
RUTGERS UNIVERSITY
School of Electrical and Computer Engineering

ECE 447 Fall Course
Laboratory No. 3 Solutions

Image Processing in MATLAB – Fourier Analysis and Filtering of Images

1 Preliminaries

You can access MATLAB toolkits from either the departmental computers in CoRE Room
548 or from any computer with both Matlab and the Image Processing Toolbox. The
image files referenced in this lab can be accessed from the course website at:

cronos.rutgers.edu/~lrr/

If you are a new Matlab user, try running the built-in demos. Just type demos at the
Matlab prompt.

2 Exercise 1 – 2-D Fourier Transforms

As we learned in class, given an image f(x, y) defined for x = 0, 1, . . . ,M − 1 and y =
0, 1, . . . , N − 1, the 2-D discrete Fourier transform (DFT) of f(x, y) is denoted by F (u, v)
and is given by:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2πux/Me−j2πvy/N

and is defined for u = 0, 1, . . . ,M − 1 and v = 0, 1, . . . , N − 1. Similarly the inverse discrete
Fourier transform is given by:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2πux/Mej2πvy/N

again for x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1. The Matlab routines for computing
the 2-D DFT and the inverse 2-D DFT are the routines fft2 and ifft2.

Using the image files hardware.tif, shuttle.tif, and xray.tif, read in each of the
images and compute the 2-D DFT magnitude for each of the images. On a single plot (using
a grid of 2 x 2 images), plot the following:

• the original gray scale image in the upper left cell

1

Exhibit 2003
Unified Patents v. DigiMedia Tech

• the image representation of the 2-D DFT magnitude of the image being studied in the
upper right cell

• a clipped and scaled version of the 2-D DFT magnitude that is clipped and scale at
a level where you can see the nature of the 2-D DFT magnitude for each image; this
plot should be placed in the lower left cell

• the log transformed 2-D DFT magnitude plotted again on a scale that enables you to
see the structure of the transform magnitude; this plot should be placed in the lower
right cell

You will need to use the Matlab routine FS=fftshift(F) to shift the DC magnitude point
from the upper left corner of the image to the center of the magnitude range. In your Lab 3
report, include the Matlab code along with image plots of the three images for which you
repeat the analysis. Can you say how the image properties (in a gross sense) are seen in the
2-D DFT magnitude plots?

SOLUTION

The Matlab code for reading in an image file, computing the magnitude spectrum, and
plotting the requested images is as follows:

% plot_image_transform

%

% f=imread(’shuttle.tif’,’tiff’);

% f=imread(’xray.tif’,’tiff’);

f=imread(’hardware.tif’,’tiff’);

% plot original image in first quadrant

figure(1),subplot(221),imshow(f);

stitle=sprintf(’original tif file’);

title(stitle);

% compute image spectrum magnitude and plot in second quadrant

F=abs(fftshift(fft2(f)));

subplot(222),imshow(F, []);

stitle1=sprintf(’abs of 2D FFT’);

title(stitle1);

% axis([-1 1 1 -1]);

xlabel(’horizontal frequency’),ylabel(’vertical frequency’);

% determine minimum and maximum of spectrum magnitude, print results

Fmin=min(min(F));

Fmax=max(max(F));

fprintf(’Fmin, Fmax: %f %f \n’,Fmin,Fmax);

% scale magnitude based on Fmin and Fmax and plot in third quadrant

subplot(223),imshow(F, [1.5*Fmin, Fmax*1.e-3]);

stitle2=sprintf(’clipped/scaled abs of 2D FFT’);

2

Exhibit 2003
Unified Patents v. DigiMedia Tech

title(stitle2);

xlabel(’horizontal frequency’),ylabel(’vertical frequency’);

% log scale magnitude and plot in fourth quadrant

subplot(224),imshow(log(1+F), []);

stitle3=sprintf(’log transformed abs of 2D FFT’);

title(stitle3);

xlabel(’horizontal frequency’),ylabel(’vertical frequency’);

The resulting plots from the three files (hardware.tif, shuttle.tif and xray) are shown
in Figures 1, 2 and 3.

