
US 2013 0104029A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0104029 A1

Hendry et al. (43) Pub. Date: Apr. 25, 2013

(54) AUTOMATED ADDITION OF ACCESSIBLITY Publication Classification
FEATURESTO DOCUMENTS

(51) Int. Cl.
(75) Inventors: Robert Olson Hendry, San Francisco, (52) { 7/24 (2006.01)

AsS); Heidi Jungel, Fremont, CA USPC .. 71.5/234
(57) ABSTRACT

(73) Assignee: Apollo Group, Inc., Phoenix, AZ (US) A method includes analyzing a first document to identify a
first set of one or more tags and responsive to identifying the
first set of one or more tags: automatically producing a second
document based in part on first set of one or more tags, where
the second document includes one or more accessibility fea

(22) Filed: Oct. 24, 2011 tures that were not in the first document.

(21) Appl. No.: 13/280,296

Analyze a first document
402

PrOduCe a SeCOnd doCument which

includes One or more accessibility features
not included in the first doCument

404

ACCESSIBE LTD EXHIBIT 1009
Page 1 of 18

US 2013/0104029 A1

V

9

Apr. 25, 2013 Sheet 1 of 5 Patent Application Publication

ACCESSIBE LTD EXHIBIT 1009
Page 2 of 18

US 2013/0104029 A1 Apr. 25, 2013 Sheet 2 of 5 Patent Application Publication

ACCESSIBE LTD EXHIBIT 1009
Page 3 of 18

US 2013/0104029 A1 Apr. 25, 2013 Sheet 3 of 5 Patent Application Publication

ACCESSIBE LTD EXHIBIT 1009
Page 4 of 18

US 2013/0104029 A1 Apr. 25, 2013 Sheet 4 of 5 Patent Application Publication

ACCESSIBE LTD EXHIBIT 1009
Page 5 of 18

US 2013/0104029 A1 Apr. 25, 2013 Sheet 5 of 5 Patent Application Publication

TWOOT
979

?IG

ACCESSIBE LTD EXHIBIT 1009
Page 6 of 18

US 2013/01 04029 A1

AUTOMATED ADDITION OF ACCESSIBILITY
FEATURESTO DOCUMENTS

FIELD OF THE INVENTION

0001. The present invention relates to document accessi
bility in general. More specifically, the invention relates to
automatically modifying a document to improve document
accessibility.

BACKGROUND

0002 The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

0003) People with disabilities use electronic documents
(for example, pdfs, web pages, word processing documents,
or spreadsheet documents) with the help of assistive tech
nologies that identify the content of the electronic documents.
Assistive technologies, as referred to herein, include any soft
ware and/or hardware that interprets information for present
ing to a user. Examples of assistive technologies include, but
are not limited to Screen readers, text to speech Software,
digital book players, Braille displays, Braille embossers, and
electronic note takers. Assistive technologies convey infor
mation using visual, audio, or touch stimuli. For example,
assistive technology Such as a screen reader may be config
ured to read out the contents of a web page that are normally
displayed to a user when the web page is rendered by a web
browsing application.
0004. However, assistive technologies may not properly
be able to identify the content within a document if the docu
ment is not designed for interpretation by assistive technolo
gies. For example, a HyperTextMarkup Language (HTML)
document includes elements such as a table that is formatted
with tags <tre, {tdd, or <thd. Some screen readers are unable
to distinguish these HTML tags that format the table from
table values that are displayed when the HTML document is
rendered by a web browsing application. As a result, Screen
readers read the tags out loud, as if the tags were part of the
normal displayed textual content of the document, for a user
with a visual disability. Screen readers are unable to deter
mine a proper sequence in which the table values should be
read to sensibly convey the content to a user, or unnecessarily
read out layout information such as “table with two columns
and one row to a user.

0005 One or more embodiments are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to similar elements and in which:
0006 FIG. 1 is a block diagram illustrating an example
system for automatically producing documents to improve
document accessibility in accordance with one or more
embodiments;
0007 FIGS. 2A, 2B, 3A, and 3C illustrate examples of
document portions and interpretation by at least one assistive
technology in accordance with one or more embodiments;
0008 FIG. 4 is a flow diagram illustrating an example
method for automatically producing documents to improve
document accessibility in accordance with one or more
embodiments;

Apr. 25, 2013

0009 FIG. 5 is a block diagram illustrating a computer
system that may be used in implementing one or more
embodiments.

DETAILED DESCRIPTION

0010. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding. It will be apparent, how
ever, that one or more embodiments may be practiced without
these specific details. In other instances, well-known struc
tures and devices are shown in block diagram form in order to
avoid unnecessarily obscuring one or more embodiments.
0011. Several features are described hereafter that can
each be used independently of one another or with any com
bination of the other features. However, any individual fea
ture might not address any of the problems discussed above or
might only address one of the problems discussed above.
Some of the problems discussed above might not be fully
addressed by any of the features described herein. Although
headings are provided, information related to a particular
heading, but not found in the section having that heading, may
also be found elsewhere in the specification.

Overview

0012 Methods for automatically modifying documents to
improve document accessibility are provided, in accordance
with one or more embodiments. Modifying a document to
improve document accessibility refers to modifications
which result in proper or better interpretation by an assistive
technology, or which result in improving a user's ability to
understand the content of a document.

