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The problem of signal compression is to achieve a low bit rate 
in the digital representation of an input signal with minimum 
perceived loss of signal quality. In compressing signals such as 
speech, audio, image, and video, the ultimate criterion of signal 
quality is usually that judged or measured by the human receiver. 
As we seek lower bit rates in the digital representations of these 
signals, it is imperative that we design the compression ( or coding) 
algorithm to minimize perceptually meaningful measures of signal 
distortion, rather than more traditional and tractable criteria such 
as the mean squared difference between the waveforms at the input 
and output of the coding system. 

This paper develops the notion of perceptual coding based on 
the concept of distortion masking by the signal being compressed, 
and describes how the field has progressed as a result of advances 
in classical coding theory, modeling of human perception, and 
digital signal processing. We propose that fundamental limits in 
the science can be expressed by the semi-quantitative concepts of 
perceptual entropy and the perceptual distortion-rate function, 
and we examine current compression technology with respect to 
that framework. We conclude with a summary of future challenges 
and research directions. 

I. INTRODUCTION 

The problem of signal compression is to achieve a low 
bit rate in the digital representation of an input signal with 
minimum perceived loss of signal quality. The function of 
compression is often referred to as low bit rate coding, 
or coding, for short. As we seek lower bit rates in the 
digital representation of a signal, it is imperative that we 
design the coding (or compression) algorithm to minimize a 
perceptually meaningful measure of signal distortion, rather 
than more traditional and more tractable criteria such as 
the mean squared difference between the waveforms at the 
input and output of the coding system. 

Central to the above idea is the notion of distortion 
masking or noise masking, whereby the distortion (or 
noise) that is inevitably introduced in the coding process, 
if properly distributed or shaped, is masked by the input 
signal itself. The masking can be partial or total, leading 
either to increased quality compared to a system without 

Manuscript received November 2, 1992; revised July 7, I 993. 
The authors are y,ith the Signal Processing Research Department , 

AT&T Bell Laboratories, Murray Hill, NJ 07974. 
IEEE Log Number 9212430. 

noise shaping, or to perfect signal quality that is equivalent 
to that of the uncoded signal. In either case, the masking 
occurs because of the inability of the human perceptual 
mechanism to distinguish two signal components ( one 
belonging to the signal, one belonging to the noise) in the 
same spectral, temporal, or spatial locality. An important 
effect of this limitation is that the perceptibility of noise 
can be zero even if the objectively measured local signal­
to-noise ratio is modest or low. If the noise distribution is 
such that ihe masking effect is successfully invoked at all 
points in frequency, time, and space, the result will be a 
global coding operation of high, or perfect signal quality. 

Ideally, the noise level at all points in the signal space 
is exactly at the level of just-noticeable distortion (JND). 
This corresponds to perfect signal quality at the lowest 
possible bit rate. The signal is now neither overcoded nor 
undercoded. This bit rate is a fundamental limit to which 
we can compress the signal with zero (perceived) distortion. 
We call this limit the perceptual entropy. A signal coding 
algorithm that is based on the criterion of minimizing the 
perceived error is called a perceptual coding algorithm. 

The basic notion of maximizing perceived signal quality 
rather than the more tractable mean squared error is not 
novel. However, significant progress is now being made 
in the sophistication, degree, and dynamics of perceptual 
coding. Models of human audition and vision, while still 
imperfect, are leading to more accurate models for JND 
and noise masking. In parallel, the arithmetic capabilities of 
digital signal processors have increased to the point where 
the computational complexity of perceptual coding can be 
supported in practical hardware. 

While perceptual coding is important for all the signals 
mentioned earlier, it is most significant for signal classes 
that lack a good source model. Speech signals do have 
a universal and reliable production model, based on our 
knowledge of the human vocal apparatus. The source 
model leads directly to efficient models for removing signal 
redundancy. These models are utilized in techniques such as 
linear predictive coding (LPC) to reduce the bit rate while 
maintaining a specified level of signal quality. In general, 
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audio, image, and video signals do not have a similar single 
or universal source model. As a result, more of the burden 
for bit rate reduction falls on the sink model-the notion 
of shaping the noise into components of distortion that are 
perceptually unnoticed, the paradigm of perceptual coding. 

The topics of speech, audio, and image coding constitute 
significant separate topics in their own right. The purpose 
of this paper, however, is to summarize generic tools 
of perceptual coding, while drawing freely from signal­
specific implementations in individual sections of the paper. 
In order to cover this broad ground in a single article, we 
have assumed a basic knowledge of the principles of coding 
[65], and we have taken the liberty of writing subsections 
that are sometimes shallow and cryptic. 

The promises of perceptual coding are significant. But 
several issues need to be addressed in order to achieve 
its maximum potential. Traditional perceptual models have 
been generally based on global knowledge. As a result, they 
are not locally optimal, but on the other hand are fairly 
robust across variations such as those in input signal or 
viewing distance (in the case of image and video coding). 
The new generation of signal-dependent or dynamic models 
which are based on local properties are more powerful in 
the context of input nonstationarity, but they can also be 
more sensitive to the accuracy of signal analysis, and to the 
correctness of the mapping from the signal analysis to the 
JND model for quantization. Designing dynamic perceptual 
systems that combine peak performance with robustness is 
a formidable research problem. 

The sections of the paper are organized as follows. 
Section II is an essay on signal compression. This in­

cludes a description of four dimensions of performance: 
signal quality, bit rate, algorithm complexity, and commu­
nication delay. It is followed by a summary of applications, 
standards and technology goals. Section II also discusses 
two important tools in the trade: reduction of redundancy in 
the input signal, and the removal of irrelevant information 
in the operation of quantization. Focus in this paper will 
be on the second operation, the utilization of perceptual 
irrelevancy for realizing high quality at low bit rates. 

Section III provides a very brief and pragmatic discussion 
of the properties of audiovisual signals, and the physics 
of the human perceptual mechanism, as utilized in our 
examples of perceptual coding. 

Section IV describes how certain basic building blocks 
in signal compression algorithms are qualitatively matched 
to the properties and methods of human perception. These 
building blocks, filter banks for example, provide an advan­
tageous framework for utilizing signal redundancy as well 
as for the subsequent utilization of the irrelevancy principle 
by the quantizing system. 

Section V discusses amplitude quantization. This is the 
part of the compression algorithm where the flexibilities 
afforded by the perceptual mechanism are utilized in con­
serving the bit rate in the digital representation of the 
signal being coded. This section of the paper describes the 
evolution of perceptual coding. It begins with primitive 
examples of quantizers that minimize a criterion more 
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Fig. 1. Digital coding for signal compression. 

useful than minimum mean squared error (mmse), and it 
concludes with systems driven by the perceptual notions of 
just-noticeable distortion (JND) and minimally noticeable 
distortion (MND). 

Sections VI-IX discuss perceptual coding algorithms that 
have proven useful in the compression of speech, audio, 
image, and video signals, and point out the extent to which 
these algorithms have impacted current technology and 
international standards for signal compression. 

Section X is a summary of research directions. It de­
scribes the need to incorporate notions of perceptual coding 
even more strongly in existing standards as well as in 
evolving technology. It also describes research advances 
that will be needed to make perceptual coding less of an art, 
and to establish it as a robust and well-understood scientific 
discipline. 

II. OVERVIEW OF SIGNAL COMPRESSION 

The material in this section is borrowed from a recent 
article by one of the authors [62]. The first two sections 
of that article are reproduced here as background for the 
subsequent discussion of perceptual coding in the remainder 
of this paper. Readers well-versed in the theory of signal 
compression and its application to speech, audio, and image 
signals may choose to skip this section and proceed directly 
to Section III. 

A. Signal Compression 

Signal coding is the process of representing an informa­
tion signal in a way that realizes a desired communications 
objective such as analog-to-digital conversion, low-bit-rate 
transmission, or message encryption. In the literature, the 
terms source coding, digital coding, data compression, 
bandwidth compression, and signal compression are all used 
to connote the function of achieving a compact digital 
representation of a signal, including the important subclass 
of analog signals such as speech, audio, and image. When 
the terms coding, encoding, and decoding are used in this 
paper, they will all refer to the specific common objective of 
compression. An important theme of our discussion is the 
human receiver at the end of the communication process 
(Fig.l). 

The characteristics of human perception are of relevance 
to the optimization of a variety of functions in digital 
communication networks (170]. For example, one needs 
to consider the subjective consequences of communication 
delay (75], (79], (124], [160], differential delay, and jitter, 
as in some packet network designs (164], the effects of 
spatial disparity between audio and visual channels (81], 
and the effects of imperfect transmission channels [26]. 
[134]. Focus in this paper is on the subjective effects of 
signal distortion introduced in the process of compression; 
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Fig. 2. Block diagram of a digital communication system. 

and on the use of perceptual criteria as an integral part of 
coder design. 

Figure 2 defines the role of signal compression (source 
coding) in digital communication. While the source coder 
attempts to minimize the necessary bit rate for faithfully 
representing the input signal, the modulator-demodulator 
(modem) seeks to maximize the bit rate that can be sup­
ported in a given channel or storage medium without 
causing an unacceptable level Pe of bit error probability. 
The bit rate in source coding is measured in bits per sample 
or bits per second (bps). In modulation, the rate is measured 
in bits per second per Hertz (bps/Hz). The channel coding 
boxes add redundancy to the encoder bit stream for the 
purpose of error protection. In so-called coded modulation 
systems, the operations of channel coding and modulation 
are combined for greater overall efficiency. The processes 
of source and channel coding, as well as the process 
of multi-user networking, can sometimes be integrated to 
increase the efficiency of digital communication. 

The capability of signal compression has been central 
to the technologies of robust long-distance communica­
tion, high-quality signal storage, and message encryption. 
Compression continues to be a key technology in communi­
cations in spite of the promise of optical transmission media 
of relatively unlimited bandwidth. This is because of our 
continued and, in fact, increasing need to use bandlimited 
media such as radio and satellite links, and bit-rate-limited 
storage media such as CD-ROM's and solid-state memory 
chips. 

B. Background 

The information-theoretical foundations of signal com­
pression date back to the seminal work of Shannon [137], 
[138]. His mathematical exposition defined the information 
content or entropy of a source and showed that the source 
could be coded with zero error if the encoder used a 
transmission rate equal to or greater than the entropy, and if 
the encoder used a long processing delay, tending in general 
to infinity. In the special case of the infinite alphabet or 
analog source, the encoding error tends to approach zero 
only at an infinite bit rate. However, in practice, the error 
is close enough to zero at finite rates. In the case of a finite­
alphabet or discrete-amplitude source, the entropy is finite, 
and the bit rate needed for zero encoding error is finite 

as well. An important example of a finite-entropy source 
is an analog signal stored in a computer as a sequence 
of discrete amplitudes. The raw (uncompressed) bit rate of 
such a signal is typically 8, 16, or 24 b/sample, respectively, 
for a grey-level image, high-quality speech (or audio), and a 
color image with three 8-b components. The entropy, or the 
minimum bit rate for zero encoding error, will be typically 
smaller because of the statistical redundancy in the input 
sequence. 

The inadequacies of the classical source coding theory 
are twofold. First, the theory is nonconstructive, offering 
bounds on distortion-rate performance rather than tech­
niques for achieving these targets. However, the classical 
theory teaches us important qualitative recipes such as 
delayed encoding, as in vector quantization with a large 
vector dimension or block length. Second, the source model 
used in the classical theory does not capture what are now 
recognized as fundamental nuances in audio and visual 
signal processing. These include the fact that the input 
signal is non-Gaussian, nonstationary, and in general has 
a complex and intractable power spectrum; and further, 
the observation that the human receiver does not employ 
a mean-squared-error criterion in judging the similarity 
of a coded signal to the uncoded original. As a result 
of the above complications, some of the observations of 
classical source coding do not carry over in an obvious 
way to signal compression as discussed in this paper. 
One such result is that the source entropy measured with 
a perceptual distortion criterion is different from, and 
generally much lower than, the classical entropy measured 
with a mean-squared-error criterion for coding distortion. 
Another classical result that needs to be re-examined is the 
thesis that in principle, the processes of source and channel 
coding can be separated without loss of optimality. This 
model would hold very nicely for the digital communication 
of data sequences, but does not necessarily suggest an 
optimal solution to the complex problem of communicating 
audio or visual signals over a noisy channel with high 
perceptual fidelity, robustness, and bit-rate efficiency. 

The technology and literature of signal compression has 
therefore evolved independently, with basic and valuable 
inspiration from Shannon's theory [137], [138] and the 
rate-distortion theory that followed it [9], [33], [41], [58], 
[ 172], but also with a great deal of innovative engineering 
on the part of the practitioners of signal compression [I]. 
[28], [42], (43], [49], [52], [57], [63], [65], 187], [93], 
[140], [141], speech coding [5], [6], [27], [361, (37], [44], 
[46], [54], [83], [90], [94], [122], [135], [148], [173], audio 
coding [ll], [67], [96], [146], and image (and video) coding 
[29], [35], [39], [47], [48], (53], [84], (99], [100], [101], 
[103], [110], [118], [126], [131], [133], [168], [171]. In par­
ticular, work on speech compression has benefited greatly 
from studies of speech production and speech perception 
by humans, and research on visual perception has similarly 
impacted the parallel field of image compression. Although 
the mathematical theory of source coding is a common 
denominator, the fields of speech and image coding have 
been generally discussed by different schools, with a few 
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recent exceptions. One of the purposes of this paper is to 
point out that as we address future technology targets in 
the disciplines of speech and image compression, common 
threads continue to exist. One such commonality is the in­
creasing importance of matching the compression algorithm 
to the human perceptual mechanism-the auditory process 
in one case, and the visual process in the other. Another 
common element is the body of newly emerging techniques 
for quantization and time-frequency analysis, in support of 
perceptually tuned coding. 

C. The Dimensions of Performance in Signal Compression 

The generic problem in signal compression is to minimize 
the bit rate in the digital representation of the signal while 
maintaining required levels of signal quality, complexity 
of implementation, and communication delay. We will 
now provide brief descriptions of the above parameters of 
performance. 

1) Signal Quality: Perceived signal quality is often mea­
sured on a five-point scale that is well known as the mean 
opinion score or mos scale in speech quality testing-an 
average over a large number of speech inputs, speakers, 
and listeners evaluating signal quality [32], [50], [65], 
[74], [76], [158]. The five points of quality are associated 
with a set of standardized adjectival descriptions: bad, 
poor, fair, good, and excellent. Every example of an input 
being evaluated is assigned one of these levels in the 
course of a subjective test. Five-point scales of quality 
have also been used in audio and image testing [96], 
[165]. An alternative methodology for subjective testing, 
better suited to image and audio work, is based on an 
inverted scale that categorizes levels of impairment [14], 
[15], [147] (very annoying, annoying, slightly annoying, 
perceptible but not annoying, and imperceptible). Other 
variations include the notion of averaging measurements 
over a selected difficult subset of input signals [45], [145], in 
order to provide conservative scores of coder performance. 
In some illustrations of this paper, we use the original 
notion stated in this paragraph, a quality (rather than an 
impairment) scale, and an average over a large set of typical 
inputs, in each of the four generic categories: telephone­
bandwidth speech, CD-grade audio, still images, and video. 
Our quantitative discussion of image and video quality will 
be impressionistic at best, given the multidimensionality 
of the problem (dependence of subjective quality on input 
scene, picture resolution, image size, and viewing distance), 
and given the general lack of formal quality assessments 
in recent image coding literature. In the field of speech 
coding, mos evaluations are well-accepted and sometimes 
supplemented with measurements of intelligibility[155] and 
acceptability [154]. 

2) Bit Rate: We measure the bit rate of the digital repre­
sentation in hits per sample, hits per pixel (bpp), or bits per 
second (bps), depending on context, where pixel (sometimes 
shortened to pet) refers to a picture element, or an image 
sample. The rate in bits per second is merely the product of 
the sampling rate and the number of bits per sample. The 
sampling rate is typically slightly higher than about twice 
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Table 1 Digital Audio Formats 

Fonnat Sampling Bandwidth Frequency Band 
Rate (kHz) 

(kHz) 

Telephony 8 3.2 (200-3400 Hz) 

Teleconferencing 16 7.0 (50--7000 Hz) 

Compact Disk 44.1 20.0 (20-20000 Hz) 
(CD) 

Digital Audio 48 20.0 (20-20000 Hz) 
Tape (DAT) 

Table 2 Digital Television Fonnats (CIF: Common Intennediate 
Format; CCIR: International Consultative Committee for Radio; HDTV: 
One Example of a High Definition Television Fonnat) 

Format Spatio-Temporal Sampling Rate 
Resolution 

CIF 360 X 288 X 30 3 Mpps 

CCIR 720 X 576 X 30 12 Mpps 

HDTV 1280 X 720 X 60 60 Mpps 

the respectivesignal bandwidth, as required by the Nyquist 
sampling theorem [65]. Table 1 defines four commonly 
used grades of audio bandwidth. Typical sampling rates are 
8 kHz for telephone speech, 16 kHz for AM-radio-grade 
audio, and 44.l or 48 kHz for CD (compact-disk) audio or 
DAT (digital audio tape) audio, both of which are signals 
of 20-kHz bandwidth. 

