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Formal Specification and Verification of Safety and
Performance of TCP Selective Acknowledgment

Mark A. Smith and K. K. Ramakrishnan, Member, IEEE

Abstract—We present a formal specification of the selective ac- introduces is the potential for earlier recovery, especially when
knowledgment (SACK) mechanism that is being proposed as a new multiple packets are lost in round-trip time (RTT). This quicker
standard option for TCP. The formal specification allows one to recovery may also result in higher throughput because the more
reason about the SACK protocol; thus, we are able to formally fi hani ti ked
prove that the SACK mechanism does not violate the safety proper- severe congestion feCQVGW mec anlsm_s_are no |_n_v0 ed.
ties (reliable, at most once, and in order message delivery) oftheac- 1€ SACK mechanism includes sufficient additional com-
knowledgment (ACK) mechanism that is currently used with TCP.  plexity that we believe it is important to examine whether it
The new mechanism is being proposed to improve the performance operates correctly. It is not obvious from reading the English
of TCP when multiple packets are lost from one window of data. |3ngyage specification of [10] that it satisfies the safety proper-
The proposed mechanism for implementing the SACK option for ti fthe ACK hani Simulati . ts h b
TCP is sufficiently complicated that it is not obvious that it is in- 1es ot the mechanism. simula Ion experiments _ave een
deed safe, so we think it is important to formally verify its safety done to understand the performance improvement with SACK
properties. [1], and while these lend confidence that the protocol operates
~ In addition to safety, we are also able to show that SACK can as expected, simulations do not ensure that the protocol is cor-
improve the time it takes for the sender to recover from multiple ot Formal specifications and verification help significantly in

packet losses. With the additional information available at a SACK .
sender, the round-trip time that a cumulative ACK sender waits ensuring that protocols operate correctly. Therefore, we feel that

before retransmitting each subsequent packet lost after the very @ formal specification and verification of the safety properties of
first loss can be saved. We also show that SACK can improve per- the mechanism is useful. We have developed a formal specifi-

formance even with window sizes as small as four packets and in cation of the SACK mechanism using the 1/0 automaton model

situations where acknowledgment packets are lost. of Lynch and Tuttle [7]. The formal specification of the SACK
Index Terms—Congestion control, formal verification, 1/0 au- mechanism allows one to reason about the protocol in a rig-
tomata, TCP performance, TCP SACK. orous manner. For the formal verification of safety, we use in-

variant assertion and simulation (refinement) techniques. These
methods are used for proving trace inclusion relationships be-
~tween concurrent systems. Trace inclusion means the external
| RANSMISSION Control Protocol (TCP) offers applica-hehaviors of one system is the subset of the external behaviors
tions the semantics of a reliable, flow-controlled channebt another system. For this verification, we use the methods to
The acknowledgment (ACK) mechanism of TCP is an impoknow that the external behaviors of TCP with the SACK option,
tant part of what makes the protocol reliable. By reliable, Wghich we refer to simply as SACK, is a subset of the external
mean data from the sender is not lost, duplicated, or receigghaviors of a simple abstract specification for end-to-end reli-
out of order. TCP guarantees these properties, which we refgfe message delivery. We use the formalization of simulations
to as safety properties, even though the underlying communiggveloped by Lynch and Vaandrager [8].
tion medium may lose, duplicate, or reorder packets. We assume, key aspect of our formal specification of the SACK mech-
corrupted packets are dropped. anisms is that it allows more nondeterminism than the English
Selective Acknowledgments (SACK) [10] have been praanguage specification [10]. Our specification focuses on key
posed as a complement to the traditional approach of usiggpects of the protocol needed for safety while leaving certain
cumulative acknowledgments for TCP. SACK is proposegspects of the protocol, such as retransmission strategy, unspeci-
as a standard option to be used by cooperating senders &g This means our correctness proof is quite general and holds
receivers. Thfa receiver can take_advantage of the SACK optigjp any implementation of the protocol that uses a specific re-
toreport thatit has received multiple packets out of sequenceyAnsmission strategy or other specific behaviors that we leave
sender receiving a SACK has the opportunity to retransmit thgndeterministic in our specification.
packets that comprise the holes in the sequence number spag§e extend the specification used to prove safety properties
as indicated in the SACK. The new functionality that SACKg include time using the general timed automaton model of
Lynch [6]. We use this model to calculate the latency of packets
) ) ) in a window of data in a worst-case scenario and prove that
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lost in a window. We also show that SACK can improve pesuffer greatly. After retransmitting the first packet in the
formance even when window sizes are small and/or when aetransmission buffer, the sender may be forced to wait for a
knowledgment packets are lost. retransmission timeout to retransmit subsequent “holes” in the
In the next section, we present an informal description of bothceiver's sequence number space.
the cumulative ACK and SACK mechanisms. In Section Ill, we To remedy the problem that occurs when multiple packets in
present the abstract requirements of the reliable message alesund trip are lost, a selective acknowledgment mechanism
livery service, and we also present a brief description of thie being proposed as a new standard option for TCP [10]. The
formal model we use in the paper. In Section IV, we present theechanism allows the receiver of data to acknowledge noncon-
formal specification of the SACK mechanisms. Section V haguous and isolated blocks of data that have been received and
the proof of safety along with a short description of the proafueued, in addition to the cumulative acknowledgment of con-
technigues we use. In Section VI, we prove that SACK can letiguous data. By isolated, we mean the segment just below the
to improved performance, and we conclude in Section VII. THdock and just above the block have not been received. Each
paper also contains two appendices. Appendix | gives formabck is defined by a pair of sequence numbers. The first number
definitions for the notation used in the abstract specification of the left edge of the block and is the sequence number of the
the reliable message delivery problem and the formal descrifjpst segment of data in the block that was received. The second
tion of the SACK mechanism, and Appendix Il contains theumber is the right edge of the block and is the number im-
proof of the invariants in Section V. mediately following the last sequence number of the block that
was received. The retransmission strategy of the sender also
changes to use the additional information available with selec-
tive acknowledgment. Now, in addition to the data segments
in the retransmission buffer, there is a flag bit which indicates
TCP uses aliding windowmechanism for its flow control, Whether a segment has been “SACKed.” A segment with the
acknowledgment, and retransmission policy. The basic ideaSACKed bit turned on is not retransmitted, but segments with
that there is a window of size > 0, that determines how the SACKed bit turned off and sequence number less than the
many successive segments of data can be sent in the abséi@eest SACKed segment are available for retransmission.
of a new acknowledgment. Each segment of data is sequen- ) )
tially numbered, so the sender is not allowed to send segméntAn Example With Cumulative ACK
i + n before segmenthas been acknowledged. Thus; i§ the In Fig. 1, we show a simple example that illustrates how the
largest acknowledgment number received by the sender, thergismulative) ACK mechanism works with TCP Reno [5]. The
a window of data numberedo ¢ + n — 1 which the sender can figure shows the retransmission buffer of the sender and the
transmit. As successively higher numbered acknowledgmebtsfer at the receiver. Let the window size be 8 for this example.
are received, the window slides forward. The acknowledgmeFie threshold of the number of duplicate acknowledgments that
mechanism is cumulative in that if the receiver acknowledgeged to be received before the fast retransmit algorithm is trig-
segmentk, it means it has successfully received all segmengered is assumed to be 3. The numbers in the buffers and the
up to and including:. Segment: is acknowledged by sending anumbers on the segments sent by the sender represents the ac-
request for segmentt 1. Data that is transmitted is kept on a retual segment of data and is the sequence number of that segment
transmission buffer until it has been acknowledged. In a simpdédata. The variablend_una is the sequence number of the seg-
go-backn protocol, ift < n-+4, the sender may retransmit segment at the head of the retransmission buffer. It is also the oldest
mentsk + 1 to n + ¢ from the retransmission buffer. Howeverunacknowledged segment of data. e nxt variable is the
in TCP the decision to retransmit these segments dependsnert contiguous segment of data expected by the receiver. This
the receipt of duplicate acknowledgments and on timeouts. Withriable is the acknowledgment number that the receiver sends
TCP Reno, only the first packet in the retransmission bufféack to the sender. The execution illustrated in Fig. 1 begins
is sent. Subsequently, the sender waits until the retransmitteith the sender transmitting segment 26. Next, segment 27 gets
packet is acknowledged. This strategy potentially reduces tin@nsmitted, but is lost due to, say, congestion. Subsequently,
unnecessary retransmissions compared to the simple gorbadegments 28 and 29 are delivered. The acknowledgments gen-
protocol. erated by the receiver on receipt of segments 26, 28, and 29 all
Of particular interest are the mechanisms which TCP usesihalicate that the next segment expected is segment 27. In the ex-
recover from loss, including algorithms féast retransmif4]. ample, segment 30 is also lost. Thus, two segments 27 and 30 are
With fast retransmit, when the source receideduplicate ac- lost in the current window of 8 segments. Subsequently, when
knowledgments (e.gd = 3) for the same segment (sa), it segment 31 is received, the acknowledgment generated triggers
determines that segmehtwas lost. The source chooses to rethe fast retransmit algorithm. This causes segment 27 to be re-
transmit segmerit right away, rather than wait for a retransmistransmitted without waiting for a retransmit timeout. Notice that
sion timer to expire. It must be noted that the sender retransneten after the source retransmits segment 27, acknowledgments
one packet (or segment for the purposes of this paper) only. are received with the next expected segment being 27 (sent in
The limitation of the cumulative acknowledgment strategsesponse to packets 32 and 33 sent before the retransmission
is that it can only indicate that every segment up: toas been of segment 27). This allows the sender to send new segments,
received andt + 1 has not been received. When multipldut not retransmit any more segments from the retransmission
packets are lost from a window, the throughput of TCP cadwffer, since it does not know which segments need to be sent.
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Fig. 2. Example illustrating the workings of the SACK mechanism of TCP.
Fig. 1. Example illustrating the workings of the ACK mechanism of TCP.
furthermore that two blocks of data were received with an inter-
h\éening gap of segment 30. The regular fast retransmit algorithm

