING MULTIMEDIA EVENTS AND CONTENT
MA-L2.1: MAKING MULTIMEDIA MEETING RECORDS MORE MEANINGFULII - 669 Werner Geyer, IBM T. J. Watson Research Center, United States; Heather Richter, Gregory Abowd, Georgia Institute of Technology, United States
MA-L2.2: PVCAIS: A PERSONAL VIDEOCONFERENCE ARCHIVE INDEXING SYSTEMII - 673 Jiqiang Song, Michael R. Lyu, Chinese University of Hong Kong, China; Jenq-Neng Hwang, University of Washington, United States; Min Cai, Chinese University of Hong Kong, China
MA-L2.3: CARMUL : CONCURRENT AUTOMATIC RECORDING FOR MULTIMEDIA LECTUREII - 677 Yoshinari Kameda, Satoshi Nishiguchi, Michihiko Minoh, Kyoto University, Japan
MA-L2.4: LECTERN II: A MULTIMEDIA LECTURE CAPTURING AND EDITING SYSTEM

MA-L2.5: MEDIA AND METADATA MANAGEMENT FOR CAPTURE AND ACCESS SYSTEMS INII - 685 ELECTRONIC LECTURING ENVIRONMENTS

•

•

Avare Stewart, Patrick Wolf, Matthias Hemmje, Fraunhofer-IPSI, Germany

AIVP-L6: IMAGE/VIDEO INDEXING AND RETRIEVAL

AIVP-L6.1: SUPERVISED CLASSIFICATION FOR VIDEO SHOT SEGMENTATIONII - 689 Yanjun Qi, Alexander Hauptmann, Ting Liu, Carnegie Mellon University, United States
AIVP-L6.2: TEMPORAL RATE-DISTORTION BASED OPTIMAL VIDEO SUMMARY GENERATIONII - 693 Zhu Lì, Motorola Labs, United States; Aggelos Katsaggelos, Northwestern University, United States; Bhavan Gandhi, Motorola Labs, United States
AIVP-L6.3: VIDEO SEGMENTATION USING STABILIZED INVERSE DIFFUSIONII - 697 Ankur Mani, Motorola India Electronics Ltd., India
AIVP-L6.4: AN IMAGE RETRIEVAL TECHNIQUE USING ROTATIONALLY INVARIANT GABORII - 701 FEATURES AND A LOCALIZATION METHOD Daekyu Shin, Daewon Kim, Hyunsool Kim, Samsung Electronics Co. Ltd., Republic of Korea; Sanghui Park, Yonsei University, Republic of Korea
AIVP-L6.5: ANALYSIS AND INTERFACE FOR INSTRUCTIONAL VIDEOII - 705 Alexander Haubold, John R. Kender, Columbia University, United States
AIVP-P8: SPEECH AND AUDIO PROCESSING III
AIVP-P.8.1: MODIFIED MP3 ENCODER USING COMPLEX MODIFIED DISCRETE COSINE
AIVP-P8.2: HMM-BASED MUSIC RETRIEVAL USING STEREOPHONIC FEATURE
AIVP-P8.3: ROBUST CHIRP PARAMETER ESTIMATION FOR HANN WINDOWED SIGNALSII - 717 Aaron Master, Yi-Wen Liu, Stanford University, United States
AIVP'-P8.4: UBM-BASED INCREMENTAL SPEAKER ADAPTATION
AIVP-P8.5: NEW REFINEMENT SCHEMES FOR VOICE CONVERSIONII - 725 Cheng-Yuan Lin, JS. Roger Jang, National Tsing Hua University, Taiwan
AIVP-P8.6: INTEGER FAST MODIFIED COSINE TRANSFORM
AIVP-P8.7: GENDER IDENTIFICATION USING A GENERAL AUDIO CLASSIFIER
AIVP-P8.8: CONVENTIONAL AND PERIODIC N-GRAMS IN THE TRANSCRIPTION OF DRUMII - 737 SEQUENCES Jouni Paulus, Anssi Klapuri, Tampere University of Technology, Finland
AIVP-P8.9 *: ROBUST VARIATIONAL SPEECH SEPARATION USING FEWER MICROPHONESII - 741 THAN SPEAKERS