0013 Documents that are not designed for accessibility by
assistive technologies are good candidates for automatic
modification. For example, documents that do not conform to
the guidelines from the Web Accessibility Initiative-Acces
sible Rich Internet Applications (WAI-ARIA) may not be
designed for accessibility. Documents that include some
accessible features and lack other accessible features are
good candidates for automatic modification to improve docu
ment accessibility.
0014. In one embodiment, methods for automatically pro
ducing a document include find and replace methods which
replace text within a document with alternate text that
improves document accessibility. Methods for automatically
producing a document include capturing data that is dis
played to a user from a first document and writing a new
document which displays Substantially the same data but
improves the document accessibility. Methods for automati
cally producing a document perform the production at the
server side, the client side, or a combination of both.
0015. Although specific components are recited herein as
performing the method steps, in other embodiments, agents
or mechanisms acting on behalf of the specified components
perform the method steps. Further, although one or more
embodiments are discussed with respect to components dis
tributed over multiple systems (for example, a browser on a
client machine and a document modifier on server), other
embodiments include systems where all components are on a
single system (for example, modify documents stored on a
personal computer for display on the personal computer).
Furthermore, embodiments are applicable for dynamically

ACCESSIBE LTD EXHIBIT 1009
Page 7 of 18

US 2013/01 04029 A1

modifying any set of documents (for example, obtained over
a network, a local machine, a server, a peer machine, within a
Software application, etc.).
0016 While specific embodiments are described in which
documents are automatically modified, the techniques
described herein are not limited to the disclosed embodi
ments, and the techniques described herein may be applicable
to other embodiments.

Accessibility Features
0017. As shall be explained in detail hereafter, techniques
are provided in which “accessibility features” are automati
cally added to documents to improve the accessibility of the
documents. As used herein, an accessibility feature is any
feature that improves a user's ability to understand the con
tent of a document. For example, accessibility features
improve a user's ability to understand the content of a docu
ment by:

0018 adding to the document information that can be
accessed by the assistive technology for presentation to
a user,

0019 removing from the document extra information
that should not be accessed by an assistive technology
for presentation to a user, and/or

0020 modifying information in the document to
increase the likelihood that the document will be inter
preted and presented correctly (for example, in a correct
sequence, with correct associations, with correct empha
sis, etc.) by an assistive technology.

0021 Referring to FIG.1, accessibility features (118) may
be particular tags which, when added to a document, allow for
proper interpretation of the document by assistive technolo
gies. For example, accessibility features (118) correspond to
formatting, styles, or other markup that can be applied to one
or more elements within a document. Accessibility features
(118) correct one or more problems associated with inacces
sible features described below. While FIG. 1 illustrates a
system (100) in which accessibility features (118) are stored
separately, in a data repository (112), from modified docu
ments (116), in alternative embodiments the accessibility
features (118) are not separately stored in the data repository
(112).
0022. In an embodiment, accessibility features (118) cor
respond to metadata, describing content in a modified docu
ment (116), that can be read by software and communicated
to a person with disabilities (for example, via a Braille termi
nal oran audio readout). In an example, the metadata includes
the content that is displayed when a web page is rendered
without including any formatting tags that are not displayed
when the web page is rendered.
0023. In an embodiment, accessibility features (118) cor
responds to a formatting of content within a document (114)
or a modified document (116) which is designed for a par
ticular assistive technology or recognizable by an assistive
technology. In an example, an accessibility feature (118)
corresponds to a formatting of a table using HTML format
ting tags such as <div> or which can be used to dictate
the manner in which a particular screen reader reads out table
values. The screen reader skips read out of <div> and
tags because the tags are recognized as formatting tags. Fur
thermore, a screen reader may interpret the content for read
out based on <div> and tags that conveys an accurate
understanding of the table to a user instead of reading out
table cells in a possibly improper sequence.

Apr. 25, 2013

0024. Other examples of accessibility features (118)
include, but are not limited to, text alternatives for non-text
content, using a minimum font size, using colors which dis
tinguish the foreground from the background, and making all
functionality of a document available from a keyboard.
0025. In an embodiment, accessibility features (118) cor
responds to code (for example, JavaScript) which when
executed adds other accessibility features (118) to the docu
ment (114) to produce the modified document (116). For
example, accessibility features (118) correspond to code
which extracts content from a document with formatting tags
that are not properly interpreted by assistive technologies.
The accessibility features (118) correspond to code which
uses the extracted content to produce a modified document
(116) with different formatting tags than the original format
ting tags. The modified document (116) produced by the
assistive technologies may use different formatting tags that
are recognizable to assistive technologies and that present the
content in the same manner as the original formatting tags.
0026. In an embodiment, the accessibility feature (118) is
code that reformats the content of a document to be displayed
differently. For example, the code changes the color or size of
afont to make text easier to read by a visually impaired reader.
The code used to convert the document (114) to modified
document (116) is within the document (114) itself or sepa
rate from the document (114).

Inaccessible Features

0027. An “inaccessible feature', as used herein, refers to
content or formatting which cannot be properly interpreted by
one or more assistive technologies for presentation to a user.
For example, an assistive technology Such as a screen reader
is designed for reading out the content from a HTML docu
ment that is displayed when the HTML document is rendered
by a browser application and designed for not reading out
HTML formatting tags that are used for formatting of the
displayed content. However, a particular HTML document
includes some HTML formatting tags that are not recognized,
by the screen reader, as formatting tags that are not to be read
out. As a result of not recognizing the formatting tags, the
formatting tags are read out by the screen reader as a portion
of the displayed content. In this example, the HTML format
ting tags are referred to as inaccessible features since the
screen reader does not recognize the HTML formatting tags
and reads out the HTML formatting tags as displayed content.
0028. In an embodiment, an inaccessible feature corre
sponds to one or more elements that lack a label or a descrip
tion that can be accessed by an assistive technology. For
example, a displayed line on a web page includes text, fol
lowed by a text field for user input, followed by additional
text. A screen reader reads out the text, the additional text, and
lastly the text field based on the sequence in which the ele
ments appear in the document or using some other ordering
method. The information conveyed to the user in this example
results in an improper understanding of the displayed line by
the user. The information may not convey the relationship
between different objects on a displayed line, for example,
relationship between labels and other objects. In an example,
an inaccessible feature corresponds to a link in a web page
without a title for readout by a screen reader.
0029. In an embodiment, an element without an “id’’ or
class is referred to as an inaccessible feature because the lack
of the idor class prevents code (for example JQuery or Java
Script) to refer to the element or prevents the use of cascading