Table 2 defines commonly used grades of video in terms 
of sampling rate in pixels per second (pps) or Hertz (Hz). 
The sampling rates for the CIF, CCIR, and HDTV formats 
defined in the table are 3, 12, and 60 MHz. Respective 
Nyquist bandwidths are approximately 1.5, 6, and 30 MHz, 
although bandwidth-limiting of image and video signals 
is in general less formal than the bandlimiting operations 
used for speech and audio signals. The HDTV format in 
the table is merely a specific example, one of several 
alternative current formats. The sampling rates in the table 
refer to luminance information. Overheads for including 
color information are system-dependent. In the CIF format, 
the color overhead is 50% in sampling rate, corresponding 
to a 50% subsampling relative to luminance in each of 
the horizontal and vertical directions, and a total of two 
chrominance components. Higher degrees of subsampling 
are sometimes used, leading to overall color overheads 
lower than 50%. In the line-interlaced CCIR format, the 
subsampling of color is performed only in the horizontal 
direction, and the final overhead in sampling rate due to 
color is 100%. 

3) Complexity: The complexity of a coding algorithm is 
the computational effort required to implement the encoding 
and decoding processes in signal processing hardware, and 
it is typically measured in terms of arithmetic capability 
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and memory requirement. Coding algorithms of significant 
complexity are currently being implemented in real time, 
some of them on single-chip processors. Other, related 
measures of coding complexity are the physical size of the 
encoder, d~oder, or codec (encoder plus decoder), their 
cost (in dollars), and the power consumption (in watts 
or milliwatts, mW), a particularly important criterion for 
portable systems [24], [142]. 

The technology of digital signal processing (DSP) has 
been evolving quite rapidly. One aspect of this progress 
can be measured in terms of the millions of instructions 
per second (mips) that can be accommodated on a single 
general-purpose processor, as a function of time. The 
evolution is exponential, with no evidence of saturation 
in the near-term [89]. In the five-year period from 1990 
to 1995, the typical per-chip capability is expected to 
increase tenfold, from about 25 mips to about 250 mips per 
chip. Supporting this evolution in arithmetic capability is 
a parallel advance in memory capability. The significance 
of the above advances is that sophisticated compression 
algorithms that demand increasing levels of complexity will 
be supported by DSP technology, in the form of single­
chip, multichannel implementations of the relatively less 
complex algorithms, and realistic parallel-processing ma­
chines for the more complex techniques. Power dissipation 
and cost are also expected to decrease steadily, making 
DSP technology increasingly useful for personal portable 
devices and for other high-volume consumer applications. 

4) Communication Delay: Increasing complexity in a 
coding algorithm is usually associated with increased 
processing delays in the encoder and decoder. Although 
improved DSP capability can be used as an argument 
in favor of more sophisticated algorithms, the need to 
constrain communication delay should not be underem­
phasized. This need places important practical restrictions 
on the permissible sophistication of a signal compression 
algorithm. Depending on the communication environment, 
the permissible total delay for one-way communication 
(coding plus decoding delay) can be as low as about 
I ms (as in network telephony under conditions of no 
echo control),. and as high as about 500 ms (as in 
very low bit rate videotelephony (or videophony) where 
the delay performance is severely compromised in the 
interest of obtaining a received picture good enough 
for communication). In one-way applications such as 
broadcasting, processing delay is somewhat less relevant 
although one attempts to minimize it because of its impact 
on latency in station switching. Communication delay is 
largely irrelevant for one-way communication for storage, 
message-forwarding, and voice mail. 

D. Coding and Digital Communication 

Figure 3 describes performance criteria in digital com­
munication, by recapitulating the four dimensions of coder 
performance, explained specifically for source coding in 
Section 11-C. These dimensions of performance apply to 
channel coding and modulation as well, although the units 
of quality and bit rate are different. Respective units, 

SIGNAL QUALITY 
mos,pe 

EFFICIENCY 
bps, bps/Hz 

COMPLEXITY 
Mips,mW 

DELAY 
ms 

Fig. 3. The dimensions of coder petfonnance. 

defined either in Section 11-C or in the third paragraph of 
Section II-A, appear along the quality and efficiency axes 
in Fig. 3. Along each axis, the left and right entries refer, 
respectively, to source and channel coding. The units of 
complexity and delay are identical for source and channel 
coding, although those parameters are used for different 
reasons in the two cases. Processing delay is used in source 
coding to remove signal redundancy or to obtain a frame­
work for reducing irrelevancy in quantization. In channel 
coding, delay may be used for adding error protection bits 
and for processes such as interleaving for the randomization 
of burst errors. 

The axes in Fig. 3 define a four-dimensional space 
in which some regions are theoretically allowable, and 
some regions are desirable for specific communication 
applications. Researchers in source and channel coding 
attempt to describe the allowable regions and the tradeoffs 
as quantitatively as possible. The focus of this paper 
is on the domain of source coding. In particular, we 
shall comment extensively on the quantitative relationship 
between compressed signal quality and bit rate. 

E. Applications of Signal Compression 

Figure 4 depicts various applications of signal compres­
sion. The vertical axis in the figure does not have any 
special meaning. The numbers on the horizontal axis are bit 
rates after compression. The labels in the figure represent, 
in an approximate fashion, current capabilities. The bit rates 
spanned by these labels, and in some cases, the bit rates on 
which the labels are centered, represent the rates at which 
compressed signals render the corresponding application 
practical. As our capabilities in compression improve, the 
labels in the figure tend to shift to the left. Signals covered 
in Fig. 4 include telephone speech, wideband audio (speech 
and music), and a wide range of image signals, including 
still pictures and motion video. In the following paragraphs, 
we provide very brief summaries of current capabilities in 
the compression of speech, audio, and image signals. 

1) Telephone Speech: Speech compressed to 2.4 kbps 
provides a high level of intelligibility. However, speech 
quality, naturalness, and speaker recognizability are all poor 
at this bit rate. The need for digital encryption over a very 
wide range of transmission media is the main reason why 
2.4-kbps speech is widely used, particularly in government 
and defense communications [148]. 
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Fig. 4. Applications of signal compression. 

A bit rate of 4.8 kbps is sufficient to provide measurable 
gains in naturalness and speaker recognition. This bit rate 
is also of interest to government and defense applications 
[72]. With the increased demands of mobile telephony 
over bandlimited channels, 4.8-kbps speech coding is also 
becoming very important for commercial communications 
using digital cellular radio. At 8 kbps, which is the bit 
rate chosen for first-generation digital cellular telephony 
in North America [44], speech quality is high, although 
significantly lower than that of the uncoded telephone-band 
signal. 

At 16 kbps and beyond, speech quality is extremely close 
to that of the original, especially after a single stage of 
encoding and decoding. We use the term network quality 
to signify a performance level at which there is sufficient 
margin for additional functions such as multiple stages 
of encoding and decoding for speech, as well as high­
accuracy transmission of nonspeech voiceband signals such 
as modem waveforms. The bit rate required for network­
quality telephony, which was historically 64 kbps, and later 
reduced to 32 kbps [65], has now come down to 16 kbps 
[20]. 

The application of voicemail involves speech storage 
as well as speech transmission for forwarding the voice 
message. Depending on the network environment used for 
this service, and the desired speech quality in the received 
message, the bit rate can range from 4 to 32 kbps, with 
increased focus expected in the 4- to 16-kbps range in the 
future. 

2) Wideband Speech: The 7-kHz speech signal has a 
higher voice quality than traditional telephony. This is 
partly due to increases in speaker presence and the 
naturalness of speech, as provided by the low-frequency 
enhancement (the added band from 200 to 50 Hz; see Table 
1 ), and partly due to increased intelligibility and crispness 
provided by high-frequency enhancement (the added band 
from 3400 to 7000 Hz). The higher quality of wideband 
speech is desirable for the extended communication task of 
a long audioconference call. It is also appropriate for other 
applications of loudspeaker telephony and for systems that 
include a high-quality speakerphone. It is also known that 
inexpensive electret microphones can support an incoming 
bandwidth of 7 kHz. 
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The standardized bit rate for high-quality coding of 
7-kHz speech is 64 kbps [16], [96], typically for an 
audioconference application using the Integrated Services 
Digital Network (ISDN). Recent algorithms have provided 
7-kHz capability at 32 kbps [64], permitting stereo­
teleconferencing or dual-language programming over basic 
rate ISDN. The projected capability for high-quality coding 
of 7-kHz speech is at least as low as 16 kbps [40], [127], 
[ 166]. 

The lower bit rates for wideband speech are also central 
to high-quality conferencing with combined audio and 
video. Current practice, at low values of total bit rate, such 
as 64 kbps, is to limit speech to the traditional telephone 
bandwidth of 3.2 kHz, and to use 8 kbps, or at the most, 16 
kbps, for the coding of the audio channel. With advances 
in wideband speech compression, 16-kbps coding of 7-,kHz 
audio can be expected to be an important component of 
audiovisual confere11cing. 

3) Wideband Audio: On a compact disk (CD), 20-kHz 
audio is sampled at 44.1 kHz and stored at 16 b/sample, 
or 706 kbps per sound channel. Current algorithms for 
audio compression [11], [45], [67], [98], [108], [145], [146] 
provide CD quality at 128 kbps per channel, and even 
at 64 kbps per channel for many audio inputs. These 
capabilities are important for emerging digital systems for 
audio broadcast and music preview. The capabilities are 
also central to applications that combine audio and visual 
functions, such as CD-ROM multimedia with a total bit 
rate of about 1.5 Mbps and digital television (Fig. 4) with 
multiple sound channels. 

4) Still Images: A 500 x 500 pixel color image, with 
the uncompressed format of 24 bits per pixel (bpp), will 
require about 100 s of transmission time over a 64-kbps 
link. With 0.25-bpp coding, the transmission time is about 
l s, a number that would be deemed excellent for an 
interactive "slide show" [ 121]. Current technology for 
coding a 500 x 500 image is capable of providing good 
picture quality at 0.25 bpp for a wide class of color 
images, assuming a viewing distance of about 6 times 
the picture height [128], (129], (156]. For most images, 
increasing the bit rate to l bpp provides excellent and, 
in some cases, perceptually perfect image quality. The 
corresponding transmission time over a 64-kbps link is 
4 s. High-resolution facsimile typically takes several sec­
onds of transmission time over a 64-kbps channel even after 
the use of powerful techniques for fax compression (59], 
[62J, [104], I 1121. 

Techniques for progressive transmission [59 ], [ I 56], [ 157] 
involve a first stage of coding characterized by a low bit rate 
and rapid picture access, followed if needed, by additional 
stages of transmission that upgrade the picture quality. 
Progressive transmission is ideal for applications such as 
telebrowsing. It is also appropriate for applications where 
one expects display modalities (terminals and printers) of 
varying resolutions. The price paid for this flexibility is that 
progressive systems provide a slightly lower signal quality 
at a given bit rate compared to a single-bit rate algorithm 
tuned to that specific rate. 
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The image-phone application in Fig. 4, which assumes 
the use of a telephone line and a 9.6-kbps modem, involves 
pictures of very low spatial and temporal resolution. A 
typical resolution would be 100 x 100 pixels per frame, 
and about 3 to 6 frames per second: With an even lower 
temporal resolution such as about 1 frame per second, the 
system degenerates to a sequence-of-stills service, some­
times referred to as freeze-frame video. 

5) Digital Video: Comfortable videoconferencing requires 
CIF resolution (360 x 288 pixels per frame, Table 2), or at 
least quarter-CIF resolution (180 x 144 pixels per frame). 
Input temporal resolutions are usually submultiples of 30 
frames per second, say 15 or even 10, for bit rates lower 
than about 1.5 Mbps. With CIF resolution and a bit rate 
of 1.5 Mbps, the communications quality of the service is 
generally agreed to be high. With quarter-CIF or somewhat 
lower resolution, and with correspondingly lower values of 
temporal resolution, it is possible to achieve lower bit rates 
such as 48 or 112 kbps. But the video quality is useful only 
if one accepts low levels of sharpness in the output picture, 
and very low levels of motion activity in the input scene, as 
in the head-and-shoulders view of a single person-an en­
vironment sometimes referred to as videotelephony, rather 
than videocoriferencing. The bit rates of 48 and 112 kbps 
are appropriate for ISDN systems with total bit rates of 64 
and 128 kbps, respectively, and a bit rate of 16 kbps for 
voice transmission. The bit rate of 384 kbps is an interesting 
number in the current state of the technology. At this bit 
rate, it is possible to provide a fair, if not high, level of 
picture quality in the coding of a videoconference scene. 

CD-ROM media have a net throughput rate of about 1.5 
Mbps for source data and a total bit capacity of a few 
gigabits. If video can be compressed to about 1 Mbps, a 
CD-ROM device could store and play out about an hour 
or more of the video signal, together with compressed 
stereo sound. This capability is central to various emerging 
applications of CD-ROM multimedia, including the specific 
example of a movie on an audio compact disk [85]. The 
additional capability of selecting a still-image snapshot of a 
desired part of the image sequence leads to the concept of 
addressable video. This is an important feature in emerging 
systems for video storage. 

Uncompressed high-definition television (HDTV) has a 
bit rate of over a gigabit per second (the product of a 
sampling rate on the order of 60 MHz, as in Table 2, and the 
representation of three color components with a total of 24 
b/sample). Compression of the HDTV signal to a bit rate on 
the order of a few tens of Mbps will create several important 
opportunities for HDTV broadcasting. In particular, a bit 
rate in the range of 20 Mbps will bring the service into the 
realm of a 6-MHz transmission channel [102], implying the 
capabilityof simulcasting the HDTV version of a program 
in vacant slots of an NTSC channel set. Transmission rates 
higher than 20 Mbps are appropriate for higher quality 
transmissions over satellite and broadband ISDN channels, 
cable transmission, and applications of HDTV for movie 
production. Rates of 2 to 8 Mbps are appropriate for digital 
television with CCIR resolution. 

F. Compression Standards 

The need for interoperating different realizations of signal 
encoding devices (transmitters) and signal decoding devices 
(receivers) has led to the fonnulation of several interna­
tional and national standards for compression algorithms. 
The overview article (62] provides a nonexhaustive sum­
mary of compression standards for speech [20], (44], [65], 
[72], [148], audio [96], [98], [108], image [59], [156], and 
video [85], [88], [107]. Additional infonnation provided in 
that article includes typical applications, typical levels of 
signal quality, and the approximate date of formulation of 
the standard. 

The recent explosion in standards activity has had an 
important impact on research and development in the field. 
Standards have led to increased focus in applied research. 
They have sometimes stimulated highly productive new 
research as well. But they have also elevated the threshold 
of perfonnance that a novel research algorithm needs 
to exceed before it is widely accepted, given that the 
supplanting of a recently endorsed standard is generally 
difficult and expensive. 

Several applications of signal compression are decoder­
intensive in the sense that users need access only to 
a decoder, the encoding being a one-time operation by 
the provider of the service. Examples are multimedia, 
Digital Audio Broadcast (DAB), and HDTV decoders. In 
recognition of this, corresponding standards have specified 
the decoder algorithm and bit-stream syntax rather than the 
encoder. In these cases, compatible enhancements to the 
standard are possible in the encoding module, as well as in 
optional modules of pre- and postprocessing: pre-filtering 
at the encoder, and post-filtering at the decoder. 

G. Quality of the Compressed Signal 

We have noted earlier that there are several dimen­
sions defining the perfonnance of a coding system. If 
we ignore the dimensions of algorithmic complexity and 
communication delay for the moment, coder improvements 
can be demonstrated in two ways: by measuring signal 
quality improvement at a specified bit rate, or by realizing 
a specified level of signal quality at a lower bit rate. 
Depending on the application, one of the above approaches 
would be more relevant than the other. For example, in the 
problems of coding telephone speech at 4 kbps and HDTV 
at 15 to 20 Mbps, the bit rates are defined by important 
generic applications, and the goal of coding research is to 
enhance signal quality at those rates. On the other hand, 
in the field of digital audio broadcasting (DAB), where 
the signal quality needs to be transparent to the coding 
algorithm and equivalent, say, to that of CD audio, the goal 
is to demonstrate such performance at progressively lower 
rates (say, at an average of 48 or 64 kbps per channel [69], 
rather than at 96 or 128 kbps per channel as in currently 
popular algorithms). 

So far, our discussions of bit rate have been in terms 
of kilobits per second (kbps) for speech and audio, and 
both kilobits per second (kbps) and megabits per second 
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Fig. 5. Current capabilities in the coding of audiovisual informa­
tion. 

(Mbps) in the case of video. All of these numbers can be 
converted to equivalent numbers in bits per sample based on 
sampling rates such as the illustrative numbers in Tables 1 
and 2. For example, the 4-kbps, 48-kbps, and 15-Mbps rates 
for 8-kHz-sampled speech, 48-kHz-sampled audio, and 60-
MHz-sampled HDTV correspond, respectively, to 0.5, 1.0, 
and 0.25 bits per sample. In the definition of technology 
targets in Section 11-H, we shall use the normalized unit of 
bits per sample in the interest of a unified perspective for 
audio and visual signals. 

