
USOO5990958A

United States Patent (19) 11 Patent Number: 5,990,958
Bheda et al. (45) Date of Patent: Nov. 23, 1999

54 APPARATUS AND METHOD FOR MPEG 5,815,206 9/1998 Malladi et al. 348/390
VIDEO DECOMPRESSION 5,818,532 10/1998 Malladi et al. 348/390

5,881,244 3/1999 Uchiumi et al. 348/403
75 Inventors: Hemant Bheda; Sanjay Gongalore, Primary Examiner Anand S. Rao

both of Cupertino; Partha Srinivasan, Attorney, Agent, or Firm-Steven F. Caserza; Flehr
Fremont, all of Calif. Hohbach Test Albritton & Herbert

73 Assignee: National Semiconductor Corporation, 57 ABSTRACT
Santa Clara, Calif.
an La Ulara, Call A novel apparatus and method is disclosed to decode an

encoded MPEG video stream in an efficient manner making
21 Appl. No.: 08/877,136 optimal use of available System memory and computational
22 Filed: Jun. 17, 1997 resources. The present invention partitions the MPEG video

6 decode task into Software tasks which are executed by a
51) Int. Cl. ... H04N 7/18 CPU and hardware tasks which are implemented in dedi
52 U.S. Cl. 348/407; 348/390; 348/384; cated Video hardware. Software tasks represent those tasks

395/200.77 which do not require extensive memory or computational
58 Field of Search 348/384, 390, resources. On the other hand, tasks implemented in dedi

348/405, 423, 461, 464,845.1, 845.2, 845.3, cated Video hardware represent those tasks which involve
407; 364/514 B, 514 C: 395/200.77 computational and memory mintensive operations. Synchro

nization between software tasks executed by the CPU and
56) References Cited hardware tasks implemented in dedicated Video hardware is

U.S. PATENT DOCUMENTS achieved by means of various data Structures, control Struc
tures and device drivers.

5,768,536 6/1998 Strongin et al. 348/384
5,801,775 9/1998 Ueda 348/402 10 Claims, 9 Drawing Sheets

132 134

Audio COdeC 130

Software
Splitter
(System Layer

MPEG De-mux)
bitStream

VLD, O,
1361 (IDCT)

VideOCOdeC

(DCT),
Frame
ReConstruct

Audio Renderer

-e-

Hardware
138

Video Renderer

Interrupt on Frame Display

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 1 of 24

U.S. Patent Nov. 23, 1999 Sheet 1 of 9 5,990,958

\ 12

NTSCIPAL- 20
RGB Out

2D/3D
Graphics

FIG. 1

NTSCIPAL- 20
RGB Out

FIG. 2

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 2 of 24

U.S. Patent Nov. 23, 1999 Sheet 2 of 9 5,990,958

132 134

Audio Renderer OdeC

Audio --->

138

Splitter
(System Layer Software Hardware De-muX)

bitstream

(DCT),
Frame
Reconstruct

136

FIG. 3

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 3 of 24

U.S. Patent Nov. 23, 1999 Sheet 3 of 9 5,990,958

158

LPDataPtr

POINTER

144a POINTER

140

Buffer 1 Buffer 2 Entry Size

Tesifter 156
FIG. 6 118b

-

TaSK Pitr

I Symbol Stream Buffer Task Ptr 2
Symbol Symbol Page Table Addr
Stream Stream Task FIFO

System Memory 14
- - - - - - - - - - - -

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 4 of 24

U.S. Patent Nov. 23, 1999 Sheet 4 of 9 5,990,958

164 NITIALIZATION

SOFTWARE CLIENT
"acquire"

166

SOFTWARE CLIENT
"release"

TASK COMPLETION
NOTIFICATION

FIG. 8a

168

170

172

YES 74

LOad HTDP

176

Can Task
Start This
VSYNC

184 178

Wait for Wait for
NextVSYNC NextVSYNC

Start Display and/or Decode Tasks

180
Wait for (Total Display
Duration - 1) VSYNCS FIG. 8b.

182

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 5 of 24

U.S. Patent Nov. 23, 1999 Sheet 5 of 9 5,990,958

I/P Frames (FO, F1); BFrames (F2, F3)
720

FIG. 9

360 360

/P Frames:

FIG. 10

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 6 of 24

5,990,958 Sheet 6 of 9 Nov. 23, 1999

:@-IH 'IBH "OHH) Sp10|+8

U.S. Patent

9/9

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 7 of 24

5,990,958 Sheet 7 of 9 Nov. 23, 1999 U.S. Patent

9/9

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 8 of 24

5,990,958 Sheet 8 of 9 Nov. 23, 1999 U.S. Patent

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 9 of 24

U.S. Patent Nov. 23, 1999 Sheet 9 of 9 5,990,958

A MB B MB DCT COeff.
from RAM from RAM from PCI FIFO

FIG. 14
ReCOnstructed
MB to RAM

load up to 4 DCT of 8x8 Y block data Write reCOnstructed Y
A-REF MC Of Y block B-REF MC Of Y block block to memory

FIG. 15

load up to 4 DCTs of 8x8 Y block data Write reCOnstructed Y
A-REF MC Of Y block B-REF MC Of Y block blocks to memory

FIG. 16

A MB DCT COeff. B MB
from RAM from PCI FIFO from RAM

ReCOnstructed
FIG. 17 MB to RAM

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 10 of 24

5,990,958
1

APPARATUS AND METHOD FOR MPEG
VIDEO DECOMPRESSION

TECHNICAL FIELD

This invention pertains to Video decompression, and more
Specifically to a novel apparatus and method to perform
MPEG video decode in an efficient manner making optimal
use of available System memory and computational
CSOUCCS.

BACKGROUND

The CCITT/ISO committee has standardized a set of
compression and decompression algorithms for Still and
motion digital Video, Such as is described, for example, in
ISO/IEC JTC1/SC29/WG 11 NO702 (revised), May 10,
1994. These standards include the JPEG, MPEG and H.261
compression Schemes. These Standards are commonly
applied in video conferencing, CD-ROM or DVD-ROM
based interactive Videos for education and entertajinent,
video or informational kiosks, video on demand (VOD)
applications, Satellite Video transmission applications and
many other applications which require communication of
motion digital Video. These Standards utilize transform code
compressed domain formats, which include the Discrete
Cosine transform (DCT), and the interframe predictive code
format. Motion Compensation (MC) algorithms are used in
conjunction with the DCT format and other hybrid com
pressed formats.
The MPEG standard was drafted by the Moving Picture

Coding Experts Group (MPEG) which operates within the
framework of the Joint ISO/IEC Technical Committee
(JCCI) on Information Technology. The draft provided a
Standard for coded representation of moving pictures, audio
and their combination.

FIG. 1 is a block diagram depicting a typical prior art
computer system suitable for decoding MPEG video data.
Computer System 10 includes Standard System components,
such as system bus 11, CPU 12, core logic 13, system
memory 14, and hard disk 16. Computer system 10 also
includes a number of elements particularly Suitable for Video
functions, including DVD-ROM drive 15, which reads
CD-ROM or DVD-ROM, MPEG decoder 17 and its asso
ciated local DRAM memory 17A, 2D/3D Graphics Control
ler 18, and its associated local frame buffer DRAM 18A. If
desired, computer System 10 also includes a television
interface 19 for displaying video on a television, and RGB
output bus for providing video output Signals to a monitor.
These video output signals on bus 20 are either MPEG data
streams from DVD-ROM drive 15, or typical computer
graphics generated by Graphics Controller 18, or both.
Graphics Controller 18 also provides 2-D, 3-D graphics
functionality as well as Video Scaling and color Space
conversion. In addition, Graphics Controller 18 provides an
interface via bus 20 to a RGB monitor or a television serving
to display video data from computer system 10.

In FIG. 1, decoder 17 performs MPEG video data stream
decompression/decoding operation, thus enabling computer
System 10 to playback multimedia applications utilizing the
MPEG 1 or MPEG 2 video compression standard. The
MPEG video decoding operation includes the tasks of
parsing the compressed Video Stream using variable length
decoding (VLD), inverse quantization (IQ), inverse discrete
cosine transformation (IDCT), motion compensation (MC)
and block reconstruction (BR). Since the video decoding
operation involves compute intensive signal processing
operations, the hardware logic embedded in MPEG decoder

15

25

35

40

45

50

55

60

65

2
17 is complex and consequently expensive. Another disad
vantage of the prior art setup is that MPEG decoder 17 fails
to utilize computational and memory resources provided by
System components Such as CPU 12, System memory 14, or
Graphics Controller 18 and its associated memory 18a. This
results in inefficient utilization of the available system
CSOUCCS.

SUMMARY

In View of the foregoing, it is an objective of the present
invention to provide an apparatus and method to perform
MPEG video decompression in an efficient manner. It is also
an objective of the present invention to provide a Video
decompression apparatus and method which not only per
forms efficient MPEG video decoding but is also architec
turally simpler than prior art Video decoderS and is cheaper
than prior art video decoders. It is a further objective of the
present invention to provide an apparatus and method to
perform video decoding while optimizing the use of System
resources, including computational and memory System
CSOUCCS.