Figure 1: Plots of the original image (first quadrant), the raw spectral magnitude (second
quadrant), the scaled and clipped spectral magnitude (third quadrant), and the log intensity
transformed spectral magnitude (fourth quadrant).

It can easily be seen that the image plot of the raw spectral magnitude contains virtu-
ally no information about the image that is of note, whereas the clipped and scaled or
the log-transformed intensity images show the major concentrations of spectral energy and
their locations in a fairly prominent manner. It can also be seen that the spectral magnitude
is greatest along certain angles and radii, indicating the nature of the image being processed.

3

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 2: Plots of the original image (first quadrant), the raw spectral magnitude (second
quadrant), the scaled and clipped spectral magnitude (third quadrant), and the log intensity
transformed spectral magnitude (fourth quadrant).

3 Exercise 2 – Importance of DFT Phase

The phase angle of the Fourier transform of an image contains a great deal of information
about the image. To see this we will next perform a simple set of experiments. First we
define the quantities of interest precisely.

If we denote the gray scale (sampled) image as f [m,n] with 2-D DFT, F [i, k]. then we
can define the “magnitude only” image corresponding to f [m,n] as the image obtained by
taking the 2-D inverse DFT of the image magnitude function, i.e.,

fmag[m,n]←→ |F [i, k]|
i.e., fmag[m,n] is the inverse 2-D DFT of |F [i, k]|. We can also define the “phase only”
image corresponding to f [m,n] as the image obtained by taking the 2-D inverse DFT of the
image phase function, i.e.,

fph[m,n]←→ ej arg{F [i,k]}

where arg{F [i, k]} is the phase angle of F [i, k].
(a) Write a Matlab program to compute the magnitude only and phase only versions

of the two gray scale images, shuttle.tif and hardware.tif, and plot the results in a 2 x
2 grid with the following format:

• the upper left and lower left images should be the original gray scale image files (so
that you can compare them to the transformed images directly).

4

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 3: Plots of the original image (first quadrant), the raw spectral magnitude (second
quadrant), the scaled and clipped spectral magnitude (third quadrant), and the log intensity
transformed spectral magnitude (fourth quadrant).

• the upper right image should be the image reconstructed from magnitude only infor-
mation

• the lower right image should be the image reconstructed from phase only information

Include your Matlab code in the report, along with the two requested plots (one for each
set of images).

(b) Next perform the following experiment. Compute the 2-D DFTs of the two images
used in part (a) of this exercise. From these transforms, form two new DFTs in which
the magnitudes and phases are interchanged. Compute the corresponding two images and
display them, along with the original gray scale images, in a 2 x 2 grid of the form:

• the upper left image should be the first original image

• the upper right image should be the image reconstructed with the cross magnitude and
the correct image phase signal.

• the lower left image should be the second original image

• the lower right image should be the image reconstructed with the cross magnitude and
the correct image phase signal.

Include your Matlab code in the report, along with the requested plot. On the basis of
this exercise (as well as the results from Exercise 1) what can you say about the relative

5

Exhibit 2003
Unified Patents v. DigiMedia Tech

importance of magnitude and phase in preserving image properties. Why do you think the
phase contributes so much more than the magnitude to preserving some of the original image
properties.

SOLUTION

(a) Matlab code for reading in two image files and computing the “magnitude-only” and
“phase-only” versions of the images and plotting these images on a common plot is given
below.

