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Image Sequence Processing Using
Spatiotemporal Segmentation

Gene K. Wu and Todd R. Reed,Senior Member, IEEE

Abstract— We investigate the improvements that can be
obtained in several conventional video-processing algorithms
through the incorporation of three-dimensional (3-D)
(spatiotemporal) segmentation information. Four classes of
image sequence processing techniques are considered: low-pass
filtering, high-pass filtering, high-frequency emphasis, and 3-D
Sobel filtering. It is demonstrated that segmentation information
can improve the performance of these techniques substantially
so that this approach may be promising for other applications
(e.g., deinterlacing and resolution conversion) as well.

Index Terms—Image edge analysis, image enhancement, im-
age processing, image segmentation, image sequence analysis,
Markov processes.

I. INTRODUCTION

SEGMENTATION, one of the most commonly used tech-
niques in image analysis, refers to the identification of

uniform regions based on certain conditions. The conditions
under which these regions are formed can be uniformity
of gray value, color, texture, and so on. Segmentation has
long been used in computer vision for a variety of applica-
tions, particularly object recognition. Recently, segmentation
techniques have also been used in image compression and
image processing. In image compression, segmentation-based
compression methods are sometimes referred to as second-
generation methods [1]. Techniques of this type are becoming
increasingly important, as exemplified by the role of seg-
mentation in the evolving MPEG-4 compression standard [2].
In image processing, as reported in [3] and [4], if two-
dimensional (2-D) (spatial) segmentation information is used
as an aid, the processed image’s quality is much better than
that processed without such an aid.

In this work, three-dimensional (3-D) (spatiotemporal) seg-
mentation is applied to image sequences. The result of the
segmentation process is a description of the image sequence
consisting of 3-D volumetric regions. A concise approximation
of the sequence can be formed based on this description
by encoding the region boundary locations together with an
expression for the intensities of the pixels within each region.
The simplest such expression is the mean value of the pixel
intensities for each region. Polynomials and various transforms
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can also be used to represent the interiors of regions. While
more accurate, these expressions are also more complex.

How regions are related from one frame to another is very
important for video processing. Such information is readily
available in the results of 3-D segmentation. For example, if
a uniform region spans several successive frames, the region
boundary surfaces along the temporal dimension show how
the locations of high contrast edges evolve with time while the
interiors of regions indicate the correlation of pixels between
frames. These facts can be exploited for improved filtering,
compression, and representation of the image sequence [5].
The price for this improvement is the computational power and
time required to obtain the segmentation. However, in some
cases, the segmentation may already be available (e.g., if the
sequence is encoded using segmentation-based compression).

In this paper, we demonstrate the use of 3-D segmentation to
enhance a number of conventional image sequence processing
techniques. In particular, we examine low-pass and high-pass
filtering, high-frequency emphasis, and edge enhancement.

There are many segmentation approaches found in the
literature [6], [7]. The image sequence processing techniques
we will discuss in this paper do not rely on the details
of the 3-D segmentation method. We require only that seg-
mentation boundaries correspond closely to their associated
object boundaries. Note that this does not require that all
segmentation boundaries correspond to object boundaries (that
there be no so-called “false contours”). While not especially
desirable, we will see that for the most part, such contours do
not have a strong impact on the algorithms that follow. The
segmentation method used in this work is a region-growing
method using a Gibbs–Markov random field (GMRF) model
and contour relaxation. The segmentation model and algorithm
are described in the following section.

II. 3-D SEGMENTATION USING A GIBBS–MARKOV MODEL

The 3-D segmentation method we use employs a Gaussian
model to represent the region interiors and a Gibbs–Markov
random field model for the boundaries of regions in the
sequence.

GMRF models are widely used in image processing. They
are suitable for segmentation because they can capture the
local properties of regions [8]. Three-dimensional segmenta-
tion using a GMRF model combined with contour relaxation
has been found to produce accurate object boundaries when
applied to volumetric data [9]. The model can also be used to
produce accurate boundaries of uniform regions and smooth
transitions from frame to frame in image sequences [5].