next segment in the buffer, which is segment 28. But this wouldl triggered on receipt of third duplicate SA_‘CK indicating that
be a wasteful retransmission. Hence, the sender desists fronpralment 2_7 was lost. The source re_transmlt_s segment 27. But at
transmitting any new packets (but can use the opportunitytﬁ'Je same time, the ser_lde_r has the information t_hat segment 30
send new segments if the window allows it). It is only after Qas also beer_1 lost as indicated 'T‘_the SAC.K' Since the source
new acknowledgment is received indicating successful rece w has the information of spec!flcally wh|ch__segments havg
of segment 27 can the sender potentially consider retrans igen lost (segment 27 and 30), it has the ability to retransmit
ting another packet from its retransmission buffer. However, tl ore than one of the lost segments. Therefore, the sender can

second loss in a window is interpreted as a more serious sifte0 retransmit segment 30 and fill the second hole in the se-

ation—hence the fast retransmission algorithm is not invok@y€Nce number space. The sender does not need to wait for a
to recover from this loss. The second segment that was efransmit timeout for retransmitting segment 30.

in this window (30) is not retransmitted until a retransmission A further detail to be observed is the maintenance of the
timeout. Because this timeout is necessarily large, the send&tACK flags at the source, associated with the segments still
window is likely to be shut. Thus, during this timeout, the sendd? the retransmission buffer. In the figure SACKed segments
is unable to make progress, resulting in degraded throughp€ not removed from the retransmission buffer even though in
This timeout also results in the sender dropping the congestié¥#s example, these segments are not retransmitted. However,

window size to 1 based on the congestion control algorithms d8& SACK mechanism allows the receiver to drop segments that
scribed in [4]. have been SACKed if it runs out of buffer space. Thus, it is pos-

sible that these segments may need to be retransmitted. Since
they are not retransmitted if the SACK flag is set, there must be
B. An Example With SACK a mechanism for resetting the flags to 0. In the SACK mecha-
nism proposed for TCP when a retransmission timeout expires
Fig. 2 illustrates how the SACK mechanism works on thiyr any sequence of data, all the SACKed bits in the retransmis-
same set of data as in Fig. 1. With selective acknowledgmesion buffer are reset to 0.
the receiver sends back the regular cumulative acknowledgmerthus, the SACK option allows the sender to recover from
number and SACK blocks. In the proposed implementation pfsing multiple packets in a round-trip time, and “fill” all the
the SACK mechanism described in [10], there are at most thrggles” in the receiver’s sequence number space based on the
SACK blocks in an acknowledgment packet. SACK blocks received. Further, it allows for the separation of
Initially, when the receiver gets segment 28 (after the losise flow control and congestion control mechanisms from being
of segment 27), it sends a SACK for segment 27 and a furthatricately tied to the error recovery procedures, as we illustrated
SACK block indicating that segment 28 was received and sag-the example. It allows the source the ability to be somewhat
ment 29 was awaited after that. When segment 31 is receivadre aggressive in both retransmitting from the buffer on mul-
after the loss of segment 30, the SACK sent indicates that @3le packet losses, and not dropping the congestion window
(the portion representing the cumulative ACK) is awaited, ardbwn all the way to 1.

If it were to decide to retransmit, it would have to retransmit t
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Ill. FORMAL MODEL AND SERVICE REQUIREMENTS automaton Reliableq

signature
input send(m: Seq{Bytel)
output deliver (m: Seq[Byte])}

The safety properties we want to show for TCP with the
SACK mechanism are that data from the sender is not lost, du-
plicated, or received out of order. Our model does not capture

. ) states
data corruption, and we assume corrupted packets are discarded. queue: Seq[Byte] := {}
In this work, we do not try to verify the safety of TCP in its en- 5

X . . transitions
tirety. We are only concerned with the effects of replacing the input send (m)
ACK mechanism with the SACK mechanism. Therefore, we as- eff queue := queue || m

sume that connection setup and teardown work correctly, and
that crash recovery works correctly. Consequently, in our mod-

output deliver (m)
pre queue # {}

m € prefixes(gueue)

eling of the SACK mechanism, we assume that the connection ¢
eff queue := tail(queue, |m])

between the sender and receiver is already established and that
there are no crashes. Before we present the specification, 3. Model of the requirements of the reliable message delivery problem.
give a brief description of the formal model we use.

the receiver side, data is passed to the user withéhéver(m)
A. Automaton Model action.

The formal model we use to describe the acknowledgmentWe define a simple automaton which is an abstract represen-
mechanisms is based on the 1/0O automaton model of [7]. Aation of the safety properties that we want to show are satis-
automatonA consists of four components: 1) a settes(A) fied by the SACK mechanism. The automaton, which we call
of states; 2) a nonempty setart(A) Cof states(A) of start ReliableQ is shown in Fig. 3. We describe the automaton in
states; 3) a seicts(A) of actions; and 4) a sateps(A) C the style of the IOA language [2] for describing I/O automata,
states(A) x acts(A) x states(A) of steps. The seicts(A) butwe do not strictly follow the syntax of the formal language.
can be partitioned into three disjoint seits(A), out(A),, and In the IOA language, an automaton is described by first giving
inl(A) of input actionsputput actions, anihternal actions, re- its name followed by the four components of the model men-
spectively. The union of the input actions and output actions wiened above. That is, we have the action signatsigngature),
denote agxternal actions, those actions visible to the envirorihe states and start statatates), and the set of stepgsansi-
ment. tions). Transitions are written in precondition, effectashion.

When an automaton runs, it generates a string representing&at is, the states in which an action is enabled is given as a pre-
execution of the system it models. &necution fragment of condition, and the resulting states are given by the effects of the
automatond is a finite or infinite sequencey, a;, s;,as2,..., action.
of alternating states and actions dfstarting in a start state, The only state variable of the automatomjigeue which has
and if the execution fragment is finite, ending in a state suéypeSeq[Byte] and is initially empty. The typ€eq[Byte]
that (s;, a;11,5:41) iS a step ofA for everysi. We denote by is an ordered list or sequence with elements of Bgte. We
fstate(r) the first state of the execution fragment, and if it islenote the empty sequence fgs The input actionsend(m)
finite lstate(«) denotes the last state. A statés said to be from the user causes datdo be added to the tail of the queue.
reachablef there exists a finite execution of that includess.  The symbol|| is the concatenation operator. The output action

Supposey = sg, a1, S1, a2, . .. iS an execution fragment of deliver(m) passes data from the head of the queue to the re-
A. Thentrace4(a) or trace(«) if A is clear, is defined to be ceiver side user. Therefixes  operator returns the set of pre-
the subsequence of consisting of only the external actions fixes of the queue, and theil(queue, |m|) operation removes
We say thaf3 is a trace of4 if there exists an executiamof A  the first|m| elements from the queue. Since the queue does not
with trace(a) = f. lose, duplicate, or reorder data, it is easy to see that the speci-

In specifying a complex distributed system, it is useful to bécation ReliableQ  gives the safety properties we want. The
able to specify each process individually and then obtain a speeefixes,  tail and all the operators used in subsequent sec-
ification of the entire system as tiparallel compositiorof the  tions are formally defined in Appendix I.
specifications of the processes. The parallel composition oper-
ator|| in this model uses a synchronization style where automata IV. FORMAL SPECIFICATION OFSACK

synchronize on their common actions and evolve independentlyl-cp has the basic structure shown in Fig. 4. There is a sender,
on the others. . a receiver, a channel for packets from the sender to the receiver,
~ To show that an automatofiimplements another automaton, ., 5 channel for packets from the receiver to the sender. The

B, we show drace inclusion relaﬂqnshlp between them. Thepro}ocol is only run at the sender and the receiver, but it assumes
Sfet, of tracgs of an automaton consists of the set of S€quUeNcesBlchannels, so the channels must be modeled. We model each
visible actions that the automaton can perform. component as an automaton, and the complete system is the
parallel composition of the four component automata.