Steven Rennie, Parham Aarabi, Trausti Kristjansson, Brendan Frey, Kannan Achan, University of Toronto, Canada

MSRI-P1: VIDEO PROCESSING FOR MULTIMEDIA INTERACTION

MSRI-P1.1: A HANDHELD MIRROR SIMULATIONII - 745 Alexandre François, Eun-Young Kang, University of Southern California, United States
MSRI-P1.2: A PAPER-BASED INTERFACE FOR VIDEO BROWSING AND RETRIEVAL
MSRI-P1.3: CREATING NAVIGABLE MULTI-LEVEL VIDEO SUMMARIESII - 753 Frank Shipman, Andreas Girgensohn, Lynn Wilcox, FX Palo Alto Laboratory, Inc., United States
MSRI-P1.4: STUDY ON REQUIREMENT SPECIFICATIONS FOR PERSONALIZED MULTIMEDIAII - 757 SUMMARIZATION Lalitha Agnihotri, Nevenka Dimitrova, Philips Research, United States; John R. Kender, Columbia University, United States; John Zimmerman, Carnegie Mellon University, United States
MSRI-P1.5: SUPPORTING VCR-LIKE OPERATIONS IN SMIL2.0 PLAYERSII - 761 Chun-Chuan Yang, Chih-Wen Tien, Yung-Chi Wang, National Chi Nan University, Taiwan
MSRI-P1.6: COMPUTER VISION BASED UNISTROKE KEYBOARD SYSTEM AND MOUSE FORII - 765 THE HANDICAPPED Erkut Erdem, Aykut Erdem, Volkan Atalay, Middle East Technical University, Turkey; Enis Cetin, Bilkent University, Turkey
MSRI-P1.7: LOCATION TRACKING FOR MEDIA APPLIANCES IN WIRELESS HOMEII - 769 NETWORKS Ishwar Ramani, Rajiv Bharadwaja, P. Venkat Rangan, University of California, San Diego, United States
MSRI-P1.8: LATEST ARRIVAL TIME LEAKY BUCKET FOR HRD CONSTRAINED VIDEOII - 773 CODING Lujun Yuan, Wen Gao, Yan Lu, Chinese Academy of Sciences, China
AIVP-P9: MOTION ESTIMATION
AIVP-P9.1: ALGORITHM FOR MULTIPLE FACES TRACKINGII - 777 Charay Lerdsudwichai, Mohamed Abdel-Mottaleb, University of Miami, United States
AIVP-P9.2: NON-LINEAR ESTIMATION OF IMAGE MOTION AND TRACKINGII - 781 Patrick Lanvin, Jean-Charles Noyer, Mohammed Benjelloun, LASL-ULCO, France
AIVP-P9.3: VIDEO OBJECT MOTION APPLICATIONS FOCUSING ON NON-PLANAR ROTATIONII - 785 Mireya García, H. Nicolas, IRISA/INRIA, France
AIVP-P9.4: FAST VARIABLE-SIZE BLOCK MOTION ESTIMATION USING MERGINGII - 789 PROCEDURE WITH AN ADAPTIVE THRESHOLD Yu-Kuang Tu, Jar-Ferr Yang, Yi-Nung Shen, National Cheng Kung University, Taiwan; Ming-Ting Sun, University of Washington, United States
AIVP-P9.5: A SPECTRAL CLUSTERING APPROACH TO MOTION SEGMENTATION BASED ONII - 793 MOTION TRAJECTORY Hongbin Wang, Hua Li, Chinese Academy of Sciences, China
AIVP-P9.6: SPATIAL CORRELATION BASED FAST FIELD MOTION VECTOR ESTIMATIONII - 797 ALGORITHM FOR INTERLACED VIDEO ENCODING Korada Ramkishor, T.S. Raghu, K. Suman, Pallapothu SSBK Gupta, Emuzed India Pvt Ltd, India
AIVP-P9.7: A MODIFIED SPACE FREQUENCY DECOMPOSITION ALGORITHM FOR VISUALII - 801 MOTION Ye Lu, Cheng Lu, Ze-Nian Li, Simon Fraser University, Canada

.