1051–8215/99$10.00 1999 IEEE



WU AND REED: SPATIOTEMPORAL SEGMENTATION 799

Fig. 1. The 3-D segmentation algorithm.

The steps in the segmentation algorithm are preprocessing,
region growing, and contour relaxation, as shown in Fig. 1.

The preprocessing step models Weber’s law, taking the
response of the visual system with varying intensity into
account. The following transformation was used:

(1)

is the perceived brightness,is a proportionality constant,
and is the stimulus intensity. The value of 48.8 was used
for in this work. Applying this transformation to the input
sequence allows us to find a more natural partitioning of
images, closer to the segmentation perceived by the human
visual system. The value 1/3 was used for coding purposes,
as suggested in [11].

After this step, region growing is performed. This portion of
the algorithm consists of three different phases, using a more
sophisticated model in each phase. First, only the mean of
the luminance of the regions are used as a merging criterion.
Second, the variance of each region is included in the model.
A merging cost based on the mean and variance of each
region is computed for each pair of neighboring regions. All
neighboring regions having a merging cost smaller than a
specified threshold are merged in the order of increasing cost.

A third model is introduced to obtain a more accurate
partitioning of the sequence without increasing the number
of regions. In this model, region contour and region interior
information are used jointly to perform contour relaxation.
A detailed description of this final phase of the algorithm is
presented in the following section.

A. Contour Relaxation

Contour relaxation can be done in many ways. The method
used here, first introduced for 3-D data in [9], consists of
changing a boundary pixel label (which indicates region mem-
bership) if doing so results in a local maximum of a joint
likelihood function. The main intent of the contour relaxation
is to smooth rough boundaries and to obtain a segmentation
that corresponds closely to the objects in the original image
sequence.

Given the initial segmentation, boundaries are refined by
examining each boundary pixel. The region label assigned to
a boundary pixel is changed to that of one of its neighbors
if the modification will locally maximize the joint likeli-
hood of the segmentation and the image sequence data. The
neighborhood is 26-connected (analogous to the 8-connected
case for images). Because of the nature of the model used
in the formulation of the likelihood function (discussed in
detail in the following section), after the application of the
contour relaxation algorithm, regions have more regularized
boundaries that correspond to a more accurate partitioning of
the underlying image data.

The contour relaxation algorithm is applied iteratively to all
boundary pixels of the partitioned sequence. The algorithm is
stopped when the number of boundary labels altered is less
than a threshold.

B. Gibbs–Markov Model

An image segmentation can be modeled as a sample
from a 3-D Gibbs–Markov random field. The probability of
a segmentation is given by

(2)

where

(3)

is a potential function and is a normalizing
constant. For a GMRF of order two, the(sometimes referred
to as cliques) consist of each possible pair of adjacent pixels
and is defined as

all inhomo. nearest neighbor pairs parallel
to the or axis
all inhomo. diagonal neighbor pairs in the
same – plane
all inhomo. neighbor pairs parallel to the

axis
all diagonal inhomo. neighbor pairs each
pixel in different – planes
otherwise.

is the penalty value for having inhomogeneous neighbor
pairs parallel to the - or -axis. is the penalty value
for having inhomogeneous diagonal neighbor pairs on the
same frame. is the penalty value for having inhomogeneous
neighbor pairs parallel to theaxis. is the penalty value for
having inhomogeneous diagonal neighbor pairs on the same
frame.

