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Formal Specification and Verification of Safety and
Performance of TCP Selective Acknowledgment

Mark A. Smith and K. K. Ramakrishnan, Member, IEEE

Abstract—We present a formal specification of the selective ac-
knowledgment (SACK) mechanism that is being proposed as a new
standard option for TCP. The formal specification allows one to
reason about the SACK protocol; thus, we are able to formally
prove that the SACK mechanism does not violate the safety proper-
ties (reliable, at most once, and in order message delivery) of the ac-
knowledgment (ACK) mechanism that is currently used with TCP.
The new mechanism is being proposed to improve the performance
of TCP when multiple packets are lost from one window of data.
The proposed mechanism for implementing the SACK option for
TCP is sufficiently complicated that it is not obvious that it is in-
deed safe, so we think it is important to formally verify its safety
properties.

In addition to safety, we are also able to show that SACK can
improve the time it takes for the sender to recover from multiple
packet losses. With the additional information available at a SACK
sender, the round-trip time that a cumulative ACK sender waits
before retransmitting each subsequent packet lost after the very
first loss can be saved. We also show that SACK can improve per-
formance even with window sizes as small as four packets and in
situations where acknowledgment packets are lost.

Index Terms—Congestion control, formal verification, I/O au-
tomata, TCP performance, TCP SACK.

I. INTRODUCTION

T RANSMISSION Control Protocol (TCP) offers applica-
tions the semantics of a reliable, flow-controlled channel.

The acknowledgment (ACK) mechanism of TCP is an impor-
tant part of what makes the protocol reliable. By reliable, we
mean data from the sender is not lost, duplicated, or received
out of order. TCP guarantees these properties, which we refer
to as safety properties, even though the underlying communica-
tion medium may lose, duplicate, or reorder packets. We assume
corrupted packets are dropped.

Selective Acknowledgments (SACK) [10] have been pro-
posed as a complement to the traditional approach of using
cumulative acknowledgments for TCP. SACK is proposed
as a standard option to be used by cooperating senders and
receivers. The receiver can take advantage of the SACK option
to report that it has received multiple packets out of sequence. A
sender receiving a SACK has the opportunity to retransmit the
packets that comprise the holes in the sequence number space
as indicated in the SACK. The new functionality that SACK
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introduces is the potential for earlier recovery, especially when
multiple packets are lost in round-trip time (RTT). This quicker
recovery may also result in higher throughput because the more
severe congestion recovery mechanisms are not invoked.

The SACK mechanism includes sufficient additional com-
plexity that we believe it is important to examine whether it
operates correctly. It is not obvious from reading the English
language specification of [10] that it satisfies the safety proper-
ties of the ACK mechanism. Simulation experiments have been
done to understand the performance improvement with SACK
[1], and while these lend confidence that the protocol operates
as expected, simulations do not ensure that the protocol is cor-
rect. Formal specifications and verification help significantly in
ensuring that protocols operate correctly. Therefore, we feel that
a formal specification and verification of the safety properties of
the mechanism is useful. We have developed a formal specifi-
cation of the SACK mechanism using the I/O automaton model
of Lynch and Tuttle [7]. The formal specification of the SACK
mechanism allows one to reason about the protocol in a rig-
orous manner. For the formal verification of safety, we use in-
variant assertion and simulation (refinement) techniques. These
methods are used for proving trace inclusion relationships be-
tween concurrent systems. Trace inclusion means the external
behaviors of one system is the subset of the external behaviors
of another system. For this verification, we use the methods to
show that the external behaviors of TCP with the SACK option,
which we refer to simply as SACK, is a subset of the external
behaviors of a simple abstract specification for end-to-end reli-
able message delivery. We use the formalization of simulations
developed by Lynch and Vaandrager [8].

A key aspect of our formal specification of the SACK mech-
anisms is that it allows more nondeterminism than the English
language specification [10]. Our specification focuses on key
aspects of the protocol needed for safety while leaving certain
aspects of the protocol, such as retransmission strategy, unspeci-
fied. This means our correctness proof is quite general and holds
for any implementation of the protocol that uses a specific re-
transmission strategy or other specific behaviors that we leave
nondeterministic in our specification.

We extend the specification used to prove safety properties
to include time using the general timed automaton model of
Lynch [6]. We use this model to calculate the latency of packets
in a window of data in a worst-case scenario and prove that
SACK can lead to improved performance relative to the cumula-
tive ACK mechanism. In fact, we prove that in situations where
the multiple packet loss comes early in the transmission of a
window of data, the improved performance with SACK is pro-
portional to , where is the number of packets
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lost in a window. We also show that SACK can improve per-
formance even when window sizes are small and/or when ac-
knowledgment packets are lost.

In the next section, we present an informal description of both
the cumulative ACK and SACK mechanisms. In Section III, we
present the abstract requirements of the reliable message de-
livery service, and we also present a brief description of the
formal model we use in the paper. In Section IV, we present the
formal specification of the SACK mechanisms. Section V has
the proof of safety along with a short description of the proof
techniques we use. In Section VI, we prove that SACK can lead
to improved performance, and we conclude in Section VII. The
paper also contains two appendices. Appendix I gives formal
definitions for the notation used in the abstract specification of
the reliable message delivery problem and the formal descrip-
tion of the SACK mechanism, and Appendix II contains the
proof of the invariants in Section V.

II. I NFORMAL DESCRIPTION OF THEACKNOWLEDGMENT

MECHANISMS

TCP uses asliding windowmechanism for its flow control,
acknowledgment, and retransmission policy. The basic idea is
that there is a window of size , that determines how
many successive segments of data can be sent in the absence
of a new acknowledgment. Each segment of data is sequen-
tially numbered, so the sender is not allowed to send segment

before segmenthas been acknowledged. Thus, ifis the
largest acknowledgment number received by the sender, there is
a window of data numberedto which the sender can
transmit. As successively higher numbered acknowledgments
are received, the window slides forward. The acknowledgment
mechanism is cumulative in that if the receiver acknowledges
segment , it means it has successfully received all segments
up to and including . Segment is acknowledged by sending a
request for segment . Data that is transmitted is kept on a re-
transmission buffer until it has been acknowledged. In a simple
go-back- protocol, if , the sender may retransmit seg-
ments to from the retransmission buffer. However,
in TCP the decision to retransmit these segments depends on
the receipt of duplicate acknowledgments and on timeouts. With
TCP Reno, only the first packet in the retransmission buffer
is sent. Subsequently, the sender waits until the retransmitted
packet is acknowledged. This strategy potentially reduces the
unnecessary retransmissions compared to the simple go-back-
protocol.

Of particular interest are the mechanisms which TCP uses to
recover from loss, including algorithms forfast retransmit[4].
With fast retransmit, when the source receivesduplicate ac-
knowledgments (e.g., ) for the same segment (say,), it
determines that segmentwas lost. The source chooses to re-
transmit segment right away, rather than wait for a retransmis-
sion timer to expire. It must be noted that the sender retransmits
one packet (or segment for the purposes of this paper) only.

The limitation of the cumulative acknowledgment strategy
is that it can only indicate that every segment up tohas been
received and has not been received. When multiple
packets are lost from a window, the throughput of TCP can

suffer greatly. After retransmitting the first packet in the
retransmission buffer, the sender may be forced to wait for a
retransmission timeout to retransmit subsequent “holes” in the
receiver’s sequence number space.

To remedy the problem that occurs when multiple packets in
a round trip are lost, a selective acknowledgment mechanism
is being proposed as a new standard option for TCP [10]. The
mechanism allows the receiver of data to acknowledge noncon-
tiguous and isolated blocks of data that have been received and
queued, in addition to the cumulative acknowledgment of con-
tiguous data. By isolated, we mean the segment just below the
block and just above the block have not been received. Each
block is defined by a pair of sequence numbers. The first number
is the left edge of the block and is the sequence number of the
first segment of data in the block that was received. The second
number is the right edge of the block and is the number im-
mediately following the last sequence number of the block that
was received. The retransmission strategy of the sender also
changes to use the additional information available with selec-
tive acknowledgment. Now, in addition to the data segments
in the retransmission buffer, there is a flag bit which indicates
whether a segment has been “SACKed.” A segment with the
SACKed bit turned on is not retransmitted, but segments with
the SACKed bit turned off and sequence number less than the
highest SACKed segment are available for retransmission.