In our models of the sender and the receiver below, we specify

For the formal description of the service requirements, we artain state variables as unbounded integers. However, in the
sume a very simple user interface—there is an input action fraatual protocol, the siz&3?) of these variables is bounded. Cer-
the user on the sender side to send data messagém), and on tain aspects of our proof of the correctness of the protocol relies
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send-pkt_ (t) rev-pkt (t) automaton C,,(T: type)
send (m) deliver (m) signature
. input send-pktgs(t: T)
rcv—pktm(tJ- send-pkt, () internal drop,,(t: T)
rs

internal duplicate,,(t: T)
output rcv-pkt,.{(t: T)
Fig. 4. Structure and the four basic components of the model for SACK.

states
in_transit,,: Mset([T] := {}
on being able to make accurate comparisons of the relative size ransiti
of some of these variables. When the variables are unbounded, it wons
is easy to see that these comparisons are accurate. However, with input  send-pkt,, (t)
a bounded number space that may wrap around, it is not so clear eff in_transit,. := in_transit,, U {t}
that these comparisons, which must now be made mafiilo internal drop,, (t)
can be done accurately. TCP uses various timing mechanisms pre t € in_transit,,
. . eff in transit,. := in_transit,, \ {t}

coupled with the relatively large number space to ensure that
the relative size of variables are not confused. For further de- wtpu: rev-pkt,y ()

. L . pre € in_transit,,
tails and formal proofs as to why the timing mechanisms work, eff in_transit,. := in_transit.. \ {t}

see [11]. The mechanisms do not vary between standard TCP .
and SACK TCP, so we do not focus on them here. Instead, we internal duplicate,, (t)
. . pre t € in_transit,,
use unbounded counters to simplify our models and proofs. eff in_transit,, := in_transit,, U {t}

A. Channel Automaton Fig. 5. Model for the channel for packets from the sender to the receiver.

The channels in our model can lose, duplicate, and reorder ) ) o
packets, but they do not corrupt or create spurious packets. TR&€ retransmitted. Each byte of data is grouped with its se-

/0 automaton model for the channel from the sender to the [@€nce number and a flag indicating whether the byte of data
ceiver,Csr(T), is shown in Fig. 5. The model for the channelt@s been selectively acknowledged. Both buffers are initially

from the receiver to the sender is essentially the same, so webdgP- Thesegment variable is the current segment being
nt,snd_una is the sequence number of the oldest unacknowl-

not show it here. The basic difference is that the subscriptssl X

the names of the state variable and the actions in the signat ed bytesnd.nxt is the sequence number of the next byte to
are different and reflect the directional flow of packets in thac Sent antteady.to_send is a fiag that enables the sending
channels. The channels have a packet type that is the channe%?—egment.S when the. transmission window is open.

rameterT. The state variablén_transit,, (for the receiver to hput actionsend(m) is the action by the user that passes data

sender channel the variableiis_transit,) holds the packets o the sender, anﬂ_repare-new-seg_(s) prepares a new seg-
. . ment to be sent. It is only enabled if the sender is not currently
placed on the channel. Since the channels may have duplicaté

copies of a packet, this variable is a multisets of tjyp&he enabled to send a segméntready to.send), the send buffer

. . is notem nd the available window size is gr: rthan O (w
fact that it is a multiset means the packets are not ordered. Th§§s?1tr§e gtél’ois?atntev;n?i o?/\? :ize oﬁ[owé) ?I'rig aii}gntngn c(i) e(tere-

packets may be received in a different order from the way th?r)ﬁnistically chooses the portion of data to be sent. This portion

Wefl[ﬁ sent. . t acti | ketin th Iof data,s, must be a prefix of the send buffer and its length,
esend-pkt gy (t) input action places a packet in the muly o |s|, must be less than or equal to the minimum of the

tiset. The complementary output aCtm'Pktsr(fc) FéMOVES  maximum segment size (MSS) and the available window size.
the packet.fr.or.n the channel. The internal aCthsr,(t) The effect of this action is to remowefrom the send buffer,
nondeterministically removes an element from the multiset. Tlaﬁd then to pair each element ofwith its sequence number.
set minus operator for the.multiset only removes one copy pf #is pairing is done by thenun(s, snd.nxt) operation. The new
element. The internal actiofuplicateg,(t) adds one addi- it forms the segment to be sent and is assigned to the vari-
tional copy of an element to the multiset. ablesegment. A SACK flag that is initialized to false is added
to each pair in the segment sequence before it is concatenated
to the retransmission buffer. THeit_flag operator performs

In this section, we present a formal I/O automaton model ftiis initialization.
the sender protocol of the SACK mechanism. The automaton, The send-pktg,(seg) action places a segment on the
is shown in Fig. 6. We first specify the type definitions needeautgoing channelsr(T), of the sender, anflcv-pkt,g(ack)
to describe some components of the automaton Bittelnt takes a simple ACK packet fronCrg(T). First ack is
type is the set of pairs that has a byte as the first element, atebcked to see that it acknowledges data that was sent,
an integer as the second element. The tgpgte is the set snd una < ack < snd.nxt. If this condition is true, the
of triples formed by a byte, an integer sequence number, andcknowledged data is removed from the retransmission
Boolean flag. The typ8lk is a pair of integers, and indicatesbuffer, and snd una is updated. When a SACK packet
the left and right edges of a block of data. is received, rcv-pktyg(ack, bl, b2, b3), the sender

The states of the sender includesnd buf which is a se- sets the SACK flag of the bytes indicated by the SACK
guence of bytes, and it holds data received from the user. Tlecks to true with the assignment afetran buf to
retransmission buffeetran buf, holds data that may needset_sack(retran buf, bl, b2, b3).
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type ByteInt = tuple of Msg: Byte, Seqgnum: Int
type Sbyte = tuple of Msg: Byte, Seqnum: Int, Flag: Bool
type Blk = tuple of Left: Int, Right: Int

automaton S

signature
input send(m: Seq[Bytel), rcv-pkt,,(ack: Int),
rcv-pkt,, (ack:Int, bl:Blk, b2:Blk, b3:Blk)
internal prepare-new-seg(s: Seg[Byte])
prepare-retran-seg(s: Seqg[Sbyte]), reset-sack
output send-pkt,, (seg: Seq[Bytelnt])

states
send_buf: Seq[Byte] := {}
retran_buf: Seq[Sbyte] := {}
segment: Seg[ByteInt) := {}
snd_una, snd_nxt: Int := 0
ready_to_send: Bool := false

transitions

input send(m)
eff send_buf := send_buf || m

internal prepare-new-seg(s)
pre — ready_to_send
send_buf # {}
snd_nxt < snd_una + WS
s € prefixes(send_buf)
1 < |s| € min(MSS, snd_una + WS - snd_nxt)
eoff send_buf := tail(send_buf, |s]|)
segment := enunm(s, snd_nxt)
retran_buf := retran_buf || init_flag(segment)
snd_nxt := snd_nxt + |s]
ready._to_send := true

output send-pkt,. (seg)
pre ready_to_send
seg = segment
eff ready_to_send := false

input rcv-pkt,, (ack)

eff if snd_una < ack < snd_nxt then
retran_buf := delete(retran_buf, ack)
snd_una := ack fi

input rcv-pkt,, (ack, bl, b2, b3)
eff if snd_una < ack < snd_nxt then

retran_buf := delete(retran_buf, ack)
retran_buf := set_sack(retran_buf,bl,b2,b3)
snd_una := ack fi

internal prepare-retran-seg(s)
pre - ready_to_send
retran_buf # {}
s € holes(retran_buf)
1 < |s| < Mss
eff segment := remove_flag(s)
ready..to_send := true

internal reset-sack

pre true
eff retran_buf := unsack(retran_buf)

Fig. 6. SACK sender automaton.