Inhomogeneous pixel pairs are those with different labels
(belonging to different regions). The coordinaterefers to the
positions of pixels on the horizontal axis in an image,refers
to the positions of pixels on the vertical axis, andrefers to
the positions of frames in the temporal direction. The joint
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Fig. 2. The 3-D cliques.

likelihood that must be maximized is

(4)

where is the original sequence data. Using a Gaussian
approximation in the formulation of

(5)

the joint likelihood can be expressed as

(6)

is the th region of the partition , is the size of the
th region, and is the estimated variance of theth region

[9]. The product comprises all regions of the partition.
is the number of inhomogeneous nearest neighbor cliques in

. They are the vertical and horizontal cliques on the middle
frame in Fig. 2. is the number of inhomogeneous diagonal
neighbor cliques on the same frame in , the diagonal
cliques on the middle frame in Fig. 2. is the number of
inhomogeneous nearest neighbor cliques parallel to theaxis
in , the vertical cliques on the top and bottom frames in
Fig. 2. is the number of inhomogeneous diagonal neighbor
cliques with each pixel lying on different frames in , the
diagonal cliques on the top and bottom frames in Fig. 2.

The values for , , , and can be determined based on
the local surrounding pixels. In this paper, the values used in
the model for , , , and are 1, 0.5, 1, and 0.5, respectively.
If these values are increased, the joint likelihood is reduced

Fig. 3. Selected frames from theMiss Americasequence.

Fig. 4. Selected frames from theSecretarysequence.

given all cliques in the region remain the same. The choice of
these parameters is not particularly critical. Fig. 2 shows all
the possible 3-D cliques considered in the GMRF model.

C. Examples

Some selected frames from theMiss AmericaandSecretary
sequences are shown in Figs. 3 and 4. Each sequence is
composed of 24 frames of image size 128128 pixels. These
sequences will be used as test data throughout the paper. Due
to space constraints, only individual frames from a processed
sequence will be presented.

The values used for obtaining the results are: the minimum
number of pixels allowed per region is 30, the intensity
difference between neighboring pixels is one, and the merging
cost threshold is 20 in increments up to 500. The number of
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(a) (b) (c)

Fig. 5. (a) Frame 20 of the originalMiss Americasequence, (b) contour map, and (c) approximation image.

(a) (b) (c)

Fig. 6. (a) Frame 3 of the originalSecretarysequence, (b) contour map, and (c) approximation image.

Fig. 7. Contour frames of theMiss Americaapproximation sequence viewed
in a 3-D perspective.

regions present are 85 and 210 in theMiss Americasequence
and theSecretarysequence, respectively. It takes about 15 h
on an HP 715/75 workstation to process a sequence of eight
frames with a frame size of 256 256 pixels.

The results of 3-D segmentation on a typical head-and-
shoulders sequence(Miss America)are shown in Fig. 5. The
image in Fig. 5(a) is a selected frame from the original
sequence, the image in (b) is the contour map for this frame,
and the image in (c) is the associated frame from the image
sequence approximation formed by filling each region with its
mean value. For theSecretarysequence, sample frames from
each sequence are shown in Fig. 6. The images in Fig. 6(c)

Fig. 8. Contour frames of theSecretaryapproximation sequence viewed in
a 3-D perspective.

may look blocky due to the low resolution of the image frame
size (128 128 pixels) being displayed on a 2.152.15 in
square area. The segmentation method does not introduce the
blocking effect.

Figs. 7 and 8 show the contour frames derived from theMiss
America sequence and theSecretarysequence, respectively,
assembled into 3-D (spatiotemporal) volumes. These 3-D
contour volumes are viewed in perspective. The holes in the
volume indicate locations where consecutive frames share
common regions.

To prove the viability of this method under nonideal cir-
cumstances, and to provide two test sequences for some of
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(a) (b) (c)

Fig. 9. (a) Frame 20 from the noisyMiss Americasequence, (b) contour map, and (c) approximation image.

(a) (b) (c)

Fig. 10. (a) Frame 3 from the noisySecretarysequence, (b) contour map, and (c) approximation image.

the methods that follow, two noisy image sequences were
produced by normalizing and adding Gaussian noise with a
variance of 150 to the original sequences. The results of 3-D
segmentation of the noisyMiss Americasequence are shown
in Fig. 9. The image in Fig. 9(a) is a selected frame from the
noisy sequence, the image in (b) is the contour map for this
frame, and the image in (c) is the approximation image.

The results of 3-D segmentation of the noisySecretary
sequence are shown in Fig. 10. The image in Fig. 10(a) is
a selected frame from the noisy sequence, the image in (b) is
the contour map for this frame, and the image in (c) is the
approximation image.