A. An Example With Cumulative ACK

In Fig. 1, we show a simple example that illustrates how the
(cumulative) ACK mechanism works with TCP Reno [5]. The
figure shows the retransmission buffer of the sender and the
buffer at the receiver. Let the window size be 8 for this example.
The threshold of the number of duplicate acknowledgments that
need to be received before the fast retransmit algorithm is trig-
gered is assumed to be 3. The numbers in the buffers and the
numbers on the segments sent by the sender represents the ac-
tual segment of data and is the sequence number of that segment
of data. The variable is the sequence number of the seg-
ment at the head of the retransmission buffer. It is also the oldest
unacknowledged segment of data. The variable is the
next contiguous segment of data expected by the receiver. This
variable is the acknowledgment number that the receiver sends
back to the sender. The execution illustrated in Fig. 1 begins
with the sender transmitting segment 26. Next, segment 27 gets
transmitted, but is lost due to, say, congestion. Subsequently,
segments 28 and 29 are delivered. The acknowledgments gen-
erated by the receiver on receipt of segments 26, 28, and 29 all
indicate that the next segment expected is segment 27. In the ex-
ample, segment 30 is also lost. Thus, two segments 27 and 30 are
lost in the current window of 8 segments. Subsequently, when
segment 31 is received, the acknowledgment generated triggers
the fast retransmit algorithm. This causes segment 27 to be re-
transmitted without waiting for a retransmit timeout. Notice that
even after the source retransmits segment 27, acknowledgments
are received with the next expected segment being 27 (sent in
response to packets 32 and 33 sent before the retransmission
of segment 27). This allows the sender to send new segments,
but not retransmit any more segments from the retransmission
buffer, since it does not know which segments need to be sent.

i+n 

n > 0 

i 

i i+n-1 

k 
k k 
k+l 

n k < n+i 
k+l n+i 

k 

k + l 

d=3 
k 

't 

snd_una 

rcv....nxt 

n 

d 
k 

k 

IPR2022-00833 
CommScope, Inc. Exhibit 1023 

Page 2 of 15



SMITH AND RAMAKRISHNAN: SAFETY AND PERFORMANCE OF TCP SELECTIVE ACKNOWLEDGMENT 195

Fig. 1. Example illustrating the workings of the ACK mechanism of TCP.

If it were to decide to retransmit, it would have to retransmit the
next segment in the buffer, which is segment 28. But this would
be a wasteful retransmission. Hence, the sender desists from re-
transmitting any new packets (but can use the opportunity to
send new segments if the window allows it). It is only after a
new acknowledgment is received indicating successful receipt
of segment 27 can the sender potentially consider retransmit-
ting another packet from its retransmission buffer. However, the
second loss in a window is interpreted as a more serious situ-
ation—hence the fast retransmission algorithm is not invoked
to recover from this loss. The second segment that was lost
in this window (30) is not retransmitted until a retransmission
timeout. Because this timeout is necessarily large, the sender’s
window is likely to be shut. Thus, during this timeout, the sender
is unable to make progress, resulting in degraded throughput.
This timeout also results in the sender dropping the congestion
window size to 1 based on the congestion control algorithms de-
scribed in [4].

B. An Example With SACK

Fig. 2 illustrates how the SACK mechanism works on the
same set of data as in Fig. 1. With selective acknowledgment,
the receiver sends back the regular cumulative acknowledgment
number and SACK blocks. In the proposed implementation of
the SACK mechanism described in [10], there are at most three
SACK blocks in an acknowledgment packet.

Initially, when the receiver gets segment 28 (after the loss
of segment 27), it sends a SACK for segment 27 and a further
SACK block indicating that segment 28 was received and seg-
ment 29 was awaited after that. When segment 31 is received
after the loss of segment 30, the SACK sent indicates that 27
(the portion representing the cumulative ACK) is awaited, and

Fig. 2. Example illustrating the workings of the SACK mechanism of TCP.

furthermore that two blocks of data were received with an inter-
vening gap of segment 30. The regular fast retransmit algorithm
is triggered on receipt of third duplicate SACK indicating that
segment 27 was lost. The source retransmits segment 27. But at
the same time, the sender has the information that segment 30
has also been lost as indicated in the SACK. Since the source
now has the information of specifically which segments have
been lost (segment 27 and 30), it has the ability to retransmit
more than one of the lost segments. Therefore, the sender can
also retransmit segment 30 and fill the second hole in the se-
quence number space. The sender does not need to wait for a
retransmit timeout for retransmitting segment 30.

A further detail to be observed is the maintenance of the
SACK flags at the source, associated with the segments still
in the retransmission buffer. In the figure SACKed segments
are not removed from the retransmission buffer even though in
this example, these segments are not retransmitted. However,
the SACK mechanism allows the receiver to drop segments that
have been SACKed if it runs out of buffer space. Thus, it is pos-
sible that these segments may need to be retransmitted. Since
they are not retransmitted if the SACK flag is set, there must be
a mechanism for resetting the flags to 0. In the SACK mecha-
nism proposed for TCP when a retransmission timeout expires
for any sequence of data, all the SACKed bits in the retransmis-
sion buffer are reset to 0.

Thus, the SACK option allows the sender to recover from
losing multiple packets in a round-trip time, and “fill” all the
“holes” in the receiver’s sequence number space based on the
SACK blocks received. Further, it allows for the separation of
the flow control and congestion control mechanisms from being
intricately tied to the error recovery procedures, as we illustrated
in the example. It allows the source the ability to be somewhat
more aggressive in both retransmitting from the buffer on mul-
tiple packet losses, and not dropping the congestion window
down all the way to 1.

sender's 
retransmission buffer 

snd_una= 26 

snd_una = 27 

12,12s1w13ij 31I 3zj33I 
snd_una = 27 

retransmission timeout 

l3ol31l32I 3~ 1 1 I I 
snd_una = 30 

receive buffer 

l26I I I I 
rcv_nxt= 27 

l2~ l2~291 l31I I 

l26I l2slwl 1311321 

l26I 12s1w1 I 311321331 

I 26I 21I 2sl 291 I 311321331 
rcv_nxt = 30 

I 26I 27I 28I 29I 3W 3II 32l331 
rcv_nxt = 34 

sender's 
retransmission buffer 

0 

126I I I I I I 
snd_una = 26 

0 0 

snd una = 27 
0 0 0 0 

01 10000 
l21l2Bl29l30I 31134331 
01 10100 

121l2Blwl3ol 31)32j331 
0110100 

l21l2Bl29l3ol 31l32j33j 
0110111 

l21l2sl291 aj 31)32)33I 
0 1 1 1 

snd_una = 30 

27 
--- loss ---x 

receive buffer 

l261 I I I I I I I 
rcv_nxt = 27 

l26I l28l291 j31j I 

l26I l28l291 l31l32I 

l26I 12s12~ l31I 32l33I 

12612,1 2sl 291 f 31132l33I 
rcv_nxt = 30 

I 2~21l2Blwl30l31I 321331 
rcv_nxt = 34 

IPR2022-00833 
CommScope, Inc. Exhibit 1023 

Page 3 of 15



196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002

III. FORMAL MODEL AND SERVICE REQUIREMENTS

The safety properties we want to show for TCP with the
SACK mechanism are that data from the sender is not lost, du-
plicated, or received out of order. Our model does not capture
data corruption, and we assume corrupted packets are discarded.
In this work, we do not try to verify the safety of TCP in its en-
tirety. We are only concerned with the effects of replacing the
ACK mechanism with the SACK mechanism. Therefore, we as-
sume that connection setup and teardown work correctly, and
that crash recovery works correctly. Consequently, in our mod-
eling of the SACK mechanism, we assume that the connection
between the sender and receiver is already established and that
there are no crashes. Before we present the specification, we
give a brief description of the formal model we use.

A. Automaton Model

The formal model we use to describe the acknowledgment
mechanisms is based on the I/O automaton model of [7]. An
automaton consists of four components: 1) a set
of states; 2) a nonempty set of of start
states; 3) a set of actions; and 4) a set

of steps. The set
can be partitioned into three disjoint sets, , and

of input actions,output actions, andinternal actions, re-
spectively. The union of the input actions and output actions we
denote asexternal actions, those actions visible to the environ-
ment.

When an automaton runs, it generates a string representing an
execution of the system it models. Anexecution fragment of
automaton is a finite or infinite sequence, ,
of alternating states and actions ofstarting in a start state,
and if the execution fragment is finite, ending in a state such
that is a step of for every . We denote by

the first state of the execution fragment, and if it is
finite denotes the last state. A stateis said to be
reachableif there exists a finite execution of that includes .

Suppose is an execution fragment of
. Then or if is clear, is defined to be

the subsequence of consisting of only the external actions.
We say that is a trace of if there exists an executionof
with .

In specifying a complex distributed system, it is useful to be
able to specify each process individually and then obtain a spec-
ification of the entire system as theparallel compositionof the
specifications of the processes. The parallel composition oper-
ator in this model uses a synchronization style where automata
synchronize on their common actions and evolve independently
on the others.

To show that an automatonimplements another automaton
, we show atrace inclusion relationship between them. The

set of traces of an automaton consists of the set of sequences of
visible actions that the automaton can perform.