In TCP Reno, a segment is retransmitted if the retrans
sion timeout expires, or a certain number of duplicate ackno
edgments are received. In our model of the sender, we s
plify the mechanism by allowing the sender to generate retra
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type Blk = tuple of Left: Int, Right: Int
type ByteInt = tuple of Msg: Byte, Segnum: Int

automaton R

signature

input rcv-pkt,,(seg: Seg[BytelInt])

intermal drop(s: Seq[ByteInt])

output deliver(m: Seq[Bytel), send-pkt,,(ack: Int),

send-pkt,, (ack:Int, bl:Blk, b2:Blk, b3:Blk)

states

rev_buf: Seqg{BytelInt] := {}

rev_nxt: Int := 0

send_ack, sack_opt: Bool := false

transitions

input rcv-pkt,, (seg)

eff send_ack := true
if rev_nxt < last(get_seq(seg)) then
rcv_buf := inst(rcv_buf,delete(seg,rcv_nxt))
if seq_max_con(rcv_buf) > rcv_nxt then
rev_nxt := seqg_max_con{rcv_buf) + 1 fi
if rev_nxt < last(get_seq(rcv_buf)) then
sack_opt := true
else sack_opt := false fi
fi

output send-pkt,, (ack)

pre send_ack A - sack_opt
ack = rcv_nxt

eff send_ack := false

output send-pkt,, (ack, bl, b2, b3}
pre send_ack A sack_opt
: ack = rcv_nxt
bl € blocks(rcv_buf)
b2 € blocks(rcv_buf)
b3 € blocks(rcv_buf)
|blocks(rcv_buf)] > 1 = b2 # bl
|blocks(rev_buf)| > 2 = b3 ¢{bl,b2}
eff send_ack := false

output deliver (m)
pre rcv_buf # {}

m € cprefixes(get_data(rcv_buf))
eff rcv_buf := tail(rev_buf, |m])

internal drop (b)
pre b € blocks(rcv_buf)
eff rcv_buf := delete(rcv_buf, b.Left, b.Right)

Fig. 7. Automaton of the SACK receiver.

retransmit SACKed blocks of data, the retransmission segment
chosen must be from the set of unSACKed contiguous bytes.
These are the known holes in the data at the receivehdles
operator returns this set, and the segment retransmitted is nonde-
terministically chosen from the set. Again, the nondeterminism
in our model allows us to accommodate any implementation
policy that determines which holes to fill.

In the proposed implementation of SACK [10], whenever a
retransmission timeout expires, all the SACK flags in the re-

vﬁénsmission buffer are reset to false. In our model, we again
.Use nondeterminism for a simpler but more general model. We

Qliow the resetting of the flags, nondeterministically, at anytime.

e internal actiomeset-sack  resets the sack flags.

mission segments nondeterministically. Since the sender can

nondeterministically choose between retransmitting a segm?:nt
or sending a new one whenever it is enabled to send a s€g-

Receiver Automaton

ment, our model accommodates the TCP Reno retransmissiofhe automaton model for the receiver protocol of SACK is
policy and any other implementation policy for retransmissioshown in Fig. 7. The-cv_buf variable holds segments that are
The internal action that generates retransmission segmentgeisived until they are passed to the user. #henxt variable
prepare-retran-seg(s). Since the SACK protocol does not is the sequence number of the next byte of data expected by
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the receiver and is also the acknowledgment number sent to T nondeterministiérop (b) action is a generalization of this
sender. The variablesend ack andsack_opt are flags that possibility.

enables the sending of a regular acknowledgment segment and

an acknowledgment segment with SACK blocks, respective\p. Complete Specification of SACK

The actionrcv-pktgy(seg) causes the receiver to set the An automaton for the selective acknowledgment mech-
send ack flag to true, which enables the sending of an agnism is formed by the parallel composition of the au-
knowledgment segment. The received segment has new datafhata for the sender, the receiver, and the channels.
rev.nxt < last(get_seq(seg)). Thatis, there is new data if The channel from the receiver to the sender must take
the sequence number of the last byte of data in the segmengagkets that are either only integers or packets that are
greater than or equal tecv_nxt. If the segment has new dataa tuple of an integer and three SACK blocks. We de-
the part of the segment that has sequence number greater fan AckPkt to be this type. That istype AckPkt =
or equal torcv_nxt, is inserted in sequence number order int U tuple of Ack:Int, B1:Blk, B2:Blk, B3:Blk.
the receive buffer. Informally speaking, tivest operator in- Therefore, the composed automaton for SACK is
serts the new segment into the receive buffer so that sequence
numbers in the updated buffer remain sorted in ascending ordegack = S|IR||Csx(T : Seq[ByteInt])||Crg(T : AckPkt).
Elements from the new segment with the same sequence num-
bers as elements already in the buffer overwrite the elements
in the buffer. If there is new data,cv_nxt is updated to re- V. PROOF OFSAFETY
flect the last contiguous piece of data that has been receivedF

The update is done by taking the sequence number from_%%s developed by Lynch and Vaandrager [8]. iebe an au-

last element of the maximum contiguous prefix of the receiNg . ~ion representing an implementation of a protocol A
buffer, seq max_con(rcv_buf), and adding 1 to that number.

or the proof of safety, we use the formalization of simula-

queued in the receive buffer. That isxiév_nxt does not ac- 4|4 gepend on whether we dda@ward simulation (a special
knowledge the highest sequence number in the receive bu@%e of which is aefinement mapping) or backwardsimu-
(revnxt < last(get-seq(rcv.buf))), thensack opt is Set |4tion. The simulation techniques have two general conditions.
to true. First, the start states of the two automata must be related in a
If send.ack is true andsackopt is false, then the certain way, and second, each step of the implementation must
send-pktyg(ack) action is enabled. This action sendssimulate” some sequence of steps in the requirements. That s,
an acknowledgment whereck is the acknowledgment for each step in the implementation, there must exist a sequence
number. The setting ofsack.opt to true enables the of steps in the requirements between states related by the sim-
send-pktyg(ack, bl, b2, b3) action, where b1, b2, ylation relation to the pre- and post-state of the implementation
and b3 are three nondeterministically chosen SACK blocksitep, such that the sequence of requirements steps contains ex-
The set of SACK blocks for the receive buffer is generated kyctly the same external actions as the implementation step. This
the blocks operator. If there are at least two SACK blocksimplies that traces ofl are also traces aB. In this paper, we
thenbl and 2 are different. If there are at least three, thease a refinement mapping. We write <z B if there exists a
all three blocks are different. We limit the number of blockgefinement mapping fromi to B, andA < B viar if r is
to three in our model because the restriction in the headgrch a mapping.
size of a TCP segment means that for most cases this will beDuring the process of performing a simulation proof, some-
maximum number of SACK blocks that can be included in aimes a situation that is impossible to solve comes up, but then
acknowledgment segment. In the actual SACK proposal [10§turns out that the situation happens in an unreachable state.
there are also precise rules for determining which blocks sho@thce we only need to consider the steps of the implementa-
be included in the acknowledgment segment and in what ordéen automaton which start in a reachable staténaariantthat
A nondeterministic selection of blocks is a generalization thatles out these “bad” states is found. Invariants are properties
includes the selection of the blocks with the precise rules #t are true of all reachable states.
a subset of its possibilities. Therefore, if our model of the
protocol is safe, then using more precise rules is also safe. A. Invariants forSack

The receiver passes data to the external user via the outpujve formally verify that the SACK protocol satisfies the safety
actiondeliver(m), wherem is the data part of a contiguousproperties of reliable message delivery by defining a mapping
prefix of the receive buffer. from states oBack to states oReliableQ and then proving

The internal actiodrop (b) results in a nondeterministically that it is a refinement mapping. However, before we proceed
chosen sequence of data being dropped frembut. We in- with the proof, we need to define some invariants $arck.
clude this action because in the proposal for the SACK mechhese invariants limit the states we need to consider during the
anism [10], a receiver is allowed to drop SACKed data if it resimulation. The invariants that we present here capture some of
ceives contiguous data for which it does not have enough spate. key insights as to why the protocol is reliable. The proofs for
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the invariants are straightforward by induction and can be foul
in Appendix .
The first invariant shows the relationships betwee

snd_una, snd_nxt, and the sequence numbers of the firs

and last elements of the retransmission buffet,ran_buf.
Invariant 1:
1) If retran_buf # {}
thensnd_una = head(get_seq(retran_buf)).
2) If retran_buf # {}
thensnd_nxt = last(get_seq(retran_buf)) + 1.
3) If retran_buf = {} thensnd_una = snd_nxt.

Sack

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

ReliableQ queue '
ST T T [T et

Mapping

[ [34[33[3231]_[29]28] 27
rev_nxt = 30
receive buffer

snd_nxt = 35
send buffer

snd_una = 27
retransmission buffer

Fig. 8. Example of how the buffers Back relate toqueue in ReliableQ
by the refinement mapping.

The next invariant states that the elements of the retransns- Refinement Mapping

sion buffer, of segments from the sender, and of the receiveWe

define a function from states(Sack) to

buffer, are sorted in ascending sequence number order. AdS 'aites(ReIiabIeQ). Fig. 8 illustrates the mapping. It is

tionally, the sequence numbers of elements of the retransrq

sion buffer and of segments are contiguous.