The present invention achieves the above goals and
objectives by providing a novel apparatus and method which
partitions the MPEG video decode task into software tasks
which are executed by a CPU and hardware tasks which are
implemented in dedicated Video hardware. Software tasks
represent those tasks which do not require extensive
memory or computational resources. On the other hand,
tasks implemented in hardware represent those tasks which
involve computational and memory intensive operations.
Software tasks pre-process the input encoded MPEG video
data Stream and write the pre-processed information for each
frame into a Symbol Stream which is Stored in System
memory. Dedicated video hardware retrieves the symbol
Stream data from System memory and completes the pro
cessing of the Video frame. Synchronization between Soft
ware tasks executed by the CPU and hardware tasks imple
mented in dedicated Video hardware is achieved by means of
various data Structures, control Structures maintained by
Software and by device drivers associated with dedicated
video hardware.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional features of the invention will be readily appar
ent from the following detailed description and appended
claims when taken in conjunction with the drawings, in
which:

FIG. 1 is a block diagram depicting a typical prior art
computer system suitable for decoding MPEG video data.

FIG. 2 is a block diagram depicting an embodiment of the
current invention suitable for decoding MPEG video data.

FIG. 3 is a block diagram delineating the tasks involved
in decoding a compressed MPEG data Stream.

FIG. 4 depicts one technique of partitioning the Video
decode tasks between software executing on CPU and
dedicated video hardware.

FIG. 5 depicts an alternate technique of partitioning video
decode tasks between software executing on CPU and
dedicated video hardware.

FIG. 6 depicts an embodiment of the current invention
depicting the data Structures and Software/hardware compo
nents required for coordinating communication between
dedicated video hardware and software running on the CPU
to accomplish MPEG video decode.

FIG. 7 depicts an embodiment of the current invention in
which the Task Pointer FIFO is maintained by the dedicated
video hardware.

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 11 of 24

5,990,958
3

FIG. 8a is a flow chart depicting the various software
transactions involved in decode and display of MPEG video.

FIG. 8b is a flow chart illustrating the sequence of
operations performed by the task handler of the dedicated
video hardware.

FIG. 9 depicts the structure for one embodiment of the
frame buffer for storing four frames for PAL/NTSC picture
resolution.

FIG. 10 depicts an embodiment of the frame buffer
structure for storing 3.5 frames for PAL/NTSC picture
resolution in accordance with the teachings of the current
invention.

FIG. 11 depicts a frame buffer storage scheme to decode
PAL pictures with only 2 MB of RAM.

FIG. 12 depicts an alternate frame buffer Storage Scheme
to decode PAL pictures with only 2 MB of RAM.

FIG. 13 depicts an embodiment of the current invention in
which the dedicated video hardware is embedded in the
graphics controller.

FIG. 14 depicts a data flow diagram of decode operations
performed by hardware.

FIG. 15 depicts luminance block operations performed by
an embodiment of the current invention.

FIG. 16 depicts luminance block operations performed by
an embodiment of the current invention.

FIG. 17 depicts an alternate data flow diagram of decode
operations performed by hardware.

DESCRIPTION OF SPECIFIC EMBODIMENTS

In accordance with the teachings of this invention, a novel
Video decompression architecture and method are taught
which allow for a low cost implementation of a compressed
Video playback System. In particular, the current invention
provides an efficient and low cost architecture and method
for playback of MPEG 1 and MPEG 2 video data streams in
a multimedia computer system supporting DVD, DVB,
VideoCD and other applications utilizing the MPEG video
compression Standard.

FIG. 2 is a block diagram depicting an embodiment of a
computer System constructed in accordance with the teach
ings of the present invention. Unlike the prior art Video
decoding system of FIG. 1 which utilizes a dedicated MPEG
decoder 17, in accordance with the teachings of the present
invention, the Video decoding task heretofore performed by
MPEG decoder 17 is partitioned into a software task 112a
running on CPU 112, and tasks performed by novel dedi
cated video hardware 118b. In one embodiment, as shown in
FIG. 2, dedicated video hardware 118b is embedded in
graphics controller 118.

The novel architecture and method taught by the inven
tion provide Several advantages and improvements over
prior art Video decoderS. Since the decoding task is partially
implemented by software task 112a executing on CPU 112,
the complexity of dedicated video hardware 118b required to
complete the Video decode task is greatly reduced. Reduced
complexity translates to Smaller physical size of the decoder
hardware and thus Savings in Space and cost.

If desired dedicated video hardware 118b can be embed
ded in graphics controller 118 (as shown in FIG. 2), thereby
Saving Significant amount of integrated circuit real estate.
This configuration also allows efficient use of available
System resources as the Video decoding hardware shares the
memory controller and PCI bus interfaces with graphics
controller chip 118. Additionally, unlike prior art systems in

15

25

35

40

45

50

55

60

65

4
which MPEG decoder 17 requires its own separate dedicated
local memory 17A to decode video frames, in the current
invention no additional memory is required as memory
required to decode Video frames is shared with the graphics
controller frame buffer 118A. This translates to savings in
cost and results in a more efficient utilization of available
memory resources, thus reducing the complexity and cost of
the overall system. Furthermore, distribution of the decoding
tasks between CPU 112 and dedicated video hardware 118b,
results in efficient usage of available System computational
CSOUCCS.

DECODE TASK PARTITIONING BETWEEN HARD
WARE AND SOFTWARE

FIG. 3 depicts the various tasks involved in decoding a
compressed MPEG signal data Stream. The incoming com
pressed MPEG data stream consists of a video component
and an audio component. The multiplexed data-stream is
first demultiplexed into its audio and Video data-stream
components as shown by block 130 in FIG. 3. The audio
data-stream is then Subjected to audio decoding (block 132)
and then forwarded to an audio renderer (block 134) sound
card for playback. The Video data-stream is Subjected to
video decoding operation (block 136) and then forwarded to
a video renderer (block 138) display device for playback.
The video decoding operation (block 136) includes the tasks
of parsing the compressed Stream using variable length
decoding (VLD), performing inverse quantization (IQ), per
forming inverse discrete cosine transformation (IDCT), per
forming motion compensation (MC) and block reconstruc
tion (BR).

In accordance with the teachings of this invention, the first
Step in partitioning the Video decode operation between
Software tasks and tasks performed by novel dedicated Video
hardware 118b involves identifying tasks which require
intensive computational and memory operations and tasks
which do not require intensive computational or memory
operations. Video decode tasks which do not require inten
Sive memory and computational operations are performed
by software executing on CPU 112 while compute/memory
intensive tasks are assigned to be performed by dedicated
video hardware 118b. Thus, the partitioning of the video
decoding operation into Software and hardware tasks is
dependent upon the performance of CPU 112, system
memory 14 bandwidth and available bandwidth on system
bus 11, which is for example, a PCI or AGP bus.

FIG. 4 and FIG. 5 depict two possible partitioning
embodiments based on the CPU performance. In the
embodiment depicted in FIG. 4, Software tasks executed by
CPU 112 include parsing the compressed video bitstream
using variable length decoding (VLD), performing inverse
quantization of decoded coefficients (IQ), and performing
inverse discrete cosine transform (IDCT). The memory
intensive tasks of motion compensation (MC) and block
reconstruction (BR) are performed by dedicated video hard
ware 118b.

However, in the embodiment depicted in FIG. 5, the task
of performing inverse discrete cosine transformation ADCT)
is classified as a compute/memory intensive task and is
implemented in dedicated video hardware 118b. As stated
above, the partitioning of a particular video decode opera
tion into a Software task or hardware task depends on various
factors such as the performance of CPU 112, system
memory 14 bandwidth and available bandwidth on system
buS 11. Consequently, in a particular embodiment, as shown
in FIG. 5, the task of performing inverse discrete cosine
transformation (IDCT) is classified as a compute/memory
intensive task and thus implemented in dedicated Video
hardware 118b.

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 12 of 24

5,990,958
S

The embodiment depicted in FIG. 4 results in higher CPU
utilization than the embodiment depicted in FIG. 5. On the
other hand, the embodiment depicted in FIG. 5 is more
feasible for Systems which prefer a reduced compute load on
the CPU. It should be evident to those skilled in the art that
the partitioning of the Video decode task into Software and
hardware tasks can be customized to Suit the compute
capabilities of a particular computer System.