B. Service Requirements

For the formal description of the service requirements, we as-
sume a very simple user interface—there is an input action from
the user on the sender side to send data message , and on

Fig. 3. Model of the requirements of the reliable message delivery problem.

the receiver side, data is passed to the user with the
action.

We define a simple automaton which is an abstract represen-
tation of the safety properties that we want to show are satis-
fied by the SACK mechanism. The automaton, which we call
ReliableQ is shown in Fig. 3. We describe the automaton in
the style of the IOA language [2] for describing I/O automata,
but we do not strictly follow the syntax of the formal language.
In the IOA language, an automaton is described by first giving
its name followed by the four components of the model men-
tioned above. That is, we have the action signature (signature),
the states and start states (states), and the set of steps (transi-
tions). Transitions are written in aprecondition, effectfashion.
That is, the states in which an action is enabled is given as a pre-
condition, and the resulting states are given by the effects of the
action.

The only state variable of the automaton isqueue which has
typeSeq[Byte] and is initially empty. The typeSeq[Byte]
is an ordered list or sequence with elements of typeByte. We
denote the empty sequence as. The input action
from the user causes datato be added to the tail of the queue.
The symbol is the concatenation operator. The output action

passes data from the head of the queue to the re-
ceiver side user. Theprefixes operator returns the set of pre-
fixes of the queue, and the operation removes
the first elements from the queue. Since the queue does not
lose, duplicate, or reorder data, it is easy to see that the speci-
fication ReliableQ gives the safety properties we want. The
prefixes, tail and all the operators used in subsequent sec-
tions are formally defined in Appendix I.

IV. FORMAL SPECIFICATION OFSACK

TCP has the basic structure shown in Fig. 4. There is a sender,
a receiver, a channel for packets from the sender to the receiver,
and a channel for packets from the receiver to the sender. The
protocol is only run at the sender and the receiver, but it assumes
the channels, so the channels must be modeled. We model each
component as an automaton, and the complete system is the
parallel composition of the four component automata.

In our models of the sender and the receiver below, we specify
certain state variables as unbounded integers. However, in the
actual protocol, the size of these variables is bounded. Cer-
tain aspects of our proof of the correctness of the protocol relies
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Fig. 4. Structure and the four basic components of the model for SACK.

on being able to make accurate comparisons of the relative size
of some of these variables. When the variables are unbounded, it
is easy to see that these comparisons are accurate. However, with
a bounded number space that may wrap around, it is not so clear
that these comparisons, which must now be made modulo,
can be done accurately. TCP uses various timing mechanisms
coupled with the relatively large number space to ensure that
the relative size of variables are not confused. For further de-
tails and formal proofs as to why the timing mechanisms work,
see [11]. The mechanisms do not vary between standard TCP
and SACK TCP, so we do not focus on them here. Instead, we
use unbounded counters to simplify our models and proofs.

A. Channel Automaton

The channels in our model can lose, duplicate, and reorder
packets, but they do not corrupt or create spurious packets. The
I/O automaton model for the channel from the sender to the re-
ceiver, , is shown in Fig. 5. The model for the channel
from the receiver to the sender is essentially the same, so we do
not show it here. The basic difference is that the subscripts in
the names of the state variable and the actions in the signatures
are different and reflect the directional flow of packets in the
channels. The channels have a packet type that is the channel pa-
rameter . The state variable (for the receiver to
sender channel the variable is ) holds the packets
placed on the channel. Since the channels may have duplicate
copies of a packet, this variable is a multisets of type. The
fact that it is a multiset means the packets are not ordered. Thus,
packets may be received in a different order from the way they
were sent.

The - input action places a packet in the mul-
tiset. The complementary output action - removes
the packet from the channel. The internal action
nondeterministically removes an element from the multiset. The
set minus operator for the multiset only removes one copy of an
element. The internal action adds one addi-
tional copy of an element to the multiset.

B. Sender Automaton

In this section, we present a formal I/O automaton model for
the sender protocol of the SACK mechanism. The automaton,,
is shown in Fig. 6. We first specify the type definitions needed
to describe some components of the automaton. TheByteInt
type is the set of pairs that has a byte as the first element, and
an integer as the second element. The typeSbyte is the set
of triples formed by a byte, an integer sequence number, and a
Boolean flag. The typeBlk is a pair of integers, and indicates
the left and right edges of a block of data.

The states of the sender includes which is a se-
quence of bytes, and it holds data received from the user. The
retransmission buffer, , holds data that may need

Fig. 5. Model for the channel for packets from the sender to the receiver.

to be retransmitted. Each byte of data is grouped with its se-
quence number and a flag indicating whether the byte of data
has been selectively acknowledged. Both buffers are initially
empty. Thesegment variable is the current segment being
sent, is the sequence number of the oldest unacknowl-
edged byte, is the sequence number of the next byte to
be sent, and is a flag that enables the sending
of segments when the transmission window is open.

Input action is the action by the user that passes data
to the sender, and - - prepares a new seg-
ment to be sent. It is only enabled if the sender is not currently
enabled to send a segment , the send buffer
is not empty, and the available window size is greater than 0 (we
assume a constant window size of WS). This action nondeter-
ministically chooses the portion of data to be sent. This portion
of data, , must be a prefix of the send buffer and its length,
written , must be less than or equal to the minimum of the
maximum segment size (MSS) and the available window size.
The effect of this action is to removefrom the send buffer,
and then to pair each element ofwith its sequence number.
This pairing is done by the s snd nxt operation. The new
list forms the segment to be sent and is assigned to the vari-
ablesegment. A SACK flag that is initialized to false is added
to each pair in the segment sequence before it is concatenated
to the retransmission buffer. The operator performs
this initialization.

The - action places a segment on the
outgoing channel, , of the sender, and -
takes a simple ACK packet from . First ack is
checked to see that it acknowledges data that was sent,

. If this condition is true, the
acknowledged data is removed from the retransmission
buffer, and is updated. When a SACK packet
is received, - , the sender
sets the SACK flag of the bytes indicated by the SACK
blocks to true with the assignment of to

.
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Fig. 6. SACK sender automaton.

In TCP Reno, a segment is retransmitted if the retransmis-
sion timeout expires, or a certain number of duplicate acknowl-
edgments are received. In our model of the sender, we sim-
plify the mechanism by allowing the sender to generate retrans-
mission segments nondeterministically. Since the sender can
nondeterministically choose between retransmitting a segment
or sending a new one whenever it is enabled to send a seg-
ment, our model accommodates the TCP Reno retransmission
policy and any other implementation policy for retransmission.
The internal action that generates retransmission segments is

- - . Since the SACK protocol does not

Fig. 7. Automaton of the SACK receiver.

retransmit SACKed blocks of data, the retransmission segment
chosen must be from the set of unSACKed contiguous bytes.
These are the known holes in the data at the receiver. Theholes
operator returns this set, and the segment retransmitted is nonde-
terministically chosen from the set. Again, the nondeterminism
in our model allows us to accommodate any implementation
policy that determines which holes to fill.

In the proposed implementation of SACK [10], whenever a
retransmission timeout expires, all the SACK flags in the re-
transmission buffer are reset to false. In our model, we again
use nondeterminism for a simpler but more general model. We
allow the resetting of the flags, nondeterministically, at anytime.
The internal actionreset-sack resets the sack flags.

C. Receiver Automaton

The automaton model for the receiver protocol of SACK is
shown in Fig. 7. The variable holds segments that are
received until they are passed to the user. The variable
is the sequence number of the next byte of data expected by

type Byteint = tuple of Msg: Byte, Seqnum: Int 
type Sbyte = tuple of Msg: Byte, Seqnum: Int, Flag: Bool 
type Blk = tuple of Left: Int, Right: Int 

automaton s 

signature 
Input send(m: Seq[Byte)), rcv-pktr.(ack: Int), 

rcv-pktr.(ack:Int, bl:Blk, b2:Blk, b3:Blk) 
Internal prepare-new-seg(s: Seq[Byte]) 

prepare-retran-seg(s: Seq[Sbyte]), reset-sack 
output send-pkt•r (seg: Seq[Byteint]) 

states 
sencl._buf: Seq[Byte) := {} 
retran_buf: Seq[Sbyte] := {} 
segment: Seq[Byteint] := {} 
sncLuna, snd_nxt: Int := 0 
ready_to_send: Bool := false 

transitions 

Input send(m) 
elf sencl._buf : = send...buf II m 

Internal prepare-new-seg(s) 
pre -, ready_to_send 

send...buf -::/= {} 
snd_nxt < sncLuna + WS 
s E prefixes ( send...buf) 
1 ::5 Isl :S min(MSS, sncLuna + WS - snd_nxt) 

elf send...buf : = tail ( sencl._buf, I s I ) 
segment:= enum(s, sncLnxt) 
retranJmf := retran.Jmf II init_flag(segment) 
snd_nxt := snd_nxt + Isl 
ready_to_send := true 

output send-pkt.r(seg) 
pre ready_to_send 

seg = segment 
elf ready_to_send := false 

input rcv-pktr• (ack) 
elf if sncLuna < ack ::5 snd_nxt then 

retran_llUf := delete(retran_lmf, ack) 
sncLuna := ack fi 

input rcv-pktr• (ack, bl, b2, b3) 
elf if sncLuna < ack < sncLnxt then 

retran_buf := delete(retran_buf, ack) 
retran_buf := set_sack(retran_buf,bl,b2,b3) 
sncLuna := ack fi 