Comparing the results in Fig. 9 with those in Fig. 5, it is
clear that the segmentation results obtained from the noisy
sequence have more regions than those from the original
image sequence. These extra regions can be formed in two
ways. Either regions found in the noise-free sequence are
broken up into smaller regions or new regions are added in
locations where they did not previously exist. It is important
to note, however, that the approximation resulting from the
segmentation of the noisy sequence still captures the majority
of the important structure of the sequence.

III. SEGMENTATION-BASED VIDEO-PROCESSINGMETHODS

In this section, we consider the improvements that can
be obtained by including segmentation information in algo-
rithms to perform some common video-processing tasks. Four
applications will be investigated: segmentation-aided low-
pass filtering, segmentation-aided high-pass filtering, high-
frequency emphasis, and edge enhancement.

Fig. 11. The 3-D low-pass filtering operator.

A. Low-Pass Filtering

In conventional low-pass filtering for noise reduction, the
price paid for the reduction in noise is the blurring of the
image (especially noticeable around high contrast edges). A
tradeoff must be made between noise reduction and sharp
feature reduction.

This being the case, it would be very desirable if we could
perform the low-pass filtering only in the interior of regions
but not in areas where there are sharp features (such as at
the boundaries of objects). Three-dimensional segmentation
makes such selective filtering possible. A simple example of
this approach is selective averaging. Whenever the kernel is
completely within a uniform region, averaging is performed.
However, at region boundaries, only those pixels that belong to
the same region as the pixel being evaluated are considered in
the average. The low-pass operator used for low-pass
filtering is shown in Fig. 11.

The results of both the conventional and segmentation-aided
methods are shown in Fig. 12 (frame 3 from each processed
sequence). The image in Fig. 12(a) is from the noisy sequence.
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(a) (b) (c)

Fig. 12. (a) Frame 3 from the noisyMiss Americasequence, (b) conventionally filtered sequence, and (c) guided low-pass filtered sequence.

(a) (b) (c)

Fig. 13. (a) Frame 3 from the noisySecretarysequence, (b) conventionally filtered sequence, and (c) guided low-pass filtered sequence.

The image in (b) is the result of conventional low-pass
filtering. Shown in (c) is the result of the segmentation-guided
low-pass filtering.

The image in the middle is blurred due to the indiscriminate
averaging of pixel values across all regions during the low-pass
filtering process. As a result, noise in the sequence is reduced
but with an overall reduction in sharpness.

With the aid of 3-D segmentation, low-pass filtering is
performed in a controlled manner. Averaging takes place only
within regions, not across region boundaries. Consequently,
high-frequency components that are important in maintain-
ing sharpness (those near object and feature boundaries) are
retained. At the same time, the noise inside regions is reduced.
Rather than appearing blurred, the filtered sequence often
appears sharper than the noisy original. Results using the
Secretarysequence are shown in Fig. 13.

Even though the signal-to-noise ratio (SNR) does not always
reflect the quality of the sequence, it is still one of the
most frequently used quality metrics (besides the widely used
but relatively subjective visual evaluation). The SNR’s of
the noisy unfiltered sequence, the sequence filtered using the
conventional low-pass filter, and the aided low-pass filtered
sequence are 6.5, 9.8, and 14.8 dB, respectively, for the
Miss Americasequence. The SNR’s of the noisy sequence,
the conventional low-pass filtered sequence, and the aided
low-pass filtered sequence are 10.42, 9.58, and 14.91 dB,
respectively, for theSecretarysequence.

B. High-Pass Filtering

Following an argument dual to that used for low-pass
filtering, it is desirable to be able to confine high-pass filtering

Fig. 14. The 3-D high-pass filtering operator.

to only areas where edges are present. Region boundaries (due
to the fact that they often coincide with object boundaries)
are useful in finding these areas. One approach to selective
high-pass filtering, then, is to calculate the output of the filter
whenever the high-pass operator covers pixels from at least
two different regions, where there is a possibility that it is in
the vicinity of an edge. Otherwise, the filter output is set to
zero.