H. Technology Targets 

Figure 5 is a simplified and impressionistic summary of 
current capabilities in signal coding, expressed in terms of 
subjective quality as a function of bit rate. The results are 
derived from a combination of published work [16], (20). 
[32). [441, {45], [SO]. (65]. unpublished reports, and by 
collective impressions of experts, especially in the case of 
image and video signals where formal evaluations of quality 
are not generally available. Signal quality is measured on 
a subjective five-point scale ranging from bad to excellent, 
as in our earlier description of the mos scale. 

One of the implications in Fig. 5 is that video signals 
are the easiest to compress on a bit-per-sample basis. 
This is attributable to the well-known redundancy in video 
information in both the spatial and temporal domains of 
the signal, a property that is also reflected in the extreme 
low-pass nature of the power spectral density of typical 
video. By contrast, it is not unusual to encounter relatively 
flat power spectra in 20-kHz audio. This, combined with 
the universal expectation of very high levels of quality in 
entertainment audio, leads to generically lower subjective 
scores in compressed audio at a given number of bits per 
sample. 

In the category of still images, facsimile documents 
constitute a special subclass, if we agree to regard text and 
line graphics, rather than grey-level photographs, as typical 
fax documents. A half-toned (black-white) document is 
generally highly compressible. The bit rate for the lossless 
coding of such a fax document can be typically on the 
order of 0.1 bit per sample. 
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Fig. 6. The Schouten diagram: redundancy and irrelevancy. 

As we seek to advance the state of the art as depicted 
earlier in Fig. 4, it is useful to talk about bit rate targets at 
which one expects the four signals in Fig. 5 to be digitized 
with a quality rating such as 4.0 or higher. Without loss of 
generality or realism, all of these targets can be collectively 
described by the bit-rate-independent horizontal broken line 
of 4.5 quality in Fig. 5. Clearly, we are closer to this goal in 
some signal domains than others. It is also possible that the 
4.5 quality goal at rates down to 0.25 b/sample is impossible 
to achieve in some cases, regardless of coder complexity or 
processing delay, because of fundamental limits imposed by 
information theory and the acuity of the human perceptual 
system. But it is fair to ask the question: as we seek 
to approach these (sometimes unattainable) levels of high 
quality at low bit rates, what are the techniques most likely 
to succeed? 

I. Tools of the Trade: Perceptual Coding 

There are four fundamental operations that are common 
to low bit rate signal coding: prefiltering to render a signal 
more "acceptable" to a bit-rate-constrained coder, reduc­
tion of signal redundancy in the input signal, removal of 
irrelevant information in the operation of quantization, and 
signal enhancement by postfiltering. Of these, prefiltering 
and postprocessing are generally considered to be processes 
outside of the coding operations per se, although the ben­
efits of performing the process can be very significant, as 
in low bit rate speech coding [19], [20], [44], [123] and 
low bit image coding (85], [ I 59]. Pre filtering can likewise 
increase the perfom1ance of a compression algorithm. This 
is accomplished in video coding, for example, by the 
reduction of camera noise in the input image or by the 
insertion of an explicit bandlimiting filter. The remainder of 
this paper will focus on the two operations that are intrinsic 
to signal coding: removal of redundancy and reduction of 
irrelevancy (Fig. 6). 

Almost all sampled signals in coding are redundant 
because Nyquist sampling typically tends to preserve some 
degree of inter-sample correlation. This is reflected in the 
form of a nonflat power spectrum. Greater degrees of 
nonflatness, as resulting from a low-pass function for signal 
energy versus frequency, or from resonances (in audio) and 
periodicities (in audio and video), lead to greater gains in 
redundancy removal. These gains are also referred to as 
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prediction gains or transform coding gains, depending on 
whether the redundancy is processed in the time domain or 
in the frequency (or transform) domain. 

In a signal compression algorithm, the inputs to the 
quantizing system are typically sequences of prediction 
errors or transform coefficients. The idea is to quantize the 
time components of the prediction error, or the transform 
coefficients, just finely enough to render the resulting 
distortion imperceptible, although not mathematically zero. 
If the available bit rate is not sufficient to realize this kind 
of perceptual transparency, the intent is to minimize the 
perceptibility of the distortion by shaping it advantageously 
in time or frequency, so that as many of its components as 
possible are masked by the input signal itself. We have used 
the term perceptual coding to signify the matching of the 
quantizer to the human auditory or visual system, with the 
goal of either minimizing perceived distortion, or driving it 
to zero where possible. These goals do not correspond to 
the maximization of signal-to-noise ratio (the minimization 
of mean squared error). 

The parts of a coder that process redundancy and irrele­
vancy are sometimes separate, as in the above explanation. 
On the other hand, there are examples where the two 
functions cannot be easily separated. One example is a 
vector quantizer that combines inter-sample processing and 
quantization in a single stage of processing. 

Almost all coding systems depend on the complementary 
interworking of the two basic operations defined above. 
A notable exception is a pulse-code modulation (PCM) 
system, based on memoryless coding and quantizing al­
gorithms, where there is no attempt to remove signal 
reduf\dancy. This simple procedure is adequate for high­
quality coding at bit rates in the range of 8 to 16 b/sample, 
depending on the input signal. On the other hand, low­
bit-rate coders, such as those evaluated in Fig. 5, depend 
heavily on more sophisticated signal analysis, processing 
delay, and redundancy removal prior to perceptually tuned 
quantization. 

The conceptually orthogonal principles of redundancy 
reduction and irrelevancy removal were realized fairly 
early in the field of signal coding (Fig. 6). In this sense, 
the concept of perceptual coding is not novel. What is 
significant is that both dimensions in Fig. 6 have advanced 
considerably over the years, and the interactions between 
the two dimensions are also getting better understood in 
coder design. 

The next section describes the properties of audiovisual 
signals and the psychophysics of perception, and thus 
motivates generic designs of algorithms that perform the 
dual functions of Fig. 6. 

III. AUDIOVISUAL SIGNALS, HUMAN PERCEPTION, 

AND TIME-FREQUENCY ANALYSIS 

The input to the digital coder of Fig. 1 is the source, 
the audiovisual signal. After compression (coding followed 
by decoding), the distorted low-bit-rate version of the 
signal is evaluated by the sink in Fig. 1, the human 

perceptual mechanism. Common to this mechanism and the 
coding algorithm are various signal processing and comput­
ing functions, prominent among which is time-frequency 
analysis. The notion of coding algorithms simulating the 
human perceptual system in their internal optimization 
loops is a useful one; and in fact, one might measure the 
sophistication of an algorithm in terms of how well it has 
evolved in response to the human perceptual model, to 
the extent human perception is understood. An even more 
fundamental evolution is associated with the source-sink 
model itself; at least in the case of speech, it is very likely 
that the perceptual mechanism (the human auditory system) 
and the source (the human speech-producing mechanism) 
have evolved over time to be efficiently reciprocal in some 
sense. This reciprocity, however, is not exact in any known 
sense. For example, the frequency responses of the vocal 
and auditory mechanisms, while being bandpass in each 
case, are not quantitatively related in any profound way to 
the best of our current knowledge. 

A. Properties of Audiovisual Signals 

Audiovisual signals are generally recognized as ampli­
tude plots, amplitude-versus-time waveforms of speech and 
audio information (Fig. 7(a) and (b)), intensity-versus­
space displays of image information (Fig. 7(c)), and 
intensity-versus-space-and-time displays of video scenes. 
These waveforms reveal significant information about the 
properties of the signal, and about coder functions that 
will be needed to utilize these properties for efficiency in 
compression. 

I) Nonstationarity: Common to all of the waveforms of 
Fig. 7 is the property of nonstationarity. In speech, un­
voiced signals are characterized by low intensity and short 
time support; and these signals connect strong, sustained 
bursts of voiced signals. An unvoiced sound "s" (from 
the word "salt") appears on row 1 of Fig. 7(a) and on 
row 6, where it is stretched out in time (to 256 samples 
or 32 ms), and blown up in amplitude, by a factor of 
20. A voiced sound "a" appears on row I, and part of 
it is stretched and amplified in row 5. Audio signals 
likewise have sustained sounds as well as sharp attacks 
and transients. The female vocal sound in row 4 of Fig. 
7(b) is a 4000-sample excerpt of a voiced signal at 48 kHz 
(83 ms), while the other three audio examples in Fig. 7(b) 
are noise-like. Image and video signals contain a wealth of 
segments of flat or slowly changing intensity, as well as 
edges and textured regions. Parts a, b, and c of Fig. 7(c) 
are examples of grey-level images and part d is a 3-scan­
line excerpt from part c, taken from the portion containing 
the eyes of Joanna. An important function of coding 
algorithms is to render unvoiced sounds, audio attacks, and 
edge information faithfully, although these subsignals may 
represent minority subclasses in respective signals from 
the point of view of energy or from the viewpoint of the 
fraction of samples or pixels involved. Adaptive algorithms 
for quantization, prediction, and bit allocation are designed 
to improve the performance of coding algorithms with 
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Fig. 7. Waveforms of (a) speech (b) audio, and (c) image signals. Parts (a) and (c) are after (65]. 

nonstationary inputs. Perceptual coding provides additional 
capabilities in terms of handling these signals. 

2) Periodicity: There are several sources of periodicity 
in audiovisual signals. Examples are the pitch periodicities 
in voiced speech and singing voice (Row 5 of Fig. 7(a), 
Row 4 of Fig, 7(b)), the periodicities in various forms 
of instrumental music, and the line-to-line and frame-to­
frame periodicities in image and video signals (for example, 
part d of Fig. 7(c)). In reality, some of the above signals 
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are not exactly periodic, and an important function of 
a redundancy-removing algorithm is to realize a good 
prediction performance by keeping track of the changing 
or evolving periodicities in an adaptive fashion. Examples 
of such functions are pitch tracking in speech and motion 
compensation in video. In Row 5 of Fig. 7(a), there are 
about four pitch periods with a pitch frequency that varies 
slowly in the neighborhood of 125 Hz (corresponding to 
about 64 samples at 8 kHz). Accurate pitch estimation 
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Fig. 8. Motion compensation on a block-by-block basis. 

can provide very reliable prediction of signal samples from 
their counterparts about one period away. In Fig. 8, which 
depicts two successive image frames, image blocks labeled 
A,:C, E, I,L, M and P get repeated with little change at 
a period corresponding to one frame period; these blocks 
are perfectly predicted by their counterparts in a previous 
frame; the remaining blocks, corresponding to moving parts 
of the image, are also well predicted by suitably displaced 
blocks, after motion estimation. 

3) Power Spectral Density: In a global or long-time­
average sense, audiovisual signals tend to have lowpass 
frequency spectra. When very low frequencies are missing 
because of a transducer transfer function, as in telephony, 
the power spectral density will be a band-pass function. 
Short-term frequency analysis, however, reveals parts of 
audiovisual signals that are either allpass or highpass; 
examples are some unvoiced speech sounds and audio and 
image signals with a predominance of high frequencies, a 
prototypical example being a checker-board image pattern. 
On top of the above categorization of the spectral envelope 
as a function of frequency, it is significant that certain input 
spectra have powerful forms of local structure. Prominent 
among these are the formant resonances and the pitch­
related fine structure in the spectra of voiced speech and 
vocal music (Fig. 9). The upper part of Fig. 9 corresponds 
to the voiced speech example in Fig. 7(a). In the upper 
part of Fig. 9, the first two formants, or vocal tract 
resonances occur approximately at 600 and 1200 Hz. The 
pitch frequency is about 125 Hz as in Fig. 7(a). 

Frequency structure has been utilized to great advantage 
in linear predictive coders (LPC systems) for speech, and 
subband or transform coders for high-fidelity audio. In the 
former case, although linear prediction is a time-domain 
operation, the frequency description has been central to 
the design and calibration of the redundancy-removing 
operation. Incidentally, a white or flat power spectrum 
corresponds to an unpredictable time signal, one for which 
the functional diagram of Fig. 6 collapses to a single 
dimension, the horizontal axis of quantization. 

4) Properties of Color and Stereo Signals: Not included in 
the above summary are signal-specific attributes such as 
those of stereo channels in audio and the chrominance 
channels in color images [10], [12]. We will now comment 
very briefly on these two issues. 

The statistical correlations between the left-right audio 
channels in a stereo pair are easily utilized in a system that 
is based on mapping the signals to a sum-difference pair, 
which is equivalent to the simplest example of a linear 
transform coder [ 65 ]. It is interesting, however, that this is 
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Fig. 9. Power spectral density of (a) voiced speech (after (65)) 
and (b) vocal music. 

not by itself a perceptually optimal paradigm, and this is 
indeed one of the topics of Section VIL 

The use of so-called YUV and YIQ spaces (rather than 
the ROB or red-green-blue space) in color image process­
ing is a good example of a paradigm that is efficient both 
statistically and perceptually. In typical inputs, the UV or 
IQ (chroma) components have lower energies and lower 
bandwidths compared to the luminance component Y. This 
permits the use of subsampling for the chrominance signals 
as well as the use of coarser quantization compared to 

luminance. Significant efficiencies in overall bit rate are 
attained as a result. In a typical color system for low bit 
rate video, the overall bit rate overhead for chroma can be 
as low as 10 to 25% of the total bit rate. Perceptual criteria 
relate to the lower sensitivities to coarse quantization, and 
to the related observation that additional liberties in chroma 
quantization are possible in the context of a strong change 
in the luminance component. 

B. Models of the Human Perceptual System 

A commonly used model of audition includes a neu­
romechanical process followed by frequency analysis and 
detection. A common model of vision incorporates a low­
pass filter, a logarithmic nonlinearity, and a multichannel 
signal-sharpening highpass filter. A biologically correct and 
complete model of the human perceptual system would 
incorporate descriptions of several physical phenomena 
including peripheral as well as higher level effects, feed­
back from higher to lower levels in perception, interactions 
between audio and visual channels, as well as elaborate 
descriptions of time-frequency processing and nonlinear 
behavior. Some of the above effects are reflected in existing 
coder algorithms, either by design or by accident. For 
example, certain forms of adaptive quantization and pre-
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diction provide efficient performance in spite of inadequate 
response time because of temporal noise masking, a term 
that we will describe in some detail in Sections VII and IX. 
However, even where the matching to the human perceptual 
mechanism is by design, the matching is intuitive and 
approximate rather than formal or exact. In other words, 
at the time of this writing, an optimal perceptual coder 
does not exist. As a matter of fact, a biologically complete 
model of human perception also does not presently exist. 
In addition, significant inter-subject variations exist in most 
examples of human perception. 

An example of a perceptual phenomenon that is not 
directly reflected in compression technology is the possible 
feedback from higher to lower levels in perception. One 
example of an effect that is informally reflected in coder 
design is the nonlinearity model in Weber's law [100]; 
this is used as a justification for nonuniform quantization 
and homomorphic coding, as elaborated later. Another 
example is knowledge about the importance of phase [10], 
[11 l]. This is used as a justification for phase-preserving 
filter banks, especially in spatial image processing; and for 
avoiding spatial shifts in transitional regions of an image. 

Focus in this section is on the time-frequency analyses in 
human perception, and the desire to incorporate correspond­
ing capabilities and flexibilities in coder modules that try 
to utilize the phenomenon of distortion masking or noise 
masking. Masking is a complex result of the transducing 
and neural components of perception. It is highly adaptive 
and refers to the perceptibility of one signal in the presence 
of another in its time or frequency vicinity. In coding, one 
of the signals is the input, the second is the distortion in 
the low bit rate coding of it, or in the communication of it 
over a noisy channel or a lossy network. 

The basic time-frequency analyzers in the human per­
ceptual chain are described by bandpass filters both in 
audition and vision. Table 3 [132) is a model consisting 
of 25 cochlear filters, with a bandpass width that increases 
monotonically with increasing frequency. The 25 subbands 
of Table 3 are also referred to as critical bands [38), and 
their significance is explained in Section VII. The audio 
frequency response in Fig. 10 is a function of frequency (in 
Hertz) and loudness level. Human auditory acuity tends to 
decrease at low and high frequencies, particularly when the 
loudness is low. This is a composite result of the cochlear 
filter bank, the frequency response of the ear canal, and 
other (partially understood) phenomena in human hearing. 
The visual response in Fig. 11 is a function of spatial 
frequency (in cycles per degree, cpd) as well as temporal 
frequency (Hertz). In each case, the response shows distinct 
peaks in individual bandpass characteristics. 

Bandpass filters in audiovisual perception are sometimes 
reflected in coder design and telecommunication practice in 
the forms of "rules of thumb." For example, if the viewing 
distance in high-definition television is 8 ft and the image 
resolution is 1200 x 800 pixels, it is necessary that the 
physical image (screen) size is 5 ft in diagonal measurement 
so that important high frequencies in the image correspond 
to numbers lower than a low-sensitivity point such as 25 cpd 
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Table 3 Crytical Band Centers and Edge Frequencies 
from Scharr (1970) 

Band Number Lower Edge Center Upper Edge 
(Hz) (Hz) (Hz) (Hz) 

0 50 100 

2 100 150 200 

3 200 250 300 

4 300 350 400 

5 400 450 510 

6 510 570 630 

7 630 700 770 

8 770 840 920 

9 920 1000 1080 

10 1080 1170 1270 

11 1270 1370 1480 

12 1480 1600 1720 

13 1720 1850 2000 

14 2000 2150 2320 

15 2320 2500 2700 

16 2700 2900 3150 

17 3150 3400 3700 

18 3700 4000 4400 

19 4400 4800 5300 

20 5300 5800 6400 

21 6400 7000 7700 

22 7700 8500 9500 

23 9500 10500 12000 

24 12000 13500 15500 

25 15500 19500 

in the spatial response curve of Fig. 11. In Sections VII and 
VIII ohhis paper, we shall attempt to incorporate bandpass 
filter information more explicitly; we have been successful 
in doing this in the calculation of the distortion-masking 
models in audio and still-image coding. 