Internal prepare-retran-seg ( s) 
pre -, ready_to_send 

retran_lmf -::/= {} 
s E holes(retran.Jmf) 
l ::5 Isl :S MSS 

elf segment:= remove_flag(s) 
ready_to_send :• true 

internal reset-sack 
pre true 
eff retran_buf := unsack(retran_buf) 

prepare retran seg(s) 

type Blk = tuple of Left: Int, Right: Int 
type Byteint = tuple of Msg: Byte, Seqnum: Int 

automaton R 

signature 
Input rcv-pkt.r (seg: Seq[Byteint) >. 
Internal drop(s: Seq[Byteint)) 
output deliver(m: Seq[Byte)), send-pktr.Cack: Int), 

send-pktr.lack:Int, bl:Blk, b2:Blk, b3:Blk) 
states 

rcv.J)uf: Seq[ByteintJ := {} 
rcv_nxt: Int := 0 
sencLack, sack_opt: Bool := false 

transitions 

input rcv-pkt•r (seg) 
eff sencLack := true 

if rcvJ1Xt ::5 last(get_seq(seg)) then 
rcv.J)uf := inst(rcvJ)uf,delete(seg,rcvJ1Xt)) 
If seqJIWLcon(rcvJ)uf) > rcvJ1Xt then 

rcv_nxt := seq_max_con(rcv.J)uf) + 1 ft 
If rcv_nxt ::5 last(get_seq(rcv.J)uf)) then 

sack_opt := true 
else sack_opt := false ft 

ft 

output send-pktr.(ack) 
pre sencLack /\ -, sack_opt 

ack = rcvJ1Xt 
elf sencLack : = false 

output send-pktr• (ack, bl, b2, b3) 
pre sencLack /\ sack_opt 

ack = rcv_nxt 
bl E blocks(rcv.J)uf) 
b2 e blocks(rcv.J)uf) 
b3 E blocks(rcv_buf) 
lblocks(rcv.J)uf)I > 1 => b2-::/= bl 
lblocks(rcv_buf)I > 2 => b3 i{bl,b2} 

elf sencLack := false 

output deliver(m) 
pre rcv.J)uf -::/= {} 

m E cprefixes(get_data(rcv_buf)) 
elf rcv_buf := tail(rcv_buf, 1ml) 

Internal drop(b) 
pre b E blocks(rcv_buf) 
elf rcv_buf := delete(rcv_buf, b.Left, b.Right) 

rcv_buf 
rcv..ruct 
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the receiver and is also the acknowledgment number sent to the
sender. The variables and are flags that
enables the sending of a regular acknowledgment segment and
an acknowledgment segment with SACK blocks, respectively.

The action - causes the receiver to set the
flag to true, which enables the sending of an ac-

knowledgment segment. The received segment has new data if
. That is, there is new data if

the sequence number of the last byte of data in the segment is
greater than or equal to . If the segment has new data,
the part of the segment that has sequence number greater than
or equal to , is inserted in sequence number order in
the receive buffer. Informally speaking, theinst operator in-
serts the new segment into the receive buffer so that sequence
numbers in the updated buffer remain sorted in ascending order.
Elements from the new segment with the same sequence num-
bers as elements already in the buffer overwrite the elements
in the buffer. If there is new data, is updated to re-
flect the last contiguous piece of data that has been received.
The update is done by taking the sequence number from the
last element of the maximum contiguous prefix of the receive
buffer, , and adding 1 to that number.
The receiver must also determine whether to send a regular ac-
knowledgment or a selective acknowledgment. A selective ac-
knowledgment is sent if the receiver has noncontiguous data
queued in the receive buffer. That is, if does not ac-
knowledge the highest sequence number in the receive buffer

, then is set
to true.

If is true and is false, then the
- action is enabled. This action sends

an acknowledgment whereack is the acknowledgment
number. The setting of to true enables the

- action, where ,
and are three nondeterministically chosen SACK blocks.
The set of SACK blocks for the receive buffer is generated by
the blocks operator. If there are at least two SACK blocks,
then and are different. If there are at least three, then
all three blocks are different. We limit the number of blocks
to three in our model because the restriction in the header
size of a TCP segment means that for most cases this will be
maximum number of SACK blocks that can be included in an
acknowledgment segment. In the actual SACK proposal [10],
there are also precise rules for determining which blocks should
be included in the acknowledgment segment and in what order.
A nondeterministic selection of blocks is a generalization that
includes the selection of the blocks with the precise rules as
a subset of its possibilities. Therefore, if our model of the
protocol is safe, then using more precise rules is also safe.

The receiver passes data to the external user via the output
action , where is the data part of a contiguous
prefix of the receive buffer.

The internal action results in a nondeterministically
chosen sequence of data being dropped from . We in-
clude this action because in the proposal for the SACK mech-
anism [10], a receiver is allowed to drop SACKed data if it re-
ceives contiguous data for which it does not have enough space.

The nondeterministic action is a generalization of this
possibility.

D. Complete Specification of SACK

An automaton for the selective acknowledgment mech-
anism is formed by the parallel composition of the au-
tomata for the sender, the receiver, and the channels.
The channel from the receiver to the sender must take
packets that are either only integers or packets that are
a tuple of an integer and three SACK blocks. We de-
fine AckPkt to be this type. That is,

.
Therefore, the composed automaton for SACK is

V. PROOF OFSAFETY

For the proof of safety, we use the formalization of simula-
tions developed by Lynch and Vaandrager [8]. Letbe an au-
tomaton representing an implementation of a protocol andbe
an automaton representing an abstract requirements of the pro-
tocol. If and have the same input and output actions, then
a simulation from to is a relation between states ofand
states of such that certain conditions hold. The conditions that
hold depend on whether we do aforward simulation (a special
case of which is arefinement mapping) or abackwardsimu-
lation. The simulation techniques have two general conditions.
First, the start states of the two automata must be related in a
certain way, and second, each step of the implementation must
“simulate” some sequence of steps in the requirements. That is,
for each step in the implementation, there must exist a sequence
of steps in the requirements between states related by the sim-
ulation relation to the pre- and post-state of the implementation
step, such that the sequence of requirements steps contains ex-
actly the same external actions as the implementation step. This
implies that traces of are also traces of . In this paper, we
use a refinement mapping. We write if there exists a
refinement mapping from to , and via if is
such a mapping.

During the process of performing a simulation proof, some-
times a situation that is impossible to solve comes up, but then
it turns out that the situation happens in an unreachable state.
Since we only need to consider the steps of the implementa-
tion automaton which start in a reachable state, aninvariant that
rules out these “bad” states is found. Invariants are properties
that are true of all reachable states.

A. Invariants forSack

We formally verify that the SACK protocol satisfies the safety
properties of reliable message delivery by defining a mapping
from states ofSack to states ofReliableQ and then proving
that it is a refinement mapping. However, before we proceed
with the proof, we need to define some invariants forSack.
These invariants limit the states we need to consider during the
simulation. The invariants that we present here capture some of
the key insights as to why the protocol is reliable. The proofs for

send_ack sack_opt 

rev pktsr(seg) 
send_ack 

rcv...nxt ~ last(get_seq(seg)) 

rcv...nxt 

rcv...nxt 

rcv...nxt 

seq....max_con(rcv_buf) 

rcv...nxt 

(rcv...nxt ~ last(get_seq(rcv_buf))) 

send_ack 
send pktrs(ack) 

sack_opt 

sack_opt 
send pktrs(ack, b1, b2, b3) 

b3 

b1 2 

deliver(m) m 

drop(b) 

sack_opt 

b1, b2 

rcv_buf 

drop(b) 

type AckPkt = 
Int U tuple of Ack:Int, B1:Blk, B2:Blk, B3:Blk 

6. 
Sack= SIIRIICsr(T: Seq[Byteint] )IICrs(T: AckPkt). 

A 

B 

B 
A B 

A B 
A ~RB 

A B A ~RB 

A 
B 

A 

r r 
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the invariants are straightforward by induction and can be found
in Appendix II.