ACCESSIBE LTD EXHIBIT 1009
Page 8 of 18

US 2013/01 04029 A1

style sheets for formatting purposes (for example, to increase
the font size for all text or to provide additional context or
metadata).
0030. In an embodiment, an inaccessible feature corre
sponds to a design component that is interpreted and pre
sented by an assistive technology when that design compo
nent should not be presented by the assistive technology. In
another embodiment, an inaccessible feature refers to a com
ponent that is interpreted and not presented by an assistive
technology when that design component should be presented
by the assistive technology. Design components that should
or should not be presented to a user are determined based on
user preferences, definition by a programmer or administra
tor, based on the context of the page, or based on other criteria.
In an example, an image separating two sections on a web
page or a table used only for data layout purposes in a HTML
document should not be presented to a visually impaired user
based on user preferences. The design component is referred
to as an inaccessible feature because an assistive technology
Such as a screen reader is not able to determine based on the
information within the document that the design component
is not to be presented to a user.
0031. In another example, an inaccessible feature corre
sponds to one or more components of a table in a HTML
document. The components do not provide enough informa
tion for a screen reader to read out the table values of a table
in a sequence that would properly convey the description of
the table to a user. Table values read out of sequence result in
a misunderstanding by the user with regard to which table
values are in which rows or columns, or with regard to which
table values are associated with which other table values.
0032. In another example, an inaccessible feature corre
sponds to one or more elements within a document (114) that
cannot be navigated to by a user of the document (114). For
example, a particular checkbox within a HTML document
(114) can only be checked by a mouse click. In this example,
the particular checkbox is inaccessible to a user limited to the
keyboard input. The user may be disabled and/or unable to
use the keyboard or the user may be operating a device Such
as a cell phone with limited functionality. Accordingly, an
inaccessible feature is inaccessible due to user disability or
due to environmental restrictions such as device software or
device hardware limitations. In another example, an inacces
sible feature corresponds to navigation between interface ele
ments that do not allow the use of a keyboard or other input
tool selected by a user.

System Architecture and Functionality
0033 Although a specific computer architecture is
described hereafter, other embodiments are applicable to any
architecture that can be used to automatically add one or more
accessibility features to documents.
0034 FIG. 1 shows an example system (100) in accor
dance with one or more embodiments. As shown in FIG.1, the
example system (100) includes a client machine (102) and a
server machine (110). Data or components described with
reference to a particular machine may be stored on or imple
mented by another machine. Additional devices and/or com
ponents not described herein may be used to perform any of
the functionality described herein. A single device or compo
nent may be used to performall of the functionality described
herein.
0035. In an embodiment, the client machine (102) corre
sponds to any system used for presenting a document (114) or

Apr. 25, 2013

a modified document (116) to a user in an audio, visual, or
touch (for example, Braille) format. Examples of client
machines (102) include, but are not limited to desktop com
puters, laptops, tablets, mobile phones, personal digital assis
tants (PDAs), book readers, and/or other digital computing
devices. As shown in example system (100), the client
machine (102) includes one or more of: a browser (104), an
assistive technology (106), or any another application used
for presenting information within a document to a user. The
client machine (102) may also include one or more of the
data repository (112) and the document modifier (120) that
are illustrated, for purposes of explanation, as implemented
on the server machine (110).
0036. In an embodiment, the browser (104) corresponds to
any application that can render contents from a document for
display to a user. A browser (104) is illustrated and used as an
example of software that presents content to a user. Any other
hardware or Software application that presents content from a
document to a user in an audio, visual, or touch format may be
used instead of or in addition to the browser (104). For
example, a pdf reader is used for displaying content from a
pdf document or a spreadsheet application is used to present
data from a spreadsheet document. Examples described
herein with relation to a specific application for presenting
content are equally applicable to other applications that
present content.
0037. In an example, the browser (104) corresponds to a
web browser which includes functionality to request a web
page, obtain the web page, and render the web page for
display to a user. In another example, the browser (104)
modifies a web page received from a server to obtain a modi
fied web page, and renders the modified web page for display
to a user.

0038. In an embodiment, an assistive technology (106)
illustrated as implemented on the client machine (102),
includes assistive, adaptive, and rehabilitative software and/
or hardware for people with disabilities. Assistive technolo
gies enable people to perform tasks that the people were
formerly unable to accomplish, or had great difficulty accom
plishing, by providing enhancements to or changed methods
of interacting with the technology needed to accomplish Such
tasks. Examples of assistive technology (106) include text
to-speech tools that read out the text being displayed on a
screen. In another example, an assistive technology (106)
converts text or audio in a particular language to text or audio
in a different language. An assistive technology magnifies the
contents of a document, highlight text, modify fontsizes and
colors, or performs other functions which make a document
easier to access. In another example, an assistive technology
provides output to a Braille device.
0039. In one or more embodiments, the assistive technol
ogy (106) is implemented as a standalone application or as a
component of another application (for example, as a browser
plug-in or a toolbar component). In an example, the assistive
technology (106) is implemented as a component of an oper
ating system. The system (100) may include an assistive
technology (106) without the use of a browser (104). Product
examples of assistive technologies include, but are not limited
to, Job Access for Windows and Speech (JAWS) by Freedom
Scientific, Dragon Naturally Speaking by Nuance Commu
nications, NonVisual Desktop Access (NVDA), ChromeVox
by Google Corporation, VoiceCver by Apple Corporation,
Supernova by Dolphin Computer Access, Edbrowse by Karl
Dahlke. Spoken Web by Ehal Shalom, Fire Vox by Charles L.