Invariant 2:

1) If retran_buf # {}
then for every elemerit;, s;, b;) € retran buf,
exceptlast(retran buf),s;4+1 = s; + 1.

2) If segment # {}
then for every elemerit;, s;) € segment,
exceptlast(segment), s;+1 = s; + 1.

3) If in_transitgr # {}
then for everyt € in_transitsy and any(d;,s;) € p
exceptlast(t) s;41 = s; + 1.

4) If (d;,s;) € rcv_buf and(d;,s;) € rcv_buf andi < j
thens; < s;.

Brmally defined below.

Definition 1 (Refinement MappingRsg): If s €
states(Sack), then define Rsr(s) to be the staten €
states(ReliableQ) such that: - queue = concatenation of:

* 1 cprefix(get_data(s - rcv_buf)))
* delete(get_data(s - retran buf),s - rcv.nxt)
* 5 send buf

The key observation that leads to a proof of safety for SACK
is that the changes in the acknowledgment mechanism due to
SACK are conservative in terms of safety. That is, no data is
discarded, duplicated, or reordered because of the SACK mech-
anism that could not have been discarded, duplicated, or re-
ordered with the cumulative acknowledgment mechanism. The
fact that the mapping we define above ignores the additional in-

Invariant 3 states thamd nxt is always greater than the Se<ormation that the SACK mechanism provides reflects this in-
guence number of any data in the retransmission buffer, the Kght.

ceiver buffer, or or€sr(T), and thatitis greater than orequalto g, 4

refinement mapping fromstates(Sack) to

rcv_nxt. It also states that when the receive buffer is not empré‘tates(ReliableQ) it is easy to see that send buf in
rev.nxt is 1 plus the sequence number of the last contiguodg,ck should map to a suffix of the abstract queue. It is also

piece of data in the receive buffer.

Invariant 3:

1) snd_nxt > rcv_nxt
andsnd nxt > last(get_seq(segment))
andsnd nxt > last(get_seq(rcv_buf))
and(Vt € in_transitgr:snd nxt>last(get_seq(t)))
and(Vq € in_transitrg : snd_nxt > q)

2) If rcv_ buf # {}

thenrcv_nxt = seqmax_con(rcv_buf) + 1.

clear that parts of the retransmission buffer and the receive
buffer of Sack should map to the rest of the abstract queue.
However, since some data may be in both buffers at the same
time, the mapping has to be defined so that there is no duplicate
datain the abstract queue. Also, since there is data in the receive
buffer that may get dropped, this data cannot be included in
the mapping. Therefore, in our mapping we us& nxt as

the demarcation point for data that is included in the mapping
from both buffers. For the receive buffer, data with sequence

3) For anyt € in tramnsitrs,rcv.nxt is greater than or numbers less thancv_nxt are including in the mapping as a

equal to the acknowledgment numback) of packet .

The final invariant says that elements in buffers orin segmeritg the 1_cprefix(get_data(s -

prefix of the abstract queue. This part of ther_buf is defined
rcv_buf))) operation. In

that have the same sequence number part also have the sameldateetransmission buffer, data with sequence numbers greater

part.

Invariant  4: If  (dy, sn, br) €  retranbuf and
(di, si)insegment and(d;, s;) € t foranyt € in_transitgy
and (dg, sx) € rcvbuf thens, = s; = dn = d; and
Sp = 85 = dh = dj andsh = S = dh = dk and
8 = 8; = dZ = djandsi = S = dZ = dkand
8j28k2>dj:dk.

than or equal tarcv_nxt are included in the mapping. The
delete(get_data(s - retran_buf), s - rcv._nxt) denotes this
section of the retransmission buffer.

C. Simulation of Steps

In this section, we prove that the mappiRgg defined in the
previous section is indeed a refinement mapping from the states

The conjunction of Invariants 1 through 4 is itself an invariargf Sack to the states oReliableQ. That is, we prove the

which we callls.

following lemma.
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Lemma 1: Sack <g ReliableQ Via Rsg We also know by Invariant 2 that the elementsetran_buf
Proof: We prove thatRsg is a refinement mapping from have contiguous and sorted sequence numbers. Thus, since

Sack to ReliableQ with respect tals by showing that the s - snd nxt = last(get_seq(s - retran buf)) + 1 and
two start states are related, and then showing that the steps ofsnd nxt > s’ - rcv_nxt, we know that the elements of
Sack simulate some sequence of stepReliableQ. That s - retran_buf not included in the mapping in staté have
is, any behavior oback corresponds to some possible behaviagxactly the same sequence numbers as the new elements of
of ReliableQ. s’ + rcv_buf now included in the mapping. Since we know by

Base Case:ln the start states, of Sack, we have Invariant 4 that bytes with the same sequence numbers are the
5o - rcv_buf, sg - retran_buf, andsg - send_buf all being same, we know the mapping holds in state

the empty sequencg}. In the start state,, of ReliableQ, a = send-pktyg(ack) anda=send-pkt,g(ack, b1, b2,

up - queue is also the empty sequence. b3): For these steps, the correspondints the empty step. It
Inductive Case:Assume (s,a,s’) €  Steps(Sack). is easy to see that these steps do not affect the mapping.

Below, we consider cases based enand for each case a = deliver(m): For this caseq = (u,a,u’). In Sack,

we define a finite execution fragment of ReliableQ this step removes from the front ofrcv_buf, but only if the
such thatfstate(o) = Rsr(s),lstate(e) = Rsr(s’), and sequence numbers of the bytes containedh iare less than
trace(c) = trace(s, a,s’). We usex andw’ to denoteRsr(s) rcv_nxt. Therefore, this block of data corresponds to a block
and Rsr(s’), respectively. of data at the front of - queue. Thus, after the step iRe-
a = send(m): For this casey = (u, a, v’). In Sack, step liableQ, the resulting state is correct, as defined by mapping
(s,a,s’) addsm to the back ofsend_buf. In ReliableQ, « Rgpg.
addsm to the back ofs - queue, so the mapping is preserved a = drop(b): For this casegw is the empty step. Since
after this step. drop(b) is an internal action ofSack, the traces are the
a = prepare-new-seg(s). For this caseq is the empty same. Step(s,a,s’) removes data froms - rcv_buf, but
step. Sinceprepare-new-seg(s) is an internal action, the since the dropped data cannot be part of the contiguous prefix
traces of both steps are the same. Step, s') may take data of s - rcv_buf, the removal of this data does not affect the
from s - send_buf and add it to the end of - retran_buf. mapping. ]
However, since this step does not change_nxt and Invariant  The fact that we have proven th&gy, is a refinement map-
3 tells us thaknd nxt > rcv.nxt, the mapping ta/ - queue ping from the states @ack to the states dReliableQ, cou-
holds after this step. pled with the soundness of refinement mappings for showing
a = send-pktg,(seg): Forthiscasey isthe empty step. trace inclusion leads to our main result. Thus, we get the fol-
Sincesend-pkig-(seg) is an internal action oback, the trace lowing theorem.
of both steps are the same. Stepa, s) does not affect any of  Theorem 1: Sack safely implementReliableQ. That is,
the variables oBack involved with the mapping, so clearly thetraces(Sack) C traces(ReliableQ).

mapping is preserved after this step. Proof: The theorem follows from the soundness of re-
a = rcv-pktyg(ack) anda = rcv-pktyg(ack,bl,b2, finement mappings for proving trace inclusion [8], and from
b3): Again, « is the empty step. These steps may affect theemma 1. [ |

mapping because they may cause the sender to discard the prefix
of retran_buf with data that has sequence number less than
ack. However, by Invariant 3 we know thatcv nxt > ack,

so the part of the buffer that gets deleted is not included in theln this section, we provide a formal analysis of the improved
mapping. Thus, after stefp, a, s'), the mapping still holds. performance of SACK TCP versus TCP Reno, when more than

a = prepare-retran-seg(s)anda = reset-sack: For One packet is lost from a window of data. We will examine an
these cases, we again havéveing the empty step. The stepgXxecution where no retransmitted or acknowledgment packet is
formed with either of these actions clearly do not affect any éffopped. Our analysis is for the worst-case behavior of the cu-
the variables oBack involved with the mapping. mulative ACK policy measured in terms of latency to deliver

