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Image Sequence Processing Using
Spatiotemporal Segmentation

Gene K. Wu and Todd R. Ree@gnior Member, IEEE

Abstract— We investigate the improvements that can be can also be used to represent the interiors of regions. While
obtained in several conventional video-processing algorithms more accurate, these expressions are also more Comp|ex_
through —the incorporation —of three-dimensional (3-D)  Ho regions are related from one frame to another is very

(spatiotemporal) segmentation information. Four classes of . tant f id . Such inf f . dil
image sequence processing techniques are considered: Iow-pasgnpor ant Tor viaeo processing. such information 1S readily

ﬁ|tering, high_pass ﬁ|tering, high_frequency emphasis' and 3-D available in the results of 3-D Segmentation. For eXampIe, if
Sobel filtering. It is demonstrated that segmentation information a uniform region spans several successive frames, the region
can improve the performance of these techniques substantially poundary surfaces along the temporal dimension show how
?.: thaé this ‘"l"pproaCh dmay tl’e.prom's'”g for other alﬁ’p"ca“ons the locations of high contrast edges evolve with time while the
‘9., deinterlacing and resolution conversion) as well. interiors of regions indicate the correlation of pixels between
Index Terms—mage edge analysis, image enhancement, im-frames. These facts can be exploited for improved filtering,
age processing, image segmentation, image sequence analyS'Eompression, and representation of the image sequence [5].
Markov processes. The price for this improvement is the computational power and
time required to obtain the segmentation. However, in some
|. INTRODUCTION cases, the segmentation may already be available (e.g., if the

GMENTATION, one of the most commonly used techS€duéence is encoded using segmentation-based compression).

iques in image analysis, refers to the identification of ' this paper, we demonstrate the use of 3-D segmentation to
uniform regions based on certain conditions. The conditiof@1ance a number of conventional image sequence processing
under which these regions are formed can be uniformif§cniques. In particular, we examine low-pass and high-pass
of gray value, color, texture, and so on. Segmentation hiring., high-frequency emphasis, and edge enhancement.
long been used in computer vision for a variety of applica- | "€T€ are many segmentation approaches found in the
tions, particularly object recognition. Recently, segmentatiofierature [6], [7]. The image sequence processing techniques
techniques have also been used in image compression ¥y Will discuss in this paper do not rely on the details
image processing. In image compression, segmentation-badbg1e 3-D segmentation method. We require only that seg-

compression methods are sometimes referred to as secdpgntation boundaries correspond closely to their associated

generation methods [1]. Techniques of this type are becomiﬂBjeCt boundaries. Note that this does not require that all

increasingly important, as exemplified by the role of Sef_egmentation boundaries correspond to object boundaries (that

mentation in the evolving MPEG-4 compression standard [41_ere be no so-called “false contours”). While not especially
In image processing, as reported in [3] and [4], if twodesirable, we will see that for the most part, such contours do
dimensional (2-D) (spatial) segmentation information is usétft have a strong impact on the algorithms that follow. The

as an aid, the processed image’s quality is much better tgpmentation method used in this work is a region-growing
that processed without such an aid. method using a Gibbs—Markov random field (GMRF) model

In this work, three-dimensional (3-D) (spatiotemporal) seg’l_nd contour relaxation. The segmentation model and algorithm

mentation is applied to image sequences. The result of (& described in the following section.
segmentation process is a description of the image sequence
consisting of 3-D volumetric regions. A concise approximation!l- 3-D SEGMENTATION USING A GIBBS-MARKOV MODEL
of the sequence can be formed based on this descriptiommhe 3-D segmentation method we use employs a Gaussian
by encoding the region boundary locations together with anodel to represent the region interiors and a Gibbs—Markov
expression for the intensities of the pixels within each regiorandom field model for the boundaries of regions in the
The simplest such expression is the mean value of the pixelquence.
intensities for each region. Polynomials and various transformsGMRF models are widely used in image processing. They
are suitable for segmentation because they can capture the
Manuscript received April 10, 1997; revised March 10, 1999. This papghcg| properties of regions [8]. Three-dimensional segmenta-
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Given the initial segmentation, boundaries are refined by
examining each boundary pixel. The region label assigned to
a boundary pixel is changed to that of one of its neighbors
if the modification will locally maximize the joint likeli-
hood of the segmentation and the image sequence data. The
neighborhood is 26-connected (analogous to the 8-connected
case for images). Because of the nature of the model used
in the formulation of the likelihood function (discussed in