% mag_phase_analysis

%

% read in two image files; first is hardware, second is shuttle

f=imread(’hardware.tif’,’tiff’);

g=imread(’shuttle.tif’,’tiff’);

% f=imread(’xray.tif’,’tiff’);

% g=imread(’lighthou.tif’,’tiff’);

% plot original first image file in first quadrant

figure,subplot(221),imshow(f,[]);

% transform first image to frequency domain and compute magnitude and phase

F=fft2(f);

FA=abs(F);

FP=atan2(imag(F),real(F));

FB=exp(j*FP);

% convert magnitude only back to image; convert phase only back to image

FM=real(ifft2(FA));

FN=real(ifft2(FB));

% determine maximum and minimum of magnitude image and print on screen

FMmax=max(max(FM));

FMmin=min(min(FM));

fprintf(’FMmin, FMmax: %f %f \n’,FMmin,FMmax);

% convert magnitude only and phase only images to uint8 format for display

FMS=im2uint8(mat2gray(FM));

FNS=im2uint8(mat2gray(FN));

% display magnitude only image in second quadrant

subplot(222),imshow(FMS, [0 25]);

stitle=sprintf(’image reconstructed from magnitude only’);

title(stitle);

% display original image in third quadrant;

% phase only image in fourth quadrant using the range [75 175] determined empiracally

subplot(223),imshow(f,[]);

subplot(224),imshow(FNS,[75 175]);

stitle=sprintf(’image reconstructed from phase only’);

title(stitle);

figure,subplot(221),imshow(g,[]);

6

Exhibit 2003
Unified Patents v. DigiMedia Tech

% determine magnitude and phase for the second image;

% convert to magnitude-only and phase-only images for the second image

G=fft2(g);

GA=abs(G);

GP=atan2(imag(G),real(G));

GB=exp(j*GP);

GM=real(ifft2(GA));

GN=real(ifft2(GB));

% determine maximum and minimum of magnitude-only second image and print

GMmax=max(max(GM));

GMmin=min(min(GM));

fprintf(’GMmin, GMmax: %f %f \n’,GMmin,GMmax);

% convert magnitude-only and phase-only images to uint8 format

GMS=im2uint8(mat2gray(GM));

GNS=im2uint8(mat2gray(GN));

% plot original second image in first quadrant

% plot magnitude only second image in second quadrant

figure; subplot(221),imshow(g,[]);

subplot(222),imshow(GMS, [0 25]);

stitle=sprintf(’image reconstructed from magnitude only’);

title(stitle);

% plot original second image in third quadrant

% plot phase-only second image in fourth quadrant

subplot(223),imshow(g,[]);

subplot(224),imshow(GNS,[75 175]);

stitle=sprintf(’image reconstructed from phase only’);

title(stitle);

Figures 4 and 5 show plots of the original image (top and bottom left images) and
the reconstructed magnitude-only (top right image) and phase-only (bottom right) images
(for the two gray scale images). These plots show that the magnitude-only image is a
washed out image with only the vaguest hints of the image details and character, whereas
the phase-only reconstructed image retains the image outlines with some small degree of
shading information. Clearly the phase-only reconstruction has far more signal-dependent
information for an image than the magnitude-only reconstruction.

(b) The Matlab code for crossing the magnitude and phase of the two images and
reconstructing full images based on the crossed information is given below (note that the
Matlab code is added to the end of the previous code example):

% cross magnitudes and phases of the two images; convert to uint8 images

% and plot intensity histograms of the two crossed images

F1=FA.*GB; % GB

G1=GA.*FB; % FB

g1=real(ifft2(G1));

g1s=im2uint8(mat2gray(g1));

7

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 4: Plots of the original image (upper left image), the magnitude-only image (upper
right image), the original image (lower left image), and the phase-only image (lower right
image).

figure,plot(imhist(g1s));

f1=real(ifft2(F1));

f1s=im2uint8(mat2gray(f1));

figure,plot(imhist(f1s));

% plot original first image in first quadrant

figure,subplot(221),imshow(g,[]);

% plot crossed first image (correct phase, incorrect magnitude) in second

% quadrant

subplot(222),imshow(f1s, []);

stitle=sprintf(’image magnitude different, phase correct’);

title(stitle);

% plot original second image in third quadrant

subplot(223),imshow(f,[]);

% plot crossed second image (correct phase, incorrect magnitude) in fourth

% quadrant

subplot(224),imshow(g1s,[]);

stitle=sprintf(’image magnitude different, phase correct’);

title(stitle);

Figure 6 shows the plots of the crossed-magnitudes for the two images. We see that the
resulting images contain most of the picture information that describes the image elements,

8

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 5: Plots of the original image (upper left image), the magnitude-only image (upper
right image), the original image (lower left image), and the phase-only image (lower right
image).

although with a fair amount of smearing and distortion due to the incorrect magnitude
information. Clearly the phase information is far more important than the magnitude in-
formation in preserving key aspects of individual images. The phase information seems to
retain a lot of information about image edges and image orientations.