Three high-pass filtering procedures are compared in this
section: conventional high-pass filtering, boundary-constrained
high-pass filtering, and the combination of segmentation-
guided low-pass filtering and boundary-constrained high-pass
filtering.

In conventional high-pass filtering, both edges and noise
are enhanced in the image. This is particularly objectionable
in smooth areas, where noise is very visible. In boundary-
constrained high-pass filtering, only high-frequency compo-
nents near boundaries are enhanced. This is an improvement
over conventional high-pass filtering since the noise inside
regions (which corresponds to smooth areas of the image) is
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(a) (b) (c)

Fig. 15. (a) Frame 6 from theMiss America sequence after conventional high-pass filtering, (b) boundary-constrained filtering, and (c)
low-pass/high-pass filtering.

(a) (b) (c)

Fig. 16. (a) Frame 3 from theSecretarysequence after conventional high-pass filtering, (b) boundary-constrained filtering, and (c) low-pass/high-pass filtering.

not enhanced. If the segmentation used to guide the filtering
process includes false contours, however, the noise around
these contours is also enhanced. In very noisy sequences
(which tend to result in segmentations with numerous false
contours), this can be a major shortcoming.

To reduce the noise around the boundaries, the sequence
can be segmentation-guided low-pass filtered first, followed
by boundary-constrained high-pass filtering. The combination
of these two types of filtering reduces noise much more
effectively. The aided low-pass filtering reduces noise near
boundaries and in the region interiors, while the boundary-
constrained high-pass filtering enhances the edges. Due to the
nonlinear nature of the 3-D segmentation-aided filtering, one
process does not undo the effects of the other. As a result,
the benefits of both processes can be retained. The high-pass
operator used for high-pass filtering is shown in
Fig. 14.

The results obtained by applying the three techniques de-
scribed above to the noisyMiss Americasequence are shown
in Fig. 15. The image on the left is the result of conven-
tional high-pass filtering. Noise is amplified so much that
it overwhelms the image. The image in the middle is the
result of the boundary-constrained high-pass filtering. Noise is
somewhat reduced. However, because the segmentation was
obtained from a noisy image sequence, noise still remains,
particularly in the neighborhood of the false segmentation
contours. As discussed above, a remedy for this problem is
to perform the segmentation-aided low-pass filtering first and
then perform the segmentation-aided high-pass filtering. The
image on the right is the result of this combination. The

improvement over the other two methods is very clear. For
the Secretarysequence, similar results can be seen in Fig. 16.

C. High-Frequency Emphasis

A straightforward approach to sharpening an image se-
quence is to add a scaled high-pass filtered version of the
sequence to the original. Using a similar approach, sharpening
can be performed by adding a scaled boundary-constrained
high-pass filtered version of the sequence to the original. This
second approach allows a more favorable tradeoff between
sharpening and noise enhancement. Using conventional high-
pass filtering, noise inside regions is amplified and added
to the original. In the case of boundary-constrained high-
pass filtering, only high-frequency components around region
boundaries are enhanced. Consequently, the overall quality of
a sequence sharpened with the later approach can be expected
to be superior.

Unsharp masking is a technique that subtracts a blurred
version of an image from its original. This technique is a basic
tool in photographic image processing. In a method that could
be considered dual to unsharp masking, which we will refer
to as “sharp masking,” the segmentation-based approximation
described earlier is weighted and added to the original, and the
result is rescaled. This process results in sharpening due to the
sharp transition between intensity values at region boundaries
in the approximation.

For the Miss Americasequence, the results of the two
approaches are shown in Fig. 17. The figure consists of frame
3 of the processed sequence. The image in Fig. 17(a) is
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(a) (b) (c)

Fig. 17. (a) Frame 3 from theMiss America blurred sequence, (b) result of sharpening using segmentation-guided low-pass filtering followed by
boundary-constrained high-pass filtering, and (c) sharp masking approach.