AIVP-P9.9 *: ANALYSIS AND REDUCTION OF REFERENCE FRAMES FOR MOTIONII - 809 ESTIMATION IN MPEG-4 AVC/JVT/H.264

Yu-Wen Huang, Bing-Yu Hsieh, Tu-Chih Wang, Shao-Yi Chien, National Taiwan University, Taiwan; Shyh-Yih Ma, Chun-Fu Shen, Vivotek Incorporation, Taiwan; Liang-Gee Chen, National Taiwan University, Taiwan

AIVP-P9.10 *: RATE-DISTORTION ANALYSIS OF THE MULTIPLE DESCRIPTION MOTIONII - 813 COMPENSATION VIDEO CODING SCHEME

Shunan Lin, Polytechnic University, United States; Anthony Vetro, Mitsubishi Electric Research Laboratories, United States; Yao Wang, Polytechnic University, United States

ICASSP-6: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS

ICASSP-6.1 *: A SIMULATION BASED APPROACH FOR INCORPORATING VIRTUALII - 817 COMPONENTS IP CORES INTO MULTIMEDIA SYSTEMS DESIGN

Adel Baganne, Lester Lab, France; Imed Bennour, Mehrez Elmarzougui, EµE Lab, Tunisia; Eric Martin, Lester Lab, France

ICASSP-6.2 *: OPTIMIZATION OF DECISION-TIMING FOR EARLY TERMINATION OFII - 821 SSDA-BASED BLOCK MATCHING

Aisushi Hatabu, Takashi Miyazaki, Ichiro Kuroda, NEC Corporation, Japan

ICASSP-6.3 *: DESIGN OF SPACE-EFFICIENT, WIDE- AND NARROW TRANSITION-BAND, FIRII - 825 FILTERS

Xiaojuan Hu, Linda DeBrunner, Victor DeBrunner, University of Oklahoma, United States

Duy Nguyen, Parham Aarabi, Ali Sheikholeslami, University of Toronto, Canada

ICASSP-6.5 *: FIXED POINT ERROR ANALYSIS OF CORDIC PROCESSOR BASED ON THEII - 833 VARIANCE PROPAGATION

Sang Yoon Park, Nam Ik Cho, Seoul National University, Republic of Korea

Justin Song, Jian Li, Yen-Kuang Chen, Intel Corporation, China

ICASSP-6.7 *: ETSI AMR-2 VAD: EVALUATION AND ULTRA LOW-RESOURCE IMPLEMENTATION .. II - 841 Etienne Cornu, Hamid Sheikhzadeh, Robert L. Brennan, Dspfactory Ltd., Canada; Hamid Reza Abutalebi, Amirkabir University of Technology, Iran; Edmund C. Y. Tam, Peter Iles, Don Kar Wai Wong, Dspfactory Ltd., Canada

ICASSP-6.8 *: A RADIX-16 FFT ALGORITHM SUITABLE FOR MULTIPLY-ADD INSTRUCTIONII - 845 BASED ON GOEDECKER METHOD

Daisuke Takahashi, University of Tsukuba, Japan

ICASSP-6.9 *: LOW-POWER HYBRID STRUCTURE OF DIGITAL MATCHED FILTERS FORII - 849 DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS

Sung-Won Lee, In-Cheol Park, KAIST, Republic of Korea

A HANDHELD MIRROR SIMULATION

Alexandre R.J. François and Eun-Young Elaine Kang Integrated Media Systems Center University of Southern California Los Angeles, CA 90089

{afrancoi,ekang}@usc.edu

ABSTRACT

We present the design and construction of a handheld mirror simulation device. The perception of the world reflected through a mirror depends on the viewer's position with respect to the mirror and the 3-D geometry of the world. In order to simulate a real mirror on a computer screen, images of the observed world, consistent with the viewer's position, must be synthesized and displayed in realtime. Our system is build around a LCD screen manipulated by the user, a single camera fixed on the screen, and a tracking device. The continuous input video stream and tracker data is used to synthesize, in real-time, a continuous video stream displayed on the LCD screen. The synthesized video stream is a close approximation of what the user would see on the screen surface if it were a real mirror. Our system provides a generic interface for applications involving rich, first-person interaction, such as the Virtual Daguerreotype.