a = rcv-pktg,(seg): For this step, the corresponding packets in sequence for this type of execution. This worst case
is the empty step. The traces for b@#)a, s') and« are both occurs when the lost packets are the first packets sent in the
clearly empty. Stegs, a, s') may affect the mapping because itvindow.
may causecv_nxt to be updated anseg to be insertedinto  For the proof of safety, we do not need to use time in the
s-rcv_buf. Therefore, we need to show that any additional dataodel, so it was not included. We used as simple a model as
from s’ - rcv_buf that is now included in the mapping is prejossible for the safety analysis. However, for our analysis of
cisely the data that is no longer included frefnretran_buf in  performance properties, we need to augment our formal model
the mapping. We know by Invariant 3 thatd nxt > rcv.nxt 0f SACKto include time. In order to compare the performances
and by Invariant 1 we know that ifetran buf # {}, of TCP Reno and SACK TCP we also need to model the cu-
then snd nxt = last(get_seq(retran_buf)) + 1. Since mulative acknowledgment mechanism of TCP Reno. To model
s - retran_buf and s - sndnxt are unaffected by this a sender and a receiver that use time, we use the general timed
action, we know that ifs’ - rcvanxt > s - rcvonxt, then automaton (GTA) model [6] which extends the I/O Automaton
s-retran buf # {}. Therefore, inthe case where stapa, s’) model to include real time. In our modeling, we make the fol-
causescv_nxt to change, we know that retran_buf # {}. lowing assumptions: 1) the lower bound on packet transit time
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on a channel in either direction & 2) when the sending of a proof carefully adds up the minimum time required for these ac-
packet is enabled, whether it is new data, a retransmission, ottians by taking into account the lower bounds on packet delivery
acknowledgment, there is a lower bound:@n the processing time é and packet processing tinae
time needed to generate that packet; and 3) the retransmission Proof: The proof is by induction on < k. The packets
timeout is greater than the time it takes for the sender to recedféer thekth packet cannot be delivered before ftth packet
three duplicate ACKs when there is packet loss. is received, because the receiver can only pass contiguous data
Given these timing assumptions, we can calculate tk@the user. Thus, the proof fer< k is sufficient to prove the
worst-case latency of packets in a window of data for TCProposition.
Reno and SACK TCP. In order to differentiate the performance For the base case, we assuine 1. With theReno_S com-
benefit possible because of the additional information providg@nent ofReno_TCP, three duplicate ACKs must be received
by SACK versus benefits that are due to the fact that TGRfore the sender retransmits a packet. Therefore, if thekfirst
Reno is conservative in its retransmission strategy, we use fistkets are dropped, packet+ 3 causes the third duplicate
somewhat more aggressive retransmission strategy suggeg€. In the model of the sender, when each packet is sent, there
by Hoe [3]. With Hoe's strategy, when an acknowledgment igust be a wait of at leastbefore the next packet can be sent.
received after the retransmission of the first missing packétherefore, packet+3 cannot be sent before tintg+ (k+3)e.
if there is other missing data, the acknowledgment of the firgi our model of the channel from the sender to the receiver, a
retransmitted packet indicates the next missing packet, whighcket that is placed on the channel cannot be removed before
can then be immediately retransmitted. TCP Reno may actuallyleasts time has passed. Therefore, the earliest that packet
time out before the second packet is retransmitted. Since #he- 3 can arrive at the receiver is at timg + (k + 3)e + 6.
retransmission timeout period is typically much greater that tiihe receiver modeteno R needs at least time to generate a
round-trip time, the performance of TCP Reno may actually besponse, so because of the minimidelay on the transit time
much worse in this situation than what we show in our analysisf the ACK packet orcys, the earliest the sender can receive
Because of space considerations, we do not include s duplicate ACK is at timeé, + (k + 4)e + 26. The sender
models here. However, the complete models are availallen then retransmit packet one at titper (k + 5)c + 2. The
in [12]. The models,Reno_TCP and Sack_TCP, consist of |ower bound for the arrival time of this packet at the receiver is
four components, as does the previous model. These gfer (k + 5)¢ + 36, at which time it may be passed to the user.

Reno_S(sender), Reno R(receiver), Csr(T), and Crs(T), for o the inductive case, we assume that the proposition holds

Reno.TCP, and Sack.S(sender), Sack R(receiver), Csr(T), for packetj < k — 1 and now show that it holds for packet

andCrs(T) for Sack TCP. j + 1. SinceReno R can only pass contiguous data to the user,
we know it cannot pass packgt- 1 to the user until it receives

A. Proofs of Latency Bounds packet;. By the inductive hypothesis, packgts first received

For the proofs of the next two propositions, we make the foft time (k + 5)e + 36 + min(j — 1,k — 1) x 2(6 + <) after
lowing assumptions: 1) at timk the sender has a window oftimetq. SinceReno_R can only indicate the first missing packet
sizeN and alsaV segments of data in its send buffer; 2) at timé needs, the value of the acknowledgment number is less than
to the sender receives an ACK indicating it can send the firkt-1 until after packey is received. If the receiver generates this
element in the send buffer; 3) the firkt> 1 packets that the @cknowledgment on receiving packgtthis acknowledgment
sender sends after tintg get lost; and 4) at least three packetd!Tives at theReno S at timeto + (k + 5)c + 36 + min(j —
are passed to the receiver after the loss of the firpackets. 1,k — 1) x 2(6 + €) + ¢ + 6. When the sender receives this
If the above assumptions hold, then for TCP Reno we have t#eknowledgment, it takes at least tirago retransmit packet
following proposition. j7+ 1, which takes at least tim®to arrive at the receiver. Thus,

Proposition 1: In an execution okeno_TCP where the first packetj + 1 arrives at the receiver at tintg + (£ + 5)c + 36 +
k packets are lost in a data window, the lower bound for thein(j — 1,k — 1) x 2(6 +¢) + ¢ + & + ¢ 4 6, which is equal
delivery of theith packet in the window igk + 5)e + 36 + 10 (k + 5)e + 36 +min(j, k — 1) x 2(6 + ¢) after timet,. =
min(é — 1,k — 1) x 2(6 + ¢) after timet,. The next proposition analyzes the performancgaafk_TCP

Before we formally prove the proposition, we provide somi@ the same situation as the analysis for Proposition 1, that is,
intuition. Note that when we refer to the firétpackets, it is with the same assumptions listed above. The proposition proves
not a reference to the actual sequence numbers of the pactett the SACK mechanism allows better performance when
but to the order in which the packets were sent after tijue 1thanis possible with cumulative ACKs. For= 1, both mech-
Also note that because an acknowledgment is received at tiamésms have the same performance.
to indicating that the first packet currently in the send buffer can Proposition 2: In an execution ofack_TCP, where the first
be sent, any subsequent ACK indicating that that first eleméntpackets are lost in a data window, the lower bound for the
can be sent is a duplicate ACK. The ACK received at time delivery of theith packet in the window i$k + 5)e + 36 +
could be the ACK of a synchronization packet or previous datain(: — 1,k — 1) x e after timeto.
packets. The basicideafor the proof is that three duplicate ACKsAs in the proof of Proposition 1, the proof here is simply a
must be received before the first dropped packet is retransmittedreful accounting of the minimum time required for a set of
and each subsequent dropped packet is only retransmitted adtetions. For SACK, after the three duplicate ACKs are received,
the acknowledgment of the previously retransmitted packet. Thet only the first but all dropped packets can be retransmitted.
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Proof: The proof is by induction ot < k. As is the case ~ With SACK blocks, the sender can still wait for three du-
for TCP Reno, this is sufficient because packets with sequeriieate ACKs, but SACK blocks provide another reliable indi-
numberi > k cannot be delivered before tl¢h packet is de- cator of a missing segment. This indicator is a SACK block that
livered. records a segment with sequence number sufficiently larger than

For the base case, we know that with ek _S component an unacknowledged segment. By the same engineering criterion
of Sack_TCP, three duplicate ACKs must be received before thibat says three duplicate ACKs is an indication of loss and not re-
sender retransmits a packet. Thus, at least three packets roudéring, we define “sufficiently larger” to be at le@8tx MSS).
have arrived aSack R to generate three duplicate ACKs. ThéThus, the sender may retransmit the first unacknowledged seg-
third duplicate ACK must contain a SACK block that indicatement after it receives three duplicate ACKs, or it may retransmit
that packet# + 1 throughk + 3 have been received. Thereforeany unacknowledged segment that is at 1€2stMSS) less than
when the sender receives the third duplicate ACK at tigr¢  the largest sequence number of a segment acknowledged in a
(k+4)e+26, it knows that packet one throughare lost. Thus, SACK block. This strategy is not as aggressive as possible, but
it can send a retransmission of packet one at tisre(k +5)e+  is consistent with the current TCP strategy which allows for the
26, which because of the lower bound on delivery timegf  possibility of some reordering of packets. Because one SACK
arrives at the receiver at timié + 5)ec + 36 after timet. packet can provide enough information for the sender to declare