The first invariant shows the relationships between
, and the sequence numbers of the first

and last elements of the retransmission buffer, .
Invariant 1:

1) If
then .

2) If
then .

3) If then .

The next invariant states that the elements of the retransmis-
sion buffer, of segments from the sender, and of the receive
buffer, are sorted in ascending sequence number order. Addi-
tionally, the sequence numbers of elements of the retransmis-
sion buffer and of segments are contiguous.

Invariant 2:

1) If
then for every element ,
except .

2) If
then for every element ,
except .

3) If
then for every and any
except .

4) If and and
then .

Invariant 3 states that is always greater than the se-
quence number of any data in the retransmission buffer, the re-
ceiver buffer, or on , and that it is greater than or equal to

. It also states that when the receive buffer is not empty,
is 1 plus the sequence number of the last contiguous

piece of data in the receive buffer.
Invariant 3:

1)
and
and
and
and

2) If
then .

3) For any is greater than or
equal to the acknowledgment number (ack) of packet .

The final invariant says that elements in buffers or in segments
that have the same sequence number part also have the same data
part.

Invariant 4: If and
and for any

and then and
and and
and and

.
The conjunction of Invariants 1 through 4 is itself an invariant

which we call .

Fig. 8. Example of how the buffers inSack relate toqueue in ReliableQ
by the refinement mapping.

B. Refinement Mapping

We define a function from states(Sack) to
states(ReliableQ). Fig. 8 illustrates the mapping. It is
formally defined below.

Definition 1 (Refinement Mapping ): If
, then define to be the state

such that concatenation of:

•
•
•

The key observation that leads to a proof of safety for SACK
is that the changes in the acknowledgment mechanism due to
SACK are conservative in terms of safety. That is, no data is
discarded, duplicated, or reordered because of the SACK mech-
anism that could not have been discarded, duplicated, or re-
ordered with the cumulative acknowledgment mechanism. The
fact that the mapping we define above ignores the additional in-
formation that the SACK mechanism provides reflects this in-
sight.

For a refinement mapping fromstates(Sack) to
states(ReliableQ), it is easy to see that in
Sack should map to a suffix of the abstract queue. It is also
clear that parts of the retransmission buffer and the receive
buffer of Sack should map to the rest of the abstract queue.
However, since some data may be in both buffers at the same
time, the mapping has to be defined so that there is no duplicate
data in the abstract queue. Also, since there is data in the receive
buffer that may get dropped, this data cannot be included in
the mapping. Therefore, in our mapping we use as
the demarcation point for data that is included in the mapping
from both buffers. For the receive buffer, data with sequence
numbers less than are including in the mapping as a
prefix of the abstract queue. This part of the is defined
by the operation. In
the retransmission buffer, data with sequence numbers greater
than or equal to are included in the mapping. The

denotes this
section of the retransmission buffer.

C. Simulation of Steps

In this section, we prove that the mapping defined in the
previous section is indeed a refinement mapping from the states
of Sack to the states ofReliableQ. That is, we prove the
following lemma.

snd_una, snd....nxt 
retran_buf 

retran_buf =/- {} 
snd_una = head(get_seq(retran_buf)) 

retran_buf =/- {} 
snd....nxt = last(get_seq(retran_buf)) + 1 

retran_buf = {} snd_una = snd....nxt 

retran_buf =/- {} 
(di, Si, bi) E retran_buf 

last(retran_buf), Bi+l = Si + l 
segment =/- {} 

(di, Bi) E segment 
last (segment), Si+l = Si + l 

in_transitsr =/:- {} 
t E in_transitsr (di, Bi) E p 

last(t) Si+l = Si+ l 
(di, si) E rev_buf (dj, Bj) E rev_buf i < j 

rev....nxt 
rev....nxt 

Si < Sj 

snd....nxt 

Csr(T) 

snd....nxt 2 rev ....nxt 
snd....nxt > last(get_seq(segment)) 
snd....nxt > last(get_seq(rev_buf)) 
(VtE in_transitsr: snd....nxt>last(get_seq(t))) 
(Vq E in_transitrs : snd....nxt 2 q) 

rev _buf =/- {} 
rev....nxt = seq..111ax_eon(rev_buf) + 1 

t E in_transitrs,rev....nxt 

(dh, sh, bh) E retran_buf 

t 

(di,si)insegment (dj,Bj) Et t E in_transitsr 
(dk, Bk) E rev_buf Sh = Si =} dh = di 

Sh = Sj =} dh = dj Sh Bk =} dh dk 

Si = Sj =} di = dj Si = Bk =} di = dk 

Sj = Bk =} dj = dk 

Is 

queue 

Sack snd_nxt = 35 snd_una = 27 rcv_nxt = 30 
sendbuffer retranllllli■■ion buffer receive buffer 

RsR s E 
states(Saek) RsR(s) u E 
states(ReliableQ) u · queue = 

Leprefix(get_data(s • rev_buf))) 
delete(get_data(s · retran_buf), s · rev....nxt) 
s · send_buf 

send_buf 

rev....nxt 

rev....nxt 
rev_buf 

Leprefix(get_data(s rev_buf))) 

rev....nxt 
delete(get_data(s · retran_buf), s · rev....nxt) 

RsR 
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Lemma 1: via
Proof: We prove that is a refinement mapping from

Sack to ReliableQ with respect to by showing that the
two start states are related, and then showing that the steps of
Sack simulate some sequence of steps ofReliableQ. That
is, any behavior ofSack corresponds to some possible behavior
of ReliableQ.

Base Case:In the start state of Sack, we have
, and all being

the empty sequence, . In the start state of ReliableQ,
is also the empty sequence.

Inductive Case:Assume .
Below, we consider cases based on, and for each case
we define a finite execution fragment of ReliableQ
such that , and

. We use and to denote
and , respectively.

: For this case, . In Sack, step
adds to the back of buf. In ReliableQ,

adds to the back of , so the mapping is preserved
after this step.

- - : For this case, is the empty
step. Since - - is an internal action, the
traces of both steps are the same. Step may take data
from and add it to the end of .
However, since this step does not change and Invariant
3 tells us that , the mapping to
holds after this step.

- : For this case, is the empty step.
Since -pkt is an internal action ofSack, the trace
of both steps are the same. Step does not affect any of
the variables ofSack involved with the mapping, so clearly the
mapping is preserved after this step.

- and -
: Again, is the empty step. These steps may affect the

mapping because they may cause the sender to discard the prefix
of with data that has sequence number less than
ack. However, by Invariant 3 we know that ,
so the part of the buffer that gets deleted is not included in the
mapping. Thus, after step , the mapping still holds.

- - and - : For
these cases, we again havebeing the empty step. The steps
formed with either of these actions clearly do not affect any of
the variables ofSack involved with the mapping.

- : For this step, the corresponding
is the empty step. The traces for both and are both
clearly empty. Step may affect the mapping because it
may cause to be updated andseg to be inserted in to

. Therefore, we need to show that any additional data
from that is now included in the mapping is pre-
cisely the data that is no longer included from in
the mapping. We know by Invariant 3 that
and by Invariant 1 we know that if ,
then . Since

and are unaffected by this
action, we know that if , then

. Therefore, in the case where step
causes to change, we know that .

We also know by Invariant 2 that the elements of
have contiguous and sorted sequence numbers. Thus, since

and
, we know that the elements of

not included in the mapping in state have
exactly the same sequence numbers as the new elements of

now included in the mapping. Since we know by
Invariant 4 that bytes with the same sequence numbers are the
same, we know the mapping holds in state.

- and -
: For these steps, the correspondingis the empty step. It

is easy to see that these steps do not affect the mapping.
: For this case, . In Sack,

this step removes from the front of , but only if the
sequence numbers of the bytes contained inare less than

. Therefore, this block of data corresponds to a block
of data at the front of . Thus, after the step inRe-
liableQ, the resulting state is correct, as defined by mapping

.
: For this case, is the empty step. Since

is an internal action ofSack, the traces are the
same. Step removes data from , but
since the dropped data cannot be part of the contiguous prefix
of , the removal of this data does not affect the
mapping.

The fact that we have proven that is a refinement map-
ping from the states ofSack to the states ofReliableQ, cou-
pled with the soundness of refinement mappings for showing
trace inclusion leads to our main result. Thus, we get the fol-
lowing theorem.

Theorem 1: Sack safely implementsReliableQ. That is,
.

Proof: The theorem follows from the soundness of re-
finement mappings for proving trace inclusion [8], and from
Lemma 1.