ACCESSIBE LTD EXHIBIT 1009
Page 9 of 18

US 2013/01 04029 A1

Chen, 95Reader by SSCT, COBRA by BAUM Retec, Linux
Screen Reader by GNOME/Linux, Virtual Vision by
MicroPower, and ZoomText by Ai Squared.
0040. In an embodiment, the server machine (110) corre
sponds to any device that is communicatively coupled with
the client machine (102) and sends data to the client machine
(102). The server machine (110) sends the data in response to
receiving one or more requests from the client machine (102).
0041. In an embodiment, the server machine (110)
includes a data repository (112) storing one or more of docu
ments (114), modified documents (116) and accessibility fea
tures (118). The data repository (112) corresponds to any data
storage device (for example, local memory on the server
machine (110), web servers connected over the internet,
machines within a local area network, a memory on a mobile
device, local memory on the client machine (102), etc.). In
one or more embodiments, access to the data repository (112)
is restricted and/or secured. As such, access to the data reposi
tory (112) requires authentication using passwords, secret
questions, personal identification numbers (PINs), biomet
rics, and/or any other Suitable authentication mechanism.
Those skilled in the art will appreciate that elements or vari
ous portions of data stored in the data repository (112) may be
distributed (for example, stored on client machine (102) or at
other servers). In one or more embodiments, the data reposi
tory (112) includes flat, hierarchical, network based, rela
tional, dimensional, object modeled, or data files structured
otherwise. In an example, data repository (112) is maintained
as a table of a SQL database. In addition, data in the data
repository (112) is verified against data stored in other reposi
tories.
0042. In an embodiment, documents (114) correspond to
any files stored in memory (for example, on the server
machine (110) or client machine (102)). Documents (114)
include, but are not limited to, pdfs, web pages, word pro
cessing documents, spread sheet documents, slides, images,
Video files, etc. Documents (114) are requested by an appli
cation executing on a client system (102). For example, a
document (114) corresponding to a web page is requested by
browser (104) executing on the client system (102).
0043. In an embodiment, documents (114) include docu
ments that have at least one inaccessible feature. In an
embodiment, documents (114) are modified by one or more
components of system (100) to include an accessibility fea
ture (118). Documents (114) that are modified by one or more
components of system (100) to include an accessibility fea
ture (118) are referred to herein as modified documents (116).
Documents (114) with one or more accessibility features
(118) are modified to include additional accessibility features
(118). Modified documents (118) also include new docu
ments that are created using documents (114).

Document Modifier

0044. In an embodiment, the document modifier (120)
corresponds to hardware and/or software that produces modi
fied documents (116) by adding one or more accessibility
features (118) to documents (114). In one or more embodi
ments, the document modifier (120) adds additional accessi
bility features to a document (114) that already has one or
more accessibility features (118).
0045. In an example, the document modifier (120) modi
fies the document (114) by directly converting the document
(114) to an accessibility-enabled document or adding code to
the document (114) which when executed converts the docu

Apr. 25, 2013

ment to an accessibility-enabled document. An accessibility
enabled document is a document that has been modified to
include information that improves a user's understanding of
the document. In an example, the document modifier (120)
modifies a web page by adding JOuery and/or JavaScript
which when executed converts the web page into an accessi
bility-enabled web page.
0046. The code executed by the document modifier (120)
to add one or more accessibility features (118) is included
within the document (114) or stored separately from the
document (114).
0047. In an embodiment, modifying a document includes
making one or more changes to a document (114) to obtain a
modified document (116). The modified document (116) is
stored in addition to the original document (114) or instead of
the original document (114). Modifying a document includes
producing a new document based on the original document
(114). For example, modifying a document includes analyZ
ing the contents of the original document (114) and creating
a new document based on the analysis of the contents of the
original document (114). Modifying a first document (114) to
obtain a second document may be referred to herein as pro
ducing the second document.
0048. Each of these components described above may be
located on the same device or may be located on separate
devices coupled by a network (e.g., Internet, Intranet, Extra
net, Local Area Network (LAN), Wide Area Network (WAN),
etc.), with wire and/or wireless segments. In one or more
embodiments, the example system (100) is implemented
using a client-server topology. The example system (100)
itself is an enterprise application running on one or more
servers, a peer-to-peer system, or resident upon a single com
puting system. In one or more embodiments, the example
system (100) is accessible over a network connection (not
shown). Such as the Internet, by one or more users. Informa
tion and/or services provided by the example system (100)
may also be stored and accessed over the network connection.