In one embodiment, software tasks executing on CPU 112
process the compressed Video data Stream one frame at a
time. CPU 112 partially processes each frame and formats
the partially processed frame data as a Set of fixed length
symbols called the “symbol stream.” The symbol stream is
stored in a buffer in system memory 14 (shown in FIG. 2)
where it can be accessed by dedicated video hardware 118b
for further processing. While CPU 112 is processing the next
available video frame, dedicated video hardware 118b
accesses System memory 14 in a bus mastering mode
(without CPU intervention) to retrieve the symbol stream
stored for the previously computed frame. Dedicated video
hardware 118b interprets the symbol stream generated by
CPU 112 and computes the decoded video frame.
As explained above, dedicated video hardware 118b

accesses System memory 14 using buS 11 only to retrieve the
Symbol Stream information Stored in System memory buffer
by CPU 112. All Subsequent memory accesses required for
the motion compensation (MC) tasks performed by dedi
cated video hardware 118b are from frame buffer 118a local
to dedicated video hardware 118b. Consequently, the parti
tioning in accordance with the teachings of the current
invention not only reduces the compute load on CPU 112,
but also greatly reduces System memory 14 bandwidth
utilization.

Synchronization between the hardware and software
decode tasks is achieved by means of a data structure
assembled by software and written in system memory 14.
After processing a Video frame, Software executing on CPU
112 prepares a data Structure which Stores information
pertaining to the partially processed Video frame. A pointer
to this data structure is written in a Task Pointer FIFO. The
Task Pointer FIFO, which resides either in dedicated video
hardware 118b or in system memory 14, keeps track of video
frames which have been partially processed by CPU 12 and
which are ready to be decoded by dedicated video hardware
118b. Software executing on CPU 112 then continues pro
cessing the next video frame. Dedicated Video hardware
118b, without any CPU intervention, traverses the Task
Pointer FIFO and retrieves the symbol stream for the par
tially processed video frame. Dedicated video hardware
118b then completes decoding of the partially processed
video frame. When dedicated video hardware 118b com
pletes decoding and displaying the picture, which may be a
frame or a set of fields, it sends an interrupt to CPU 112.
Software executing on CPU 112 uses this interrupt to update
the pending task entries in the Task Pointer FIFO and also
to keep track of the frame last displayed. A more detailed
description of the Software-hardware communications is
described below.
COMMUNICATIONS BETWEEN SOFTWARE AND
DEDICATED VIDEO HARDWARE
AS briefly described earlier, software executing on CPU

112 partially processes the incoming compressed MPEG
Video Stream and writes the partially processed Symbol
stream to system memory 14. Dedicated video hardware
118b then accesses the symbol stream to complete the
decode process. FIG. 6 shows one embodiment of the data
Structures and Software/hardware components required for

15

25

35

40

45

50

55

60

65

6
coordinating communication between dedicated Video hard
ware 118b and software running on CPU 112 to accomplish
MPEG video decode. As shown in the embodiment depicted
in FIG. 6, the main components include Software executing
on CPU 112 called Software Client 140, dedicated video
hardware 118b and a Hardware Abstraction Layer (HAL)
142, which acts as a device driver for dedicated video
hardware 118b, also executing on CPU 112.

Software Client 140 represents the Software executing on
CPU 112 and is responsible for partially decoding the input
MPEG video data stream. As described earlier, Software
Client 140, in one embodiment (shown in FIG. 5), performs
compressed Video bit-stream parsing, and other Video
decode tasks Such as variable length decoding (VLD) and
inverse quantization (IQ), while in an alternate embodiment
it also performs inverse discrete cosine transform (IDCT)
(shown in FIG. 4). After partially processing the current
video frame, Software Client 140 formats the partially
processed data in the form of a symbol stream 144a,b. In one
embodiment, HAL 142 allocates the necessary buffer area
required to Store the Symbol Stream in System memory 14.
The symbol stream is written to the allocated buffer space in
system memory 14 in buffers 114a,b. Software Client 140
also writes control information for display and decode tasks
into a Software Task Definition Packet (STDP). The STDP
is stored in buffers 146a, 146b allocated by HAL 142 in
system memory 14. Dedicated video hardware 118b uses the
Symbol Stream along with the control information Stored in
STDP to complete the decode and display of the MPEG
video frame. In one embodiment, the STDP specifies source
and destination buffer indices, display buffer indices, display
duration and VSYNC polarity for interlaced display devices.
A virtual address pointer to the Symbol stream and the length
of the symbol stream buffer is also written into the STDP.
IDCT and motion vector information is stored in the symbol
stream. It should be noted that other implementations obvi
ous to those skilled in the art are encompassed within the
Scope of this invention.
HAL 142 acts as a device driver for dedicated video

hardware 118b. HAL 142 receives display and decode tasks
scheduled by Software Client 140 and makes them available
to dedicated video hardware 118b for execution. The tasks
performed by HAL 142 include providing a temporary
storage area 148 for Software Client 140, maintaining a
FIFO of tasks and providing page tables for physical address
mapping of symbol stream buffers. HAL 142 also tracks task
completion as Signaled by an interrupt generated by dedi
cated video hardware 118b. Additionally, HAL converts the
STDP stored in system memory 14 into a Hardware Task
Definition Packet (HTDP) in accordance with the specific
hardware configuration of the particular System. In one
embodiment, the conversion from STDP to HTDP is done
during the “release” operation.
HAL 142 utilizes the “acquire” and “release” function

calls to coordinate its activities with Software Client 140.
Upon an “acquire' finction call, HAL 142 allocates Storage
buffer for STDP and returns a pointer (LPDataPtri) 150 to
STDP to Software Client 140. Software Client 140 performs
pre-processing of the compressed MPEG video data Stream
and fills the STDP data packet. Upon completion of the
pre-processing tasks, the “release” function is called. Upon
the “release” function being called, HAL translates the
STDP to a HTDP structure and updates the Task FIFO count.
HAL 142 allocates Storage for and maintains a queue data

Structure called Task FIFO 150. HAL creates Task FIFO 150
during the initialization phase. Unlike the STDP, Task FIFO
150 is a static data structure and in one embodiment is 4KB

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 13 of 24

5,990,958
7

long and Starts on a page boundary. In one embodiment,
Task FIFO 150 created by HAL 142 is at least 8 entries deep.
Each entry of Task FIFO 150 contains a HTDP154 built by
HAL 142. As described earlier, HAL 142 derives HTDP154
from the information supplied in the STDP by Software
Client 140. HAL 142 adds (“pushes”) entries to Task FIFO
150 when Software Client 140 issues a “release' finction
call. HAL 142 removes (“pops”) entries from Task FIFO 150
when dedicated video hardware 118b signals a task comple
tion interrupt. There is a one-to-one correspondence
between the tasks performed by Software Client 140 and the
number of entries in Task FIFO 150. If a one-to-one corre
spondence is not maintained, it is the responsibility of HAL
142 to accurately track the completion of a task programmed
by Software Client 140. The number of entries in Task FIFO
150 reflects the number of tasks issued by Software Client
140 to be completed by dedicated video hardware 118b.
As mentioned above, HAL 142 is responsible for pro

cessing STDPs to generate HTDPs 154 that are entered in
Task FIFO 150. HAL 142 arranges control data in HTDP
154 such that it can be directly loaded into the registers of
dedicated video hardware 118b. HAL 142 also generates
page tables for physical mapping of the Symbol Stream
buffer and writes pointers to page tables in the HTDPs. HAL
142 notifies dedicated video hardware 118b that a new task
is available by writing the index of HTDP 154 in the Task
Pointer FIFO 156 maintained by dedicated video hardware
118b or stored in system memory 14. HAL 142 also deter
mines the appropriate decode Storage Scheme based on the
size of frame buffer 118a (refer to FIG. 2). HAL 142 is also
responsible for determining the appropriate Frame Rate and
Display Rate based on MPEG stream frame rate and display
device, and for Scheduling display tasks, including frame
repetition to allow a smooth display at 2x or 3.x the MPEG
frame rate. HAL 142 also tracks task completion interrupts
from dedicated video hardware 118b and pops the corre
sponding entry from Task FIFO 150.

Task Data Structure is a data structure comprising HTDP
154 and the symbol stream 144a,b. It represents the unit of
information loaded into dedicated video hardware 118b for
each task to be performed. HTDP 154 is hardware imple
mentation dependent and for one embodiment is 4
DWORDS (32 bytes) long. HTDP154 contains information
needed for decode and display tasks, which is loaded into the
registers of dedicated video hardware 118b. As described
earlier, HAL 142 parses information in the STDP and writes
HTDP 154 in Task FIFO 150 during the “release” function
call.
AS described earlier, Symbol Stream 144a,b contains par

tially decoded MPEG video data. Software Client 140 writes
the Symbol Stream buffer as it parses the incoming com
pressed Video data Stream. A pointer to this buffer and the
buffer length are written into the STDP by the Software
Client after an “acquire” function call. HAL 142 creates a
page table for the symbol stream buffer during “release”
function call to provide the physical address mapping. The
base address of this page table is written into HTDP154 by
HAL 142, and loaded by dedicated video hardware 118b
when it processes the task.