4 Exercise 3 – Linear Filtering of Images

(a) Using the Matlab routine H=lpfilter(type, M, N, D0, n) for designing lowpass
filters, where the input arguments are:

type=’gaussian’, ’ideal’ or ’btw’ (for Butterworth filters)

M,N = dimensionality of filter frequency response

D0 = filter cutoff frequency (normalized to range [0, M] or [0

N])

n = filter order for Butterworth filters

and the output H is the frequency response of the filter, write a Matlab m-file that accepts
as input the filter type (ftype=’gaussian’,’ideal’,’btw’), the cutoff frequency D0, and
(optionally for the Butterworth filter) the filter order n. Within the Matlab program,

9

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 6: Plots of the original first image (upper left image), the cross-magnitude/correct
phase image (upper right image), the original second image (lower left image), and the
cross-magnitude/correct phase image (lower right image).

plot the filter frequency response (using the mesh command) along with the filter impulse
response. Test your program for the following conditions:

1. ftype=’gaussian’, D0=50

2. ftype=’ideal’, D0=50

3. ftype=’btw’, n=4, D0=50

Include the graphics for the three frequency and impulse responses in your Laboratory
report.

(b) How would you convert your Matlab code to change the design from a lowpass
filter to a highpass filter? Demonstrate this capability by designing a Gaussian highpass
filter with cutoff D0=50 and include the plot of the frequency and impulse response of the
resulting filter.

(c) Using the original input gray-scale image, lena.tif, write another Matlab m-file
which reads in the original image (what is the image size), then design an appropriate lowpass
filter with appropriate padding, filter the image in the frequency domain, convert back to
the image domain and plot the processed image (remember to crop the filtered image so that
you have the same region of support as the original image).
Compare the processed images with the three lowpass filters used in part (a) of this Exercise.
Also compare the effects of differing values of D0 between 20 and 200. What is the effect of
lowpass filtering on the image?

10

Exhibit 2003
Unified Patents v. DigiMedia Tech

(d) Include designs for highpass filters in your Matlab code. Repeat part (c) using
highpass filters in place of the lowpass filters. What is the effect of highpass filtering? What
is the major difference between the three filter types?

SOLUTION

(a) The Matlab code for choosing a lowpass filter type and designing the lowpass filter
(using the Matlab routine lpfilter) is as follows:

% display_filter_responses

%

% enter filter type and design parameters

D0=50; % cutoff frequency (range 0 to 250)

D0=input(’value for cutoff frequency (range 0 to 250):’);

ftype=input(’filter type (gaussian, ideal, btw (butterworth)):’,’s’);

if (ftype(1:3) == ’gau’)

H0=lpfilter(’gaussian’,500,500,D0);

stitle1=sprintf(’gaussian filter response with D0= %d’,D0);

stitle2=sprintf(’gaussian impulse response with D0= %d’,D0);

elseif (ftype(1:3) == ’ide’)

H0=lpfilter(’ideal’,500,500,D0);

stitle1=sprintf(’ideal filter response with D0= %d’,D0);

stitle2=sprintf(’ideal impulse response with D0= %d’,D0);

elseif (ftype(1:3) == ’btw’)

n=input(’butterworth filter order (1 to 6):’);