VI. PERFORMANCEANALYSIS

In this section, we provide a formal analysis of the improved
performance of SACK TCP versus TCP Reno, when more than
one packet is lost from a window of data. We will examine an
execution where no retransmitted or acknowledgment packet is
dropped. Our analysis is for the worst-case behavior of the cu-
mulative ACK policy measured in terms of latency to deliver
packets in sequence for this type of execution. This worst case
occurs when the lost packets are the first packets sent in the
window.

For the proof of safety, we do not need to use time in the
model, so it was not included. We used as simple a model as
possible for the safety analysis. However, for our analysis of
performance properties, we need to augment our formal model
of SACK to include time. In order to compare the performances
of TCP Reno and SACK TCP we also need to model the cu-
mulative acknowledgment mechanism of TCP Reno. To model
a sender and a receiver that use time, we use the general timed
automaton (GTA) model [6] which extends the I/O Automaton
model to include real time. In our modeling, we make the fol-
lowing assumptions: 1) the lower bound on packet transit time

Sack SR ReliableQ 
RsR 

s0 • rev _buf, s0 • retran_buf 
{} 

uo · queue 

so 

RsR 

Is 

so · send_buf 
Uo 

(s, a, s') E Steps(Sack) 
a 

a 
£state( a) = RsR ( s), lstate( a) = 

trace(a) = trace(s, a, s') u u' 
RsR(s') 
a= send(m) a= (u, a, u') 

(s,a,s') m send_ 
m s • queue 

a = prepare new seg( s) 
prepare new seg(s) 

(s, a, s') 

a 

a 

s • send_buf s • retran_buf 

retran_buf 

s • snd_nxt = last(get_seq(s • retran_buf)) + 1 
s · snd_nxt 2: s' · rev _nxt 
s · retran_buf 

s' · rcv_buf 

a= send pktrs(ack) 
b3) 

a= deliver(m) 
m 

rcv_nxt 

RsR 
a = drop(b) 

drop(b) 
(s, a, s') 

s · rcv_buf 

s · queue 

s' 

s' 
a=send pktrs(ack, b1, b2, 

a 

a= (u,a,u') 
rcv_buf 

m 

s · rcv_buf 

■ 
rcv...nxt RsR 

b3) 

snd_nxt 2: rcv_nxt u'·queue 

a= send pktsr(seg) 
send sr(seg) 

a = rev pktrs(ack) 
a 

a 

(s,a,s) 

a = rev pktrs(ack, b1, b2, 

retran_buf 

(s, a, s') 
a = prepare retran seg( s) 

a 

a= rev pktsr(seg) 

(s, a, s') 
rcv_nxt 

s•rcv_buf 
s' · rcv_buf 

rev _nxt > ack 

a = reset sack 

(s, a, s') a 

s' ·retran_buf 
snd...nxt 2: rev ...nxt 

retran_buf f:. {} 
snd...nxt = last(get_seq(retran_buf)) + 1 

s · retran_buf s · snd...nxt 

s•retran_buf f:. {} 
rcv_nxt 

s' · rev ...nxt > s · rev ...nxt 
(s, a, s') 

s • retran_buf f:. {} 

traces(Sack) ~ traces(ReliableQ) 

■ 
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on a channel in either direction is; 2) when the sending of a
packet is enabled, whether it is new data, a retransmission, or an
acknowledgment, there is a lower bound ofon the processing
time needed to generate that packet; and 3) the retransmission
timeout is greater than the time it takes for the sender to receive
three duplicate ACKs when there is packet loss.

Given these timing assumptions, we can calculate the
worst-case latency of packets in a window of data for TCP
Reno and SACK TCP. In order to differentiate the performance
benefit possible because of the additional information provided
by SACK versus benefits that are due to the fact that TCP
Reno is conservative in its retransmission strategy, we use the
somewhat more aggressive retransmission strategy suggested
by Hoe [3]. With Hoe’s strategy, when an acknowledgment is
received after the retransmission of the first missing packet,
if there is other missing data, the acknowledgment of the first
retransmitted packet indicates the next missing packet, which
can then be immediately retransmitted. TCP Reno may actually
time out before the second packet is retransmitted. Since the
retransmission timeout period is typically much greater that the
round-trip time, the performance of TCP Reno may actually be
much worse in this situation than what we show in our analysis.

Because of space considerations, we do not include the
models here. However, the complete models are available
in [12]. The models, and , consist of
four components, as does the previous model. These are

, and , for
, and ,

and for .

A. Proofs of Latency Bounds

For the proofs of the next two propositions, we make the fol-
lowing assumptions: 1) at time the sender has a window of
size and also segments of data in its send buffer; 2) at time

the sender receives an ACK indicating it can send the first
element in the send buffer; 3) the first packets that the
sender sends after time get lost; and 4) at least three packets
are passed to the receiver after the loss of the firstpackets.
If the above assumptions hold, then for TCP Reno we have the
following proposition.

Proposition 1: In an execution of where the first
packets are lost in a data window, the lower bound for the

delivery of the th packet in the window is
after time .

Before we formally prove the proposition, we provide some
intuition. Note that when we refer to the firstpackets, it is
not a reference to the actual sequence numbers of the packet,
but to the order in which the packets were sent after time.
Also note that because an acknowledgment is received at time

indicating that the first packet currently in the send buffer can
be sent, any subsequent ACK indicating that that first element
can be sent is a duplicate ACK. The ACK received at time
could be the ACK of a synchronization packet or previous data
packets. The basic idea for the proof is that three duplicate ACKs
must be received before the first dropped packet is retransmitted,
and each subsequent dropped packet is only retransmitted after
the acknowledgment of the previously retransmitted packet. The

proof carefully adds up the minimum time required for these ac-
tions by taking into account the lower bounds on packet delivery
time and packet processing time.

Proof: The proof is by induction on . The packets
after the th packet cannot be delivered before theth packet
is received, because the receiver can only pass contiguous data
to the user. Thus, the proof for is sufficient to prove the
proposition.

For the base case, we assume . With the com-
ponent of , three duplicate ACKs must be received
before the sender retransmits a packet. Therefore, if the first
packets are dropped, packet causes the third duplicate
ACK. In the model of the sender, when each packet is sent, there
must be a wait of at leastbefore the next packet can be sent.
Therefore, packet cannot be sent before time .
In our model of the channel from the sender to the receiver, a
packet that is placed on the channel cannot be removed before
at least time has passed. Therefore, the earliest that packet

can arrive at the receiver is at time .
The receiver model needs at least time to generate a
response, so because of the minimumdelay on the transit time
of the ACK packet on , the earliest the sender can receive
this duplicate ACK is at time . The sender
can then retransmit packet one at time . The
lower bound for the arrival time of this packet at the receiver is

, at which time it may be passed to the user.

For the inductive case, we assume that the proposition holds
for packet and now show that it holds for packet

. Since can only pass contiguous data to the user,
we know it cannot pass packet to the user until it receives
packet . By the inductive hypothesis, packetis first received
at time after
time . Since can only indicate the first missing packet
it needs, the value of the acknowledgment number is less than

until after packet is received. If the receiver generates this
acknowledgment on receiving packet, this acknowledgment
arrives at the at time

. When the sender receives this
acknowledgment, it takes at least timeto retransmit packet

, which takes at least timeto arrive at the receiver. Thus,
packet arrives at the receiver at time

, which is equal
to after time .

The next proposition analyzes the performance of
in the same situation as the analysis for Proposition 1, that is,
with the same assumptions listed above. The proposition proves
that the SACK mechanism allows better performance when

than is possible with cumulative ACKs. For , both mech-
anisms have the same performance.

Proposition 2: In an execution of , where the first
packets are lost in a data window, the lower bound for the

delivery of the th packet in the window is
after time .

As in the proof of Proposition 1, the proof here is simply a
careful accounting of the minimum time required for a set of
actions. For SACK, after the three duplicate ACKs are received,
not only the first but all dropped packets can be retransmitted.
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Proof: The proof is by induction on . As is the case
for TCP Reno, this is sufficient because packets with sequence
number cannot be delivered before theth packet is de-
livered.

For the base case, we know that with the component
of , three duplicate ACKs must be received before the
sender retransmits a packet. Thus, at least three packets must
have arrived at to generate three duplicate ACKs. The
third duplicate ACK must contain a SACK block that indicates
that packets through have been received. Therefore,
when the sender receives the third duplicate ACK at time

, it knows that packet one throughare lost. Thus,
it can send a retransmission of packet one at time

, which because of the lower bound on delivery time of
arrives at the receiver at time after time .

For the inductive case, we assume the proposition holds for
, and we now show that it holds for . We

know that the SACK block sent by lets know
all the packets that are missing in this situation when the first
dropped packet is retransmitted. Therefore, since has a
lower bound of between the sending of packets, packet
may be retransmitted at period ofafter packet was retrans-
mitted. Since by the inductive hypothesis, packetarrives at the
receiver at time .
Because of the delay of , it must have been retransmitted
at time . Therefore,
packet can be retransmitted at time

, which means the earliest it can arrive
at the receiver is at time after
time .