Document Modification Examples
0049 FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B illustrate
an example in which the <div> and tags are used in an
accessibility-enabled document instead of a <table> tag in an
inaccessible document. An example of original HTML code
(202) is presented in FIG. 2A. As shown in FIG. 2A, the tag
<table> is used with tags <tro and <td in a layout table to
display the content in a particular format.
0050. When a HTML webpage with the original HTML
code (202) is rendered by a browser, the data is shown in a
table format. In an example, a particular screen reader appli
cation used by a blind user to surf the HTML webpage reads
out text recited in screen reader readout A (204) as presented
in FIG. 2B. In this example, the layout table is used for
formatting purposes and is not useful for a blind user of a
screen reader. However, the particular screen reader, when
reading out the displayed contents rendered by a browser,
reads out table layout information such as “table with two
columns and four rows' and “table end. This table informa
tion should not have been read out by the particular screen
reader to a blind user because the table is intended for layout
purposes and clutters the other information presented to the
blind user.
0051. The original HTML code (202) is modified inaccor
dance with one or more embodiments to produce accessibil
ity-enhanced HTML code (302) as illustrated in FIG.3A. The

ACCESSIBE LTD EXHIBIT 1009
Page 10 of 18

US 2013/01 04029 A1

accessibility-enhanced HTML code (302) which is based on
the original HTML code (202) presents the same information
as the original HTML code (202) when rendered by a
browser. A screen reader playing an audio readout of a ren
dered webpage, which includes the accessibility-enhanced
HTML code (302), reads out text recited in screen reader
readout B (304). The text recited in screen reader readout B
(304) does not include the table information included in
screen reader readout A (204) and accordingly, does not clut
ter the information provided to a blind user. The accessibility
enhanced HTML code improves a user's ability to understand
the content of the webpage.

Document Modification by a Server Machine
0052. In an embodiment, the document modifier (120) is
implemented on the server machine (110). In an example, the
document modifier (120) is an application or a component of
an application that modifies one or more documents (114)
stored on the server machine (110) to produce modified docu
ments (116). The modified documents (116) are stored on the
server, by the document modifier, as accessibility-enabled
documents instead of or in addition to the original documents
(114).
0053. In an embodiment, the document modifier (120) is
executed on the server machine (110) in response to receiving
a request for a document from the client machine (102). In an
example, the server machine (110) receives a request for a
particular document (114). In response to the request, a docu
ment modifier (120) on the server machine (110) determines
that the particular requested document (114) is not accessi
bility enabled during an analysis of the particular requested
document (114). The document (114) is analyzed to identify
tags that are not recognizable by assistive technologies (106).
The server machine (110) executes the document modifier
(120) to produce a modified document (116) which is an
accessibility-enabled version of the particular requested
document (114). In response to receiving a request from the
client machine (102) for the particular document (114), the
server machine (110) sends the modified document (116).
0054. In an embodiment, the request received by server
(110) from any client machine (102) indicates whether or not
an accessibility-enabled document is requested. The server
machine (110) returns the original document (114) or an
accessibility-enabled document (for example, the modified
document (116) depending on whether an accessibility-en
abled document is requested. In an example, the client
machine (102) requests an accessibility-enabled document
based on the preferences of a user of the client machine (102).
For example, user preferences identify a particular disability
of a user of the client machine (102). Based on the particular
disability of the user, the client machine (102) or an applica
tion executing on the client machine (102) requests a docu
ment which can be interpreted by a specific assistive technol
ogy (106) designed for that particular disability.

Document Modification by a Client Machine

0055. In an embodiment, the document modifier (120) is
implemented on the client machine (102). For example, the
document modifier (120) is an application that receives
requested documents (114) from the server (110) and con
verts the documents (114) to modified documents (116) for
storing on the client machine (102) or for immediate use on
the client machine (102).

Apr. 25, 2013

0056. In an embodiment, the document modifier (120) is
implemented as a component of an application that provides
access to the modified document (116). In an example, the
document modifier (120) is implemented within a browser
(104). The browser (104) receives a request from a user to
display a particular document (114). The browser (104) then
requests and obtains the particular document (114) from the
server machine (110). Subsequent to obtaining the document
(114), the document modifier (120) in the browser (104)
converts the document (114) to a modified document (116)
that is to be rendered for display. The browser (104) then
renders the modified document (116) for display while a
screen reader interprets the modified document (116) to
extract information for presentation to a user.
0057. In an embodiment, the document modifier (120) is
activated in response to a user command. In an example, a
document (114) is displayed by a browser (104) executing on
the client machine (102). Subsequent to the display by the
browser (104), the user selects an accessibility option (for
example, by selecting an accessibility button on a toolbar) to
make the document (114) accessibility-enabled. In response
to the user selection, the document modifier (120) executes a
script for adding accessibility features (118) to document
(114) for producing a modified document (116). The script
further calls a text-to-speech procedure to read out the text
from the modified document (116) while document (114) is
still being displayed by the browser (104). Alternatively, the
browser (104) renders the modified document (116) for dis
play and a screen reader automatically reads out the contents
of the modified document (116) in response to display of the
modified document (116) by the browser (104).

Document Modification by a Server Machine and a
Client Machine

0058. In an embodiment, document modifiers (120) are
implemented on both of the server machine (110) and the
client machine (102). In an example, one document modifier
(120) is implemented as a server plugin, launched by server
(110), to handle an HTTP request from the client machine
(102) for a document (114). The server plugin accesses the
document (114) from a database at the server (110) and adds
JQuery or JavaScript to obtain a modified document (116).
The JOuery or JavaScript if executed would produce an
accessibility-enabled version of the document (114) that can
be properly interpreted by a screen reader (for example,
execution of the JavaScript causes adding, removing, or
modifying of information based on Suitability for a screen
reader). The server plugin then prepares an HTTP response
with the modified document (116) and sends the modified
document (116) to the client machine (102). A second docu
ment modifier (120) is implemented as a component of a
browser (104) executing on the client machine (102). The
component of the browser (104) parses the modified docu
ment (116) and executes the JavaScript added by the server
plugin. The execution of the JavaScript results in adding one
or more accessibility features (118) to the modified document
(116) that were not previously included in the document
(114). The browser (104) then renders the modified document
(116) with the additional one or more accessibility features
(118) for display to a user. A screen reader reads out content
from the displayed document by properly interpreting the
HTML and distinguishing the content that is to be read out
from the formatting elements that are not be read out.