Task Pointer FIFO 156 resides in dedicated video hard
ware 118b or in system memory 14. In the embodiment
shown in FIG. 7, Task Pointer FIFO 156 is maintained by
dedicated video hardware 118b. Each valid entry in Task
Pointer FIFO 156 is an index to a task in Task FIFO 150
maintained by HAL 142. In one embodiment, Task Pointer
FIFO 56 is 3-bits wide, and at least eight entries deep. Tasks
handled by dedicated video hardware 118b include Display
only, Decode & Display tasks. This information is stored in
the programming parameters contained in HTDP154. These

15

25

35

40

45

50

55

60

65

8
programming parameters include-decode task type, dis
play task type, display buffer index, frame/field display
duration, etc. If “decode” task is specified, hardware 118b
reads the symbol stream from system memory 14 in bus
mastering mode, interprets the commands, and reconstructs
the decoded frames in local frame buffer 118.a. Dedicated
video hardware 118b indicates the completion of a frame
decode & display by generating a task completion interrupt.
HAL 142 detects this interrupt and uses it to track the frame
currently being displayed and the number of pending tasks.
While dedicated video hardware 118b is processing the

current task, CPU 112 prepares the next task, which is
programmed when a Task FIFO 150 entry is available.
Dedicated video hardware 118b also maintains Status and
Control Registers to allow the user better control over the
Software-hardware communication protocol.
TRANSACTIONS FOR DISPLAY AND DECODE TASKS

FIG. 8a depicts the various steps executed by Software
Client 140 and by HAL 142 to perform a display/decode task
in accordance with one embodiment of the current inven
tion. As shown in FIG. 8a, the first step is the initialization
step represented by block 164. At initialization, HAL 142
creates a specific identification number which indicates that
it is a motion compensation operation. In one embodiment,
this identification number is a code identification of
“MMMC. Software Client 140 tests this field to determine
whether dedicated video hardware 118b is present in com
puter system 100. HAL 142 next allocates a 4KB system
memory buffer for and creates Task FIFO 150. In one
embodiment Task FIFO 150 starts on a 4K boundary. HAL
142 also programs dedicated Video hardware registers with
task related parameterS Such as decode Storage Scheme,
display rate for MPEG video, and interrupt control. The start
address of Task FIFO 150 and the size of each entry in bytes
is written into the Task FIFO Base Address Register in
dedicated video hardware 118b. HAL 142 also invokes
appropriate operating System functions 158 to Set the refresh
rate for the display device. Meanwhile, Software Client 140
writes information related to the decode and display taskS.
This information includes encoded frame rate, format of
inter-block IDCT and motion vector data, and interrupt
control parameters.

After Successful initialization, Software Client 140 issues
an “acquire” request to HAL 142 (represented by block 166
in FIG. 8a). The “acquire” request succeeds if the STDP
FIFO has one or more free entries. If the “acquire” Succeeds,
HAL 142 creates temporary storage buffer (148 in FIG. 6)
for STDP and returns a pointer “LPDataPtr" 152 to this
buffer. HAL 142 also writes the "fifo entries' field to
specify the number of tasks pending in Task FIFO 150. On
a Successful return from the “acquire' function, Software
Client 140 writes the number of tasks to the “task count'
field, in the STDPs in temporary storage buffer 148 pointed
to by pointer “LPDataPtr” 152. Each STDP also has a
pointer to the Virtual Starting address of the Symbol Stream
buffer. In one embodiment, the symbol buffer is initially
allocated by HAL 142, in which case, the pointer to the
symbol stream buffer is written in the STDP

Block 168 in FIG. 8a represents the “software client
release” operation. Software Client 140 calls the “release”
function after coding the next task into the STDP and
preparing the Symbol Stream. After the “release” function is
called, HAL 142 converts the STDP control information into
HTDP154 which is in a Suitable hardware readable format.
HAL 142 also createS page tables for physical address
mapping of the Symbol Stream buffer, using the Virtual
address pointer and the buffer length information in the
STDP HAL 142 writes a pointer to this page table in the
Page Table Pointer register in dedicated video hardware

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 14 of 24

5,990,958
9

118b. HAL 142 then notifies dedicated video hardware 118b
of the availability of a new task by writing the index of the
task into the next available Task Pointer FIFO 156 entry.

Block 170 in FIG. 8a represents the Task Completion
Notification Step. Upon Successful completion of a decode
and display task, dedicated video hardware 118b issues an
interrupt according to the Settings for interrupt control in the
Control Register. Serving as an interrupt handler HAL 142
pops the corresponding entries in Task Header FIFO 150 and
updates the number of entries in Task FIFO 150 to reflect the
correct number of outstanding tasks. This step represents the
Successful completion of a given decode and display task.
Task Handler for Dedicated Video Hardware

FIG. 8b illustrates the sequence of operations performed
by the task handler of hardware 118b. As shown in FIG. 8b,
at step 172 the task handler waits for the current task to
complete and then checks if an executable new task is
available to start on the next VSYNC. A "new task” is
available if Task Pointer FIFO 156 maintained by dedicated
video hardware 118b is non-empty. If a new task is available,
at step 174, dedicated video hardware 118b calculates the
start address of next HTDP, and loads the HTDP. The
following equation is used to calculate the Start address of
the next HTDP:

Next HTDP Start Address=HTDB Base Addr
(Next Task Pointer Value * HTDP Size)

Next, at step 176, dedicated video hardware 118b determines
if the new task is “executable'-a task is executable if the
next VSYNC polarity matches the Task Start VSYNC
Polarity. If the task is executable, the task handler proceeds
with step 180, else at step 178 it waits for the next VSYNC
to Start the task.
At step 180, the task handler starts the display and/or

decode tasks. The task to be executed is Scheduled by
programming dedicated Video hardware 118b registers using
information from the HTDP. If Decode is specified, the
pointer to the Symbol Stream Buffer Page Table is loaded
into the Page Table Pointer Register. The current entry from
the Task Pointer FIFO is popped. At steps 182 and 184, the
task handler waits for the Scheduled tasks to complete, i.e.,
for the number of VSYNCs equal to the (1st field display
duration+2nd field display duration-1). The task handler
then proceeds back to step 172.

Dedicated video hardware 118b repeats display of the last
frame or field, if the display for next time slice is
undefined—either because last decode task did not complete
or because the next task has not yet been programmed by
Software.
SYMBOL STREAMSYNTAX

The Symbol Stream data represents video data that has
been pre-processed by the Software executing on CPU 112
and is ready to be forwarded to dedicated video hardware
118b for further decoding. The syntax for one embodiment
of the symbol stream is described below (for the described
embodiment each data element is a 16-bit word):
Symbol Stream Ready for Motion Compensation & Block
Reconstruction in Dedicated Video Hardware
(corresponding to one embodiment as shown in FIG. 4):

NOOP:
PICTURE START:
if(idct type=packed)limit=22;
if(idct type=8-bit signed)limit=32;
if(idct type=16-bit signed)limit=64;
while (MBLK TYPE) (; //macroblock header and type info

FRMREF PTR;

// optional no-op.
// picture start code

ffsrc pointer info

1O

15

25

35

40

45

50

55

60

65

-continued

if(aMV){ ff if A refor Concealment Vector, A motion vector...
if(abs addr){

A YBLK ADDR; f/Luminance block address

else {
A HOFF:
A VOFF:

Afif a 2nd A motion vector...

else {
A HOFF 2ND;
A VOFF 2ND;

if(bMV){ //if a backward (B) motion vector.
if(abs addr){

B YBLK ADDR; f/Luminance block address

else {
B HOFF:
B VOFF:

Afif a 2nd B motion vector...

else {
B HOFF 2ND;
B VOFF 2ND;

if((-intra)&&(pat)) {
PATTERN; //macroblock pattern

if(intra){ //intra block IDCT data always 8-bit unsigned
for(i=0;i&6;i++){

for(p=0;p-32:p++){
INTRA BLKDATA pl;

fiend-of-block reached

//end of intra macroblock data
else {

if(pat){
f/number of 1 bits in PATTERN FOR Y blocks.
n=one count(PATTERN3:OI);
for(i=0;i&n;i++) { //block info only for non-zero blocks.

for(p=0;p<limit;p--+){
INTER BLKDATA pl;

fiend-of-block reached

fiend of Y block data

if((aMV)&&(2nd MV)&&(abs addr)) {
Afif a 2nd a motion vector...
A CBLK ADDR 2ND;

fif A motion vector...
fiChrominance block address

icosive da)
B CBLK ADDR;

if((bMV)&&(2nd MV)&&(abs addr)) {
Afif a 2nd B motion vector...
B CBLK ADDR 2ND;

If B motion vector...

if(pat){
n=one count(PATTERNIS:4I);
f/number of 1 bits in PATTERN for Cb, Cr blocks.
for(i=0;i&n;i++){

for(p=0;p<limit;p--+){
INTER BLKDATA pl;

fiend-of-block reached
} //end of block data

}//End of chrominance data

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 15 of 24

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 16 of 24

5,990,958
13 14

-continued

if((bMV)&&(2nd MV)&&(abs addr)) { //if a 2nd B motion vector.
B CBLK ADDR 2ND;

if((bMV)&&(2nd MV)&&(abs addr)) { //if a 2nd B motion vector.
B CBLK ADDR 2ND;

if(pat){
f/number of 1 bits in PATTERN for Cb, Cr blocks.

n=one count(PATTERNIS:4I);
for(i=0;i&n;i++) { //block info only for non-zero blocks.

while(leoblk){
zlen:coeff:

eoblk; fiend-of-block reached

ffend of non-intra chrominance data
ffend of non-intra macroblock data

//end of all macroblocks
PICTURE END;

Table 1 provides a description for the various symbols embodiment of the invention. A 'W' in Table 2 indicates a
used in the above Symbol Stream format according to one 16-bit word.