A particularly interesting aspect of the signal processing 
model of the human system is nonuniform frequency pro­
cessing. The so-called critical bands in hearing and vision 
are nonuniform. To incorporate this in coder design, it 
is necessary to use masking models with a nonuniform 
frequency support (Section VII). It is also necessary to 
recognize that high-frequency signals in audiovisual infor­
mation tend to have a short time or space support, while 
low-frequency signals tend to last longer. An efficient per­
ceptual coder therefore needs not only to exploit properties 
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Fig. 10. Frequency response characteristics of the human auditory 
system as a function of loudness. 
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Fig. 11. Spatio-temporal sensitivity of the human visual system 
(after [100]). 

of distortion masking in time and frequency, but it also 
needs to have a time-frequency analysis front-end that is 
sufficiently flexible to incorporate the complex phenomena 
of distortion masking by nonstationary input signals. All 
of this is in contrast to the classical redundancy-removing 
coder driven purely by considerations of minimum mean 
squared error (mmse), mmse bit allocation, or mmse noise 
shaping matched to the input spectrum (rather than to the 
composite of input spectrum and perceptual spectrum). 

IV. Fn.TERBANKS AND TRANSFORMS 

IN SIGNAL PROCESSING 

Predictive methods as well as subband and transform 
techniques have been used as bases for frequency-dependent 
signal coding. Subband filterbanks and transforms provide 
direct control of frequency or frequency-related properties 
in the input signal. 

A. The Quadrature Mirror Filterbank and 
the Discrete Cosine Transform 

Figure 12 depicts examples of subband decompositions 
in one, two, and three dimensions. The ID analysis is used 
for speech and audio analysis, and sometimes in image 
processing. The 2D and 3D decompositions are particularly 
appropriate for image and video analyses, respectively. It is 
assumed that the filterbanks used for these decompositions 
satisfy requirements on reconstruction error, processing 
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OR AUDIO 

N-BAND 
FILTERBANK 

(a) 

N 
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INPUT 4-BAND 4-BAND 16 SPATIAL 
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8 SPATIO• 
TEMPORAL 
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FREQUENCY . FREQUENCY FREQUENCY 

(c) 

Fig. 12. Subband decompositiOIIS in one, two, and three dimen­
sions of frequency. 

delay, and interband interference. In typical examples of 2D 
and 3D filterbanks, the structures are realized by separable, 
identical operations in the multiple dimensions. Quadrature 
mirror filterbanks (QMF) and related structures are very 
efficient designs in that the filters in the bank are of 
reasonably low order to permit practical implementation. 
Typically, finite impulse response (FIR) structures with 16 
to 64 taps [66] are used. Passband ripple is nearly zero with 
a 64-tap filter. Theinterband aliasing due to overlapping fil- · 
ter responses is controlled in a way that permits subsequent 
cancellation of it in the synthesis filter. In the absence of 
quantization, the analysis and synthesis filterbanks consti­
tute a unity or near-unity operation (149]. Efficient signal 
compression results when subband signals are quantized 
with subband-specific bit allocation and quantization, based 
on input power spectrum and the model of perception. 

The Discrete Cosine Transform (DCT) is well known for 
its efficiency in speech and image compression [I], [65]. 
The image blocks in Fig. 13 are the 64 basis images of 
an 8 x 8 2D transform. They capture a range of spatial 
(horizontal and vertical) frequencies from the lowest to the 
highest,· with 62 intermediate combinations of horizontal 
and vertical frequency. The 2D Discrete Cosine Transform 
(DCT) decomposes the image into components that are 
analogous to the vertical and horizontal frequency com­
ponents in the 2D filterbank of Fig. 12(b). In the absence 
of quantization, the 2D DCf and the identical operation 
of the inverse DCT at the receiver (2D IDCT) constitute a 
unity operation. Efficient signal compression results when 
the transform coefficients are quantized with coefficient­
dependent bit allocation and quantization. 

In subband and transform coders, the number of fre­
quency components in the decomposition (subbands or co­
efficients) is a compromise between prediction gain (result­
ing from variable bit rate coding of the unequal components 
in the nonflat spectrum of the redundant signal) and practi­
cal considerations such as complexity and processing delay. 

Subband and transform coders provide a natural frame­
work for variable rate coding, embedded coding, unequal 
bit allocation, and unequal channel error protection. The 
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Fig. 13. Basis vectors of a 2D 8 x 8 Discrete Cosine Transform 
(DCT). 

CCITI 64/56/48 kbps standard for wideband speech [16], 
[96] is a variable rate coder based on a 2-band coder with 
subbands (0-4 kHz) and (4-8 kHz). The higher subband 
is sometimes quantized coarsely to accommodate 8 or 16 
kbps of data in the 64-kbps channel. The ISO standard 
for 24-kHz audio is a three-layer standard [98], [108]. The 
first two layers are based on a 32-band decomposition 
of the 24-kHz signal, with each subband occupying 750 
Hz. Nonuniform subband decompositions are sometimes 
used for efficient perceptually tuned coding. One example 
is the 3D subband decomposition of Fig. 14(b). In an 
embedded coder, the shaded subbands constitute an exam­
ple partition for essential information while the unshaded 
subbands could be regarded as enhancement information. 
In a 2-layer embedded coding system as in an ATM packet 
network (77], (97], [109], [151], the enhancement layers 
are much more likely to be discarded in the event of 
network congestion. The above hierarchical features also 
apply to transform coding. The shaded area in Fig. 14(a) 
represents one example of a partition for essential 2D DCT 
coefficients. 

Frequency-domain coders (subband, transform and re­
lated multiresolution systems) also offer an excellent frame­
work for proiressive transmission. In an application like 
telebrowsing, it may be useful to obtain a rough version 
of an image first, using minimal communication resources; 
and to request a finer version only if an image needs 
to be scrutinized further. In this application, progressive 
transmission of frequency content is subjectively more 
useful than the sequential top-to-bottom transmission of 
pixel rows (Fig. 15). 

B. The Mathematics of QMF and DCT Analyses 

The coefficients describing the QMF analysis filter are 
reused with a trivial modification in the QMF synthesis 
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Fig. 14. Embedded coding in (a) transform and (b) subband 
frameworks. 
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Fig. 15. Progressive versus sequential transmission. 

filter. The DCT and IDCT equations are likewise very 
similar. The operations describing the QMF filter and the 
DCT are described by the following equations: 

QMF: 
ht(n) = hu(n) = 0, 

h1(n) = ht(N - 1 - n), 
hu(n) = -hu(N - 1 - n), 

h,,(n) = (-lrht(n)) 
IHe(eiw)l2 + IHu(e1w)l2 = 1 

DCT: 

for O>n~N 

n = 0, 1 · · · N /2 - 1 
n = 0, 1 · · · N /2 - 1 

/2 N-l (2n + l)u1r 
F(u) = y Na(u) L x(n)cos 2N , 

n=O 

u= O,l···N-1 

a(O) = 1/v2; a(u) = 1 u # 0 
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IDCT: 

N-1 ( ) 2n + 1 U7r 
x(n) = L a(u)F(u)cos ZN , 

k=O 
n = 0,1 · · -N -1 

2D DCT: 

F(u,v) = !a(u)a(v{t~~ x(m,n) 

(2m + l)u1r (2n + l)v1r] 
· cos ZN cos ZN 

a(u) = a(v) = 1/v'z;a(u) = a(v) = 1 ifu-:/ O,v-:/ 0 

2D IDCT: 

[
N-1 N-1 

X(m,n) = ! ?; ~ a(u)n:(v)F(u,v) 

(2m + l)u1r (2n + l)u1r] 
·COS 2N cos 2N . 

C. The Duality of QMF and MDCT 

The basic 2-band QMF system (Fig. 16(a)) is based 
on the division of a frequency band into two contiguous 
but overlapping subbands. The broken line shows the 
characteristic of a high-pass filter that is the mirror image 
of the solid-line low-pass filter characteristic. These filters 
intersect at the -3-dB point of either characteristic. The 
extent of overlap is a decreasing function of the number of 
filter taps. But the allowing of a nonzero overlap simplifies 
filter design. Frequency aliasing is caused in QMF analysis 
by sampling each of the two bands (lower and upper 
bands) in the QMF split at twice the nominal bandwidth 
(rather than twice the actual, say -90-dB, bandwidth). 
However, with a special design of QMF filters, the process 
of QMF synthesis provides cancellation of this aliasing if 
the quantization noise inserted in the system is zero [25], 
[34], [65], [66], [149). 

Transform coding as used in early examples from tele­
phone speech coding uses a Discrete Fourier Transform 
or DFT, calculated via an FFT, or a Discrete Cosine 
Transform. The equivalent frequency response of a trans­
form channel depends on the window used. Commonly 
used window functions are the rectangular and sine-taper 
functions. With a rectangular window as used in [I], the 
analysis/synthesis system is critically sampled, but the 
system suffers from poor frequency resolution and blocking 
noise, which can be regarded as poor filtering and antialias­
ing of the noise introduced into the transformed coefficients. 
Overlapped windows allow for better frequency response 
functions but carry the penalty of additional values in 
the frequency domain which have to be coded given a 
certain number of time domain samples. The system is 
not critically sampled. For use in coding, a compromise 
between large overlap giving better frequency resolution 
and low overhead due to overlap has to be found. One 
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Fig. 16. (a) Quadrature mirror filter and (b) overlapped transform 
in MDCT. 

widely used compromise is an overlap of 1/16 of the 
window length. The modified discrete cosine transform 
(MDCT) is a clear exception to this practice. 

The modified DCT system [68], [91], [98], [119] is a 
dual of the QMF approach in that it permits an overlap be­
tween successive transform blocks in the time domain, but 
decimates the resulting sequence to maintain the original 
sampling rate. The overlapping in time is described by the 
window function h(n) of Fig. 16(b) and the (dotted) time­
displaced versions of it. In place of the frequency aliasing in 
the QMF system, the MDCT exhibits time-domain aliasing 
because of the decimation. But this aliasing is canceled 
by the inverse MDCT process in the receiver due to the 
design of the DCT basis vectors and the analysis window. 
The overlap in the MDCT is 50% and the decimation rate 
is 2:1. 

The equations describing MDCT are given by 

MDCT: 
2N-1 

F(u)= L h(n)x(n)cos[ 2~(2u+l)(2n+l+N)] 
n=O 

u = 0, l ···2N - 1 

h2 (N - 1 - n) + h2 (n) = 2 
h2 (N + n) + h2(2N - 1 - n) 2 = 2 

0 ~n < N. 

Example: h(n) = ±v'2 sin [ ( n + ~) 2~]. 

The MDCT is the dual of a 2-tap Haar-QMF filter, 
obtained by using N = 2 in the QMF equations mentioned 
earlier. 

QMF and MDCT systems are qualitatively dual in the 
sense of tinle versus frequency aliasing (and aliasing cancel-
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lation); they are exactly dual in the case of the 50% overlap 
MDCI' and a 2-tap QMF filter (which has a 50% frequency 
overlap). However, the QMF and MOCT systems exhibit 
different properties in the context of a specific overall coder. 
For example, operations such as signal anticipation and 
temporal bit allocation can be used to some extent to control 
quantizing distortion and the consequent phenomenon of 
uncancelled time-domain aliasing in the MDCT system. 
This in tum permits the use of the 50% time overlap which 
provides a smooth handling of the time process as well as a 
simple decimator design. In QMF design on the other hand, 
one still prefers, in the current state of the art, to employ 
a small spectral overlap, within the constraints on filter 
complexity. This in tum, implies a relatively discontinuous 
handling of the frequency process. · 

Finally, in both MDCT and QMF, the time-frequency 
characteristic in signal analysis is a compromise between 
a match to sustained, stationary inputs and the ability to 
handle input discontinuities in time or frequency. In the 
coding of stationary segments, the approach is 10 use a high­
resolution input decomposition to maximize coding gain, 
even if the decomposition does not mimic the human filter. 
This is particularly true in audio coding. In the coding of 
nonstationary segments, such as a sharp attack in an audio 
signal, it is more useful for the filterbank to mimic the 
auditory mechanism. 

D, Criteria for Filterbank Design 

The sampled filterbank used to decompose the time­
domain input data into components with the desired spectral 
and time-domain resolution is crucial for the overall per­
formance of a perceptual coding system. Several competing 
design goals have to be met: 

• 'The spectral decomposition and subsampling process 
should be invertible, i.e., the filterbank should be of 
the perfect reconstruction type. It is also desirable that 
the filterbank and its inverting process both maintain a 
high degree of frequency selectivity, in order to make 
the application of the perceptual threshold simple. 

• The analysis system, consisting of the analysis filter­
bank and the subsampling, should be critically sampled 
or nearly critically sampled. The number of spectral 
components per time unit determines the number of 
values to be quantii.ed and coded and therefore should 
be as low as possible. The optimum in this respect is 
a critically sampled analysis/synthesis system. 

• The bandwidth of the filterbank should be equal 10 

or narrower than the width of a narrowest critical 
band. This makes it easier to control the perceptibility 
of the quantization noise. Simultaneously, the time 
window of the filterbank must be controlled in order 
not to introduce noise components over a time window 
wide enough that masking constraints are violated. In 
general, most uniformly spaced filterbanks cannot meet 
both of these constraints due to the widely varying 
width of critical bands with frequency. 

• Very high frequency resolution is desirable to take ad­
vantage of the transform gain, which is the frequency-

14-00 

domain equivalent of the prediction gain. 'The trans­
form gain is highest for signals with a low spectral 
flatness. 'These signals need to be coded very accurately 
because there is very little masking of the quantization 
noise by such inputs. 

• The time.domain resolution of the filterbank should 
be low enough to mask the spreading in time of 
the error signal. In a subsampled system, the lower 
bound for the time resolution is given by the Nyquist 
bound. The quantization noise in the frequency domain 
is spread in time or space according to the actually 
used filterbank. This effect causes pre-eclw in audio 
processing (Section Vil). 

Considerations of signal nonstationarity and perceptual 
distortion criteria have resulted in increasingly sophisticated 
demands on signal analysis. In particular, techniques that 
provide flexible combinations of time support and band­
width represent a powerful generic tool for efficient coding. 
The discrete Fourier transfonn and a uniform-bandwidth 
quadrature mirror filterbank are well-understood and widely 
used analysis tools. But in their simplest forms, they lack 
the flexibility for time-frequency analysis mentioned above. 
QMF trees with unequal-bandwidth branches, as well as 
subband-DFf hybrids, are relatively newer structures with 
more flexible features. So are wavelet filters [3 1], (125], 
(153]. 

I) Wavelets: Unlike the basis vectors of a DFf (sinusoids 
and cosinusoids of various frequencies and constant time 
support), the wavelet filter structure is characterized by a 
shorter time support at higher frequencies, and a longer time 
support at lower frequencies, a direct result of a dilating 
operation that is a basic component of wavelet design (153]. 
The time-frequency characteristic of a wavelet filterbank 
is a natural match to some of the properties of audio­
visual information: high-frequency events often occur for 
a short time and stand to benefit from a finer resolution 
in time analysis, while low-frequency events are often 
sustained in time, and require less frequent sampling in 
time. The wavelet approach, especially if used in a time­
varying framework, may therefore offer powerful forms of 
adaptive analysis in a more basic sense than a nonuniform 
frequency-band QMF system or a variable window-length 
MDCI' system. Wavelet transforms provide the additional 
feature of perfect reconstruction, a property not generally 
offered in conventional methods of analysis. Conventional 
methods, however, do offer the property of alfll!)st-perfect 
reconstruction which is adequate for many low bit rate 
applications. 

Wavelet filtering is a promising analytical tool and ap­
plications of it are also beginning to emerge. What is 
still lacking, however, is a thorough understanding of 
what wavelets can do for coding that the more sophis­
ticated examples of conventional analyses cannot; and 
as we seek to apply wavelet (or nonwavelet) tools to 
low-bit-rate coding, attention must necessarily shift to the 
yet-untouched problems of uncancelled aliasing, and the 
computationally intensive but extremely important notion 
of a signal-adaptive filterbank. 
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E. Effect of Quantization Error 

The assumption of zero aliasing is a conspicuous simplifi­
cation in almost all of subband coding literature. Techniques 
such as quadrature-mirror filtering and the modified discrete 
cosine transform can provide perfect cancellation of aliasing 
in the absence of quantization errors. This ideal solution 
never occurs in a practical coding situation, and the assump­
tion of the ideal case becomes increasingly inappropriate 
at lower bit rates because of a corresponding increase 
of quantization error. Recent work has given us a fairly 
good understanding of filterbanks that provide zero or near­
zero reconstruction error in the absence of quantization. 
However, the design of a filterbank that minimizes the 
combined effect of quantizing and aliasing errors is an 
unsolved problem. Here again, a rigorous optimization is 
extremely intractable in our current state of knowledge, 
but we sorely need at least partial solutions. A preliminary 
approach to the problem is described in [82]. 