Keywords

Human-Computer Interface; Real-time video processing.

1.INTRODUCTION

We present the design and construction of a handheld mirror simulation device. Rather than attempting to solve the difficult vision problem of a general, exact mirror simution, our focus is on the design and construction of a first person Human-Computer Interface (HCI) to be used in new interactive experiments and applications. While remaining simple, our first prototype must provide a better experience to the user than the traditional fixed camera / fixed display / horizontal image flip mirror setting. A major novelty in our approach is the hands-on aspect, which requires a more elaborate model to convincingly reproduce the interaction between the user and the mirror as an object. One important clue is the evolution of the user's field of view in the mirror as her position with respect to the mirror changes. Furthermore, our goal is to produce a working but extensible system, to serve as a platform for future enhancements to the HCI device subsystem itself, as well as to allow easy integration in applications

Our system is composed of a handheld LCD screen manipulated by the user, a single camera fixed on the screen, and two 6 degrees of freedom trackers giving in real time the positions and orientations of the camera and the user's head. The major system components and their relations are illustrated in figure 1. The user sees on the screen what they would see on a real mirror.

The perception of the world reflected through a mirror depends on the viewer's position with respect to the mirror and the

Figure 1. Handheld mirror simulation system.

3-D geometry of the world. In order to simulate a real mirror on a computer screen, images of the observed world, consistent with the viewer's position, must be synthesized and displayed in real-time. The continuous input video stream and tracker data is used to synthesize, in real-time, a continuous video stream displayed on the LCD screen. The synthesized video stream is a close approximation of what the user would see on the screen surface if it were a real mirror.

This paper is organized as follows. In section 2, we outline the geometric analysis of mirror and camera imaging, leading to the image transform for mirror simulation, based on the flat world assumption. In section 3, we briefly explain the software and hardware design of our prototype. In section 4, we relate our work to other mirror experiments, and to upcoming applications. Finally, we conclude the paper in section 5.

2.GEOMETRIC ANALYSIS

2.1 Mirror geometry

When a person looks into a planar mirror, they see what they would see from the symmetrical (virtual) point of view (see figure 2). Assimilating image formation by the eye to a perspective projection, the image perceived by the viewer on the mirror surface is

ICME 2003

Figure 2. Mirror geometry.

a perspective projection on the mirror plane with respect to the vir-

tual viewpoint. A point of homogenous coordinates $[xyz1]^T$ in an orthonormal coordinate system centered on the virtual viewpoint (symmetrical of the user viewpoint with respect to the mirror plane) with the z direction normal to the mirror, is seen on the mirror surface at its projected location $[x_p y_p d]^T$, where d is the orthogonal distance of the viewpoint to the mirror plane, and

$$\begin{bmatrix} U_p \\ V_p \\ W_p \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad x_p = U_p / W_p = dx/z$$

The image perceived on the mirror depends only on the position of the user with respect to the mirror, and the field of view covered by the mirror depends only on the position of the user with respect to the mirror edges. In particular, the image perceived on the mirror remains "fixed" when the viewing direction changes while the viewpoint remains fixed.

2.2 Pinhole camera geometry

A camera whose position and orientation are fixed with respect to the mirror produces a video stream that corresponds to this particular viewpoint. Assuming the camera can be approximated by a pinhole model (see figure 3), a point of homogenous coordinates

Figure 3. Pinhole camera geometry.

 $[x'y'z'1]^T$ in an orthonormal coordinate system centered on the camera center, is projected on the imaging plane at the location $[x'_p y'_p f]^T$, where f is the focal length (orthogonal distance of the camera center to the imaging plane), and

$$\begin{bmatrix} U'_{p} \\ V'_{p} \\ W'_{p} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{vmatrix} x' \\ y' \\ z' \\ 1 \end{vmatrix} \qquad x'_{p} = U'_{p}/W'_{p} = fx'/z' y'_{p} = V'_{p}/W'_{p} = fy'/z'$$

2.3 User view synthesis

In order to synthesize the images corresponding to the user's viewpoint from the images captured by the camera, we must relate them geometrically, i.e. express x_p and y_p in terms of x'_p and y'_p .