ACCESSIBE LTD EXHIBIT 1009
Page 11 of 18

US 2013/01 04029 A1

Document Modification Steps
0059 FIG. 4 shows an example of document modification
by one or more document modifiers. The steps described
below are performed by executing code that is within a docu
ment being modified or code that is separate from a document
being modified. The steps described below may be performed
on a server machine, a client machine, or a combination of the
server machine and client machine. Examples refer to a spe
cific machine performing the steps for the purposes of clarity
and understanding. In one or more embodiments, one or more
of the steps described below may be omitted, repeated, and/or
performed in a different order. Accordingly, the specific
arrangement of steps shown in FIG. 4 should not be construed
as limiting the scope of the claims.

Document Analysis
0060. Initially, a document is analyzed (Step 402). In an
embodiment, the document is analyzed to identify inacces
sible features. In an example, inaccessible features are iden
tified by searching for text that is known to be misinterpreted
by one or more assistive technologies. In a HTML document,
the text to be searched may include particular HTML format
ting tags or particular document elements (for example, a
layout table). In another example, the identification of inac
cessible features includes identifying formatting and styles
for content that do not use cascading style sheets.
0061. In an embodiment, the identification of inaccessible
features is based on the functionality or capabilities of a
particular assistive technology. For example, features known
to be in inaccessible by a particular screen reader are identi
fied. The screen reader is not be able to distinguish specific
formatting tags from content or is not be able to present
content associated with these specific formatting tags in a
manner which conveys the correct information to a user. In
another example, an assistive technology is not updated to
recognize new keywords in a new version of a programming
language or to interpret document information created by a
new version of a software application.
0062. In an embodiment, analysis of a document includes
evaluating elements to determine whether the elements meet
guidelines from the Web Accessibility Initiative-Accessible
Rich InternetApplications (WAI-ARIA). In an example, mul
tiple HTML elements that form a single sentence to a viewer
are evaluated to determine whether “aria-labelledby'
attribute should be used and if the “aria-labelledby' attribute
is in fact being used.
0063. In an example, an analysis of a document includes
identifying form fields which require input. The analysis
involves a search for a “*” or a red font which is customarily
used to indicate a required field. If a required field is found,
then a determination is made whether a “aria-required
attribute is associated with the field for indicating to a screen
reader that the field is required. If the “aria-required attribute
is not found for a required field, the required field is flagged
for modification in Step 404 described below.
0064. In an example, elements are evaluated to determine
whether elements have ids by which they can be referred to or
have controls that are keyboard accessible. In an example, the
evaluation of an element <li class="tab tab-css tablindex
true'>Classrooms/li> results in determining the element
lacks an “id' and/or lacks “aria-controls”.

0065. In an embodiment, analysis of a document includes
defining an element based representation of the document,

Apr. 25, 2013

which is referred to herein as a model of the document.
Defining a model of the document includes identifying one or
more elements within the document for storing in a data
structure. An element corresponds to a data value (for
example, displayed data) or a keyword value (for example, a
formatting tag). The model of the document includes element
characteristics. Examples of element characteristics include,
but are not limited to, an element value, the manner in which
an element is presented, the manner in which an element is
accessed, the manner in which an element is manipulated, or
the relationship of an element to other elements. The identi
fied elements within a model are represented as nodes within
a tree data structure, a directed graph, or other Suitable data
structure. In an example, a model of a HTML or XML docu
ment is defined using a Document Object Model (DOM). In
an example, a HTML table from a HTML document is used to
generate a table object that represents the HTML table.
0066. In an embodiment, values or properties of a table
object are accessed using commands from an application
programming interface. For example, a command is executed
to search for table layout tags in a HTML document that
indicate the beginning and end of table cells. Based on the
identified table layout tags, the cell values are extracted.
0067. In an example, a HTML document is used to gener
ate an object with elements by traversing the HTML docu
ment using a tokenizer with HTML tags (for example, “stro
or “Ktdd') as delimiters. Data values such as displayed text or
images between a set of HTML tags are identified as a token
by the tokenizer. The delimiters (for example, the HTML
tags) may also be identified as tokens if the tag themselves
need to be stored. The delimiters may be interpreted and
delimiter information Such as tag characteristics (style, posi
tion, etc.)are stored in the data structure. In an example, a title
of a HTML table is stored as a parent node and the cell values
within the HTML table are stored as child nodes under that
parent node. In this example, the placement of a node within
the tree indicates the relationship of the node with other
nodes.

Document Production

0068. In an embodiment, the analysis of a first document is
used to produce a second document which includes one or
more accessibility features that were not included in the first
document (Step 404). Producing the second document is
performed by one or more of: modifying the first document
itself or by creating new document(s) that are separate than
the first document. Any examples which refer to modifying a
first document to obtain the second document may instead be
implemented by creating one or more new documents. Any
examples which refer to creating a second document that is
separate from the first document may instead be implemented
by modifying the first document to create the second docu
ment. The terms second document and modified document
are used interchangeably herein.
0069. In an embodiment, the second document is pro
duced based on the contents of the first document. The second
document is a result of replacing inaccessible features of the
first document with accessible features. For example, the
inaccessible features identified in Step 402 which include
tags that are not recognized by Screen readers as formatting
tags are replaced by tags that are recognized by Screen readers
as formatting tags. The production of the second document
includes implementing a find and replace function for finding