(a) (b) (c)

Fig. 18. (a) Frame 8 from theSecretaryblurred sequence, (b) result of sharpening using segmentation-guided low-pass filtering followed by bound-
ary-constrained high-pass filtering, and (c) sharp masking approach.

the blurred image, the image in (b) is the result obtained
using boundary-constrained high-pass filtering, and the image
in (c) is the result produced by sharp masking. The first
approach allows a better tradeoff between sharpening and
noise enhancement than would be expected from conventional
sharpening. In this example, it can be seen that the facial
features have been well enhanced over those in the blurred
image. The eyes can be clearly seen, and the contrast in the
area of the mouth has been increased. There has been only a
modest degree of noise enhancement.

The sharp masking approach enhances the high-frequency
components in the image such that the face can be seen clearly
and at the same time the noise isreduced.This is due to the
fact that at no point in this method is a difference calculated
(the source of noise enhancement in both conventional and
segmentation-guided high-pass filtering). Instead, a pointwise
weighted average is calculated between the approximation and
the sequence. As a result, this method performs significantly
better for the sharpening of noisy sequences. Similar results
using theSecretarysequence are presented in Fig. 18.

D. Sobel Filtering

Following the approach used for high-pass filtering in
Section III-B but using a 3-D Sobel operator, edge enhance-
ment can be performed. The Sobel operator is shown in Fig. 19
[10]. This operator is applied to the original sequence three
times, oriented along the-, -, and -axes. The resulting
sequences contain gradient estimates along their associated
dimensions. To suppress noise, outputs are evaluated only at

Fig. 19. The 3-D Sobel operator.

positions in the image where the operator spans pixels from
at least two different regions. Otherwise, they are set to zero.

In general, the gradient magnitude is calculated as the square
root of the sum of the square of the pixel values at each
location from the three different sequences

Magnitude (7)

In the results shown below, the component was omitted
( ) because we did not want to enhance the edges along
the temporal axis, which can cause an undesirable impression
of false movement.

The results of applying Sobel filtering to theMiss America
sequence are shown in Fig. 20. The image in Fig. 20(a) is
frame 20 from the original sequence. The image in (b) is the
same frame after Sobel filtering. For the same reasons we saw
improvements in high-pass filtering, the inclusion of segmen-
tation information in the edge-enhancement algorithm allows
an improved tradeoff between edge and noise enhancement.
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(a) (b)

Fig. 20. (a) Frame 20 from the originalMiss Americasequence and (b) after the Sobel filtering.

(a) (b)

Fig. 21. (a) Frame 3 from the originalSecretarysequence and (b) after the Sobel filtering.

The results of applying Sobel filtering to theSecretary
sequence are shown in Fig. 21. The image in Fig. 21(a) is
frame 3 from the originalSecretarysequence. The image in
(b) is the same frame after Sobel filtering.

IV. CONCLUSIONS

Incorporating the results of 3-D segmentation, four classes
of image sequence processing techniques were considered:
low-pass filtering, high-pass filtering, high-frequency empha-
sis, and Sobel filtering. It was demonstrated that including
the information about important structure in the sequence that
segmentation provides can result in relatively simple algo-
rithms that perform much better than conventional techniques.
Specifically, this allows an improved tradeoff with respect
to noise. In the case of low-pass filtering, it allows for the
simultaneous reduction of noise and sharpening of the image,
not possible with most methods. In high-pass filtering, high-
frequency emphasis, and edge enhancement, the enhancement
of image structure versus noise is also much improved.

The cost of these improvements is the computational power
and time required to obtain the 3-D segmentation. However,
in some situations, the segmentation may already exist, such

as in object analysis and 3-D segmentation-based coding. In
those situations, the cost has already been paid. In addition to
the techniques discussed here, 3-D segmentation information
may be useful in other applications, such as deinterlacing and
resolution conversion, as well.

REFERENCES

[1] M. Kunt, “Second generation image coding techniques,”Proc. IEEE,
vol. 73, pp. 549–574, Apr. 1985.