We place the camera so that the image plane and (virtual) mirror planes coincide. We chose the viewpoint and camera coordinate systems so that their respective axes directions coincide. Thus the 4x4 matrix relating the two coordinate systems is reduced to a simple translation of the origin:

$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & 0 & t_x \end{bmatrix}$	[x']
y	=	$0 1 0 t_y$	y
z		$0 0 1 t_{-}$	z '
[1]			[1]

The mirror projection equations become:

$$\begin{bmatrix} U_p \\ V_p \\ W_p \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1/d & t_z/d \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} \qquad \begin{array}{l} x_p = d(x' + t_x)/(z' + t_z) \\ y_p = d(y' + t_y)/(z' + t_z) \end{bmatrix}$$

Figure 4. An underconstrained problem.

Express x_p and y_p in terms of x'_p and y'_p thus requires to recover the actual 3-D position of each point from its image projection. This is obviously an underconstrained problem, as an image pixel might potentially be the projection of any world point on a ray passing through the camera center and the pixel, as illustrated in figure 4.

Various computer vision techniques could be used to attempt to recover the 3-D geometry of the world from images in some cases. Another solution would be to use a 3-D model of the environment, if available. For our first prototype, we followed a simpler approximate approach. Since we are designing our mirror as a first person interaction tool, we assume that the center of interest is the user himself, and that the background is of lesser importance. We thus model the world as a plane parallel to the mirror/imaging plane, at the same distance as the user's viewpoint (see figure 5).

The z' component of each world point is thus fixed to z' = f + d in the camera centered coordinate system. We can now inverse the camera projection equations:

$$x'_{p} = fx'/(f+d) \Leftrightarrow x' = (f+d)x'_{p}/f$$
$$y'_{n} = fy'/(f+d) \Leftrightarrow y' = (f+d)y'_{n}/f$$

The transformation equations that relate the user's view to the camera image are thus:

$$x_p = d((f+d)x'_p/f + t_x)/((f+d) + t_z)$$

$$y_p = d((f+d)y'_p/f + t_y)/((f+d) + t_z)$$

The only parameters are f, d and [txtytz]. The theoretical focal length of the camera can be obtained by various calibration methods. The positions and orientations of the user's viewpoint and the camera center provided by the tracking devices, allow to compute both the distance d and the change of referential translation parameters.

Note that under our assumptions, the transform relating the user's view to the camera view is reduced to a scaling and a trans-

Figure 5. Flat world assumption.

Figure 6. Mirror simulation application graph.

lation. This model provides a straightforward and efficient way of synthesizing the viewer's image stream from the camera stream, while remaining a reasonable approximation for a large class of applications. The major field-of-view variations occuring when varying the angle of view and the distance to the mirror, are convincingly simulated.

3.SYSTEM INTEGRATION

Beyond establishing a simple image transform to simulate reflexion in a mirror, a central goal of our work is to build an efficient and extensible working system.

We have implemented the mirror image transform as a module in the Modular Flow Scheduling Middleware [2]], the open source implementation of IMSC's software architecture for Integrated Media Systems. It is specifically designed for parallel processing of concurrent data streams in real-time [3], and its modularity dramatically reduces development and integration time.

The application graph for the mirror simulation is presented in figure 6. Generic modules such as video capture and display were already available. Note that thanks to the modularity of the framework, any processing can be carried on the images before or after the mirror transform.

The prototype system is composed of a handheld 10" LCD screen fitted with a camera and a magnetic tracker sensor (see figure 7), a fixed processing unit, a fixed magnetic tracker transmitter, and a second magnetic tracker sensor placed on the user. Real-time camera and tracker inputs are used to synthesize the mirror image stream and display it in real-time on the LCD screen. The result is a convincing handheld mirror simulation, in spite of the inherent limitations of our mirror transform model.

