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Abstract 
A novel current-mode driving method and driving circuits are 
proposed for AMOLED displays. The data driving speed in 
conventional current-mode driving methods is dramatically 
enhanced by the proposed method and circuits. The proposed 
method shortens data driving time with feedback of the transient 
charging current from the parasitic capacitance of an adjacent 
data line. The current consumption and chip size of the data 
driver IC are reduced by a half, because one data driving circuit 
can drive two data lines of a display panel. 10 nA data current 
can be transferred to the pixel circuit of a display panel with sub-
nA accuracy in 15 µsec. The data line parasitic resistance and 
capacitance are 4 kohm and 20 pF, respectively. 
1. Introduction 
Offering wide viewing angle, fast response, low power 
consumption, and thinness, AMOLED displays hold promise as 
next generation flat panel displays. Compared to LCDs, PDPs, 
and CRTs, however, the quality of AMOLED displays from a 
display uniformity point of view is not satisfactory. 
Various driving schemes and pixel circuits have been introduced 
in efforts to improve the display uniformity of AMOLED displays 
due to variations of pixel-to-pixel characteristics [1-9]. These 
driving schemes, including the proposed driving method, can be 
technologically categorized as shown in Figure 1. 
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Figure 1. Tree of data driving schemes 

Voltage-mode driving methods and pixel circuits cannot 
compensate mobility variation effects on display uniformity, 
although they provide fast driving speed [5]. 
In terms of display uniformity, the driving method and the pixel 
circuit that offer the best performance are current-mode driving 
and current-copy pixel, respectively [5]. However, high speed 
data driving is beyond attainment with the conventional current-
mode data driver for large pre-charge error voltages, because data 
currents must drive data lines and pixels in the end of the scan 
time [6]. 
In this paper, a novel data driving method and circuits that 
remarkably reduce data driving time by utilizing feedback of the 

transient charging current generated from an adjacent data line are 
described. 

2. Operation Principle 
Long data line charging/discharging time prevents the application 
of current-mode driving to display panels. Figure 2 shows the 
proposed data driver architecture. In order to enhance the data 
driving speed, the transient cancellation feedback (TCF) output 
driver has been composed. The TCF output driver adaptively 
provides the required transient charging current for a data line 
parasitic capacitance and transfers data current to the pixel circuit 
simultaneously. The adaptive generation of the transient charging 
current for a data line capacitance shortens the data driving time 
because the transient current adaptively charges the data line 
capacitance instead of the data current. 
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Figure 2. Current-mode data driver architecture with the output 
drivers 

Figure 3 shows the conceptual operation of the TCF output driver. 
For fast transfer of a data current (IDATA) to a pixel current (Ipixel), 
the parasitic capacitance of a data line (CPP) should be charged 
swiftly with a large current. The variable current source (IBT), 
which is controlled by sensing the voltage variation at node A 
(VA), adaptively supplies the required transient charging current 
for the data line. VA senses the change of IDATA and generates the 
control voltage (VB) according to this change. IBT has two current 
components, one is static (IB) and the other is transient. This 
transient component is the charging current of CPP. The data 
driving speed and accuracy depend on the accuracy and 
promptness of the IBT. 
The implemented circuits of the TCF concept given in Figure 3 
are shown Figure 4. The capacitance and the initial voltage of the 
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data line should be known first so as to generate the required 
transient charging current. 
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Figure 3. Conceptual operation of the transient cancellation 

feedback (TCF) driving method 
The data line capacitance can be extracted from an adjacent data 
line, because the capacitance of a data line is almost the same as 
that of an adjacent data line. The adjacent data line provides the 
data line capacitance by disabling the SCAN signal, as shown in 
Figure 4. 
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(b) Sink-type TCF circuit 

Figure 4. Implemented circuits for transient cancellation feedback 
driving 

Equalization and pre-charge function define the initial voltage of 
the data line and its adjacent data line, as shown in Figure 5. 
Hence, the required transient charging current can be predicted 

from the current flowing in this adjacent data line, as shown in 
Figures 4 and 5. 
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Figure 5. Application of the data driver to a display panel 