Input Sequence

Region Growing

[ Contour Relaxation ]

Contour Surface detail in the following section), after the application of the
Representation contour relaxation algorithm, regions have more regularized
7 boundaries that correspond to a more accurate partitioning of
Region Interior the underlying image data.
Representation The contour relaxation algorithm is applied iteratively to all
l boundary pixels of the partitioned sequence. The algorithm is

S N stopped when the number of boundary labels altered is less
equence Approximation
than a threshold.

Fig. 1. The 3-D segmentation algorithm.

B. Gibbs—Markov Model
The steps in the segmentation algorithm are preprocessing, image segmentatiod) can be modeled as a sample

region growing, and contour relaxation, as shown in Fig. lfrom a 3-D Gibbs—Markov random field. The probability of
The preprocessing step models Weber's law, taking tl&esegmentatiorQ is given by

response of the visual system with varying intensity into
account. The following transformation was used: 1

_ - U
O u i " PQ) = e )

C is the perceived brightness,is a proportionality constant, where

and f is the stimulus intensity. The value of 48.8 was used

for  in this work. Applying this transformation to the input = Z V(ei) 3)
sequence allows us to find a more natural partitioning of aco

images, closer to the segmentation perceived by the human

visual system. The value 1/3 was used for coding purposes, ) ) L o
as suggested in [11]. is a potential function andZ = " ¢~V is a normalizing

After this step, region growing is performed. This portion ofonstant. For a GMRF of order two, the(sometimes referred

the algorithm consists of three different phases, using a mdfe@S cliques) consist of each possible pair of adjacent pixels

sophisticated model in each phase. First, only the mean@td V(c:) is defined as

the luminance of the regions are used as a merging criterion.

Second, the variance of each region is included in the model.

A merging cost based on the mean and variance of each

region is computed for each pair of neighboring regions. All p

neighboring regions having a merging cost smaller than

specified threshold are merged in the order of increasing cosa{./(ci) -
A third model is introduced to obtain a more accurate

partitioning of the sequence without increasing the number

of regions. In this model, region contour and region interior

information are used jointly to perform contour relaxation.

A detailed description of this final phase of the algorithm ia is the penalty value for having inhomogeneous neighbor
presented in the following section.

pairs parallel to ther- or y-axis. g is the penalty value

. for having inhomogeneous diagonal neighbor pairs on the

A. Contour Relaxation same framey is the penalty value for having inhomogeneous
Contour relaxation can be done in many ways. The methadighbor pairs parallel to theaxis. é is the penalty value for

used here, first introduced for 3-D data in [9], consists dfaving inhomogeneous diagonal neighbor pairs on the same

changing a boundary pixel label (which indicates region merframe.

bership) if doing so results in a local maximum of a joint Inhomogeneous pixel pairs are those with different labels

likelihood function. The main intent of the contour relaxatiorfbelonging to different regions). The coordinateefers to the

is to smooth rough boundaries and to obtain a segmentatjositions of pixels on the horizontal axis in an imageefers

that corresponds closely to the objects in the original image the positions of pixels on the vertical axis, ahdefers to

sequence. the positions of frames in the temporal direction. The joint

(« all inhomo. nearest neighbor pairs parallel
to thex or y axis
all inhomo. diagonal neighbor pairs in the
samez—y plane
~ all inhomo. neighbor pairs parallel to the
t axis
6 all diagonal inhomo. neighbor pairs each
pixel in differentz—y planes
\ 0 otherwise.
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Fig. 2. The 3-D cliques.

likelihood that must be maximized is
PY, Q)= PQ)PYI|Q) (4)

where Y is the original sequence data. Using a Gaussian
approximation in the formulation aP(Y|Q)

7]\‘7].
Pl =I] (Vortay) e @
R;
the joint likelihood can be expressed as

_N.
1 J
P(Y, Q) — ZG—(naa-I-m,@-l-nw-l-nd‘S) | I < 27r52(Rj)>
R.