V. QUANTIZATION 

The bit rate in the digital representation of an analog sig­
nal is determined as the bit rate of the (primary) quantizing 
system in a coder, together with any extra information that 
the coder may need to signify control signals such as LPC 
parameters in speech coding and motion vectors in video 
coding. Such side information is also digitized by means of 
a (secondary) quantizing system. 

The (primary and secondary) quantizing systems consist 
of either a scalar or a vector quantizer. This is followed 
(especially in the case of scalar quantization) by an entropy 
coder such as a Huffman or Ziv-Lempel coder that exploits 
residual redundancies after quantization. Since the entropy 
coder is a noiseless ot information-lossless operation in a 
mathematical sense, the quantizer is the part of the overall 
coder where perceptual coding is explicitly realized. 

In this section, we trace the history of quantization 
in a nonexhaustive manner, and point out the increasing 
incorporation of perceptual cues as coding systems have 
become more sophisticated and efficient. 

A scalar quantizer is a memoryless device by defini­
tion. However, the statistical and perceptual effects of 
quantization are not adequately described by instantaneous 
properties. For example, the power spectral density of quan­
tization noise, or equivalently, its autocorrelation function, 
is a function of the quantizer as well as the input signal. 
The perceptual impact of quantization noise depends on its 
spectral distribution and, as we shall see later in discussions 
of masking, it depends on its relationship to the spectral 
distribution of the input signal as well. The ratio of the 
areas under the two spectral densities, the overall signal­
to-noise ratio (SNR) is a partially useful descriptor of 
performance for significantly overcoded systems. But with 
critically coded low-bit-rate signals, the SNR is not only 
inadequate but can also be misleading in terms of perceptual 
significance. 

1) The PCM Quantizer: Analog signals are stored on the 
computer as R-bit PCM codes. For example, R may 1:>e 16 

QUANTIZER FOR NONINTRA BLOCKS 

Output 

(a) 

QUANTIZER FOR INTRA BLOCKS 

(b) 

Fig. 17. Midtread quantizers for DCT coefficients in (a) inter­
frame and (b) intraframe coding (ISO-MPEG standard). 

b/sample for audio and 8 b/sample for the luminance and 
chrominance components of color images. If these PCM 
codes are considered to be high-quality representations, 
it means that the additional resolution provided by an 
(R + AR)-bit PCM system (AR > 0) is perceptually 
irrelevant (while if AR < 0, the signal representation may 
be considered inadequate). Thus if the coder is constrained 
to be no more complex than a memoryless quantizer, the 
R-bit quantizer provides perceptually critical coding of the 
input at that bit rate. 

2) Nonuniform and Midtread Quantizers: Although the the­
ory of mmse quantization is extensive, quantizer designs 
are often guided by non-mmse criteria that make more 
intuitive sense from a perceptual viewpoint. One example is 
a nonuniform quantization algorithm for a differential PCM 
image coding system where the quantizer characteristics 
are designed to maximize the masking of distortion by 
luminance changes (the input to the differential coder). A 
better known and more widely practiced example is that 
of a midtread quantizer with an odd number ( N - 1) of 
output levels, including zero, sometimes with an extra-wide 
dead zone near zero. These features, while providing a 
nonminimum mean squared error, avoid the perceptually 
unpleasant oscillations between the smallest positive and 
the smallest negative output levels. Examples of such 
quantizers are. the mid-tread A-law PCM code for high­
quality speech [65] and the mid-tread quantizer with dead 
zone for quantizing DCr coefficients in interframe video 
coding (85], [100), [156) (Fig.17). The intra and nonintra 
categories in Fig. 17 refer to image frames that are coded 
with intraframe (spatial) coding or interframe (temporal) 
coding (Section IX). 
3) The Preference of Overload to Granularity in Quantization: 
Another example of a non-mmse algorithm is one where 
quantizer design ( quantizer step size, characteristic, and/or 
adaptation algorithm) favors a greater predominance of 
overload distortion compared to granular noise. This is well 
understood in deltamodulator designs [65], [141] which 
favor significant amounts of slope-overload distortion (Fig. 
18). Such designs are suboptimal from an mse viewpoint 
but provide the best balance of distortion types from 
a perceptual viewpoint. To use the formal language of 
later parts of this section, the reason why the human 

JAYANT et al.: SIGNAL COMPRESSION BASED ON MODELS OF HUMAN PERCEPTION 1401 



Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on April 20,2022 at 00:06:40 UTC from IEEE Xplore.  Restrictions apply. 

X 

"SLOP 
OVERLO 
DISTORT! 

GRANULAR NOISE 

I 

b(n): +1 +1 +1 +1 +1 -1 -1 +1 -1 +1 

I 
CHANNEL 
OUTPUT 

Fig. 18. Slope overload distortion and granular noise in delta­
modulation (after (651). 

perceptual system is relatively sensitive to granular noise 
is that the near-zero-slope input (in the right half of Fig. 
18) is a poor masker of the high-frequency noise caused 
by the succession of positive and negative steps in the 
deltamodulator output. 
4) The Use of Dither in Low-Bit-Rate Quantization: In low­
bit-rate PCM coders, the quantizing distortion tends to be 
highly structured, rather than random. This is reflected by 
significant input-<listortion correlations (as in the speech 
coding example of Fig. 19(a), Row 3), and by contour­
ing distortion (as in the right image coding example of 
Fig. 19(b)). Dithering is a technique where random noise 
(typically with a small amplitude support) is added to 
the input prior to quantization. The random noise can 
be subsequently removed from the quantizer output in an 
ideally synchronized encoder-<iecoder system; or, as is 
usual in image coding, there may be no such correction 
at all. In the latter case, the SNR of the overall system 
is unchanged. In the former, the SNR actually decreases 
because of dithering. But in both cases, dithering helps to 
break up signal-dependent patterns in the distortion and 
makes the coarse quantizer more palatable. This is seen 
in the reduction of input-distortion correlations in speech 
quantization; the resulting perceptual gain is confirmed 
in subjective tests. In Fig. l 9(a), x( n) and r( n) refer 
to waveforms of speech and quantization error, and R 
refers to the number of PCM bits. Row 3 of the figure 
corresponds to quantization without dithering, while Row 
2 refers to quantization with dithering. The reduction of 
input-distortion correlation is clear in Row 2, especially for 
R = I and R = 5. In the image example (Fig. l9(b)), the 
bit rate is 3 b/sample. The right picture has no dithering. 
In the left image, the inclusion of dithering increases the 
mean square value of the distortion, but the breaking up 
of the contours in the image provides a better chance for 
the input image to mask the distortion, or at least decrease 
its visibility. 

Dithering is an integral part of analog-digital converters 
(especially for high fidelity audio) and image halftoning. It 
is a precursor of more advanced systems for noise-shaping. 

5) Weighted Distortion: The SNR criterion of quantizer 
performance can be made perceptually more meaningful by 
weighting it in some way (Fig. 20). For example, distortion 
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components can be weighted by local input amplitude to 
reflect diminished sensitivities to errors in low-amplitude 
input segments. Such weighting can be used to show the 
desirability of the midtread quantizer of Fig. 17. It is also 
the principle behind the segmental SNR measure used in 
speech coding [65]. 

Perhaps the most important weighting of distortion in 
the generic system of Fig. 20 is a suitable form of 
time-frequency weighting. This is not surprising, given 
the discussion in Sections III and IV. Frequency-weighted 
distortion has been particularly valuable, for transparent as 
well as nontransparent coding. 

6) Vector Quantization: One example of error weighting 
is an image vector quantizer which places heavier emphasis 
on interblock differences, and a relatively lower emphasis 
on intrablock distortions in a vector quantizer with memory. 
Such error weighting leads to code-vector selections that 
compromise the intrablock SNR, but create a perceptually 
more pleasing low-bit-rate image characterized by smooth 
interblock transitions [73]. In the example of Fig. 2l(a), 
the tendency is to select codevectors that maximize smooth 
vertical transitions from a vertical neighbor and smooth 
horizontal transitions from a horizontal neighbor, with 
both neighbors being previously quantized with a vector 
quantizer using the same codebook that is available to the 
current input. 

The higher frequency subbands in 3D coding are dom­
inated by edge-like information of low energy and high 
perceptual value for scene intelligibility and motion ren­
dition. An efficient method for reproducing the edge-like 
information at very low average bit rates is the technique 
of geometric vector quantization [ 117]. In the simplified 
example of Fig. 21 (b ), the codebook consists of code vectors 
that can reproduce horizontal, vertical, and diagonal edges, 
as well as a null vector for the representation of frequently 
occurring areas of constant or near-constant grey level. The 
concept is very close to that of visual pattern image coding 
[18]. 
7) The Homomorphic Model for Perceptuol Coding: In a 

sense, this paradigm is an extension of the distortion­
weighting principle. However, rather than weighting the 
distortion, the system weights the input and transforms 
it into a (perceptually fiat) domain where an unweighted 
error is useful. As a result, the quantizer itself can be very 
simple in structure and in terms of cues for optimization. 
Simple examples of input weighting are the logarithmic 
compressor for speech quantization [65], and the similar 
logarithmic nonlinearity following Weber's Law. A generic 
homomorphic, psychovisual coder [51], [55], [143] using 
nonlinear preprocessing is shown in Fig. 22. The nonlinear­
ity is part of a model for the Human Visual System (HVS), 
and the coder includes a gamma correction factor to allow 
for camera nonlinearity. What is significant in the system 
is that the input and distortion (introduced in the quantizer 
Q) go through different weightings before reaching the eye; 
and emphasis is on optimizing the HVS model rather than 
the quantizer Q. Pemaps equally significant is the fact that 
the paradigm of Fig. 22 is a one-signal model, rather than 
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Fig. 19. The destructuring of distortion by the use of dithering in the quantization of (a) speech 
[65] and (b) image signals (after [1261). 

SOURCE RECEIVER 

WEIGHTED 
CODING ERROR 

Fig. 20. Weighted distortion in signal coding. 
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a two-signal masking model; as such, it does not provide a 
specific mechanism for driving local distortion components 
to zero. Rather, it tends to minimize noise visibility by 
the use of a global perceptual model. This global model 
is also a static one, although dynamic extensions have 
been proposed recently. Finally, the homomorphic model 
is not necessarily tuned to the characteristics of a specific 
compression algorithm. 

Fig. 21. (a) Adaptive vector quaotization with ao intcrblock 
distortion metric and (b) geometric vector quantization. We next propose a model that is dynamic, local, coder­

tuned, and naturally suited to the explicit use of what we 
know about distortion masking in audition and vision. 
8) A Paradigm for Perceptually Lossless Low-Bit-Rate Cod-

ing: Figure 23 defines a perceptual coding methodology 
that has recently produced very promising results in audio 

JAYANT et al.: SIGNAL COMPRESSION BASED ON MODELS OF HUMAN PERCEPTION 1403 



Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on April 20,2022 at 00:06:40 UTC from IEEE Xplore.  Restrictions apply. 

INPUT Y 
IMAGE 

Q: QUANTIZER HVS: HUMAN VISUAL SYSTEM 

Fig. 22. The homomorphic model for incorporating the human 
visual system (HVS) in coding (after (51), (1431). 
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Fig. 23. A paradigm for adaptive perceptual coding. 

and image coding. The methodology provides a framework 
for perceptually lossless coding at the lowest possible bit 
rate within the constraints of a given coding algorithm. 
It also provides a framework for perceptually optimum 
performance when the available bit rate is too low to 
provide transparent compression. 

The first box in Fig. 23 performs a short-time or spa­
tiotemporally local analysis of the input audio or visual 
signal and extracts several properties such as frequency, 
intensity, texture, and temporal activity. These local prop­
erties are then used in the second stage of the process to 
derive a perceptual distortion threshold. This threshold can 
be a function of time, space, or frequency. It expresses a 
critical distortion profile in the sense that if the distortion 
caused by the compression algorithm is at or below the 
threshold at all points in time, space, or frequency, the 
degradation in signal quality is imperceptible. The critical 
distortion profile will be called the just noticeable distortion 
(JND). A supra-threshold generalization of it, suitable for 
nontransparent (but still perceptually optimum) coding will 
be called the minimally noticeable distortion (MND). 

The mapping from local properties to the JND profile 
is done in real time in general, and by necessity in a 
compression algorithm for two-way communication. The 
knowledge needed for the mapping is derived on the other 
hand from off-line experimentation with a large number 
of subjects performing a coder-specific perceptual task (as 
in the perceptual image coding algorithm of Section VIII). 
Alternatively, the knowledge for the dynamic JND deriva­
tion may come from adapting results from psychophysical 
literature to the particular coding algorithm in empirical 
procedures (as in the perceptual audio coding algorithm 
of Section VII). In either method, inter-subject variations 
are addressed by defining a sensitivity to represent P% of 
the test population. Values of P may be 50, 75, or 95, 
for example, depending on how conservative the algorithm 
is desired to be. In the perceptual experiments described 
in this paper, we use the 95% criterion. Other sources of 
variation come into play in describing perceptual effects, 
such as the effect of viewing distance in image coding. 
The method of Fig. 23 is, therefore, a generic methodology 
rather than a specific design. 
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MND profiles are also derived from off-line information 
(as in the speech coding examples of Section VI). An 
alternative, implicit way of deriving them, especially at bit 
rates that are high enough to permit near-transparency, is to 
upshift the JND profile until the desired bit rate is achieved, 
at the cost of undercoding some parts of the input signal. 

Given the JND or MND information, the rest of the 
coding algorithm is in principle straightforward, and it is 
the function of the third box of Fig. 23. A typical operation 
at this point is adaptive bit allocation that is steered by the 
JND or MND cues. The short-term analysis implied in these 
functions precedes the quantization function in the third box 
of Fig. 23, and this analysis can be either the same as that 
in the first box of the figure, or, in general, different. 

The overall result of the paradigm in Fig. 23 will be 
a variable bit rate, constant-quality algorithm. If needed, 
feedback from a bit buffer can be used to perturb the 
algorithm into a constant bit rate, variable-quality method. 
Hopefully, in this variation of the coder, most of the signal 
will be slightly overcoded and only some of the signal 
will be slightly undercoded. The desired constant bit rate 
is realized typically by an iterative process which tends to 
increase the complexity of the perceptual coder. 

In the critically coded, variable bit rate mode (which is 
the only known optimal mode of the system of Fig. 23), the 
total number of bits needed to encode the signal is really 
a fundamental limit: the lowest rate at which transparent 
coding is possible. We call this the perceptual entropy 
in deference to the information-theoretic terminology of 
entropy [9], (137], (138]. Two qualifications are needed 
in this context. First, these entropy estimates are only as 
good as the subjective data used to estimate JND profiles; 
hopefully, as our knowledge about noise-masking improves, 
lower entropies can result. Second, the perceptual entropy 
is input-specific and it varies from segment to segment in 
a nonstationary signal. It is useful in these cases to talk 
about the long-time-averaged perceptual entropy, as well 
as histograms of segmental perceptual entropy. Figure 24 
is a sample collection of such histograms. The two modes 
in the telephone speech histogram correspond to voiced 
and unvoiced speech (left and right modes). The nonzero 
probability of zero entropy refers to silent blocks in speech. 
Similar spikes of zero entropy are seen for pop music and 
orchestra. The entropies illustrated for speech and audio are 
idealized numbers that serve as lower bounds on actual bit 
rates. The bit rate information in the image example is based 
on real quantizers with real Huffman coders following 
them. 

In constant-bit rate coding systems designed for transpar­
ent reproduction of the signal, the encoder needs to operate 
at the peak of these histograms rather than at the average 
of perceptual entropy. The long tails of the histograms are 
particularly significant for the speech and audio examples. 
It will be useful to compare the results of Fig. 24 with 
the bit rates discussed in Figs. 5 and 4, remembering that 
no explicit claims about transparency are made in those 
pictures (except at the value of mos equal to or greater than 
about 4.5, at which point the bit rates needed according to 
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Fig. 24. Histograms of perceptual entropy. 

Fig. 5 indeed exceed 2 b/sample, as suggested by the tails 
in Fig. 24). 

Several, perhaps most, coders used for compressing au­
diovisual information can be regarded as special cases of 
the perceptual coder of Fig. 23. For example, elimination of 
the first two boxes leads to well-known classic algorithms. 
The most degenerate case of Fig. 23 is a memoryless PCM 
coder. 

VI. PERCEPTUAL CODING OF SPEECH 

As a class, speech compression algorithms have operated 
below the level of transparency because of technology 
needs in speech communication. We will treat the histori­
cally (and also technically) distinguished cases of narrow­
band telephone speech (300-3400 Hz) and wideband speech 
(100-7500 Hz) separately, and we shall examine how 
perceptual noise shaping principles have been incorporated 
in respective algorithms to maximize speech quality at a 
specified bit rate. 

1) Telephone Speech: At 64 kbps (8 b/sample at 8 kHz), 
the use of a nonuniform (logarithmic) 8-b quantizer pro­
vides transparent coding of telephone speech. There is 
very little noise shaping in this process, and in the ab­
sence of such a perceptual mechanism, the coder realizes 
transparency by what may be considered a memoryless, 
overcoding process with an unweighted SNR value of about 
38 dB [65]. 