For the inductive case, we assume the proposition holds Bosegment lost, this strategy allows the sender to recover from
j < k — 1, and we now show that it holds fgr + 1. We losses even if the receiver did not receive the segments neces-
know that the SACK block sent byack R lets Sack_S know sary to generate three duplicate ACKs.
all the packets that are missing in this situation when the firstin the previous paragraph, we propose a retransmission
dropped packet is retransmitted. Therefore, swek_S has a strategy at the sender based on waiting for an indication
lower bound ofe between the sending of packets, packetl that a segment with large enough sequence number has been
may be retransmitted at period ohfter packetj was retrans- received. This is basically the same as the strategy used by
mitted. Since by the inductive hypothesis, packatrives atthe by Mathis and Mahdavi [9]. In their algorithm, they use a
receiver at timeo + (k + 5)e + 36 + min(j — 1,k — 1) x e. new variable,snd_fack, at the sender. This new variable is
Because of the delay 6k (T), it must have been retransmittedupdated to reflect the forwardmost data held by the receiver,
attimeto + (k+5)e 4+ 26 + min(j — 1,k — 1) x e. Therefore, and is derived from the SACK blocks. Their strategy is to
packetj + 1 can be retransmitted at tinig + (k + 5)e + 26 + have the sender wait untihd fack-snd ack > (3 x MSS)
min(j — 1, k—1) x e+¢, which means the earliest it can arriveor three duplicate ACKs are received. We contend that
at the receiver is at timgs + 5)e + 36 +min(j, k — 1) x e after the correct strategy for when to retransmit is to wait until
time . B  snd fack-sndack > (3 x MSS). That is, the inequality

The propositions show that when more than one packetdees not have to be strict. Furthermore, the additional test for
dropped in a window of data, the SACK mechanism can inaree duplicate ACKs is not needed because whenever there
prove latency by a factor proportionalth— 1) x (26 +¢). The are three duplicate ACKsnd fack-snd_ack > (3 x MSS)
time period26 + ¢ is essentially a lower bound on round-tripis also true. Howevegsnd_fack-snd_ack > (3 x MSS) may
time, so the improvement is proportional RI'T * (k — 1). be true before three duplicate ACKs are received. Thus, the
This latency results in idleness on the channel for the TCP cafird fack-snd_ack > (3 x MSS) test subsumes the three
nection and a consequent loss in throughput. A similar resultdaplicate ACKs test.
implied in [1] which shows that TCP implementations without 2) Small Window Sizes and Lost Acknowledgmeiffise
SACK must either retransmit at most one dropped packet fatt that we usend_fack-snd_ack > (3 x MSS) as the crite-
round-trip time, or retransmit packets that might have alreadipn for determining when to retransmit means that SACK may

been successfully received. help speed recovery even for cases where the window size is
) so small that three duplicate ACKs may not be generated when
B. Other Performance Gains there are lost segments. The smallest window size where SACK

In this section, we show that SACK can improve performandgay be beneficial is four. Fig. 9 illustrates such a situation.
relative to ACK even when window sizes are small and/or whéie assume the sender has already received an ACK asking for
acknowledgment packets get lost. The performance gain carpgeket 26 prior to the beginning of the figure. In the figure, the
realized in these situations if the sender uses the additionalfiiist two packets are lost from a window of size four. Therefore,
formation provided by the SACK blocks to further improve thenly two duplicate ACKs are generated. However, the SACK
retransmission strategy. block indicates that packet 29 has been received, so the first

1) Improved Retransmission Strategfhe underlying lost packet is recovered before a timeout. The second packet
retransmission strategy at the sender is to wait for a reliatiferecovered when the acknowledgment for the first packet is
indication that a segment has been lost before retransmittiiggeived. In the same situation with TCP Reno (Fig. 10), the
the missing segment. One such indication is a retransmissiggnder has to timeout before retransmitting the first lost packet.
timeout. The fast retransmit algorithm of TCP Reno uses threeThe loss of an acknowledgment packet in the cumulative
duplicate ACKs as a much quicker indication of a lost packedCK mechanism for transmission with small window sizes
The number three is chosen for engineering reasons. Thatcgn also cause performance degradation. Again, the problem
one or two segments may be reordered, but three reordepegurs because the sender needs to wait for enough duplicate
segments is very unlikely. ACKs before it can decide that a packet is lost and retransmit
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0 “‘:‘“; § receiver completely captures the important properties of this mechanism.
el T ~— rglg-t_—_mﬁ Using our model, we are able to formally verify that the SACK
00 F-To 1088 R mechanism for TCP is safe in that it does not violate the prop-
. 28 R erties of reliable end-to-end message delivery. We extended the
[26[27]28] ] basic specification to include time using the GTA model [6].
23 sacke26, (28,29) T 2o ] We also used the GTA formalism to model the cumulative ACK
50 10 mechanism with fast retransmit. Using these models, we proved
| eemswezn 4 [ [ llsl thatin certain worst-case scenarios, where there are multiple
[26[27[28] 29] 26 packets lost consecutively, SACK can reduce latency by a factor
o k/’ak,wii"-"/ r ) lp;)rsotr.)ortmnal to the round-trip time times the number of packets
. "\» Using our formal model, we were also able to explore ways
- W to use the additional information provided by SACK to improve
(ITT] rev_nxt = 30 the retransmission strategy of TCP. We presented a retransmis-
snd_una = 30 sion strategy that allows the sender to retransmit whenever the

fast retransmit strategy allows a retransmission. However, our
Fig. 9. How the SACK protocol enables the sender to quickly recover frogyrategy also allows the sender to retransmit in situations where
losses even with a window size of four. . . .

a fast retransmit may not occur. In these situations, our retrans-
mission strategy can prevent timeouts at the sender, and there-

sender receiver f f f | I

~-26_ loss r n improve TCP performan ignificantly. In parti r
GITT] F-%------- -3 EEEE ore, can improve C performance significa tly. patgua,
snd_una = 26 rev_nxt = 26 OUr strategy is useful if window sizes are small and/or if ac-
el ] [~¥------- -5z knowledgment packets are lost.

elrl] \» APPENDIX |
29 26 HNEN
[26]27[ 28] 29 >_%: NOTATION AND BASIC DEFINITIONS
[ Teel2d]

We model buffers and data segments as lists. We also use
the terms “sequence” or “queue” synonymously with list. We
assume lists are finite and we write a listonsisting of the
elementsey, es, ..., ¢, as follows:l = {(e1,eq2,...,¢,). We
denote the empty list by}.

2 A. General List Operations
The length of alist = {e1, ez. .., ¢,), written|!|, is defined

I =y [2d_Tze[29] "
[27[28]29] ] revoaxt = 27 gs|l| = n. If I = (e, ea.. ., e,) is nONnempty, define
snd_una = 27 \»
ack=30 [24[27[28]29 head(l) = er
4.”// rev_nxt = 30

snd_una = 30 last(l) é Cp,

. A
Fig. 10. With the cumulative ACK mechanism, the sender has to wait for a tall(l) = (627 €350+ €n>-
timeout to recover from the losses. .
For0 < k < n, define

packets. In the case of SACK, even though some number of
the (S)ack packets are lost, when the first SACK arrives at the _
sender, there is enough information to say at least three pack@igle elements can appended to lists.Fer{ey, . .., ¢,) and
have been received after the first hole in the sequence numg&mente,, 1, define

. A
tail(l, k) = {(€xt1, Cht2s .- €Cn)-

space. For example, in the situation described above where the A
window size is four, if only the first data packet gets lost, but LF eng1 = {1 ns Cnt)
the acknowledgment of the second data packet also gets legincatenation of two lists and, is writtent, ||I> or sometimes
then for cumulative ACK we again have the situation whergy, if 1, = (e;,... ¢,) andla = (eni1,Cn4z ..., Em), then
the sender has to timeout before it can retransmit the droppgdine
packet. In contrast, with SACK, the sender can recover on A
receipt of a single SACK, rather than having to receive three Illle = ety ny Cnt1, Cng2 ooy Cm)-
ACKs. If I = {e1,e2,...,e,) is nonempty, define the set of subse-
qguences as
VII. CONCLUSION
. e 4 J
In this paper, we presented a formal specification of the TCP subseqs(l) = {(ei, Cit1,...,eit;) [1 S i<
selective acknowledgment option. Our model succinctly and and 0<j<n—i}.
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If I = (e1,ea,...,e,) IS Nnonempty, define Givenl = {(dy, s1,b1), (d2, 52,b2), ..., (dy, sn,b,))}, define
AN

prefixzes(l) 2 {{}, {er), ler,ea),. .. {e1,ea,....en)}. remove flag(l) = ((d1,s1), (d2,52), ..., (dn, sn))-
The operatoprefix  takes a lis{ and a numbek, and returns CIVeN! = {(d1, s1,b1), (d2, s2.b2), .., (dn. 50, b)), define
a prefix of lengthk, or if the list has fewer thak elements, it w(D 2 ((d 0. (d 0 d 0
returns all the elements of the list. Foe (e1,e2,¢3,...,¢,), unsack(l) = ((d1, 51,0), (d2,52,0), .- ., (dn; 51 0))-
define Givenl = {(d;,ds, ... ,d,), and sequence numbkydefine