3

e Ni/2 (6)

Fig. 4. Selected frames from tl&ecretarysequence.

R; is thejth region of the partitior®?, 1V; is the size of the
jth region, and5? is the estimated variance of th¢h region ) ) ) ) ,

[9]. The product comprises all regions of the partitOnn, 9iven all cliques m_the region remain th_g same. The choice of
is the number of inhomogeneous nearest neighbor cliquesti§Se parameters is not particularly critical. Fig. 2 shows all
R;. They are the vertical and horizontal cliques on the middf8€ Possible 3-D cliques considered in the GMRF model.
frame in Fig. 2.n, is the number of inhomogeneous diagonal

neighbor cliques on the same frame M, the diagonal C- Examples

cliques on the middle frame in Fig. 2.. is the number of  Some selected frames from thiss Americaand Secretary
inhomogeneous nearest neighbor cliques parallel ta tvds sequences are shown in Figs. 3 and 4. Each sequence is
in R;, the vertical cliques on the top and bottom frames icomposed of 24 frames of image size 12828 pixels. These

Fig. 2.n4 is the number of inhomogeneous diagonal neighbsequences will be used as test data throughout the paper. Due
cliques with each pixel lying on different frames #;, the to space constraints, only individual frames from a processed
diagonal cliques on the top and bottom frames in Fig. 2. sequence will be presented.

The values for, 3, v, andé can be determined based on The values used for obtaining the results are: the minimum
the local surrounding pixels. In this paper, the values usedrnamber of pixels allowed per region is 30, the intensity
the model fory, 3, v, andé are 1, 0.5, 1, and 0.5, respectivelydifference between neighboring pixels is one, and the merging
If these values are increased, the joint likelihood is reducedst threshold is 20 in increments up to 500. The number of
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©

Fig. 5. (a) Frame 20 of the origindliss Americasequence, (b) contour map, and (c) approximation image.

(a) (b) (c)

Fig. 6. (a) Frame 3 of the origingecretarysequence, (b) contour map, and (c) approximation image.

Fig. 7. Contour frames of thieliss Americaapproximation sequence viewed Fig. 8. Contour frames of th8ecretaryapproximation sequence viewed in
in a 3-D perspective. a 3-D perspective.

regions present are 85 and 210 in tless Americasequence may look blocky due to the low resolution of the image frame
and theSecretarysequence, respectively. It takes about 15 s$ize (128x 128 pixels) being displayed on a 2.352.15 ir?

on an HP 715/75 workstation to process a sequence of eighuare area. The segmentation method does not introduce the
frames with a frame size of 2568 256 pixels. blocking effect.

The results of 3-D segmentation on a typical head-and-Figs. 7 and 8 show the contour frames derived fronmiies
shoulders sequenddiss America)are shown in Fig. 5. The Americasequence and th8ecretarysequence, respectively,
image in Fig. 5(a) is a selected frame from the origin@lssembled into 3-D (spatiotemporal) volumes. These 3-D
sequence, the image in (b) is the contour map for this framegntour volumes are viewed in perspective. The holes in the
and the image in (c) is the associated frame from the imagelume indicate locations where consecutive frames share
sequence approximation formed by filling each region with isommon regions.
mean value. For th&ecretarysequence, sample frames from To prove the viability of this method under nonideal cir-
each sequence are shown in Fig. 6. The images in Fig. 6¢timstances, and to provide two test sequences for some of
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Fig. 9. (a) Frame 20 from the noidyliss Americasequence, (b) contour map, and (c) approximation image.
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Fig. 10. (a) Frame 3 from the noisgecretarysequence, (b) contour map, and (c) approximation image.