H0=lpfilter(’btw’,500,500,D0,n);

stitle1=sprintf(’butterworth filter response with D0= %d, n= %d’,D0,n);

stitle2=sprintf(’butterworth impulse response with D0= %d, n= %d’,D0,n);

else

error(’improper filter type specified’);

end

ilphp=input(’lowpass (1) or highpass (0) filter:’);

if (ilphp == 0) H0=1-H0;

end

% display frequency response of lowpass filter using mesh plot

H=fftshift(H0);

figure,mesh(H(1:10:500, 1:10:500));

axis([0 50 0 50 0 1]);

title(stitle1);

% convert from spectral to spatial domain

h=real(ifft2(H));

hmax=max(max(h));

h=h/hmax;

hc=fftshift(h);

11

Exhibit 2003
Unified Patents v. DigiMedia Tech

% determine region of support for impulse response

hsize=size(hc);

middle=hsize(1)/2;

hmax=max(max(hc));

h1=find(hc(middle,:)>hmax/100.);

startpt=max(h1(1)-10,1);

endpt=min(h1(end)+10,hsize(1));

% display impulse response of lowpass filter using mesh plot

figure,mesh(hc(1:10:500, 1:10:500));

axis([0 50 0 50 0 1]);

title(stitle2);

% display response on finer scale

figure,mesh(hc(225:2:275, 225:2:275));

axis([0 25 0 25 0 1]),title(stitle2);

figure,mesh(hc(startpt:1:endpt, startpt:1:endpt));

axis([0 (endpt-startpt+1) 0 (endpt-startpt+1) 0 1]),title(stitle2);

% display impulse response at center spatial line

figure,plot(hc(middle,startpt:endpt),’b’,’LineWidth’,2);

axis tight,title(stitle2);

Figure 7 shows plots of the frequency response of three lowpass filters (designed using
the above code), namely:

1. a Gaussian lowpass filter with parameters M=N=500, D0=50

2. an ideal lowpass filter with parameters M=N=500, D0=50

3. a Butterworth lowpass filter with parameters M=N=500, D0=50, n=4

The differences in the shape and smoothness of the three lowpass filters are clear in this
figure. Plots of both the frequency and impulse response (with 3 different resolutions) of the
Gaussian lowpass filter are given in Figure 8 below. The width of the impulse response is
inversely proportional to the width of the frequency response; hence for the wide frequency
response of the Gaussian filter, we see a fairly narrow response region for the Gaussian
impulse response.

A similar set of plots of the frequency and impulse response of the ideal lowpass filter
and the Butterworth lowpass filter are shown in Figure 9 (for the ideal lowpass filter) and
in Figure 10 (for the Butterworth lowpass filter).

(b) To convert the design from a lowpass filter to a highpass filter, you merely subtract
the lowpass response from 1 (this is already reflected in the Matlab code above). A plot
of the frequency and impulse responses of a Gaussian highpass filter is given in Figure 11
below.

12

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 7: Plots of the frequency response of a Gaussian lowpass filter (top left), an ideal
lowpass filter (top right) and a 4-th order Butterworth lowpass filter (bottom plot).

(c) We can now use the filters designed above for filtering an image file. We use the file
lena.tif for this exercise. The Matlab code for choosing the appropriate lowpass filter
and filtering an image file (in the frequency domain) is given in the Matlab code below:

% lp_hp_filter_image

%

% read in tif image lena and size the image

f=imread(’lena.tif’,’tiff’);

[M,N]=size(f);

% pad image for convolution

PQ=paddedsize(size(f));

% enter filter type and design parameters

D0=50; % cutoff frequency (range 0 to 250)

D0=input(’value for cutoff frequency (range 0 to 250):’);

ftype=input(’filter type (gaussian, ideal, btw (butterworth)):’,’s’);

if (ftype(1:3) == ’gau’)

Hp=lpfilter(’gaussian’,PQ(1),PQ(2),D0);

elseif (ftype(1:3) == ’ide’)

Hp=lpfilter(’ideal’,PQ(1),PQ(2),D0);

elseif (ftype(1:3) == ’btw’)

13

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 8: Plots of the frequency response of a Gaussian lowpass filter (top left), the impulse
response of the filter (top right), and two different blow ups of the impulse response (bottom
plots).