The propositions show that when more than one packet is
dropped in a window of data, the SACK mechanism can im-
prove latency by a factor proportional to . The
time period is essentially a lower bound on round-trip
time, so the improvement is proportional to .
This latency results in idleness on the channel for the TCP con-
nection and a consequent loss in throughput. A similar result is
implied in [1] which shows that TCP implementations without
SACK must either retransmit at most one dropped packet per
round-trip time, or retransmit packets that might have already
been successfully received.

B. Other Performance Gains

In this section, we show that SACK can improve performance
relative to ACK even when window sizes are small and/or when
acknowledgment packets get lost. The performance gain can be
realized in these situations if the sender uses the additional in-
formation provided by the SACK blocks to further improve the
retransmission strategy.

1) Improved Retransmission Strategy:The underlying
retransmission strategy at the sender is to wait for a reliable
indication that a segment has been lost before retransmitting
the missing segment. One such indication is a retransmission
timeout. The fast retransmit algorithm of TCP Reno uses three
duplicate ACKs as a much quicker indication of a lost packet.
The number three is chosen for engineering reasons. That is,
one or two segments may be reordered, but three reordered
segments is very unlikely.

With SACK blocks, the sender can still wait for three du-
plicate ACKs, but SACK blocks provide another reliable indi-
cator of a missing segment. This indicator is a SACK block that
records a segment with sequence number sufficiently larger than
an unacknowledged segment. By the same engineering criterion
that says three duplicate ACKs is an indication of loss and not re-
ordering, we define “sufficiently larger” to be at least .
Thus, the sender may retransmit the first unacknowledged seg-
ment after it receives three duplicate ACKs, or it may retransmit
any unacknowledged segment that is at least less than
the largest sequence number of a segment acknowledged in a
SACK block. This strategy is not as aggressive as possible, but
is consistent with the current TCP strategy which allows for the
possibility of some reordering of packets. Because one SACK
packet can provide enough information for the sender to declare
a segment lost, this strategy allows the sender to recover from
losses even if the receiver did not receive the segments neces-
sary to generate three duplicate ACKs.

In the previous paragraph, we propose a retransmission
strategy at the sender based on waiting for an indication
that a segment with large enough sequence number has been
received. This is basically the same as the strategy used by
by Mathis and Mahdavi [9]. In their algorithm, they use a
new variable, , at the sender. This new variable is
updated to reflect the forwardmost data held by the receiver,
and is derived from the SACK blocks. Their strategy is to
have the sender wait until -
or three duplicate ACKs are received. We contend that
the correct strategy for when to retransmit is to wait until

- . That is, the inequality
does not have to be strict. Furthermore, the additional test for
three duplicate ACKs is not needed because whenever there
are three duplicate ACKs, -
is also true. However, - may
be true before three duplicate ACKs are received. Thus, the

- test subsumes the three
duplicate ACKs test.

2) Small Window Sizes and Lost Acknowledgments:The
fact that we use - as the crite-
rion for determining when to retransmit means that SACK may
help speed recovery even for cases where the window size is
so small that three duplicate ACKs may not be generated when
there are lost segments. The smallest window size where SACK
may be beneficial is four. Fig. 9 illustrates such a situation.
We assume the sender has already received an ACK asking for
packet 26 prior to the beginning of the figure. In the figure, the
first two packets are lost from a window of size four. Therefore,
only two duplicate ACKs are generated. However, the SACK
block indicates that packet 29 has been received, so the first
lost packet is recovered before a timeout. The second packet
is recovered when the acknowledgment for the first packet is
received. In the same situation with TCP Reno (Fig. 10), the
sender has to timeout before retransmitting the first lost packet.

The loss of an acknowledgment packet in the cumulative
ACK mechanism for transmission with small window sizes
can also cause performance degradation. Again, the problem
occurs because the sender needs to wait for enough duplicate
ACKs before it can decide that a packet is lost and retransmit
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Fig. 9. How the SACK protocol enables the sender to quickly recover from
losses even with a window size of four.

Fig. 10. With the cumulative ACK mechanism, the sender has to wait for a
timeout to recover from the losses.

packets. In the case of SACK, even though some number of
the packets are lost, when the first SACK arrives at the
sender, there is enough information to say at least three packets
have been received after the first hole in the sequence number
space. For example, in the situation described above where the
window size is four, if only the first data packet gets lost, but
the acknowledgment of the second data packet also gets lost,
then for cumulative ACK we again have the situation where
the sender has to timeout before it can retransmit the dropped
packet. In contrast, with SACK, the sender can recover on
receipt of a single SACK, rather than having to receive three
ACKs.

VII. CONCLUSION

In this paper, we presented a formal specification of the TCP
selective acknowledgment option. Our model succinctly and

completely captures the important properties of this mechanism.
Using our model, we are able to formally verify that the SACK
mechanism for TCP is safe in that it does not violate the prop-
erties of reliable end-to-end message delivery. We extended the
basic specification to include time using the GTA model [6].
We also used the GTA formalism to model the cumulative ACK
mechanism with fast retransmit. Using these models, we proved
that in certain worst-case scenarios, where there are multiple
packets lost consecutively, SACK can reduce latency by a factor
proportional to the round-trip time times the number of packets
lost.

Using our formal model, we were also able to explore ways
to use the additional information provided by SACK to improve
the retransmission strategy of TCP. We presented a retransmis-
sion strategy that allows the sender to retransmit whenever the
fast retransmit strategy allows a retransmission. However, our
strategy also allows the sender to retransmit in situations where
a fast retransmit may not occur. In these situations, our retrans-
mission strategy can prevent timeouts at the sender, and there-
fore, can improve TCP performance significantly. In particular,
our strategy is useful if window sizes are small and/or if ac-
knowledgment packets are lost.

APPENDIX I
NOTATION AND BASIC DEFINITIONS

We model buffers and data segments as lists. We also use
the terms “sequence” or “queue” synonymously with list. We
assume lists are finite and we write a listconsisting of the
elements as follows: . We
denote the empty list by .

A. General List Operations

The length of a list , written , is defined

as . If is nonempty, define

For , define

Single elements can appended to lists. For and
element , define

Concatenation of two lists and is written or sometimes
. If and , then

define

If is nonempty, define the set of subse-
quences as

and

sender receiver 

0 0 0 

1261211281 
0 0 0 0 

1261211281291 29 sack 26, (28, 29) 

0 0 1 0 -
I 26121128129[ sack-26, (28,30) --

0 0 1 1 

[ 26[ 21[ 28[ 29[ ~ 26 

sack 27' (28,30) --
0 1 1 H 281291 r___,2_,_1 ______________ ! 

snd_una = 27 __. 

ack 30 

I I I I I 
snd_una = 30 

I I 
rcv_nxt = 26 

12sl 1 

1261 12s1291 
rcv_nxt = 27 

[26[21[2sl29[ 
rcv_nxt = 30 

sender receiver 

126' I 1 
snd_una = 26 

1261211281 

1261211281291 

I 26121[ 28129[ 
I 26[ 21[ 28[ 29[ 

timeout 

I 26121[ 281 29[ 

I I I I I 
snd_una = 30 

(S)ack 

_ ~6- loss 
------ ►x I I I I I 

rcv_nxt = 26 
_ 27 loss 
-------- ►x 

28 

26 

ack 27 [261 l2sl29[ 
rcv_nxt = 27 

{} 

ll I 
le,. 

Ill= n 

l= (e1,e2 ... ,en) 

l = (e1,e2 ... ,en) 

le,. 
head([) = e1 

le,. 
last(l) = en 

le,. 
tail(l) = (e2, e3, ... , CnJ· 

. le,. 
tail(l, k) = (ek+l, ek+2, ... , CnJ• 

l=(e1, ... ,en) 

li h lilll2 
{i = (e1, ... ,en) l2 = (en+1,en+2---,em) 

le,. 
l1lll2 = (e1, ... ,en,en+1,en+2···,em)-

subseqs(l) ~ {(ei, ei+l, ... , ei+Jl I 1 :Si :Sn 

0 :S j :S n - i}. 
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If is nonempty, define

The operatorprefix takes a list and a number , and returns
a prefix of length , or if the list has fewer than elements, it
returns all the elements of the list. For ,
define

if
if

B. Operations on Lists With Special Elements

Let each element of the list be of the form or
, where is of some data type, is a sequence

number, and is a Boolean flag. Thedelete operator takes a
list , where the integer parts of the elements are assumed to be
sorted in ascending order and an integerand removes all the
elements with integer parts strictly less than. That is, given

, define

if
if

where such that otherwise

For lists with elements of type , we have the obvious
equivalent definition. Another version of the operator takes the
list and two integers, and , but is defined only if

, that is

The inst operator inserts a list of sorted contiguous elements
into another sorted list. Let where
and where . Let overlapbe
the set of the elements ofwhere the integer part of the element
is equal to the integer part of an element in, that is,

, and let .
Then define

where s.t.

s.t. .
Given , or

, define

Given , define

Given , define

Given , and sequence number, define

If , define

Let , where
. For the definition, please see the equation at

the bottom of the page. The largest contiguous prefix of a list
, written , is the contiguous prefix with the most

elements. Formally

s.t.