the methods that follow, two noisy image sequences were
produced by normalizing and adding Gaussian noise with a R

variance of 150 to the original sequences. The results of 3-D vor 1 L T NN
segmentation of the noisyliss Americasequence are shown ., . _1,2, R N T
in Fig. 9. The image in Fig. 9(a) is a selected frame from the

noisy sequence, the image in (b) is the contour map for this I N Lt
frame, and the image in (c) is the approximation image. . o1 oo

The results of 3-D segmentation of the noiSgcretary
sequence are shown in Fig. 10. The image in Fig. 10(a) fig- 11. The 3-D low-pass filtering operator.
a selected frame from the noisy sequence, the image in (b) is
the contour map for this frame, and the image in (c) is th& Low-Pass Filtering

appromma_tlon IMmage. - . - ... In conventional low-pass filtering for noise reduction, the
Comparing the results in Fig. 9 with those in Fig. 5, it is_. . S S : !
) . rice paid for the reduction in noise is the blurring of the
clear that the segmentation results obtained from the nois . : ;
. . .Image (especially noticeable around high contrast edges). A
sequence have more regions than those from the origina

; . .~ tradeoff must be made between noise reduction and sharp
image sequence. These extra regions can be formed in ?Noture reduction

ways. Either regions found in the noise-free sequence ared! . . . .

broken up into smaller regions or new regions are added in his being the case,_lt W.OU|d be very dgswaple it we C.OUId
locations where they did not previously exist. It is importa erform _the low-pass filtering only in the interior of regions

to note, however, that the approximation resulting from t ut not in areas where there are sharp features (such as at

segmentation of the noisy sequence still captures the majo boundaries of _ObJe_CtS)_' Three—_d |menS|c_)naI segmentation
of the important structure of the sequence. makes such selective filtering possible. A simple example of

this approach is selective averaging. Whenever the kernel is
completely within a uniform region, averaging is performed.
lll. SEGMENTATION-BASED VIDEO-PROCESSINGMETHODS  However, at region boundaries, only those pixels that belong to
In this section, we consider the improvements that cdhe same region as the pixel being evaluated are considered in
be obtained by including segmentation information in algdhe average. The low-pass operdi@r y, =) used for low-pass
rithms to perform some common video-processing tasks. Fdiliering is shown in Fig. 11.
applications will be investigated: segmentation-aided low- The results of both the conventional and segmentation-aided
pass filtering, segmentation-aided high-pass filtering, highmethods are shown in Fig. 12 (frame 3 from each processed
frequency emphasis, and edge enhancement. sequence). The image in Fig. 12(a) is from the noisy sequence.
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@) (b) (©

Fig. 12. (a) Frame 3 from the noisvliss Americasequence, (b) conventionally filtered sequence, and (c) guided low-pass filtered sequence.

(a) (b)

Fig. 13. (a) Frame 3 from the noisyecretarysequence, (b) conventionally filtered sequence, and (c) guided low-pass filtered sequence.

The image in (b) is the result of conventional low-pass

filtering. Shown in (c) is the result of the segmentation-guided K

low-pass filtering. vor TS T T
The image in the middle is blurred due to the indiscriminate . , y-1,27 T M T

averaging of pixel values across all regions during the low-pass

filtering process. As a result, noise in the sequence is reduced il Tl I ] il

but with an overall reduction in sharpness. . o1 cen
With the aid of 3-D segmentation, low-pass filtering is
performed in a controlled manner. Averaging takes place orffig- 14. The 3-D high-pass filtering operator.
within regions, not across region boundaries. Consequently,
high-frequency components that are important in maintain-
ing sharpness (those near object and feature boundaries)tarenly areas where edges are present. Region boundaries (due
retained. At the same time, the noise inside regions is reducgslthe fact that they often coincide with object boundaries)
Rather than appearing blurred, the filtered sequence oftg®@ useful in finding these areas. One approach to selective
appears sharper than the noisy original. Results using #igh-pass filtering, then, is to calculate the output of the filter
Secretarysequence are shown in Fig. 13. whenever the high-pass operator covers pixels from at least
Even though the signal-to-noise ratio (SNR) does not alwaygo different regions, where there is a possibility that it is in
reflect the quality of the sequence, it is still one of thge vicinity of an edge. Otherwise, the filter output is set to
most frequently used quality metrics (besides the widely used,