n=input(’butterworth filter order (1 to 6):’);

Hp=lpfilter(’btw’,PQ(1),PQ(2),D0,n);

else

error(’improper filter type specified’);

end

ilphp=input(’lowpass (1) or highpass (0) filter:’);

if (ilphp == 0) Hp=1-Hp;

end

% transform image to frequency domain using zero-padded image

Fp=fft2(f,PQ(1),PQ(2));

% display impulse response of lowpass filter using mesh plot

H=fftshift(Hp);

figure,mesh(H(1:10:PQ(1), 1:10:PQ(2)));

axis([0 round(PQ(1)/10) 0 round(PQ(2)/10) 0 1]);

% filter in frequency domain by multiplying 2-D FFTs

Gp=Hp.*Fp;

14

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 9: Plots of the frequency response of an ideal lowpass filter (top left), the impulse
response of the filter (top right), and two different blow ups of the impulse response (bottom
plots).

% convert back to image plane, using real value of inverse transform

gp=real(ifft2(Gp));

% crop image to original size and display uncropped and cropped image

gpc=gp(1:size(f,1),1:size(f,2));

figure,imshow(gp,[]);

figure,imshow(gpc,[]);

Figure 12 below shows the effects of varying the cutoff frequency of the Gaussian lowpass
filter on the resulting image. The cutoff frequencies for the four sub-images are 20 (top left
image), 50 (top right image), 100 (bottom left image) and 200 (bottom right image) where
the cutoff frequencies are relative to the number of pixels in the image-512 in this case. It
is clearly seen that narrow band lowpass filters smear the image a great deal and make it
very fuzzy, whereas wideband lowpass filters have no clear detrimental effect on the image
quality.

Figure 13 below shows a comparison of the effects of three lowpass filters (all with the
same cutoff frequency) on the lena image. The upper left plot is the original image; the
upper right plot is the one from a Gaussian filter with a cutoff frequency of 50; the lower
left plot is the one from an ideal lowpass filter with a cutoff frequency of 50; the lower right
plot is the one from a Butterworth lowpass filter of order 4, with cutoff frequency 50. The
amount of aliasing from the ideal lowpass filter is clear in this figure.

15

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 10: Plots of the frequency response of a Butterworth lowpass filter (top left), the
impulse response of the filter (top right), and two different blow ups of the impulse response
(bottom plots).

(d) It is trivial to extend the Matlab code to include highpass filters (in fact the above
code already has a lowpass/highpass option). To illustrate the effects of highpass filtering
on the lena image, Figure 14 shows the results of Gaussian highpass filtering using cutoff
frequencies of D0=20 (upper left plot), 50 (upper right plot), 100 (lower left plot) and 200
(lower right plot). It can clearly be seen that for low cutoff frequencies (e.g., D0=20) the
effect of the wide highpass filter is to preserve a shadow-like version of the original image;
whereas as the cutoff frequency becomes larger and larger, the contrast becomes less and
less and the image blends into a gray scale outline.

16

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 11: Plots of the frequency response of a Gaussian highpass filter (top left), the impulse
response of the filter (top right), and a blow up of the impulse response (bottom plot).

17

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 12: Plots of the lena image subjected to lowpass filtering using a Gaussian lowpass
filter with cutoff frequencies of 20 (top left image), 50 (top right image), 100 (bottom left
image) and 200 (bottom right image).

18

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 13: Plots of the original lena image (top left image) along with lowpass filtered
versions using a Gaussian filter (top right image), an ideal filter (bottom left image) and
a Butterworth 4-th order filter (lower right image). The cutoff frequencies for all lowpass
filters was 50.

19

Exhibit 2003
Unified Patents v. DigiMedia Tech

Figure 14: Plots of the lena image subjected to higpass filtering using a Gaussian highpass
filter with cutoff frequencies of 20 (top left image), 50 (top right image), 100 (bottom left
image) and 200 (bottom right image).

20

Exhibit 2003
Unified Patents v. DigiMedia Tech