ACCESSIBE LTD EXHIBIT 1009
Page 12 of 18

US 2013/01 04029 A1

each tag in a first set of one or more tags and replacing each
tag with a corresponding tag in a second set of one or more
tags.
0070. In an embodiment, the second document is pro
duced by adding classes to content within the first document.
Characteristics (for example, formatting styles or triggering
events) for particular classes are defined within the second
document or defined using separate documents such as, for
example, cascading style sheets.
0071. In an embodiment, the second document is pro
duced by adding an “id to one or more elements so the one or
more elements can be referred to by other elements. For
example, an “id' is added to an input field so that a <label tag
can refer to the “id for assignment of a label to the inputfield.
In an example, an “id value is assigned to ids in a numeric
chronological order or using content in proximity of the
DOM. In an example, an <h1 > tag is assigned an “id’ equiva
lent to the contents within the <h1 > tags.
0072. In an embodiment, the second document is pro
duced by modifying the first document according to WAI
ARIA guidelines. For example, attributes such as “aria-re
quired, “aria-labelledby, and “aria-described by are added
to provide assistive technologies with information to read out
to a user. In an example, <div class="application'> is modi
fied tO <div class="application' aria
labelledby—"application label.0">.
0073. In an embodiment, if a link has no title, then a title
attribute is automatically created. In an example, HTML code
 this is a link/ad is modified to add
a title using HTML code <a href="this-link.html title=''this
is a link'> this is a link/ad. In an example, if animage is used
only as a design element (for example, a page divider line),
then the “alt' attribute is set to an empty string so that a screen
reader does not narrate a file name of the design element.
0074. In an embodiment, producing the second document
includes using an element based representation of the first
document. As described above, an element based representa
tion of the first document includes a data structure where each
node or entry within the data structure corresponds to an
element in the first document. In an example, the data struc
ture is a tree that can be traversed to produce the second
document. A table represented by a tree data structure is
traversed using a tree traversal algorithm which traverses
each node of the tree to identify the elements within the tree
and identify corresponding element characteristics. The tra
versal of the data structure is used to identify the relationships
between different elements of the tree. Using the information
in the data structure, the second document is programmati
cally created by adding text to a document based on informa
tion within the nodes as the nodes are traversed. Creating the
second document includes using accessibility-enabled tags
that were not used in the first document. For example, for
matting using a layout table in a first document is recreated
from a representation of the first document and using the
<div> tag and tag.
0075. In an embodiment, cascading style sheets are used to
format or style one or more elements within a document. For
example, elements that are individually defined with different
styles are reformatted using cascading style sheets.
0076. In an embodiment, producing a second document
includes modifying web pages to add one or more of labels,
fieldsets, legends, or landmarks. For example, landmarks are
added to different displayed portions of a document to allow
for easy traversal from one landmark to another using key

Apr. 25, 2013

board input Such as tab or arrows. The landmarks allow a user
to navigate between input fields, text, images, sections, etc. In
an embodiment, labels that are read out by screen readers are
associated with different landmarks so that a blind user can
easily identify the currently selected portion of a document.
In an embodiment, producing a second document includes
implementing a shortcut (for example, ESC key) to close a
window (for example, a pop up window).
0077. In an example, an original document includes the
following HTML code:

<div id="tabpanel 1">
<ul class="tablist-css>
<li id="testabid class="tab-cSS'>Home</i>
<li class="tab tab-csstabindex true-Classroom-Slic
<li class="tab-css'>Library-li
<li class="tab-css>PhoenixConnect</i>
<full

<p-home tab</p-

0078. The original document is first modified to include
one or more classes:

<div class="div-tab
<div id="tabpanel 1 class="tabpanel's
<ul class="tablist tablist-css>
<li id="testabid class="tab tab-css selected
tablindex true-Home</i>
<li class="tab tab-csstabindex true-Classroom-Slic
<li class="tab tab-css tablindex true's Library-li
<li class="tab tab-csstabindex true-PhoenixConnect-Silic
<full
<div class="div-tabpanel's
<div class="tabpanel panel tablindex true'>
<p-home tab</ps <div>

007.9 Furthermore, ids are added for reference and the
resulting accessibility-enhanced code recites:

<div class="div-tab
<div class="tabpanel id="tabpanel 1">
<ul class="tablist tablist-css>
<li class="tab tab-css selected tablindex true id="testabidaria
controls=" panel O’ >Home</i>
<li class="tab tab-csstabindex true id="tab 1' aria
controls="testpanelid'>Classroom-li
<li class="tab tab-csstabindex true id="tab2aria
controls="panel2'>Library-li
<li class="tab tab-csstabindex true id="tab3 aria
controls=" panel3’ >PhoenixConnect.</i>

<div class="div-tabpanel'>
<div class="tabpanel panel tablindex true' id="panelO” aria
labelledby="testabid tablindex=“O’s

ACCESSIBE LTD EXHIBIT 1009
Page 13 of 18

US 2013/01 04029 A1

0080. In another example, a form is modified to improve
accessibility. The original document recites:

<form class="form
First Name:
<input type="textid=“firstname f>

LastName:
<input type="text''name="lastname f>

<input type=“submit value="Submit/>
<form

0081. The original document is modified to add classes
and divs and recite:

<div class="application'>
<form class="form <div class="form-basic textbox >
<span id="firstname span class,"span form'-First Name:
<input type="text id="firstname f>

<div class="form-basic textbox >
<span id="lastname span class="span form's LastName:
<input type="text name="lastname f>

 <A div>
<div class-“form-basic submit <input type="submit
value="Submit <f div>

0082. The document is further modified to include labels
and recite:

<div class="applicationaria-labelled by="application labelO's
<form class="form-Kodiv class="form-basic textbox >

<label for="firstname'>First Name:</label-span>
<input type="text id="firstname>

<div class="form-basic textbox >
<label
for-input1's-LastName:</label-span><input type="text'
name="lastname id="input1's

< div>
<div class="form-basic submit <input type="submit
value="Submit id="input8"></div>