With a simple adaptive predictor and an associated mild 
form of noise shaping (signal-adaptive noise envelope and 
a lowpass noise spectrum), adaptive differential PCM (AD­
PCM) provides high-quality speech at 32 kbps (4 b/sample) 
[65]. The speech quality is inferior to that of 64-kbps PCM 
in careful listening, although the telephone handset receiver 
tends to minimize the difference. If the same quality is 
maintained in going from 8 to 4 b/sample, the SNR gain 
needs to be 24 dB using a 6-dB-per-bit rule of thumb. 
In reality, given the slightly lower quality in the 32-kbps 
coder, the SNR gain may be closer to 18 dB of which about 
10 dB can be attributed to a prediction gain (redundancy 

4.0 0 

IMAGE 

20 3.0 4.0 5.0 

BITS PER SAMPLE 

reduction), and about 8 dB relates to a noise shaping 
advantage (perceptual coding). 

For rates of 16 kbps and lower, both of the above 
functions need to be addressed more efficiently. Adaptive 
predictors are made more powerful by the use of formal 
LPC models and by including pitch prediction, and noise 
shaping is made more deliberate (than in ADPCM) by 
relating it to distortion masking by the formant frequencies 
(vocal tract resonances) in voiced speech. The code-excited 
linear prediction (CELP) algorithm [5], [20], [44], [72], 
[ 139] is a generic structure for efficiently realizing these 
functions. 

The CELP diagram in Fig. 25 is a closed-loop LPC 
coder. Adaptive prediction (or strictly, an inverse function) 
is provided by the long- and short-delay correlation filters. 
The function of these LPC filters (which simulate the 
vocal apparatus) is to create a speech-like signal from an 
innovations signal, an excitation waveform. In vocoding, 
the excitation waveform is limited to either a periodic 
or a noisy signal, in the interest of a very low bit rate. 
In contrast, the CELP coder seeks to enhance naturalness 
in the output speech by permitting one of a large set of 
codevectors as the appropriate excitation for a given speech 
block, and its LPC description. In the example of Fig. 25, 
the selected codevector is one out of a codebook of 1024 
entries, prechosen either as appropriate noise-like signals 
(as in a stochastic codebook) or as speech-derived signals 
(as in an iteratively designed deterministic codebook). The 
selection of the best codevector is based on minimizing 
the perceptually weighted distance (distortion) between the 
synthesized speech (output of the LPC filter) and the speech 
to be coded. 

Figure 26 describes the distortion-weighting process. 
The hearing model is one which claims that the optimal 
distortion (noise) is neither white noise nor a spectrum 
parallel to the input speech spectrum (the broken spectra 
in the figure), but an intennediate (solid-line) characteristic 
that has a speech-like, half-white spectrum. The claim is 
that, for the same distortion power (area under the curve in 
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Fig. 25. Code-excited linear prediction (CELP) algorithm for 
speech coding (after [5]). 
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Fig. 26. 'Three generic forms of noise shaping in the coding of 
voiced speech (after [6], [651). 

the figure), such a half-white spectrum provides a maximal 
overall exploitation of distortion masking by the powerful 
formants in speech. Two observations from Fig. 26 can 
make this claim a little clearer. First, the white-noise 
spectrum is suboptimal in the sense that the SNR in the 
frequency region of the third formant would be too small 
to mask the corresponding distortion in that high-frequency 
region. Second, while the speech-like spectrum increases 
the SNR at the third formant, it does so at the expense of the 
SNR near the first formant, thereby compromising the low­
frequency fidelity of the coder. The intermediate ( optimum) 
distortion spectrum strikes a balance at all frequencies 
without compromising the very important low-frequency 
area. This spectrum is in a sense an MND profile, in the 
language of Fig. 23. 

The MND profile of Fig. 26 is a smooth spectral en­
velope, with the practical advantage that it can be related 
easily to the speech spectral envelope implied in the LPC 
coder. In particular, there is very little computational over­
head in deriving the optimal noise shape, and no bit-rate 
overhead needed to perform the perceptual shaping. 

What this MND profile lacks, however, is a fine fre­
quency structure related to the pitch frequency of the 
speaker. If the analysis procedure includes such a fine 
structure, it is possible to use even finer noise shaping than 
that used in Fig. 26. This subject will be addressed carefully 
in the discussion of perceptual audio coding (Section VII). 

For now, the benefits of finer frequency analysis can be 
illustrated by a simple example (Fig. 27). This example is 
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Fig. 27. Adaptive bit allocation based on (a) coarse and (b) fine 
spectral analysis (after [173] and [65]). 

not from CELP coding, but rather from adaptive transform 
coding, but it makes the point. The plots in the figure are 
bit-allocation profiles versus frequency. The bit-allocation 
algorithm (and the corresponding noise spectral shape) is 
driven by a smooth spectrum model in the upper figure and 
by a finer spectral analysis that includes pitch information 
in the lower figure. The total number of bits is the same in 
both examples. In the upper picture, the algorithm responds 
to average spectral energy and allocates all bits to the 
low frequencies of speech. It ends up overcoding these 
frequencies at the expense of entirely losing frequencies 
above 2.3 kHz (the third formant area of Fig. 26). With the 
finer analysis in the lower figure, the algorithm recognizes 
that the pitch-structure-induced valleys at low frequencies 
can in fact be lower in energy than the pitch peaks at 
higher frequencies, and uses this information to allocate 
quantization bits to selected high frequencies (in particular, 
the four 1-b spikes centered on 3 kHz). In other words, by 
responding to a fine, local energy cue, it preserves essential 
high frequencies in the speech signals. As described here, 
the algorithm is still steered by energy cues rather than 
by formal noise-masking priru;iples. But the advantages 
of a finer frequency analysis carries over to a noise­
masking argument as well, and reinforces the general need 
for a powerful, local signal analyzer (the first box of the 
perceptual algorithm of Fig. 23). 

2) Wideband Speech: Table 4 describes the Articulation 
Index [38), an intelligibility measure, as a function of fre­
quency content in speech. It shows that frequencies below 
200 Hz contribute nothing to intelligibility (although such 
low frequencies improve naturalness and presence). The 
table also shows that the contribution to articulation due to 
frequencies above the conventional telephone limit of 3400 
Hz is significant. This is true although the contribution to 
speech energy due to these high frequencies may be smaller, 
as shown in Fig. 28(a) (note the decibel scale on the vertical 
axis). In some examples, as in the vocal music illustration 
of Fig. 28(b), the out-of-telephone-band contribution can 
be significant even from an energy standpoint. Wideband 
speech (100--7500 Hz, nominally 0-8 kHz) is difficult to 
compress in the sense that the spectral dynamic range 
is high, and expectations of quality tends to be higher 
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Fig. 28. Spectra of wideband signals in (a) speech and (b) vocal 
music. 

Table4 Frequency Bands Contributing Equally to the Articulation Index 

Number Limits Mean Number Limits Mean 

200 to 270 11 1660 to 1740 
330 1830 

2 330 to 380 12 1830 to 1920 
430 2020 

3 430 to 490 13 2020 to 2130 
560 2240 

4 560 to 630 14 2240 to 2370 
700 2500 

5 700 to 770 15 2500 to 2660 
840 2820 

6 840 to 920 16 2820 to 3000 
1000 3200 

7 1000 to 1070 17 3200 to 3400 
1150 3650 

8 1150 to 1230 18 3650 to 3950 
1310 4250 

9 1310 to 1400 19 4250 to 4650 
1480 5050 

10 1480 to 1570 20 5050 to 5600 
1660 6100 

in wideband audioconferencing or loudspeaker telephony 
than in telephone speech communication with a 3.4-kHz 
bandwidth. 

We will now describe a perceptual noise shaping algo-
rithm that has proved to be quite effective for compressing 
wideband speech to bit rates on the order of 32 to 16 kbps 
(2 to I b/sample, assuming 16-kHz sampling). 

The general form of the noise-shaping filter in CELP 
coding is a weighting function 

W(z) = A(z/,1) 
A(z/''12), 

1 ~ "/2 < 11 ~ l 

where A(z) is the LPC polynomial. The effect of , 1 or 
, 2 is to move the roots of A(z) towards the origin, de­
emphasizing the spectral peaks of 1/A(z). With 11 and 
12 as in the equation, the response of W(z) has valleys 
(antiformants) at the formant locations and the interformant 
areas are emphasized. In addition, the amount of an overall 
spectral roll-off is reduced, compared to the speech spectral 
envelope as given by l/A(z). Noise is less audible if it 
shares the same spectral band with a high-level tone-like 
signal. 

The spectral dynamic range of wideband speech is con­
siderably higher than that of telephone speech, and the 
amplitudes of the 3400- to 7000-Hz components are usually 
near the bottom of this dynamic range. The unweighted 
SNR in CELP coding tends to be negative at high frequen­
cies. The auditory system is quite sensitive in this region 
and the quantization distortions are clearly audible in a form 
of crackling and hiss. Noise weighting is therefore very 
crucial in wideband CELP and the balance of low- and 
high-frequency fidelity is quite delicate. 

The filter W ( z) in the above equation has an inherent 
limitation in modeling the formant structure and spectral 
tilt concurrently. The spectral tilt is more or less controlled 
by the difference 11 - 12. The tilt is global in nature and it is 
not possible to emphasize it separately at high frequencies. 
Also, changing the tilt affects the shape of the formants 
of W(z). A pronounced tilt is obtained along with higher 
and wider formants, which puts too much noise at low 
frequencies and in between the formants. The formant and 
tilt problems need to be decoupled. The approach is to use 
W ( z) only for formant modeling and to add another section 
for controlling the tilt only [64]. The general form of the 
new filter is 

W'(z) = W(z)P(z) 

where P(z) is responsible for the tilt only. Various forms of 
P(z) have been studied, and the following two-pole section 
has been proposed based on listening tests: 

1 
P(z) = --2 ---

1 + LPi ,; z-i 

i=l 

The coefficients Pi are found by applying the standard LPC 
algorithm to the first three correlation coefficients of the 
impulse response of the current-frame LPC inverse filter. 
The parameter 1p is used to adjust the spectral tilt of P(z). 
The values 'Yp = 0.7, , 1 = 0.95 and , 2 = 0.8 have been 
found to yield the best perceptual performance. 

Figure 29 demonstrates the effect of the enhanced noise­
shaping filter. The broken curve in the figure shows a 
typical spectrum of a conventional inverse filter w- 1(z). 
The solid curve is the spectrum of an enhanced inverse filter 
w- 1 (z)P- 1(z) forthe same underlying LPC filter. For the 
same general tilt, the enhanced filter has less pronounced 
formants especially for the lowest and highest formants. 
Compared to the conventional filter, the enhanced filter 
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Fig. 29. Noise shaping in the coding of wideband speech (after 
[641). 

attenuates the noise by about 5 dB at the lowest and highest 
formants, while achieving the right overall spectral tilt. 

The CELP coder with the noise weighting described 
above has been implemented with an LPC predictor order 
of 32, a coding block size of 5, a codebook size of 
1024, and without a pitch loop. The performance of the 
computer-simulated 32-kbps CELP coder has been assessed 
by comparing it to the G.722 CCITI standard wideband 
coder at 64 kbps [ 16]. The test material included 4 male and 
4 female utterances. Each utterance was coded by the G.722 
algorithm and by the CELP to form a pair of utterances. The 
order in a pair was set at random. However, each pair was 
played in both possible orders to eliminate biased decisions. 
Twenty listeners took part in the test. Each listener was 
asked to vote for the better sounding utterance or to split 
the vote equally, if no preference could be made. The final 
scores were defined as the percent number of votes for 
each system per given condition. 

The overall preference scores were 51.72% and 48.28% 
for CELP and G.722, respectively [64]. This means that, 
on average, the two systems performed alike. which is 
extremely encouraging, recalling that the CELP bit rate is 
half that of G.722. Finally, the coding delay of the G.722 
coder is 1.5 ms whereas that of the CELP coder is only 
0.94 ms. The results of the experiment also suggest that 
the mos quality score of the 32-kbps audio coder is close to 
4.0. Extensions of noise-shaping algorithms to 16 kbps have 
produced promising results [40], [127], [166], although the 
quality is noticeably lower than that at 32 kbps. 

VII. PERCEPTUAL CODING OF WIDEBAND AUDIO 

The term masking describes the effect by which a fainter 
but distinctly audible signal becomes inaudible when a 
correspondingly louder signal occurs approximately simul­
taneously. Earlier results on the tone-masking-noise [132] 
problem showed that there is a band of frequencies centered 
at each tone in which the just-noticeable noise energy 
remains nearly constant, even though the noise bandwidth 
and/or in-band noise shape are changed. This band of 
frequencies was called the critical band (the staircase 
treads in Fig. 31). Later research on the noise-masking-
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Fig. 30. (a) The spreading function for auditory noise masking. 
(b) The elevation of auditory threshold due to a critical-band noise 
masker of varying intensity at I kHz. 

tone problem [56] showed that noise maskers had the same 
sort of behavior and that the critical band corresponded to 
a physical measurement in the cochlea. 

Given this critical band scale, masking of steady-state 
tones and noise inside of one critical band is relatively 
well described. In the course of investigating masking 
phenomena outside a critical band, the spreading function 
(Fig. 30(a)) [135] was postulated; this describes, for steady­
state situations, the masking effect of a signal in one critical 
band on signals in another critical band. This spreading 
function is currently believed to be a by-product of the 
mechanical cochlear filtering mechanism. The shape of 
the spreading function varies with level, and the masking 
abilities of a signal spread farther from the base frequency 
as the level of the masker in increased. Note also that 
Fig. 30(a) suggests that for a given frequency separation, a 
masker does a better job of masking a higher frequency 
maskee than a lower-frequency maskee: a phenomenon 
sometimes called the upward spread of masking. 

Figure 30(b) refers to an early experiment in this subject. 
It illustrates the level of a test tone just masked by critical­
band wide noise with center frequency of I kHz and 
different levels, as a function of the frequency of the 
test tone [174], [175]. The figure includes the absolute 
threshold of hearing as a baseline. The shapes of the various 
elevated characteristics are similar to the spreading function 
in Fig. 30(a). The exact shapes, however, are dependent on 
the noise level. The double peaks in the two uppermost 
characteristics are due to nonlinear phenomena in hearing, 
resulting in a second peak that approaches the second 
harmonic (2 kHz) at high loudness levels. The concept of 

PROCEEDINGS OF THE IEEE. VOL. 81, NO. 10, OCTOBER 1993 



Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on April 20,2022 at 00:06:40 UTC from IEEE Xplore.  Restrictions apply. 

noise-masking tone is a significant departure from models 
used in earlier coding theory. There, it was usual to test the 
coder with a tone input and model the coding distortion as 
noise. In adaptive perceptual coding, we recognize that the 
signal in a critical band can be noise-like, while a distortion 
component could be very localized and tone-like; hence 
the noise-masking-tone model of Fig. 30(b). Results for 
tone-masking noise tend to be more complicated. 

The results from masking experiments are sometimes 
summarized by the equations below where ET and EN are 
tone and noise energies, B is the critical band number, and 
the left-hand sides of the equations represent the maximum 
energy of the masked signal: 

Tone Masking Noise: EN = ET - 14.5 - B (dB) 
Noise Masking Tone: ET = EN - K (dB) 

Various values in the range of 3 to 6 dB have been proposed 
by experimenters for the parameter K. The variability 
has to do with differences in experimental paradigms and 
differences in the way intersubject variations are accounted 
for. In Fig. 30(b), K is close to 3 dB. A value of 4 dB is 
proposed in (56]. A value of 5 dB is used in some of the 
more recent work reported in this paper (69]. 

Figure 31 shows a JND profile for the example of a 
trumpet sound as input signal. The JND function in Fig. 
31 is based on an interpolation of tone-masking noise and 
noise-masking tone results, followed by the application 
of the spreading functions. This sort of interpolation is 
necessary because the classical results are for pure tones, 
or for critical-band noise, and not for mixed signals such as 
speech and music. In practice, such interpolations, coupled 
with the critical band model, provide a very good estimate 
of the masking threshold for most signals. In sophisticated 
versions of the algorithm, the interpolation is done on a 
frequency-by-frequency basis, using a measurement of the 
"tonality" at each frequency [68], (69]. These interpolated 
noise-masking-tone and tone-masking-noise thresholds are 
used to calculate a level below that of the spread energy in 
the short-term signal. This is the level below which injected 
noise will be masked. A version of this method can be found 
as "Psychoacoustic Model II," in the ISO-MPEG-1 audio 
coder [108]. 

Figure 31 illustrates a generic and powerful way of 
incorporating a human auditory model in the coding process 
(11], [67], (68], (69], [146]. The method is to frequency­
analyze the input audio signal and to postulate a just 
noticeable quantization noise threshold as a function of 
frequency for the given audio signal spectrum. Quantization 
errors that are equal to, or lower than, this threshold are 
masked by the audio spectrum in the frequency vicinity of 
the errors. Given the noise threshold, a variable bit alloca­
tion procedure can be utilized to provide an actual noise 
spectrum close to the threshold characteristic. Extremely 
high compression efficiency can be realized because the 
sophisticated noise threshold typically permits very coarse, 
or even 0-b, quantization of significant fractions of the input 
spectrum. The implementation of the perceptual coder may 
use two interacting processes: a function that implements 

so~-----------~ 

FREQUENCY (kHz) 

Fig. 31. Just-noticeable distortion (JND) versus frequency for one 
block of a trumpet signal. 

the JND, or an estimate of the JND, including a control­
lable parameter C that causes overcoding or undercoding; 
and a bit-counting function that counts or estimates the 
bit rate resulting from the quantizing and entropy-coding 
systems. In one example of an iterative loop, the difference 
between the actual and target bit rates in a given stage 
of iteration causes a change in the parameter C. Several 
cycles of iteration result in a stable combination of desired 
bit rate and the approximate JND or MND condition that 
is realizable at that bit rate. The final bit allocation as 
a function of frequency, together with stepsizes for the 
various quantizers, are then coded and transmitted to the 
receiver. 