but relatively subjective visual evaluation). The SNR’s of Thee high-pass filtering procedures are compared in this

the noisy unfiltered sequence, the sequence filtered using {igyiqn: conventional high-pass filtering, boundary-constrained
conventional low-pass filter, and the aided low-pass fllterehciigh_pass filtering, and the combination of segmentation-

sequence are 6.5, 9.8, and 14.8 dB, respe(_:tively, for 4 fided low-pass filtering and boundary-constrained high-pass
Miss Americasequence. The SNR’s of the noisy sequenc tering

the conventional low-pass filtered sequence, and the aide h conventional high-pass filtering, both edges and noise

Iow—pas_s filtered sequence are 10.42, 9.58, and 14.91 %I?é enhanced in the image. This is particularly objectionable
respectively, for theSecretarysequence.

in smooth areas, where noise is very visible. In boundary-

) o constrained high-pass filtering, only high-frequency compo-
B. High-Pass Filtering nents near boundaries are enhanced. This is an improvement
Following an argument dual to that used for low-passver conventional high-pass filtering since the noise inside
filtering, it is desirable to be able to confine high-pass filteringgions (which corresponds to smooth areas of the image) is
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(a) (b)

Fig. 15. (a) Frame 6 from theMiss America sequence after conventional high-pass filtering, (b) boundary-constrained filtering, and (c)
low-pass/high-pass filtering.

@) (b) (©

Fig. 16. (a) Frame 3 from th®ecretarysequence after conventional high-pass filtering, (b) boundary-constrained filtering, and (c) low-pass/high-pass filtering.

not enhanced. If the segmentation used to guide the filterimyprovement over the other two methods is very clear. For
process includes false contours, however, the noise arouhd Secretarysequence, similar results can be seen in Fig. 16.
these contours is also enhanced. In very noisy sequences
(which tend to result in segmentations with numerous false ]
contours), this can be a major shortcoming. C. High-Frequency Emphasis

To reduce the noise around the boundaries, the sequenca straightforward approach to sharpening an image se-
can be segmentation-guided low-pass filtered first, followegience is to add a scaled high-pass filtered version of the
by boundary-constrained high-pass filtering. The combinatigequence to the original. Using a similar approach, sharpening
of these two types of filtering reduces noise much moran be performed by adding a scaled boundary-constrained
effectively. The aided low-pass filtering reduces noise nehigh-pass filtered version of the sequence to the original. This
boundaries and in the region interiors, while the boundargecond approach allows a more favorable tradeoff between
constrained high-pass filtering enhances the edges. Due togharpening and noise enhancement. Using conventional high-
nonlinear nature of the 3-D segmentation-aided filtering, opass filtering, noise inside regions is amplified and added
process does not undo the effects of the other. As a result,the original. In the case of boundary-constrained high-
the benefits of both processes can be retained. The high-paesss filtering, only high-frequency components around region
operatorh(t, y, ) used for high-pass filtering is shown inboundaries are enhanced. Consequently, the overall quality of
Fig. 14. a sequence sharpened with the later approach can be expected

The results obtained by applying the three techniques de-be superior.
scribed above to the noidMliss Americasequence are shown Unsharp masking is a technique that subtracts a blurred
in Fig. 15. The image on the left is the result of convenrersion of an image from its original. This technique is a basic
tional high-pass filtering. Noise is amplified so much thabol in photographic image processing. In a method that could
it overwhelms the image. The image in the middle is thiee considered dual to unsharp masking, which we will refer
result of the boundary-constrained high-pass filtering. Noisets as “sharp masking,” the segmentation-based approximation
somewhat reduced. However, because the segmentation described earlier is weighted and added to the original, and the
obtained from a noisy image sequence, noise still remaimesult is rescaled. This process results in sharpening due to the
particularly in the neighborhood of the false segmentati@harp transition between intensity values at region boundaries
contours. As discussed above, a remedy for this probleminsthe approximation.
to perform the segmentation-aided low-pass filtering first andFor the Miss Americasequence, the results of the two
then perform the segmentation-aided high-pass filtering. Thpproaches are shown in Fig. 17. The figure consists of frame
image on the right is the result of this combination. Th8 of the processed sequence. The image in Fig. 17(a) is
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@) (b) ©