4.RELATED WORK AND APPLICATIONS

Mirrors have been source of inspiration for artists for a long time, but few interactive electronic mirror experiments have actually been demonstrated. The "Magic Morphin Mirror" [1] uses visionbased face tracking to present a distorted appearance of the viewer's reflection. "Wooden Mirror 1999" [5], and more recent experiments by its creator are other examples of electronic mirror

Figure 7. Handheld mirror device.

metaphors. Our project aims to open the door to even more powerful experiments by providing a realistic, geometrically sound mirror simulation. A major innovation in our approach is to allow and encourage the user to freely move around, and interact with the mirror physically, although other mirror settings, such as a large (simulated) mirror on a wall, are currently being designed.

Our system provides a fundamental platform for other realtime interactive applications. Digital image processing modules can easily be added to the system in order to simulate various mirror deformations, such as magnifying, concave and convex mirrors (see figure 8). Note that the deformation parameters can also be dynamic.

We are currently using the mirror simulation platform for the Virtual Daguerreotype project [4]. Daguerreotypes are one of the earliest forms of photography, a direct-positive process that creates a highly detailed image on a sheet of copper plated with a thin coat of silver without the use of a negative. As daguerreotype images, most of which are portraits, are encased in velvet, leather, glass and metal trim, and require viewing from a certain angle, they seem to belong in one's hand. However, the fragility of these objects demands that they be displayed in cases, under carefully controlled light. By compositing pictures of daguerreotypes, taken from different angles, with the synthetic mirror simulation images, our system will allow to recreate the essence of looking into a mirror and seeing a changing engraved image superimposed on one's reflection in real time.

5.CONCLUSION

We have presented a handheld mirror interface system. The system is designed to be a platform that will be used in many interactive applications. In particular, the use of the Modular Flow Scheduling Middleware as the software architecture ensures efficiency and extensibility through multithreading and modularity.

Adopting the simplifying pinhole camera and flat world models, we have shown that the transform relating the camera view and the user view depends only on the relative positions of the user viewpoint and the camera center, and is reduced to a scaling and a translation. This model provides a straightforward and efficient way of synthesizing the viewer's image stream from the camera stream, and provides a reasonable approximation in a large class of applications. Beyond the inherent inability of the model to account

Figure 8. Concave mirror simulation.

for depth in the scene, a major limitation is the impossibility to simulate eye contact. This is due to the physical separation between the capture device (camera) and the visualization device (screen). More elaborate modeling and processing is required to achieve this effect, e.g. with head modeling, tracking and synthesis

The design and construction of realistic mirror simulations represents an original experiment in Human-Computer Interface, that opens the door to various interactive experiments in entertainment, arts and communication, such as the Virtual Daguerreotype. Use of video analysis and graphics techniques will allow to explore and interfere with what has always been a private, solitary act of a person looking in a mirror.

6.ACKNOWLEDGMENTS

The authors wish to thank M. Lazzari, M. McLaughlin, Gérard G. Medioni and W.L. Wong at the University of Southern California. This research has been funded by the Integrated Media Systems Center, a National Science Foundation Engineering Research Center, Cooperative Agreement No. EEC-9529152; and by a grant from the USC Arts Initiative.

7.REFERENCES

- Darrell T. et al., "Magic Morphin Mirror: Face-Sensitive Distortion and Exaggeration," SIGGRAPH'97 Electric Garden, Visual Proceedings, p.120, 1997.
- [2] François, A. R.J. Modular Flow Scheduling Middleware. http://mfsm.sourceForge.net/
- [3] François, A. R.J. and Medioni, G. G. "A Modular Software Architecture for Real-Time Video Processing." Proc. International Workshop on Computer Vision Systems, pp. 35-49, Vancouver, Canada, July 2001.
- [4] Lazzari, M., McLaughlin, M. L., Jaskowiak, J., Wong, W., and Akbarian, M. A haptic exhibition of daguerreotype cases for USC's Fisher Gallery. In *Touch in Virtual Environments: Haptics and the Design of Interactive Systems*, McLaughlin, M. L., Hespanha, J., and Sukhatme, G, Eds., IMSC Series in Multimedia, Prentice-Hall.
- [5] Rozin D., "Wooden Mirror 1999," SIGGRAPH 2000 Electronic Art Exhibit, p.68, 2000. Online: http:// www.itp.nyu.edu/danny

II - 748