TABLE 1.

Symbol Description Table

SYMBOL B15:11 SIZE DESCRIPTION

PICTURE START Ox15 1 w picture start code:
b2: 1 = alternate zigzag scan

b1-0; 1 = I, 2 = P, 3 = B frame
MBLK TYPE Ox17 1 w Macroblock type word:

dp b9: 1 = dual-prime, O = normal
16x8 b8: 1 = 16x8 Prediction, O = normal (Field Decode only)
fiddict b7: DCT Type: O = Frame, 1 = Field.
fldpred b6: Prediction Type: O = Frame, 1 = Field
fiddec b5: Decode Type: O = Frame, 1 = Field
aMV b3: 1 = fwd (A) refused.
bMV b2: 1 = bwd (B) refused.
pat b1: O = no IDCT block data, 1 = block presence specified by PATTERN
intra word.

b0: 1 = intra, all 6 blocks present, O = inter, block presence specified by
pat bit.

FRMREF PTR data 1 w Reference Frame Pointers, word:
b15:12: 'A refptr #2
b11:8): “B” refptr #2
b7:4: "A refptr #1
b|3:0: “B” refptr #1

In each 4-bit pointer, b3 indicates top/bottom field; and b2:0 select one
of frame stores FO-F3 to be used as reference

A HOFFA HOFF 2ND data 1 w forward or A prediction frame, horizontal motion vector.
A VOFFA VOFF 2ND data 1 w forward or A prediction frame, vertical motion vector.
B HOFFB HOFF 2ND data 1 w backward or B prediction frame, horizontal motion vector.
B VOFFB VOFF 2ND data 1 w backward or B prediction frame, vertical motion vector.

All are in half-pixel units, 12-bit signed value relative to macroblock
upper-left corner. If Field-Decode, the vertical motion vectors are in

field-line units, otherwise in frame-line units.
A YBLK ADDR, data 2 w 30-bit luminance block address offset, half-pixel information

A YBLK ADDR 2ND
B CBLK ADDR, data 2 w 30-bit chrominance block address offset, half-pixel information

B YBLK ADDR 2ND
b29:0 = block address offset, b30 = horizontal half-pixel, b31 = vertical

half-pixel
PATTERN data 1 w macroblock block pattern, one bit per block, indicating existence of

IDCT coeffs for each block.
b5: 1 = coeffs exist for Cr
b4: 1 = coeffs exist for Cb
b3: 1 = coeffs exist for Y3
b2: 1 = coeffs exist for Y2
b1: 1 = coeffs exist for Y1
bO: 1 = coeffs exist for YO

INTRA BLKDATAp data 1 w IDCT output of intra block, word:
b15-8: element 2p + 1.8-bit unsigned.

b7-0: element 2p,8-bit unsigned.

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 17 of 24

5,990,958
16

DESCRIPTION

IDCT output of inner block, format determined by idct type:
idct type = 8-bit signed -> b15-8:element 2p + 1.b7-0:element 2p

idct type = 16-bit signed -> b15-0:element p
idct type = packed 9-bit signed -> b26-18:element

3p + 1,b17-9:element
INVERSE Quantizer Output

b15-4: 2's complement id coeff, IQCOEFF
b3-0: Zero length ZLEN

EOBLK (=O)
Refer to NOTE1 below

end-of-picture flag. Indicates end of task. Must appear at the end of
the symbol stream.

NOOP is ignored by the decoder. The lower 12 bits of this word may
be used for diagnostics or any other purpose. One or more NOOP
codes are allowed to appear only prior to the picture start code.

TABLE 1-continued

Symbol Description Table

SYMBOL B15:11 SIZE

INTER BLKDATAp data 1 w
1 w
2 w

ZLEN:COEFF data 1 w

PICTURE END 0x1A 1 w

NOOP Ox1F 1 w

Ox1D
Ox1E

To facilitate packing quantized coefficients in a 16-bit
word, Zero run length is encoded with 4 bits. Since the
MPEG2 stream can specify run lengths of up to 63, this
approach requires run lengths greater than 15 Zeros to be
Split into multiple words, and Sometimes results in coeffi
cient taking a value of Zero. For example, a Sequence of 35
Os followed by a coefficient 27 will be encoded as: (15:0),
(15:0), (5:27); where the first number in each pair is ZLEN,
and the second number is COEFF. All bits that are unspeci
fied or marked as "reserved should be read and written as
*0. ID CT TYPE indicates three different ways of format
ting the IDCT data. These are 16 bit signed, 9 bit signed
packed, and data converted to 8 bit signed packed.
SYNCHRONIZATION OF AUDIO AND VIDEO DECOD
ING TASKS

Software executing in CPU 112 is responsible for main
taining Synchronization between the Video and audio com
ponents of the MPEG video data stream. If video is running
ahead of audio, the Software delays issuing tasks to dedi
cated video hardware 118b; if video lags audio, software
SkipS B-frame decode.

Dedicated video hardware 118b is restricted to displaying
only those frames that have been completely decoded. This
decode-before-display Scheme ensures that interruptions
during data transfer on System buS 11 do not result in
corrupted images being displayed on the Screen (tearing).

The decode-before-display constraint requires four frame
stores in memory 118a, so that decode of one B-frame may
proceed while the previous B-frame is being displayed to
Screen. Normally this requires 2.5 Megabytes of Storage for
YUV 4:2:0 PAL resolution pictures (576 lines). However,
optimizations in accordance with the teachings of the current
invention enable MPEG2 video decompression with only 2
Megabytes of RAM. This is accomplished by storing two
reference frames (I/P) and three B-fields in frame buffer
118a, as described below. In accordance with the teachings
of the current invention NTSC resolution pictures (480
lines) can be fully stored by dedicated video hardware 118b
with 2 Megabytes of RAM. This results in some loss of
resolution or windowing for PAL pictures due to the physical
memory limitation but its effect on Video picture quality is
minimal.
FRAME BUFFER DATA ORGANIZATION
AS mentioned earlier, the current invention is capable of

both MPEG 1 and MPEG 2 video decoding. In accordance
with one embodiment of this invention, MPEG2 video
decode is accomplished using 2 Megabytes of RAM, instead
of 2.5 Megabytes required by conventional techniques, by

25

35

40

45

50

55

60

65

reserved
reserved

innovative utilization of available memory Space. This Sec
tion discusses data organization in frame buffer 118a for
NTSC & PAL resolution pictures, with 2 MB or less.

Ideally, the decode-before-display Scheme requires at
least four frame stores in frame buffer 118a. Storing four full
frames requires approximately 2.5 Megabytes of RAM for
PAL resolution pictures, and approximately 2 Megabytes of
RAM for NTSC resolution pictures. An additional 53 Kilo
bytes of Storage is needed to Support the Sub-picture feature
described in the industry wide DVD specification. Table 2
and Table 3 describe storage requirements for NTSC & PAL
resolution pictures, respectively, and the data organization in
Frame Buffer 118a for four frame Stores is shown in FIG. 9.

TABLE 2

Four Full Frame Stores - NTSC Pictures

FO, F1, F2, F3 Four frames for NTSC 4 x 720 x 480 x 1.5

Total: 2073600 Bytes (23K less than 2 MB)

TABLE 3

Four Full Frame Stores - PAL Pictures

FO, F1, F2, F3 Four frames for PAL 4 x 720 x 576 x 1.5

Total: 2488320 Bytes

If frame buffer 118a cannot accommodate all four full
frame stores, MPEG2 decode is performed using two ref
erence (I/P) frames, and three B picture fields, i.e., 3.5 Frame
Stores, in frame buffer 118a. Of the three B-fields, one is
allocated for Display, while the other two may be allocated
for Decode, thus ensuring that no “tearing of pictures
occurs. This is illustrated in Table 4, Table 5, and FIG. 10.