The objective signal-to-noise ratio in a perceptual audio 
coder is typically fairly low (for example, as low as 20 
dB), while the subjective signal-to-noise ratio is at a level 
high enough to signify transparency or near-transparency. 
In one example, with a signal which consists of a male 
a capella chorus, the coder is perceptually transparent at a 
13-dB overall SNR, when the noise is inserted according to 
psychoacoustic principles. On the other hand, the coder is 
nontransparent to additive white noise at an SNR as high as 
60 dB, and nontransparent to locally adjusted white noise 
at an SNR of 45 dB. With a 1-kHz tone input, transparency 
with additive white noise requires an SNR of 90 dB. With 
ideally shaped noise, transparency occurs at an SNR of 25 
dB. 

The JND function is a function of a finely described 
input spectrum and the ear model, rather than a simple 
transformation of the LPC spectrum of the input signal, as 
in Figs. 26 and 29. While it is conceivable that a very-high­
order LPC analysis can describe the input spectrum finely 
enough to permit a useful JND model, current method­
ologies for transparent or near-transparent audio coding 
have depended on high-resolution frequency analysis using 
either a subband coding or transform coding framework. 
Currently, high-order LPC methods have also been limited 
by their ability to adapt to a changing masking threshold 
and their ability to provide a predictable trajectory for 
adaptation. 
1) Simultaneous (Frequency) and Nonsimultaneous (Tempo­
ral) Masking: The distortion masking implied in Fig. 31 
is a frequency-domain effect. There is also evidence of 
temporal masking in the human auditory mechanism. A 
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Fig. 32. Temporal masking in 1he human auditory system. 

strong signal can mask a weaker signal that occurs after 
it (post-masking or forward masking), and a weaker signal 
that occurs before it (pre-masking or backward-masking). 
This is shown in Fig. 32 [166], [175]. Note that in this 
figure, post-masking uses a different time origin than pre­
masking and simultaneous (frequency-domain) masking. 
The main result of Fig. 32 is that forward masking lasts 
longer than backward masking. But in both cases, the 
skirt of the masking characteristic is quite sharp. Forward 
masking is easier to realize in the sense that there is no 
need to predict the availability or onset of a maskee, as in 
backward masking. 

One of the potential degradations in low-bit-rate trans­
form coding of audio is the phenomenon of pre-echo. 
Consider the coding of a sound signal characterized by a 
sharp attack. Consider further the situation where the signal 
begins only in the ending part of the transform block. The 
inverse transform has the effect of spreading the quantizing 
distortion throughout the transform block. The result is a 
block in which the distortion extends through the block, 
while the signal appears only at the end of it: hence the 
pre-echo effect (Fig. 33(a)). This effect can be mitigated by 
backward masking, but not if the block length is very long. 
As in the application of masking thresholds, it is again wise 
to use a pre-echo criterion matched to the critical listener, so 
that one can detect and eliminate pre-echo, for high-quality 
coding. 

A natural technique to minimize pre-echo distortion is 
to use a short transform block length. However, in order 
to ensure the coding gains associated with a long transform 
block, long block lengths should be used when a sharp onset 
is not likely, as in steady-state audio segments. The result 
is a variable-block length transform coder (Fig. 33(b)). The 
block . length in such a system may have typically two or 
four values, for example: 128, 256, 512, and 1024 samples 
(at 48 kHz). In the illustration of Fig. 33(b), two block 
lengths are used, together with asymmetrical start and stop 
windows while making block-length changes. One of the 
challenges in designing such a coder is the use of an 
effective criterion for block-length adaptation. Perceptual 
entropy gradients have been shown to work better in this 
connection than simple energy gradients. 

2) The ISO-MPEG Audio Coding Standard: This is a 
three-layer standard where audio quality increases mono­
tonically with increasing layer number [60], [98], [108]. 
The first two layers are based on a polyphase filterbank 
with 32 equally spaced bands, each with a bandwidth of 
750 Hz and a sampling rate of 1.5 kHz. Decimated subband 
waveforms are processed in 8-ms blocks for adaptive quan-
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Fig. 33. (a) Spreading of noise in time: input signal {attack of a 
triangle), solid line; analysis block in a transform coder; and noise 
produced by the transform coder, broken line. {b) Transforms with 
two different block lengths. 

tization. Layer 2 is characterized by even more efficient 
algorithms for quantization and perceptual coding. The third 
layer is based on finer frequency analysis obtained by an 
MDCT-transform decomposition of the subbands in earlier 
layers. It also provides advanced pre-echo control, adaptive 
entropy coding and the iterative loops mentioned earlier 
for optimum coding. 

Figure 34 illustrates a hybrid filterbank composed of a 
subband stage followed by a transform coding stage [68]. 
Here, as in the 1S0-MPEG standard, the finer frequency 
resolution provided by the MOCT stages is necessary for 
maximum utilization of distortion-masking effects. The 
finer frequency resolution, and the longer time window 
associated with it, are also critical for realizing powerful 
forms of joint stereo coding. The hybrid filterbank is shown 
to result in lower estimates of perceptual entropy for many, 
but not all audio inputs [68]. An input-dependent filterbank, 
while admittedly very complex, would result in consistent 
and substantial reductions of perceptual entropy. 

3) Joint Stereo Coding: One mode of the ISO standard 
codes the left and right channels of a stereo pair as 
independent sound channels. There is also a provision for 
jointly coding the stereo pair, but the filterbank and bit 
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Fig. 34. A hybrid subband-transform analysis system for audio 
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stream specifications in the ISO standard are such that the 
full potential of joint stereo coding is not realized in the 
ISO algorithm. 

The two channels of a stereo pair are in general corre­
lated and, as expected, there is a significant advantage in 
coding these channels jointly, as in Fig. 35. In a classical 
coding approach to the problem, the left (L) and right 
(R) channels are transformed into a sum (L + R) and 
difference (L - R) pair, and unequal bit allocation based 
on energy-related metrics will provide an overall minimum 
mse. In perceptual coding, the intention is to effect maximal 
masking, while making efficient use of signal redundancies. 
When operating on a stereo signal, there are several intricate 
issues [69). One of these is minimizing the unmasking of 
noise as related to masking level differences (mid). When 
a low-frequency signal (2 kHz or below) is received by 
both ears, the phase relationships in the signal and any 
independently injected noise may result in up to 15 dB of 
binaural unmasking. This means that the Rand L coders 
may mask the R and L distortions completely, while the 
binaural signal may have significant unmasked noise. In the 
case where a strong central or antiphase signal exists, the 
mid can be controlled by the use of sum/difference coding, 
a situation that also extracts the redundancy present in the 
stereo signal. Another consideration is that the stereo coder 
must not create a situation where sum/difference coding is 
less efficient than L / R coding. If the masking thresholds 
for L and R are substantially different, any coding in the 
sum/difference domain will have to be at the lower of the 
two thresholds. This can result in substantial inefficiency 
in coding the channel with the higher threshold, unless 
L / R coding is used. In general, this difference in L / R 
threshold also shows the existence of a situation where L 
and R are not strongly correlated in the frequency domain. 
A perceptually efficient joint stereo technique looks at the 
difference between the L and R perceptual thresholds, and 
chooses the ( L + R, L - R) decomposition only if that 
difference is smaller than a carefully selected threshold. 
The switch between the stereo-coding modes occurs both 
in time and in frequency [69]. 

TO 
HUFFMAN CHANNEL 

DATA 
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A 

Fig. 35. Block diagram of joint stereo coding. 

Figure 36 displays a set of eight spectra related to joint 
stereo coding. The input is a block of vocal music (the same 
as the input used in Figure 28b). An interesting effect in the 
figure is that the sum-threshold (sum-JND) and difference­
threshold (difference-JND) characteristics tend to be close 
to each other even though the sum and difference spectra are 
very different. As a result, we are able to discard a good deal 
of the difference component in the coding process, without 
introducing any perceived noise, either in the individual L 
and R channels, or due to the binaural mid. 

In the particular example of the vocal signal in Fig. 28(b) 
(and Fig. 36), it turns out that (L + R, L - R) coding is 
used almost all of the time except during silences. 

VIII. PERCEPTUAL IMAGE CODING 

Over the years, there has been a steady increase in the 
extent to which knowledge about human perception has 
been incorporated into image compression. Most of the 
early work has utilized the frequency sensitivity of the hu­
man visual system as described by the modulation transfer 
function (MTF). This function describes the sensitivity of 
the human eye to sine-wave gratings at various frequencies. 
The psychovisual experiments in [17), [23), and [92] have 
proposed a commonly used model for the MTF. Since the 
MTF is defined for sine-wave inputs, it is not directly usable 
for OCT-based coders. Recent work [106] has developed a 
transformation that accounts for the difference between the 
Fourier and OCT bases. Similar procedures could be used 
to transform the model to other frameworks for frequency 
analysis. From these models, given that the minimum 
viewing distance is fixed, it is possible to determine a static 
JND threshold for each frequency band. These thresholds 
can be used for both quantization [156) and bit allocation 
[114). 

The models can be extended to include contrast sensi­
tivity as well. The homomorphic models mentioned earlier 
also attempt to utilize these properties. Contrast sensitivity 
can be included either implicitly, by developing functions 
of masking threshold versus local brightness, or explicitly, 
by using homomorphic systems or so-called perceptually 
uniform or equi-luminant color spaces [150). 

The main problem with the aforementioned systems is 
that they do not go far enough in utilizing the masking prop­
erties of the human visual system. Frequency sensitivity is 
a global property dependent only on the image size and 
viewing conditions. Contrast sensitivity has been exploited 
mainly via pre- and postprocessing as in the homomorphic 
models. What is needed is a more dynamic model that 
allows for finer control of the quantization process. 
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Fig. 36. Signal and JND spectra in joint stereo coding. 

Analogous to the frequency-dependent masking functions 
in audition, there is evidence for similar processes in the 
visual system [144]. These properties depend on the local 
scene content and therefore have the desired propert~ of 
local control. In other words, the local JND level depends 
on the MTF of the human visual system, the local contrast 
sensitivity, and a measure of the local texture. In order to 
achieve the highest subjective quality at a given bit rate, all 
of these properties must be utilized. 

Several coders have been proposed that utilize these 
properties to achieve higher perceived quality for a given 
bit rate. The work in [21] utilizes the concept of a fixed 
quantization matrix, which accounts for the MTF of the 
visual system, in conjunction with the concept of encoding 
only the portion of the signal that exceeds a local threshold. 
This produces a coder structure that is the predecessor of 
contemporary perceptual coders. More recent systems (22], 
[95], [105] utilize frequency and contrast sensitivity, and 
in addition use some form of texture masking. In these 
methods, instead of explicitly computing JND thresholds 
incorporating frequency, contrast, and texture, each DCT 
block is classified according to its energy. Based on this 
classification, an appropriate quantization rule is invoked. 

As with perceptual audio compression, the choice of the 
filterbank used in a coder can affect the performance of 
the compression system. The primary purpose of perceptual 
quantization is to control the spatial frequency location of 
the quantization distortion. Therefore, the filterbank should 
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be selected to allow this form of control. Ideally, the 
addition of quantization distortion to one coefficient should 
not show up in coefficients that are not adjacent to the 
one that was perturbed. In addition, the analysis filterbank 
should mimic the structure of the visual system. For a 
human, this structure is a set of filters with frequency 
spacing of about 1.5 octaves and an angular width of about 
40°. 

The DCT (and other uniform filterbanks) meet the first 
criterion [78], but do not meet the second. This leads to 
difficulty in creating masking models since there is a mis­
match between the underlying structure of the model and 
the structure of the transform that it is being implemented. 
One means of implementing a transform that mimics the 
visual system is the Cortex Transform [ I 61 ], and this results 
in an image coder based on that transform [ 162]. The main 
stumbling block in using this approach is that the Cortex 
Transform is not a maximally decimated filterbank. This 
results in an expansion in the amount of data that need to 
be encoded. At present, visual masking models have not 
been able to provide enough coding gain to overcome this 
disadvantage. 

As pointed out earlier, signal-to-noise ratio is not an 
accurate predictor of subjective image quality, especially 
at low bit rates [2], [13], [80], [86], [100], (126]. One way 
of addressing this problem is to transform the errors into a 
space where mean square error could be used. This is the 
approach used in Fig. 20 as well as in [ 106] and [ 130}. The 
original and coded images are transformed into a "human 
visual space" by utilizing Weber's Law and the MTF. This 
transformation is designed to compensate for the effect 
of those portions of the visual system. The mean squared 
error between the transformed images provides a weighted 
distortion, as in Fig. 20. This approach produces better 
correlation to subjective evaluation than the unweighted 
mse, but is limited by the fact that the visual model is 
global. To alleviate this problem, the concept of a visual 
difference predictor is introduced in (30]. A detailed visual 
model is applied to the original image and local JND 
thresholds are computed for each pixel in the image. The 
differences between the original and compressed images 
are then computed and transformed into JND units. The 
resulting representation gives a good representation of 
image quality. Portions of the input that have errors on the 
magnitude of a JND show little or no visible degradation, 
while those portions with larger amplitudes correlate well 
with the portions where coding impairments are visible. 

As was shown in Section VII, a more efficient coder can 
be generated by utilizing a good local perceptual model 
to identify the irrelevant portions of a signal working 
in concert with an efficient redundancy removal system. 
This approach of structuring a coder around generating an 
MND profile and then efficiently quantizing the resulting 
information [80], [128], [129] will now be presented. 

1) The IND-Based Image Coder: The starting point for 
the locally adaptive perceptual coder is the two-dimensional 
subband decomposition of Fig. 12(b). Image blocks in each 
of 16 subbands are further analyzed to determine local 
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Fig. 37. An experiment to evaluate the visibility of image dis­
tortion. 

Table S Just Noticeable Noise Levels in 2D Subband Coding with 16 
Subbands (Entries are nns values, for constant mid-gray background level 
of 127; rows and columns represent horizontal and vertical frequency.) 
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values of brightness and texture (as in the first block of 
Fig. 23). 

Distortion sensitivity profiles are then derived as func­
tions of frequency (subband number), brightness, and tex­
ture [128] and color parameters [129]. This is done by 
using the basic experimental paradigm of Fig. 37 in which a 
subject views the variable-power noise square at a specified 
distance and determines the noise variance for which the 
noise square is just noticeable against a specified back­
ground of flat texture. (To be precise, the random noise 
is added to a frequency band in question, and the corrupted 
images are passed through the synthesis filterbank.) In the 
cited experiments, the noise had approximately the same 
mean value as the background, and its density function was 
uniform. The experiment is repeated at various background 
brightness levels to determine the brightness sensitivity 
(Fig.38(a)). When the mean value of the noise square 
is the same as that of the background, the noise square 
tends to be most visible against a mid-grey background, 
assuming that the input image includes gamma correction 
[100]. The frequency sensitivity can be inferred from the 
eye-sensitivity diagram, the MTF (Fig. 38(b), a result of 
the more general Fig. 11); alternatively, the frequency 
sensitivity is experimentally measured by repeating the 
basic subjective experiment for each of the 16 subbands. 
Table 5 shows the experimentally measured frequency 
sensitivity for a viewing distance of six times the picture 
height and for a mid-grey background of flat texture. 
Finally, the texture sensitivity is determined by an empirical 
calculation in which texture is defined as a local intrablock 
variance and the MTF is (again) used to establish a relation 
between visibility of distortion and texture. 

The upper part of Fig. 39 depicts a constant texture 
background with white noise of rms value 8 added to the 
center third of the lowest subband of the right half of the 
picture. The figure de monstrates the expected phenomenon 
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Fig. 38. Distortion visibility as a function of (a) background 
brightness and (b) spatial frequency. 

that distortion visibility is low when the background has 
a strong texture. The lower picture in Fig. 39 depicts a 
constant level of noise (rms value of 8 for a peak input 
of 255) added to the center third of the lowest subband 
of a ramp input whose brightness changes continuously 
from white (at the left) to black (at the right). The figure 
demonstrates that distortion visibility is greatest against a 
mid-grey background. 

The interactions between the various parameters control­
ling noise sensitivity are small. Hence component effects 
can be superposed to predict overall noise visibility as a 
function of various input signal parameters. 

Data from the above generic experiment are used to 
derive JND estimates as spatial profiles for each of the 16 
subbands of the image to be coded. These JND profiles 
lead in turn to spatially adaptive bit allocation in each 
subband (see Fig. 23). With a typical image, several spatial 
blocks are allocated zero bits, and in fact a large number 
of subbands see zero-bit allocation to all of their spatial 
blocks. 