The operator returns the sequence number of the
last element of the largest contiguous prefix of a list. That is,
for a list , define

The operator takes a list and three blocks
of type where the first element of the
pair is less than or equal to the second element. Given

, define

where
and

.
The holes operator takes a list with elements of the form

and returns the set of subsequences of the list where
every element has . Formally

The operator takes a list with elements
of the form and a sequence number. Given

, define

if s.t.
s.t.

null otherwise

Theblocks operator takes a list with elements of type
and returns the set of all contiguous and isolated blocks of data.

if
if s.t.

l = (e1,e2, ... ,en) 

prefixes(/)~ { {}, (e1), (e1, e2), ... (e1, e2, ... , en)}. 

l k 
k k 

l = (e1, e2, e3, ... , en) 

k 

k S: n 
k >n. 

k 
l = ((di, s1), (d2, s2), ... , (dn, Sn)) 

delete(l, k) 

~ {~} 
- ((di, Si), ~di+1,_Si+1), • • •, (dn, Sn)) 

i = mm( 1. .. n) Si 2 k 

( di, Si, bi) 

k S: s1, 
k > Sn, 

l = ((di, s1, b1), (d2, s2, b2), ... , (dn, sn, bn)) 
[::,, 

remove_flag(l) = ((d1, s1), (d2, s2), ... , (dn, sn)). 

l = ((di, s1, b1), (d2, s2, b2), ... , (dn, Sn, bn)) 
[::,, 

unsack(l) = ((di, s1, 0), (d2, s2, 0), ... , (dn, Sn, 0)). 

l = (di, d2, ... , dn) k 
[::,, 

enum(l, k) = ((d1, k), (d2, k + l), ... , (dn, k + n - 1)). 

l = ((di, s1), (d2, s2), ... , (dn, Sn)) 

init_flag(l) ~ ((di, s1, 0), (d2, s2, 0), ... , (dn, sn, 0)). 

l = ((d1,s1),(d2,s2), ... ,(dn,sn)) 
j ⇒ Si < Sj 

Lcprefix(l) 

Lcprefix(l) ~ l' E cprefixes(l) Vl" : 

VNj : i < 

l" E cprefixes(l) /\ l"-::/- l', ll'I > ll''I• 
seq_max_con 

l 

seq_max_con(l) = last(get_seq(Lcprefixes(l))). 

set_sack 
(Int X Int) 

k2 S: Sn l = ((di, s1, bi), (d2, s2, b2), ... , (dn, Sn, bn)) 

delete(l, k1, k2) ~ ((d1, s1), (d2, s2), ... , set_sack(l, (k1, ki), (k2, k;), (k3, k;)) 

(dk2 ,Sk2 ), ••• ,(dn,sn)). ~ ((d1,s1,b~),(d2,s2,b;), ... ,(dn,Sn,b~)) 

l overlap= 
t = lll+m-loverlapl 

· (l l') t::,, ( " " ") inst , = e1 , e2 , ••• et 

('<IN j : i < j ⇒ s? < s'j) I\ (3u ( e~ = ei) /\ ('vv : 
0 < v S: m ⇒ e'~+v = ei+v) I\ ('vh : h < u ⇒ e~ = 
eh) I\ ('vk: (u+m < k S: t) ⇒ (31 e% = e1))) 

l ((di, s1), (d2, s2), ... , (dn, Sn)) 
l = ((d1, s1, b1), (d2, s2, b2), ... , (dn, sn, bn)) 

[::,, 
get_data(l) = (d1, d2, ... , dn) 

[::,, 
get_seq(l) = (s1, s2, ... , sn)-

f. l ~ { prefixes([) 
cpre ixes() - prefixes(prefix(l, k)) 

Vj : ((k1 '5: j < kD V (k2 '5: j < k~) V (k3 '5: j < 
k~)) ⇒ bi= l 'vh: ((h < k1 V h 2 kD I\ (h < k2 V h 2 
k~) I\ (h < k3 V h 2 k~)) ⇒ b~ = bh 

bi= 0 
[::,, 

holes(l) = { (ei, ei+l, ... ,) E subseqs(l) I Vei : bi = 0}. 

nxt_unsacked 
(~,~,~) m 

l = ((di, s1, b1), (d2, s2, b2), ... , (dn, Sn, bn)) 

nxt_unsacked(l, m) 

~ rd;,s;) 3i bi = 0 I\ Si > ml\ 
'vj Sj > m I\ Sj < Si : bi= l 

'<lei, Si + 1 = Si+l 

3k 1 5: i < k, Si + 1 = Si+l /\ Sk+l - Sk > l. 
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Each block is represented by a pair of type . That is,
given , where

, define

s.t.

APPENDIX II
PROOF OFINVARIANTS

We use the standard inductive technique for proving the in-
variants. That is, we show that the invariants hold for the start
states and then show that for every step if the invariant
holds in state , then it also holds in state. The invariants are
typically of the form “if (premise) then (consequence)”,
where might be true. Therefore, we only need to consider ac-
tions that could cause to go from false to true or could cause

to go from true to false. We call these actions critical actions.
Proof of Invariant 1: In the start state

and , so the invariant holds for the base
case. The inductive steps for Part 1 and Part 2 of this invariant
are straightforward. We now consider the critical actions for Part
3.

- - : This action may cause the conse-
quence to go from true to false. However, .

- and
- : These actions may cause

the premise of Part 3 to go from false to true if
and . We know
that
from Part 2 of this invariant. Thus, since after this step

, if then
.

Proof of Invariant 2: In the start state
, and are all empty, so

the invariant holds in this state.
- - : This action is critical as it may

cause the premise to go from false to true. By the definition of
theenumoperator it is clear that Part 1 holds after this step. For
the case where , this action does not cause
the consequence to become false, because Part 2 of Invariant 1
tells us that in this situation

. Part 2 of the invariant clearly follows from
Part 1, and it is easy to see that Part 3 follows from Part 2. Part
4 follows from Part 3 and the definition of the operator.

Proof of Invariant 3: In the start state
, and

, so the base case is true.
For the inductive step of Part 1, since the premise is true, we

need to show that there are no critical actions. Using Invariants
2 and 1, it is straightforward to see that no action causes the
consequences of Part 1 to become false. The inductive cases for
Parts 2 and 3 are straightforward.

Proof of Invariant 4: In the start state
, and , so the

invariant holds for the base case.
- - : This step may cause the

premise of the invariant to go from false to true by adding
elements to and by assigning a new value to

. However, by definition of theenum operator we
know that has sequence numbers starting from

and from Invariants 3 and 2 we know that in state
, there are no elements of or any

segment with sequence number greater
than or equal to .

- and - - : By the
inductive hypothesis, the invariant holds in state, so it clearly
holds in state after these actions.

- : Since by the inductive hypothesis any
element of with the same sequence number as an element
of , or has the same
data item, when this segment gets inserted into , the
invariant holds in state .
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C 

retran_buf = {} 
snd_una = snd....nxt 

prepare new seg( s) 

rev pktrs(aek) 
rev pktrs(aek, b1, b2, b3) 

retran_buf =/ {} 

aek :'.S snd....nxt 
aek > last(get_seq(s retran_buf)) 
s · snd....nxt = last(get_seq(s · retran_buf)) + 1 

s' · snd_una = aek s' · retran_buf = {} 
s' · snd_una = s' · snd....nxt ■ 

retran_buf, rev _buf in_transi t 51• 

prepare new seg(s) 

s • retran_buf =/ {} 

s · rev....nxt = last(get_seq(s · 
retran_buf)) + 1 

inst ■ 

retran_buf 
segment = rev_buf = {},rev....nxt = snd....nxt 
in_transitsr = in_transitrs = 0 

■ 

prepare retran seg( s) 

s · retran_buf 
s · segment 

s' · segment 
s • rev....nxt 
s s · retran_buf, s · rev _buf 

t E s · in_transit 
s · snd....nxt 

send pktsr(seg) prepare retran seg(s) 

s' 
rev pktsr(seg) 

s·seg 
s · rev _buf, s · retran_buf 

s' 

s 

s · segment 
s -rev_buf 

■ 
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