TABLE 4

3.5 Frame Stores - PAL Pictures

Reference IFP Interlaced Frames 2 x 720 x 576 x 1.5
3 B-fields 3 x 720 x 288 x 1.5

Total: 2177280 Bytes (>2 MB)

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 18 of 24

5,990,958

TABLE 5

3.5 Frame Stores - NTSC Pictures

FO, F1 Reference IFP Interlaced Frames 2 x 720 x 480 x 1.5
HFO, HF1, HF2 3 B-fields 3 x 720 x 240 x 1.5

Total: 1814400 Bytes

For PAL format, the memory required to store 3.5 frame
buffers is greater than the 2 MByte capacity of frame buffer
118.a. Since many graphics cards ship with only 2 MB of
RAM, dedicated video hardware 118b provides storage
schemes to decode PAL pictures with only 2 MB of RAM as
follows:

Scheme 1) Storing B-fields with Horizontal Half Resolution
(HHR) for chrominance components. Cb, Cr components
are Sub-Sampled by a factor of 2 in the horizontal direction,
as shown in FIG. 11 and Table 6 (below).

TABLE 6

3.5 Frame Stores - PAL Pictures; HHR B-fields

FO, F1 Reference I/P Interlaced Frames 2 x 720 x 576 x 1.5
HFO, HF1, 3 B-fields, HHR Chrominance 3 x 720 x 288 x 1.25

HF2

Total: 2021760 Bytes (75392 bytes spare)

Scheme 2) As illustrated in FIG. 12 and Table 7 (below),
store B-field Windows, each window having a resolution of
720x240, i.e., drop 48 lines per field. No Sub-sampling of
chrominance data is needed.

TABLE 7

3.5 Frame Stores - PAL Pictures: Windowed B-fields

Reference IFP Interlaced Frames 2 x 720 x 576 x 1.5
3 720x240 Windowed B-fields 3 x 720 x 240 x 1.5

Total: 2021760 Bytes (75392 bytes spare)

In all of the above embodiments, the reference frames
(I/P) are always stored at their full resolution (720x576 for
PAL and 720x480 for NTSC) in an interlaced format.
Furthermore, in all the above embodiments, a constant Stride
(separation between vertically adjacent pixels) is main
tained. Schemes 1 and 2 discussed above need to be used
with a read-before-write (rbw) lock mechanism, because
while decoding Successive B-frames, the same region of
memory is used simultaneously for display read of the
previous frame, and decode write of the current frame. For
example, with HHR B-fields (Scheme 1), the first B-frame,
B1, is written into HF0 (top field), HF1 (bottom field). The
following B-frame, B2, is written to HF0 (bottom), HF2
(top). The decode write of B2-bottom into HF0 should lag
the display read of B1-top from HF0 (Scheme 2).

Table 8 shows how the software selects the appropriate
storage scheme based on the amount of RAM available on
the graphics card, resolution (NTSC/PAL), and other fea
tures to be supported, such as DVD sub-picture.

5

1O

15

25

40

45

50

55

60

65

18

TABLE 8

Decode Storage Scheme Selection Table

DVD
RAM Sub

on VGA Res- picture FB Data Frame Stores in
Card olution Support Organization FB

>2.5 MB NTSC? Yes 4 Frame Stores FO, F1, F2, F3
PAL

2 MB NTSC No 4 Frame Stores FO, F1, F2, F3
2 MB NTSC Yes 3.5 Frame Stores FO, F1. HFO,

HF1, HF2
2 MB PAL Yes 3.5 Frame Stores - FO, F1, HFO,

Windowed or HHR HF1, HF2

DISPLAYDECODE SCHEDULING
This Section discusses how decode and display tasks are

Scheduled in accordance with the teachings of this invention.
This information is specified in the HTDP154 which makes
up part of the Task Data Structure.
HTDP Summary

Table 9 Summarizes the contents of HTDP 154.

TABLE 9

HTDP content summary

TaskType Display only, or Decode-Display.
Sync Start task on Top Sync, or Bottom Sync.
DecodeTaskCount 1 for frame coded, 2 for field coded pictures.
DecodeBuffIndex Index of buffer in which the decoded picture is to

be written.
PictureType 1 -> I, 2 -> P. 3 -> B pictures
DisplayTaskType Options include display top field first, display

bottom field first, or display frame.
DisplayBuffIndex Index of buffer which is to be displayed.
DisplayPeriod Number of VSYNC period for which the picture

is to be displayed, this is used to repeat fields to
match decode and display rates.

In case of 3.5 buffer mode, the HTDP also specifies
“read-before-write,” or “write-before-read” locks if appli
cable.
To ensure consistently good Video quality, the VGA

refresh rates are, in one embodiment, constrained to be an
integer multiple of the MPEG2 frame rate. Table 10 shows
the display rate Selection table.

TABLE 10

Display Rate Selection Table

MPEG Frame Rate
(frames per second) Output Required Display Rate (Hz)

24 PC-VGA 72
24 NTSC TV 60
24 PALTV 50
25 PC-VGA 75
25 PALTV 50
3O PC-VGA 60
3O NTSC TV 60

Note: In the embodiment of Table 9, the display rate is
always 2x or 3x the MPEG frame rate for PC-VGA display;
60 Hz for NTSC TV display; & 50 Hz for PAL TV display.
Constraints
The following constraints are imposed on the decoding

process to ensure quality of Video playback and to accomo
date the decoding process in 2 megabytes or memory:

1) Decode of a frame must complete before display of that
frame can begin. This ensures that the “tearing” of the
Video frame does not occur.

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 19 of 24

5,990,958
19

2) If top and bottom fields are displayed for unequal
duration, the Second field should be displayed longer.
For example, if top and bottom fields are to be dis
played for a total 3 VSYNCs, and the top field goes
first, then display of top field should be scheduled for
1 VSYNC & that of bottom field for 2 VSYNCS. This
ensures that memory is freed up faster for next decode
task, while decoding back-to-back B-frames, using 3.5
frame stores in Frame Buffer.

3) Tasks are Scheduled Synchronously to display, i.e., a
task is always started on a VSYNC. This helps prevent
“tearing artifacts during video display.

4) A time slice in the following discussion refers to one
refresh period, i.e., the time between 2 Successive
VSYNCS.

5) If display device or hardware cannot Support the desire
refresh rate of 72 or 75 Hz, Software will step down the
display rate to 60 Hz or 50 Hz, and if necessary, repeats
frames, to achieve a 2x display rate. For example,
play-back of 25 fps PAL material on 60 Hz display is
accomplished by repeating 5 frames out of 25 frames
every Second. Similarly, display of 24 fps material on
a 60 Hz, display is done by repeating 6 frames out of 24
every Second, and on a 50 Hz, display, by repeating 1
frame out of 24 every Second.

Dedicated Video Hardware Tasks
Software programs the following types of tasks to be

performed by dedicated video hardware 118b.
1) Display Only Task: Time allocation field(s) in the
HTDP specify the number of time slices that the frame
or top & bottom fields should be displayed. Next task
is Started at the end of Specified number of display time
Slices.

2) Decode & Display Task: Here a new frame or field is
decoded into the specified buffers, while a previously
decoded frame or filed is displayed. Time allocation
field(s) in the HTDP specify the number of time slices
that the frame or top & bottom fields should be dis
played. Next task is started upon the completion of both
decode & display tasks.

Decode Task Types
Decode tasks can be one of the following types depending

on available System memory:
1) Decode Frame
2) Decode Two Fields

Ot

(FOt)
Display Task

Decode Storage Scheme
Decode tasks allocate Frame Buffer memory in one of the

following units:

1O

15

25

35

40

45

55

20
1) 4 Frames
2) 3.5 Frames
3) 3.5 Frames-HHR B-fields
4) 3.5 Frames-Windowed B-fields

Display Task Types
Display tasks can be one of
1) Display Progressive Frame
2) Display Frame as 2 Fields

Task Scheduling
Depending on the frame Store organruation, interlaced/

progressive Video frame, and the display/decode rate, there
are eight task Scheduling Schemes as Summarized in Table
11:

TABLE 11

Scheduling Task Schemes

Display Frame Type Display?
Frame Store Frame/Field Decode Rate

Example 1 3.5 Frame Store Interlaced (Field) 2X
Example 2 3.5 Frame Store Interlaced (Field) 3X
Example 3 4 Frame Store Interlaced (Field) 2X
Example 4 4 Frame Store Interlaced (Field) 3X
Example 5 4 Frame Store Progressive (Frame) 2X
Example 6 4 Frame Store Progressive (Frame) 3X

The following examples illustrate decode & display of a
group of pictures, for different display rate and Storage
Schemes. The example described below corresponds to
following decode Sequence
IOP3 B1 B2 P6 B4 B5
Where I, P, and B represent the Intra, Predicted and

Bi-directional Predicted picture types respectively. The
numeric Suffix is the frame number Starting at 0.
2x and 3x indicate the ratio of the display rate to the

encoded frame rate.
F0, F1, F2, F3 are the frame stores in the frame buffer.

Suffix *t and b correspond to “top” and “bottom fields
respectively. HFO, HF1 and HF2 are half-frame stores in the
frame buffer.

EXAMPLE 1.