These effects are illustrated in Fig. 40. Part (a) of the 
figure is a 512 x 512 pixel image of a head-and-shoulders 
image. Part (b) is the image of the first subband (lowest 
horizontal and vertical frequencies). Part (c) is the JND 
image of part (b): dark areas in (c) represent parts of 
(a) where the JND is high, implying the possibility of 
coarse quantization; white areas in (c) represent parts of (a) 
where the JND is low, and intermediate intensities in (c) 
signify intermediate values of JND. Corresponding results 
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(a) 

(b) 

Fig. 39. Illustration of distortion masking by (a) background 
texture and (b) background brightness. 

of variable bit allocation (including zero-bit allocation) are 
shown in part (d): white blocks in (d) signify that for 
corresponding regions in the full-band input (a), 4 out of 
16 subbands are retained; light-grey blocks in (d) signify 
the retention of 3 subbands; dark-grey blocks in (d) signify 
the retention of 2 subbands; and black blocks in (d) signify 
that only 1 out of 16 subbands (almost always the lowest 
frequency subband) is retained for corresponding input 
blocks. As a result of the JND paradigm, the input (a) can 
be compressed in a perceptually lossless fashion at a bit 
rate of about 0.7 b/pixel assuming a viewing distance of 
six times the picture height. 

Figure 41 shows the result of perceptual subband coding 
of a 24-b color input (704 x 480 pixels) at rates of 1.0, 
0.67, and 0.33 b/pixel. Distortion is noticeable only at the 
very lowest bit rate. On a 64-kbps transmission line, the 
time needed to transmit the 24-b original is about 100 s. 
With 0.33 b/pixel coding, the transmission time is 1.3 s. 

2) The /SO-JPEG Image Coding Standard: The JPEG sys­
tem [156] is based on DCT coding rather than subband 
coding. Adaptive methods for bit allocation and quantiza­
tion provide a very good tradeoff between quality and bit 
rate. However, with various informally tested images, the 
perceptual subband coder provides higher image quality 
than the JPEG algorithm at any given bit rate, and thus 
achieves transparency at a lower bit rate as well. 

The JPEG system [ 113] is based on 8 x 8 OCT coding and 
utilizes a single quantization matrix per image. For the base­
line encoder, the input image is divided into 8 x 8 blocks, 
and then transformed using the OCT. Next, the transform 
coefficients are quantized using a user-specifiable quantiza­
tion matrix. The quantized coefficients are then noiselessly 
coded using either arithmetic or Huffman coding. 

1414 

(a) (b) 

(c) (d) 

Fig. 40. Perceptual sub-band coding. (a) 512 x 512 input, (b) 
lowest-frequency subband, (c) spatial JND profile for (b), and (d) 
spatial profile of the number of subbands retained (out of 16). 

Given this structure, it is possible to design quantization 
matrices that take into account the MTF of the human visual 
system. Recent work [3], [115] has shown how to derive 
the perceptually optimum quantization matrices for a given 
viewing distance for various color spaces. These matrices 
do not take into account texture sensitivity and may not 
give perceptually uniform distortion for supra-threshold 
conditions. The work in [163] provides a design procedure 
to compute an image-dependent quantization matrix that 
takes these additional factors into account. It allows the 
user to specify the average desired distortion in units of 
JND, and then determines a quantization matrix that will 
provide that level of fidelity. 

These approaches produce a coder that provide subjec­
tively better quality images than using the matrices provided 
in the JPEG standard. However, they can only work on 
a global level since the quantization matrix cannot be 
changed within an image. It is possible to use more explicit 
perceptual models and a technique called pre-quantization 
to provide more local adaptivity to the quantization sys­
tem while still maintaining compatibility with the JPEG 
standard. 

In this approach, the JND data from the subband coding 
experiment are used to enhance the JPEG encoder while 
retaining the standardized bit stream syntax and decoder al­
gorithm. This is done by using the perceptual methodology 
as a preprocessor which performs all zero-bit allocations 
before the usual bit allocation and quantization operations 
in the JPEG quantizer (Fig. 42). 

The perceptual model described in conjunction with the 
subband coder of the previous section provides a noise 
visibility threshold for transform coefficients. This model 
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(a) 

(c) (d) 

Fig. 41. Perceptual sub-band coding of color image. {a) 24-bit original (top left) and compressed 
image at (b) 1.00 (top right). (c) 0.67 (bottom left) and (d) 0.33 (bottom right) bpp. 
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Fig. 42. TSO-JPEG algorithm with perceptual preprocessor. 

can be adapted to work with the OCT as well as the 
subband framework. If a OCT coefficient is less than its 
corresponding MNO threshold, that coefficient can be set 
to zero before the normal JPEG quantization step. 

The result is a picture-dependent gain in the bit rate 
needed for transparent coding. This gain is on the order 
of IO to 45% with typical color inputs. In the example 
of Fig. 43, for the so-called default quality level specified 
in the JPEG system, the perceptual preprocessor has the 
effect of reducing the bit rate from 2.1 to 1.6 b/pixel. The 
approach of perceptual preprocessing is generic, and can be 
used with any existing coder. 

3) Perceptual Coding of Facsimile: The low bit rates pro­
vided by perceptual image coding suggest a possible new 
approach to the transmission of grey-level facsimile. Rather 

than transmitting a grey-level photograph by first halftoning 
it and transmitting it as black-white document of high spa­
tial resolution. one could transmit the picture as a grey-level 
image (using subband coding) and do the halftoning at the 
receiver. For the example of Fig. 44, two alternatives were 
specifically compared: conventional fax transmission of a 
1536 x 1536 half-toned image, using standard black-white 
coding techniques; and the new method of transmitting a 
512 x 512 grey-level image and using halftoning at the 
receiver. The compression algorithms were arranged to be 
lossless in both cases, with a perceptual losslessness cri­
terion in the subband method. The grey-level transmission 
method resulted in a 50% decrease of the bit rate. More 
significantly, the availability of grey-level information (in 
the new technique) permits the use of new model-based 
techniques for efficient halftoning at the receiver. The 
models used include the HVS model and the model of 
the printer itself. Fig. 44 illustrates the effect. With the 
same (300-dot-per-inch) printer, the left image is the result 
of conventional halftoning. The (sharper) right image is 
the result of model-based halftoning at the receiver, a 
precondition for which is the transmission of the picture 
as a grey-level image [104], [l 12]. 

IX. PERCEPTUAL CODING OF VIDEO 

This is an area where the use of perceptual cues are 
least understood. For instance, we have only begun to use 
the JND methodology of Fig. 23 for quantizer design. On 
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Fig. 43. Comparison of JPEG image coding algorithm: without 
preprocessor (2.1 bpp, lower image) and with perceptual preproces­
sor (1.6 bpp, upper image). 

Fig. 44. Grey level transmission of fax document using percep­
tual coding at 0.5 bpp (left image); and model based halftoning at 
the receiver (right image) (after [1041 and [112]). 

a different level, even prior to quantization, we are still 
using very infonnal criteria for fundamental designs such as 
choice of temporal (and spatial) resolutions and the degree 
of chrominance subsampling. 

In the following. we shall comment on two fundamentally 
different approaches to video coding, and examine the 
inroads made by perceptual designs in each case. 

I) Motion Compensation Follo,ved /Jy 2D DCT: This is a 
hybrid approach to 3D coding where a differential inter­
frame process is followed by frequency-domain coding of 
the motion-compensated interframe error (Fig. 45 J. This 
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Fig. 45. Block diagram of video coder using motion compensa­
tion followed by 2-D OCT and entropy coding (EC). 

method is the basis for several international (CCITT and 
ISO-MPEG) standards for videoconferencing and address­
able video [85], [88]. The Phase-1 MPEG standard uses a 
bit rate of about I Mbps; the CCITT coder operates at p * 64 
kbps, with p varying from I to 24. 

The storage-oriented ISO-MPEG system represents a 
periodic subset of frames in a high-resolution intraframe 
coding mode (or intramode), in the interest of address­
ability. In the interframe mode, the coders use motion 
compensation to generate a prediction of the current video 
frame from previous (and, in the case of 1SO-MPEG, pos­
sibly future) frames. The difference between this prediction 
and the actual frame is then encoded. The frame differences 
in the CCITT and 1SO-MPEG coders are encoded using 
techniques similar to those in the JPEG coder described 
previously. 

As in JPEG, a global quantization matrix is used, but 
there is an additional degree of freedom available. On a 
macroblock level (4 adjacent 8 x 8 luma blocks), it is 
possible to adjust the scaling of the quantization matrix. 
This adjustment parameter is introduced to allow the codec 
to be constant rate, but it can also be used to adjust for 
local variations in masking level. 

One approach to incorporating perceptually based quan­
tization into motion compensated DCT coders is that de­
scribed in [120]. The approach is to modify the quantizer 
scaling parameter based on perceptual criteria. First, eight 
different classes of input-scene complexity are derived and 
target bit allocations are computed for each class. Then, 
each macroblock is classified as either textured or low­
detail based on it variance. Next, the textured blocks 
are further discriminated based on whether the texture is 
either structured, i.e., edge-like, or unstructured. Based on 
these classifications and the global scene complexity, the 
quantizer scaling parameter is then set. This differs from 
the strict JND/MND approach in that perceptual thresholds 
are not specifically detennined, but are implicit in the 
adjustment rules. 

Finally. the prequantization technique described in the 
Section Vlll can also be adapted to MPEG and CCITT 
systems. The data being encoded are interframe differences, 
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Fig. 46. Explanation of temporal noise masking in video. 

and the perceptual model provides MND thresholds. If the 
local difference is smaller than the MND threshold at that 
locality, the coefficient does not need to be transmitted. For 
MPEG-type encoders running in a constant quality mode, a 
rate reduction of 5-20% is achievable with no visible loss 
in picture quality. 

A low-bit-rate HDTV coder based on perceptual coding 
of the interframe error has been recently described. The 
methodology used here was similar to that of Fig. 23, but 
the extension was approximate in that the structure of the 
interframe error was very different from the uniform-noise 
model used in the IND experiment of Fig. 37. Further, 
the HDTV viewing distance was smaller than the six-times 
picture height model of that experiment. These effects are 
offset by the fact that the JND can now be a function of 
the time dimension as well, and the benefits of temporal 
masking are now available. Figure 46 explains an example 
of temporal masking. In the context of newly uncovered 
background (due to the passing truck), there is a small 
latency period (say, the frame called t = 1) during which 
the newly exposed areas do not have to be perfectly 
reconstructed. 

HDTV images (1280 x 720 pixels, 60 frames/s) are 
compressed to 17 Mbps using the above procedure, to 
facilitate simulcasting over 6-MHz NTSC channels l 102]. 
The rate of 17 Mbps is not adequate to provide perceptually 
transparent coding of all HDTV inputs. As a result, the 
system oscillates between the IND and MND modes of 
Fig. 23, with a constant bit rate constraint in both cases, 
and no claim is made of overall optimality. 

2) Three-Dimensional Subband Coding: Figure 47 shows 
the result of decomposing a beach-and-flowers scene using 
the 3D subband analysis [70], [1521 described in Figs. 12(c) 
and I 4(b ). Most of the picture energy is in subband I, which 
contains the low-frequency information in the horizontal, 
vertical, and temporal frequency dimensions. Other sub­
bands have much lower energy. Subband 8 contains high 
temporal and low spatial frequencies; and therefore acts as 
a motion detector. 

Energy-based adaptive bit allocation provides a classical 
approach to algorithm optimization. Although straightfor­
ward in principle, such optimization is very difficult be­
cause of the dynamics of the problem: all energies vary 
in three dimensions, horizontal, vertical, and temporal, and 
even if an optimal bit-allocation algorithm is defined, there 
is the additional problem of transmitting the bit-allocation 
information to the decoder. 

Perceptual optimization of the coder is even more diffi­
cult. In recent experimentation with the system for video-

Fig. 47. 3D subhand decomposition of Bearh and Flowers (after 
[116]. I 117]). The suhhand numbers 1 through 11 are labeled in 
Fig. l4(bi. 

conferencing at medium bit rates (such as 384 kbps), 
empirical perceptual designs have been proposed for the 
following functions: bit allocation based partly on energy 
(favoring subband I) and partly for motion fidelity (favoring 
subband 8); adaptive exchange of spatial and temporal reso­
lution in subband 1: and perceptually efficient quantization 
of the higher frequency subbands using geometric vector 
quantization, as illustrated in Fig. 2l(b) [116], [117]. 

At the bit rate of 384 kbps, and with inputs in the CIF for­
mat (:360 x 2,10 pixels, 15 frames/s), the 3D coder operates 
well below the transparency level; the JND principle of Fig. 
23 does not apply, and the MND cues used in the system 
arc at best informal and empirical. This last observation 
is also true of MPEG and CCITT video coders operating 
at similar bit rates, although the nature of the distortion 
is different in these systems. None of the currently known 
video algorithms provides high picture quality (a score of 
4.0 on the mos or impainnent scales) at rates much below 
I Mbps. However, useful applications are possible with 
lower levels of quality, and this has led to a significant 
degree of commercialization of low bit rate systems for 
videoconferencing and videotelcphony. 

X. RESEARCH DIRECTIONS 

The technology of signal compression has seen signif­
icant advances in recent years. but we still see a gap 
between current capabilities and technology targets that we 
feel are attainable (Fig. 5). Several research directions are 
needed to attain these goals. Perceptual coding is one of 
them. This concept has made a steady and ever-increasing 
impact on the status of signal compression. In the future, 
to enhance the role of perceptual coding and thus that of 
signal compression in general, we need to address several 
research challenges, some of which are described below. 

Algorithms for perceptual coding need to become more 
robust, scalable, and portable. One should be able to address 
different signal types (luminance and chrominance, speech, 
and audio), different coder types (motion compensation 
and 3D coding, subband, and transform coding, vector 
quantization and block fractal coding [61]), and different 
signal environments (interlaced versus progressive scan­
ning, very-clean versus camera-noise-limited inputs, near­
versus far-distance viewing), without having to re-invent a 
new empirical perceptual model for every situation. If the 
perceptual algorithms are made more robust in the above 

JAYANT et al.: SIGNAL COMPRESSION BASED ON MODELS OF HUMAN PERCEPTION 1417 



Authorized licensed use limited to: Finnegan Henderson Farabow Garrett & Dunner. Downloaded on April 20,2022 at 00:06:40 UTC from IEEE Xplore.  Restrictions apply. 

MEAN SQUARED ERROR 
Dmse{R) 

PERCEIVED 
DISTORTION 

D0(R) 
QL_ __ ___o,.,_ _______ ~~ 

0 Rp (0) Amse (0) 

RATER 

Fig. 48. Distortion-rate function with mean-squared and percep­
tual error metrics. 

ways, there is also a much better chance of incorporating 
them in rapidly evolving technology for new services and 
coding standards. 

The role of perception in various modules of coding 
needs to be better understood. In other words, perceptual 
metrics need to be integrated better into algorithms 
for motion compensation, spatiotemporal 3D coding, 
vector quantization, pre- and postprocessing, methods 
of time-frequency analysis including multiresolution, 
pyramid, and wavelet techniques, and finally, emerging 
models for signal production (such as the articulatory model 
for speech [136] and the wire-frame model for images of 
the human face [4]). 

In audition and vision alike, the theories of noise mask­
ing need to be better unified and, in particular, temporal 
masking needs to be better understood and applied. 

The continuum of distortion in the MND model of Fig. 
23 needs significant additional work. At this time, it is 
much easier to establish the JND point (the rate Rp(O) for 
zero perceptual distortion) than to define the way perceived 
distortion Dp(R) varies as a function of R in the so­
called supra-threshold region of nonzero D. This is shown 
in Fig. 48. The exact form of Dp(R) is really unknown 
although we know that it is displaced well to the left of 
the mse-based distortion-rate curve; this curve has a zero­
distortion rate Rmse(O) that is significantly higher than the 
JND point Rp(O). The homomorphic model may prove to 
be useful in methodologies for determining the shape of the 
perceptual distortion-rate curve. Even if the Dp(R) function 
is available, the incorporation of this knowledge in an actual 
encoder with a nonstationary input is a formidable problem. 
Part of solving this problem is the design of an efficient 
buffer control mechanism that provides the bit rate control 
in Fig. 23. 

With increased understanding of perceptual quality met­
rics (in the internal workings of a coding algorithm), one 
could also expect better methodologies for evaluating the 
subjective quality of the final signal (at the output of the 
decoder). In particular, we can expect more progress in our 
search for a subjectively meaningful objective measure of 
overall quality, and we can perhaps minimize the need for 
time-consuming and intricate subjective tests. 

Finally, as perceptual coding evolves into more of a 
science (rather than the art it currently is), the lessons 
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and the tools from this field will hopefully extend to tasks 
well beyond signal compression itself. One such problem 
is that of measuring and maximizing the quality of service 
in a multiuser network in the presence of various classes 
of signal degradation: coding distortion, bit error effects, 
packet losses, and delay. Another challenge is that of 
measuring and maximizing the quality of composite signals 
in a multimedia system: the perceived overall quality of 
an audiovisual signal, as opposed to the individual quality 
levels of its audio and visual components; and the related 
bigger problem of evaluating and improving the perceived 
quality of telepresence in the sophisticated communication 
systems of the next generation. 
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