H A R
prefix(l. k) 2 [lenea,eosen) ifk<n enum(l, k) = ((d1, k), (d2, k +1),...,(dn, k+n — 1)).
{e1,€2,...,¢en) Ifk>n. )
Ifl = <(d1, 81), (dQ, SQ), ey (dn, Sn», define
. JAN

B. Operations on Lists With Special Elements init flag(l) = ((d1,51,0),(d2,52,0),...,(dn,5n,0)).

Let each element of the list be of the forfa;,s;) or Letl = {(dyi,s1),(da,s2),...,(dn,5,)), WhereVivj : i <
(d:.s:,b;), whered; is of some data types; is a sequence j; = s; < s;. For the definition, please see the equation at
number, and; is a Boolean flag. Theelete operator takes a the bottom of the page. The largest contiguous prefix of a list
list I, where the integer parts of the elements are assumed tq b@ritten1_cprefix(l), is the contiguous prefix with the most
sorted in ascending order and an integemd removes all the elements. Formally
elements with integer parts strictly less thanThat is, given A
L= {((d1,51),(d2,2), - (dn,s)), define 1 cprefix(l) =1’ € cprefixes(l) s.t.Vi" :

1" € cpretizes() A" £ U, |I'| > |I”].
delete(l, k)

i if t<s,, Iheseqmax_con oOperator returns the sequence number of the
A )0 if k> s, lastelementof the largest contiguous prefix of alisThat is,
T (s, 50, (digts Siqt)s- - (dys 50)) for a list/, define

whered = min(1...n) suchthats; > £ otherwise seq.max_con(l) = last(get_seq(l_cprefixes(l))).

For lists with elements of typ@l;, s;, b;), we have the obvious  The set_sack operator takes a list and three blocks
equivalent definition. Another version of the operator takes thg type (Int x Int) where the first element of the
listand two integersk; andkz, butis defined only is; < k1 < pair is less than or equal to the second element. Given

k2 < s, thatis [ = <(d1, S1, bl), (d21 S2, bg), caey (dn, Sn, bn», define
delete(l, k1, kg) é <(d1, 81), (dg, 82), ey Set—saCk(lv (k17 k'll)v <k27 k/2)7 (k?n ké))
A
(diysSko )y -« -5 (dny Sn))- = ((d1, s1, bll)v (da, 52, b/2)’ ooy (dns 8, b’/n)>

Theinst operator inserts a list of sorted contiguous elemengdierevs : ((ky < j < k) V (k2 < j < k) V (ks < j <

into another sorted list. Lét= (cy, ca,...) Wheree; = (d;,s;) K3)) = Uy =landvh:((h <k VhZE)A(h <k Vhz=
andl’ = (¢,e},...,e,) wheree, = (d, s,). Letoverlapbe #2) A(h <ksVh 2 k3)) = b = by

the set of the elements Bfwhere the integer part of the element Theholes operator takes a list with elements of the form
is equal to the integer part of an element,ithat is,overlap = (d;, si, b;) and returns the set of subsequences of the list where

{(d],$})|(d;,s;) € IAs; = s;},and lett = |[|+m—]|overlap|. €Very element hal = 0. Formally

1%

Then define holes(l) 2 {{e;,ei41,...,) € subseqs(l) | Ve; : b; = 0}.

. a . .
inst(l,I') = (¢}, ¢5,...¢) The nxt_unsacked operator takes a list with elements

S Y . B . of the form (d;,s;.b;) and a sequence numbet. Given
where(Vivj : i < j = s/ <s])A@Qust(e; =)Ao ;_ ((dy, 51,b1), (d, 52,b2), ..., (drn, 5, b)), define
O<vim=ce, =c )NV h <u=c¢ =

en) ANk (u+m <k <t)=> Aste =) nxt_unsacked(l, m)
Given [ = <(d1,81),(d2,82),...,(dn,Sn», or A (dZ,SZ) if Jist.b; =0As; >mA
= <(d1,$1,b1),(dg,s‘g,()g),...,(dn,sn,()n», define = \V/J S.t.Sj >mAs; <8 bj =1
N null otherwise
get-data(l) = (d1.dy,..., dn) Theblocks operator takes a list with elements of ty(@g, s;)
get_seq(() 2 (51,825, Sn)- and returns the set of all contiguous and isolated blocks of data.

prefixzes(l) if Ves,8:+1 = si41
prefizes(prefix(l,k)) if Ikstl<i<k,s;+1=si41 Asps1 —sp > 1.
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Proof of Invariant 4: In the start stateetran buf
segment = rcv_buf = {}, andin_transitsr = {, so the
invariant holds for the base case.

prepare-retran-seg(s): This step may cause the
premise of the invariant to go from false to true by adding
elements tos - retran_buf and by assigning a new value to
s - segment. However, by definition of thenum operator we
know thats’ - segment has sequence numbers starting from
s - rev_nxt and from Invariants 3 and 2 we know that in state
s, there are no elements of retran_buf, s - rcv_buf or any
segmentt € s - in_transit with sequence number greater
than or equal t& - snd_nxt.

send-pktg,-(seg) andprepare-retran-seg(s): Bythe
inductive hypothesis, the invariant holds in statso it clearly
holds in states’ after these actions.

We use the standard inductive technique for proving the in- rcv-pktgr(seg): Since by the inductive hypothesis any
variants. That is, we show that the invariants hold for the sttement ofs-seg with the same sequence number as an element
states and then show that for every steps, s') if the invariant  Of s - rcv_buf, s - retran buf, Or s - segment has the same
holds in states, then it also holds in stat€. The invariants are data item, when this segment gets inserted intocv_but, the
typically of the form “if P (premise) therC’ (consequence)”, invariant holds in state’. n
whereP might be true. Therefore, we only need to consider ac-
tions that could caus® to go from false to true or could cause
C to go from true to false. We call these actions critical actions.

Proof of Invariant 1: In the start stateetran buf = {}
andsnd_una = snd_nxt, SO the invariant holds for the base
case. The inductive steps for Part 1 and Part 2 of this invariant"he authors would like to thank S. Floyd for many valuable

are straightforward. We now consider the critical actions for P&@Mmments on an earlier draft of this paper, and M. Merritand N.
3. Klarlund for insightful discussions on the formal proof of safety.

prepare-nev-seg(s): This action may cause the conseJ hey would also like to thank the anonymous reviewers whose

Each block is represented by a pair of tyfiet x Int). Thatis,
given! = {(d1,s1),(ds,s2),...,(dn,ss)), WhereVivj : ¢ <
J=8 < 83, define

blocks(l) 2 {(ki, k) | Vi ki # sy Ak < KL A (Bh = s

= ]C;\/Sh =k; — 1)/\3} St(k‘z = Sj)
ANNF:g < fF<E)=sp=sp+ 1)}

APPENDIX Il
PROOF OFINVARIANTS

ACKNOWLEDGMENT

quence to go from true to false. Howevestran buf # {}.
rcv-pktyg(ack) and
rcv-pktyg(ack, bl, b2, b3): These actions may cause
the premise of Part 3 to go from false to trueék < snd_nxt
and ack > last(get_seq(s - retran_buf)). We know
that s - snd_nxt last(get_seq(s - retran buf)) + 1
from Part 2 of this invariant. Thus, since after this step

(1]

s - snduna = ack, If § - retranbuf = {} then

s’ -snd_una = s’ - snd_nxt. [ (2]
Proof of Invariant 2:In the start state

retran buf,rcv_buf, and in_transit,,. are all empty, so [3]

the invariant holds in this state.
prepare-new-seg(s): This action is critical as it may [
cause the premise to go from false to true. By the definition of
theenumoperator it is clear that Part 1 holds after this step. For
the case where- retran_buf # {}, this action does not cause
the consequence to become false, because Part 2 of Invariant[g]
tells us that in this situatios - rcv_nxt = last(get_seq(s -
retran_buf)) + 1. Part 2 of the invariant clearly follows from 71
Part 1, and it is easy to see that Part 3 follows from Part 2. Parts]
4 follows from Part 3 and the definition of thexst operatorm
Proof of Invariant 3: In the start stateretran buf
segment rcv_buf {},rcvnxt snd_nxt, and
in_transitgyr — in_transitrg = ), SO the base case is true.
For the inductive step of Part 1, since the premise is true, wE”
need to show that there are no critical actions. Using Invariantg 1]
2 and 1, it is straightforward to see that no action causes the
. . 12]
consequences of Part 1 to become false. The inductive cases #or
Parts 2 and 3 are straightforward. [ |

(5]

— [9]

comments substantially improved the paper.
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