FIELD DISPL (2x Display rate)–3.5 Framne
Stores

B2->HF2(t).HF0(b) P6->FO B4

Ob B1t B1b B2t B2bs P3t P3b
(FOb) (HFO) (HF1) (HFO) (HF2) (F1) (F1)

EXAMPLE 2

FIELD DISPL (3x Display rate)–3.5 Frame Stores

65

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 20 of 24

5,990,958
21

EXAMPLE 3

FIELD DISPL (2x Display rate)- 4 Frame Stores

22
the embodiment depicted in FIG. 13, dedicated video hard
ware 118b performs the tasks of motion compensation (MC)
and block reconstruction (BR) (similar to the decode task

IO->FO P3->F1 B1->F2 B2->F3 P3->FO B4->F2

Display Task IOt (FOt) IOb (FOb) B1t (F2t) B1b (F2b) B2t (F3) B2b (F3b) P3t (P1 t) P3b (F1b)

1O

EXAMPLE 4 partitioning shown in FIG. 4). FIG. 14 depicts the data flow
diagram for MPEG decode task performed by dedicated

FIELD DISPL (3x Display Rate)-4 Frame Stores video hardware 118b depicted in FIG. 13.

IO->FO P3->F1 B1->F2 B2->F3 P6->FO B4->F2

Display FOt FOb FOb F2t F2b F2b F3t F3b F3b F1t F1b F1b
Task (IOt) (B1t) (B2t) (P3t)

EXAMPLE 5 As shown in FIG. 13, the dedicated video hardware
embedded in the graphics controller is called Video Recon

(Progressive) FRAME DISPL (2x Display rate)–4 struction Processor (VRP) 190. VRP 190 comprises on-chip
Frame Stores memory buffer (IMEM) 192 to store data related to the

IO->FO P3->F1 B1->F2 B2->F3 P3->FO B4->F2

Display Task IO (FO) IO (FO) B1 (F2) B1 (F2) B2 (F3) B2 (F3) P3 (F1) P3 (F1)

EXAMPLE 6 IDCT operation, memory buffer (RMEM) 194 to store data
related to the motion compensation (MC) operation, half

(Progressive) FRAME DISP (3x Display rate)–4 pixel filter (HPF) 196 to perform half pixel interpolation,
Frame Stores and block resonstruction block 198 to perform block recon

IO->FO P3->F1 B1->F2 B2->F3 P6->FO B4->F2

Display Task FO FO FO F2 F2 F2 F3 F3 F3 F1 F1 F1
(IO) (B1) (B2) (P3)

Example of a Task: 45 struction computation of the video frames. VRP 190 inter
Decode of a B Frame for 3.5 Buffer Storage, and Field

Display
Decode Storage Scheme: 3.5 Buffer
Decode BUF 1: HFO
Decode BUF2: HF1
Display Type: Display as Fields
Display Buffer id: FO
First Display: Bottom Field
Display Duration for the first field: 1
Display Duratio for the second field: 2
In the case of 3.5 Buffer organization, while decoding a B
Frame, Display and Decode Buffer may overlap. In this case
hardware lock of either display-before-decode or decode
before-display memory read/write lock is required. This
information is also provided as part of the task.
ALTERNATE EMBODIMENTS OF DEDICATED VIDEO
HARDWARE
The following section describes alternate embodiments of

dedicated video hardware 118b and data flows for perform
ing motion compensation and the block reconstruction taskS.
FIG. 13 depicts an embodiment in accordance with the
teachings of the current invention in which dedicated Video
hardware 118b is embedded in graphics controller 118. In

faces with command sequencer 200 and memory controller
202 which controls access to the frame buffer of graphics
controller 118.

Task sequencer 204 reads the Task Fifo and fetches the
HTDP. Task sequencer 204 uses the HTDP values to pro
gram control registers in VRP 190. This includes program
ming one register with the Start pointer of the Symbol Stream
buffer in the system memory 14.

Task execution begins on assertion of the VSYNC signal.
PCI bus mastering logic 206 starts reading symbol fifo from
the system memory into the onchip symbol fifo. Command
Sequencer 200 interprets the fixed length command and
Starts parsing the Symbols according to the Syntax described
previously. Command Sequencer 200 acts as a master and
sends commands and data to memory controller 202, VRP
190 for each macroblock at a time. Afer all macroblocks in
a given frame have been processed, task Sequencer 204
generates an interrupt to indicate the completion of the task
and begins processing the next task.
VRP 190 operates in a “slave” mode to command

sequencer 200 which acts as a “master-command
sequencer 200 loads a command into VRP 190, which is
then executed by VRP 190. After executing the command,
VRP 190 waits for another command to be loaded by

50

55

60

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 21 of 24

5,990,958
23

command Sequencer 200. To process a macroblock, com
mand Sequencer 200 issues three commands-one com
mand for the four luminance (Y) blocks, and one command
each for the two chrominance blocks (Cb and Cr). VRP 190
fetches the reference macroblocks from local memory 194,
does half pixel interpolation (if necessary) using HPF 196
and combines the reference macroblocks to form a predic
tion macroblock using BR. VRP 190 also extracts IDCT
values from the Symbol Stream and the extracted values in
onchip memory buffer IMEM 192. VRP 190 then combines
the results of these two operations to generate the recon
structed macroblock using BR, which is written to the
destination frame buffer using memory controller 202.

For example, consider the case when VRP 190 is pro
cessing a luminance(Y) block that has IDCT values and also
has one forward (A-Ref) and one backward(B-Ref) motion
vector. Command sequencer 200 extracts forward and back
ward reference addresses from the Symbol Stream and writes
then to appropriate registers in memory controller 202. In an
alternate embodiment, command Sequencer 200 also com
putes the destination address of the Y block. Command
sequencer 200 then loads a command packet into VRP 190,
which instructs VRP 190 how to process the block. Next,
command sequencer 200 extracts IDCT data and loads it into
IMEM192. Concurrently, the motion compensation engine
starts fetching the forward reference block into RMEM194.
Half pixel interpolation, if needed, is done “on the fly' by
HPF 196, as the reference block is being fetched from the
memory. Once the forward reference block has been fetched,
VRP 190 starts fetching the backward reference block from
memory. At this time, VRP 190 averages the forward and
backward reference pixel values “on the fly” as the back
ward reference data is being read from the memory. At the
end of the operation, the prediction block is stored in RMEM
194 (as shown in FIG. 14).
At this time, the IDCT engine and the motion compen

sation engine need to Synchronize, in the Sense that whoever
gets done earlier, has to wait for the other to finish. FIG. 15
depicts the Situation where the motion compensation task
finishes before the IDCT task and thus has to wait for the
IDCT values to be fully loaded into IMEM 192. Finally,
VRP 190 combines the result of the IDCT and motion
compensation tasks to reconstruct the decoded Y block on
the fly using BR and sent to memory controller 202, which
is then written back to RMEM 194. For a “Y” block, the
IDCT engine extracts up to four 8x8 IDCT values for each
of the four luminance blocks. The number of “Y” 8x8 IDCT
blockS present within a macroblock depends on the pattern
symbol. For the 8x8 “Y” blocks which are not present in the
symbol stream, the IDCT engine writes zeros as IDCT
values. FIG. shows the case when the IDCT task finishes
before the motion compensation task.

FIG. 17 depicts the data flow diagram for the alternate
embodiment of dedicated video hardware 118b. As illus
trated in FIG. 17, IDCT values are combined first with the
forward (A-REF) reference block. The resulting data is then
averaged with backward (B-REF) block. This implementa
tion helps save IMEM.

The invention now being fully described, it will be
apparent to one of ordinary skill in the art that many changes
and modifications can be made thereto without departing
from the Spirit or Scope of the appended claims. All publi
cations and patent applications mentioned in this specifica
tion are herein incorporated by reference to the same extent
as if each individual publication or patent application was
Specifically and individually indicated to be incorporated by
reference.
What is claimed:
1. A method to decode an encoded MPEG video data

Stream, Said method comprising the Steps of:
partitioning said decode of said encoded MPEG video

data Stream into memory-compute intensive tasks

15

25

35

40

45

50

55

60

65

24
which require extensive memory and computational
resources and non memory-compute intensive tasks
which do not require extensive memory or computa
tional resources,

performing Said non memory-compute intensive tasks
through Software modules executing on a processor to
produce preprocessed Symbol Stream datastructure for
each Video frame, comprising the Steps of:
parsing Said encoded MPEG video data Stream using

variable length decoding to produce parsed Video
data Stream;

performing inverse quantization on Said parsed Video
data Stream to produce Said quantized Video data
Stream,

formatting Said quantized Video data Stream as Said
preprocessed Symbol Stream datastructure; and

Writing Said preprocessed Symbol Stream datastructure
to said memory buffer;

Storing Said preprocessed symbol Stream data Structure in
a memory buffer;

performing Said memory-compute intensive tasks in dedi
cated Video hardware to produce a decoded Video
frame;

Synchronizing Said non memory-compute intensive tasks
performed through Said Software modules executed by
Said processor and Said memory-compute intensive
tasks performed by Said dedicated Video hardware, and

displaying Said decoded Video frame on a display device.
2. A method to decode an encoded MPEG video data