Fig. 17. (a) Frame 3 from théViss Americablurred sequence, (b) result of sharpening using segmentation-guided low-pass filtering followed by
boundary-constrained high-pass filtering, and (c) sharp masking approach.

@) (b) (©

Fig. 18. (a) Frame 8 from th&ecretaryblurred sequence, (b) result of sharpening using segmentation-guided low-pass filtering followed by bound-

ary-constrained high-pass filtering, and (c) sharp masking approach.

the blurred image, the image in (b) is the result obtained
using boundary-constrained high-pass filtering, and the imagel?X
in (c) is the result produced by sharp masking. The first ¥ *

approach allows a better tradeoff between sharpening and ]l I et
noise enhancement than would be expected from conventional teved= 1) 3] -6| -3 910919 3163
sharpening. In this example, it can be seen that the facial -1{-3| -1 0]o o 103 |1
features have been well enhanced over those in the blurred

image. The eyes can be clearly seen, and the contrast in the t £+l £+2

area of the mouth has been increased. There has been or\%.al
modest degree of noise enhancement.

The sharp masking approach enhances the high-frequency
components in the image such that the face can be seen cleBg§itions in the image where the operator spans pixels from
and at the same time the noiserégluced.This is due to the at least two different regions. Otherwise, they are set to zero.
fact that at no point in this method is a difference calculated In general, the gradient magnitude is calculated as the square
(the source of noise enhancement in both conventional dig@t of the sum of the square of the pixel values at each
segmentation-guided high-pass filtering). Instead, a pointwiggation from the three different sequences
weighted average is calculated between the approximation and
the sequence. As a result, this method performs significantly Magnitude= /52 + 52 + 52, (7)
better for the sharpening of noisy sequences. Similar results
using theSecretarysequence are presented in Fig. 18.

9. The 3-D Sobel operator.

In the results shown below, the component was omitted
(S? = 0) because we did not want to enhance the edges along
. the temporal axis, which can cause an undesirable impression
D. Sobel Filtering of false movement.

Following the approach used for high-pass filtering in The results of applying Sobel filtering to tihiss America
Section 11I-B but using a 3-D Sobel operator, edge enhancgquence are shown in Fig. 20. The image in Fig. 20(a) is
ment can be performed. The Sobel operator is shown in Fig. ft8me 20 from the original sequence. The image in (b) is the
[10]. This operator is applied to the original sequence thresame frame after Sobel filtering. For the same reasons we saw
times, oriented along the-, y-, and t-axes. The resulting improvements in high-pass filtering, the inclusion of segmen-
sequences contain gradient estimates along their associasidn information in the edge-enhancement algorithm allows
dimensions. To suppress noise, outputs are evaluated onhamtimproved tradeoff between edge and noise enhancement.
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(@ (b)

Fig. 20. (a) Frame 20 from the origindliss Americasequence and (b) after the Sobel filtering.

Fig. 21. (a) Frame 3 from the origin@ecretarysequence and (b) after the Sobel filtering.

The results of applying Sobel filtering to th®ecretary as in object analysis and 3-D segmentation-based coding. In
sequence are shown in Fig. 21. The image in Fig. 21(a) tleose situations, the cost has already been paid. In addition to
frame 3 from the originaSecretarysequence. The image inthe techniques discussed here, 3-D segmentation information
(b) is the same frame after Sobel filtering. may be useful in other applications, such as deinterlacing and

resolution conversion, as well.
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