[2] Y.-Q. Zhang, F. Pereira, T. Sikora, and C. Reader, Eds., “Special issue
on MPEG-4,” IEEE Trans. Circuits Syst. Video Technol.,vol. 7, Feb.
1997.

[3] I. Hussain and T. R. Reed, “Segmentation-based nonlinear image
smoothing,” inProc. 1st IEEE Int. Conf. Image Processing,Austin, TX,
Nov. 1994, pp. 507–511.

[4] T. R. Reed, “Segmentation-based image processing,” inProc. Int. Conf.
Digital Signal Processing,Limassol, Cyprus, June 26–28 1995, vol. 1,
pp. 308–313, special sessions.

[5] G. K. Wu and T. R. Reed, “A comparison of image sequence rep-
resentations based on 2-D and 3-D segmentation,” inProc. Int. Conf.
Digital Signal Processing,Limassol, Cyprus, June 26–28 1995, vol. 2,
pp. 532–537.

[6] R. M. Haralick and L. G. Shapiro, “Survey, image segmentation
techniques,” Comput. Vision, Graph., Image Process.,vol. 29, pp.
100–132, 1985.

[7] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,”
Pattern Recognit.,vol. 26, no. 9, pp. 1277–1294, 1993.



WU AND REED: SPATIOTEMPORAL SEGMENTATION 807

[8] R. C. Dubes and A. K. Jain, “Random field models in image analysis,”
J. Appl. Statist.,vol. 16, no. 2, pp. 131–164, 1989.

[9] T. Aach and H. Dawid, “Region oriented 3D-segmentation of NMR-
datasets: A statistical model-based approach,” inProc. SPIE Visual
Communications and Image Processing, 1990, vol. 1360, pp. 690–701.

[10] C. Pudney. (Apr. 11, 1995.) 3-D Sobel operator. Available:
sci.image.processing newsgroup, article 12170.

[11] D. J. Sakrison, “On the role of observer and a distortion measure
in image transmission,”IEEE Trans. Commun.,vol. COM-25, pp.
1255–1267, Nov. 1977.

Gene K. Wu received the B.S.E.E. degree from San
Francisco State University, San Francisco, CA, in
1989 and the M.S. and Ph. D. degrees in electri-
cal engineering from the University of California,
Davis, in 1991 and 1997, respectively.

From 1997 to 1998, he was a Lecturer at the
University of California, Davis. In 1998, he joined
Ricoh Silicon Valley, CA. His research interests
include image and image sequence processing and
coding and digital signal processing.

Todd R. Reed (S’76–M’77–SM’90) received the
B.S., M.S., and Ph.D. degrees in electrical engineer-
ing from the University of Minnesota, Minneapolis,
in 1977, 1986, and 1988, respectively.

From 1977 to 1983, he was an Electrical Engineer
with IBM (San Jose, CA; Rochester, MN; and
Boulder, CO). From 1984 to 1986, he was a Senior
Design Engineer with Astrocom Corp., St. Paul,
MN. He was a Consultant to the MIT Lincoln
Laboratory, Cambridge, MA, from 1986 to 1988. In
1988, he was a Visiting Assistant Professor in the

Department of Electrical Engineering, University of Minnesota. From 1989 to
1991, he was Head of the Image Sequence Processing Research Group in the
Signal Processing Laboratory, Department of Electrical Engineering, Swiss
Federal Institute of Technology, Lausanne, Switzerland. From 1998 to 1999,
he was a Guest Researcher in the Computer Vision Laboratory, Department of
Electrical Engineering, Link̈oping University, Sweden. In 1991, he joined the
Department of Electrical and Computer Engineering, University of California,
Davis, where he is currently an Associate Professor. His research interests
include image and image sequence processing and coding, multidimensional
digital signal processing, and computer vision.

Prof. Reed is a member of the European Association for Signal Processing,
the Association for Computing Machinery, the Society for Industrial and
Applied Mathematics, Tau Beta Pi, and Eta Kappa Nu.