Stream, Said method comprising the Steps of:
portioning said decode of said encoded MPEG video data

Stream into memocompute intensive tasks which
require extensive memory and computational resources
and non memory-compute intensive tasks which do not
require extensive memory or computational resources,

performing Said non memory-compute intensive tasks
through Software modules executing on a processor to
produce preprocessed Symbol Stream datastructure for
each Video frame, comprising the Steps of:
parsing Said encoded MPEG video data Stream using

variable length decoding to produce parsed Video
data Stream;

performing inverse quantization on Said parsed Video
data Stream to produce Said quantized Video data
Stream,

performing inverse discrete cosine transformation on
Said quantized Video data Stream to produce cosine
transformed Video data Stream;

formatting Said cosine transformed Video data Stream as
Said preprocessed Symbol Stream datastructure; and

Writing Said preprocessed Symbol Stream datastructure
to said memory buffer;

Storing Said preprocessed symbol Stream data Structure in
a memory buffer;

performing Said memory-compute intensive tasks in dedi
cated Video hardware to produce a decoded Video
frame;

Synchronizing Said non memory-compute intensive tasks
performed through Said Software modules executed by
Said processor and Said memory-compute intensive
tasks performed by Said dedicated Video hardware, and

displaying Said decoded Video frame on a display device.
3. The method of claims 1 or 2, wherein said step of

performing Said memory-compute intensive tasks in Said
dedicated Video hardware to produce Said decoded Video
frame comprises the Steps of

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 22 of 24

5,990,958
25

accessing Said preprocessed symbol Stream datastructure
stored in said memory buffer;

performing motion compensation operation on Said pre
processed Symbol Stream datastructure to produce com
pensated Video data Stream; and

performing block reconstruction operation on Said com
pensated Video data Stream to produce Said decoded
video frame.

4. The method of claims 1 or 2, wherein said step of
performing Said memory-compute intensive tasks in Said
dedicated Video hardware to produce Said decoded Video
frame comprises the Steps of:

accessing Said preprocessed symbol Stream datastructure
stored in said memory buffer;

performing inverse discrete cosine transformation opera
tion on Said preprocessed Symbol Stream datastructure
to produce cosine transformed Video data Stream;

performing motion compensation operation on Said
cosine transformed Video data Stream to produce com
pensated Video data Stream; and

performing block reconstruction operation on Said com
pensated Video data Stream to produce Said decoded
video frame.

5. The method of claims 1 or 2, wherein said step of
Synchronizing Said non-memory intensive tasks performed
through Said Software modules executed by Said processor
and Said memory-compute intensive tasks performed by Said
dedicated Video hardware comprises the Steps of:

allocating Said memory buffer to Store Said preprocessed
Symbol Stream datastructure;

maintaining a task pointer queue of Software task control
datastructures, each one of Said Software task control
datastructures Storing control information correspond
ing to each said non memory-compute intensive task
processed by Said Software modules which is ready to
be Scheduled as Said memory-compute intensive task to
be executed by Said dedicated Video hardware;

maintaining a count of completed Said non memory
compute intensive tasks,

converting Said Software control datastructures to hard
ware task control datastructures, Said hardware task
control datastructures Storing information correspond
ing to Said memory-compute intensive task to be
executed by Said dedicated Video hardware;

maintaining a task FIFO queue of Said hardware task
control datastructures in Said dedicated Video hardware,
each of Said hardware task control datastructure in Said
task FIFO queue Storing information regarding Said
memory-compute intensive task to be executed by Said
dedicated video hardware;

issuing an interrupt to Signal completion of Said memory
compute intensive task by Said dedicated Video hard
ware; and

Said Software modules popping Said hardware task control
datastructure from Said task FIFO queue on receiving
Said interrupt, Said popped hardware task control data
Structure corresponding to Said memory-compute
intensive task completed by Said dedicated Video hard
WC.

6. An apparatus for decoding an encoded MPEG video
data Stream by partitioning Said decoding into non memory
compute intensive tasks and memory-compute intensive
tasks, Said apparatus comprising:

a bus interace;
a processor coupled to Said buS interface, Said processor

configured to execute one or more Software modules of
Said plurality of Software modules Stored in Said System
memory to:

1O

15

25

35

40

45

50

55

60

65

26
parse said encoded MPEG video stream using variable

length decoding to produce parsed Video data Stream;
perform inverse quantization on Said parsed Video data

Stream to produce Said quantized Video data Stream;
format Said quantized video data Stream as Said pre

processed Symbol Stream datastructure, and
Store Said preprocessed Symbol Stream datastructure in

Said System memory;
a System memory coupled to Said buS interface, Said

System memory configured to Store a plurality of Soft
ware modules which can he executed on Said processor,
one or more Software modules of Said plurality of
Software modules configured to perform Said non
memory-compute intensive tasks to produce prepro
cessed Symbol Stream datastructure;

dedicated Video hardware coupled to Said bus interface,
Said dedicated Video hardware configured to execute
Said memory-compute intensive tasks to produce
decoded Video data to be display on a display device;
and

dedicated memory coupled to Said dedicated Video hard
WC.

7. An apparatus for decoding an encoded MPEG video
data Stream by partitioning Said decoding into non memory
compute intensive tasks and memory-compute intensive
tasks, Said apparatus comprising:

a bus interface;
a processor coupled to Said buS interface, Said processor

configured to execute one or more Software modules of
Said plurality of Software modules Stored in Said System
memory to:
parse said encoded MPEG video stream using variable

length decoding to produce parsed video data stream;
perform inverse quantization on Said parsed Video data

Stream to produce Said quantized Video data Stream;
perform inverse discrete cosine transformation on Said

quantized Video data Stream to produce cosine trans
formed Video data Stream;

format Said cosine transformed Video data Stream as
Said preprocessed Symbol Stream datastructure; and

Store Said preprocessed Symbol Stream datastructure in
Said System memory;

a System memory coupled to Said buS interface, Said
System memory configured to Store a plurality of Soft
ware modules which can be executed on Said processor,
one or more Software modules of Said plurality of
Software modules configured to perform Said non
memory-compute intensive tasks to produce prepro
cessed Symbol Stream datastructure;

dedicated Video hardware coupled to Said bus interface,
Said dedicated Video hardware configured to execute
Said memory-compute intensive tasks to produce
decoded Video data to be display on a display device;
and

dedicated memory coupled to Said dedicated Video hard
WC.

8. The apparatus of claims 6 or 7, wherein said dedicated
Video hardware is further configured to:

read Said preprocessed Symbol Stream datastructure Stored
in Said System memory;

perform motion compensation on Said preprocessed Sym
bol Stream data to produce compensated Video data
Stream; and

perform block reconstruction operation on Said compen
Sated Video data Stream to produce Said decoded Video
data.

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 23 of 24

5,990,958
27 28

9. The apparatus of claims 6 or 7, wherein said dedicated maintain a count of completed Said non memory
Video hardware is further configured to: compute intensive tasks,

read Said preprocessed Symbol Stream datastructure Stored
in Said System memory;

perform inverse discrete cosine transformation operation
convert Said Software control datastructures to hard

ware task control datastructures, Said hardware task
on Said preprocessed symbol Stream datastructure to control datastructures to Store information corre
produce cosine transformed Video data Stream; sponding to Said memory-compute intensive task to

perform motion compensation on Said cosine transformed be executed by Said dedicated Video hardware, and
Video data Stream to produce compensated Video data Said dedicated Video hardware is further configured to:
Stream; and

perform block reconstruction operation on Said compen
Sated Video data Stream to produce Said decoded Video

1O maintain a task FIFO queue of said hardware task
control datastructures in Said dedicated memory,

data. each of Said hardware task control data packet in Said
10. The apparatus of claims 6 or 7, wherein task FIFO queue to Store information regarding Said
one or more Software modules of Said plurality of Soft- memory-compute intensive task to be executed by

ware modules Stored in Said System memory are further 15 Said dedicated Video hardware; and
configured to: issue an interrupt to Signal completion of Said memory
allocate a memory buffer for Said preprocessed Symbol compute intensive task by Said dedicated Video

Stream datastructure in Said System memory;
maintain a task pointer queue of Software task control

datastructures, each one of Said Software task control 20 task FIFO queue on receiving said interrupt. Said
datastructures Storing control information corre- C 9. pl,
sponding to each Said non memory-compute inten- popped hardware task control datastructure corre
Sive task processed by Said Software module which is sponding to Said memory-compute intensive task
ready to be Scheduled as Said memory-compute completed by Said dedicated Video hardware.
intensive task to be executed by Said dedicated Video
hardware; k

hardware, Said Software module configured to pop
Said hardware task control datastructure from Said

VIZIO, Inc. Exhibit 1022
VIZIO, Inc. v. Maxell, LTD, IPR2022-01459

Page 24 of 24