The required quantity of charge for a data line is given in equation 
(1) and the quantity of generated charge from an adjacent data line 
is given in equation (2). The error charge, i.e., the difference 
between these two charge quantities, is given in equation (3). CPP 
is the equivalent data line capacitance, CST is the storage 
capacitance of a pixel, and ∆VDL is the voltage swing of a data 
line. The parasitic capacitance of a data line can be charged 
quickly as the error charge converges to zero by the operation of 
two feedback-loops. The loop ① monitors states of transferring 
IDATA to Ipixel and generates a control voltage for the loop ②. 
The loop ② generates the transient charging current according to 
the control voltage. When the error charge converges to zero, the 
variation of voltage at node A no longer exists and IDATA is 
transferred to Ipixel at the same time. 

( ) DLSTPPDL VCCQ ∆⋅+=∆    (1) 

( )21 GSGSDLPPDDL VVVCQ −+∆⋅=∆   (2) 

( ) DLSTGSGSPPerror VCVVCQ ∆⋅+−⋅=∆ 12  (3) 

3. Panel Applications and Operation 
Timing Diagram 
Figures 5 and 6 show the application of the proposed driving 
circuits and the operation timing diagram, respectively. 
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Figure 6. Operation timing diagram 
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The path exchanger in Figure 5 enables one data driving circuit to 
drive two data lines by selecting the connection between a driving 
circuit and two data lines of a panel from ESCAN and OSCAN 
signals. The function of the path exchanger is advantageous in 
terms of chip size and current consumption. One complete scan 
time (Trow) is composed of ESCAN (TESCAN), OSCAN (TOSCAN), 
two equalizations (TEQEN), and two scan stops (TSS), as shown in 
Figure 6. EQEN makes the average data line voltage of a data line 
and its adjacent data line while PCEN adjusts this average voltage 
if necessary. The functioning of EQEN and PCEN significantly 
shortens the data driving time. 

4. Simulation Results 
A distributed R-C model of 4 kohm resistance and 20 pF 
capacitance is applied as a data line load in order to evaluate the 
driving performance of the proposed driving method and circuit. 
The settling characteristics of the pixel currents in response to 
data currents from 2 nA to 10 µA are shown in Figure 7. 
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(a) 2 nA-step driving         (b) 20 nA-step driving 
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(c) 200 nA-step driving       (d) 2 µA-step driving 

Figure 7. Step responses (SCAN enabled at 10 µsec) 
The feasibility of nA-order data driving is verified from the 
simulation results. Figure 8 shows the error currents according to 
the data currents with the given data driving times. 
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Figure 8. Current driving speed and accuracy according to data 

currents 

The possibilities of 10 nA and several-nA data driving are verified 
from the results with 10 µsec and 15 µsec driving times, 
respectively. Figure 9 shows that the data driving time fluctuation 
is not significant even with ±300 mV threshold voltage (VT) 
variations of DTFT in a pixel circuit. 
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(a) IDATA = 100 nA 
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(b) IDATA = 1 µA 

Figure 9. Data driving performance with ±300 mV VT variation 
(SCAN enabled at 10 µsec) 

The performance of the proposed driving method and circuits are 
summarized in Table 1. 
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Table 1. Achieved specifications 

Load conditions

Driving speed and accuracy

Current consumption

DL resistance : 2.2 kohm for QGVA
3.7 kohm for VGA

DL capacitance : 6.6 pF for QVGA
13.5 pF for VGA

10 μμμμsec for ± 3 nA error current
15 μμμμsec for ± 0.1nA error current

8 μμμμA/channel effectively

Simulation load condition
DL resistance : 4.0 kohm
DL capacitance : 20 pF

 

5. Conclusions 
The retard of data driving speed in conventional current-mode 
driving methods due to the parasitic capacitance of a data line is 
overcome by TCF driving. The operation of this circuit is verified 
with a Cadence SPECTRE simulation. The proposed method 
maintains data driving speed and accuracy even with variation of 
TFTs and massive parasitic capacitance. One data driving circuit 
drives two data lines through the use of a path exchanger. The 
proposed approach can be applied for driving poly-silicon panels 
as well as a-Si panels. It is shown that the TCF driving method is 
a viable solution to the speed limitation of conventional current-
mode driving methods. 
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