0083. In another example, a document lacks particular
ARIA attributes and originally recites:

<div class="log-aria'>
<h2 id="region2Label's Log Text using Aria Live Region</h2>
<div class="log atomic false live assertive relevant additions'>
<!-- dynamic text

0084. The document is automatically modified to add the
aria-labelledby, aria-relevant, aria-atomic, and aria-live
attributes to recite:

Apr. 25, 2013

<div class="log-aria'>
<h2 id="region2Label's Log Text using Aria Live Region</h2>
<div class="log atomic false live assertive relevant additions'
aria-labelled by="region2Label aria-relevant,"all
aria-atomic="true aria-live="assertive' >
<!-- dynamic text -->

I0085. In an embodiment, producing a second document
includes automatically creating a draft document by includ
ing one or more accessibility features that were not included
in the original document. The automatically created draft
document is then presented to a user for manual changes,
Verifications, and corrections. For example, a label generated
in accordance with one or more embodiments is presented to
a user for approval or for editing.
I0086. Any of the steps recited above for producing a sec
ond document which includes one or more accessibility fea
tures not included in the first document may be combined
with other steps for producing the second document. Multiple
accessibility features are added to a document for producing
an accessibility-enabled document in accordance with one or
more embodiments.

Hardware Overview

I0087 FIG. 5 is a block diagram that illustrates a computer
system 500 upon which one or more embodiments may be
implemented. Computer system 500 includes a bus 502 or
other communication mechanism for communicating infor
mation, and a processor 504 coupled with bus 502 for pro
cessing information. Computer system 500 also includes a
main memory 506, such as a random access memory (RAM)
or other dynamic storage device, coupled to bus 502 for
storing information and instructions to be executed by pro
cessor 504. Main memory 506 also may be used for storing
temporary variables or other intermediate information during
execution of instructions to be executed by processor 504.
Computer system 500 further includes a read only memory
(ROM) 508 or other static storage device coupled to bus 502
for storing static information and instructions for processor
504. A storage device 510, such as a magnetic disk or optical
disk, is provided and coupled to bus 502 for storing informa
tion and instructions.
I0088 Computer system 500 may be coupled via bus 502 to
a display 512, such as a cathode ray tube (CRT), for display
ing information to a computer user. An input device 514,
including alphanumeric and other keys, is coupled to bus 502
for communicating information and command selections to
processor 504. Another type of user input device is cursor
control 516. Such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command
selections to processor 504 and for controlling cursor move
ment on display 512. This input device typically has two
degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify posi
tions in a plane.
I0089. According to one embodiment, documents are
modified by computer system 500 in response to processor
504 executing one or more sequences of one or more instruc
tions contained in main memory 506. Such instructions may
be read into main memory 506 from another computer-read
able medium, such as storage device 510. Execution of the

ACCESSIBE LTD EXHIBIT 1009
Page 14 of 18

US 2013/01 04029 A1

sequences of instructions contained in main memory 506
causes processor 504 to perform the process steps described
herein. One or more processors in a multi-processing arrange
ment may also be employed to execute the sequences of
instructions contained in main memory 506. In alternative
embodiments, hard-wired circuitry may be used in place of or
in combination with Software instructions to implement one
or more embodiments. Thus, embodiments are not limited to
any specific combination of hardware circuitry and software.
0090 The term “computer-readable medium' as used
herein refers to any medium that participates in providing
instructions to processor 504 for execution. Such a medium
may take many forms, including but not limited to, non
Volatile media, Volatile media, and transmission media. Non
Volatile media includes, for example, optical or magnetic
disks, such as storage device 510. Volatile media includes
dynamic memory, Such as main memory 506. Transmission
media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 502. Transmission
media can also take the form of acoustic or light waves. Such
as those generated during radio wave and infrared data com
munications.
0091 Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk,
magnetic tape, or any other magnetic medium, a CD-ROM,
any other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.
0092 Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 504 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and use
an infrared transmitter to convert the data to an infrared sig
nal. An infrared detector coupled to bus 502 can receive the
data carried in the infrared signal and place the data on bus
502. Bus 502 carries the data to main memory 506, from
which processor 504 retrieves and executes the instructions.
The instructions received by main memory 506 may option
ally be stored on storage device 510 either before or after
execution by processor 504.
0093 Computer system 500 also includes a communica
tion interface 518 coupled to bus 502. Communication inter
face 518 provides a two-way data communication coupling to
a network link 520 that is connected to a local network 522.
For example, communication interface 518 may be an inte
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding
type of telephone line. As another example, communication
interface 518 may be a local area network (LAN) card to
provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, communication interface 518 sends and
receives electrical, electromagnetic or optical signals that
carry digital data streams representing various types of infor
mation.

0094 Network link 520 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 520 may provide a connection

Apr. 25, 2013

through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet 528. Local net
work 522 and Internet 528 both use electrical, electromag
netic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net
work link 520 and through communication interface 518.
which carry the digital data to and from computer system 500,
are exemplary forms of carrier waves transporting the infor
mation.
0.095 Computer system 500 can send messages and
receive data, including program code, through the network
(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.
0096. The received code may be executed by processor
504 as it is received, and/or stored in storage device 510, or
other non-volatile storage for later execution. In this manner,
computer system 500 may obtain application code in the form
of a carrier wave.
0097. In the foregoing specification, embodiments have
been described with reference to numerous specific details
that may vary from implementation to implementation. Thus,
the sole and exclusive indicator of what is the invention, and
is intended by the applicants to be the invention, is the set of
claims that issue from this application, in the specific form in
which such claims issue, including any Subsequent correc
tion. Any definitions expressly set forth herein for terms con
tained in Such claims shall govern the meaning of such terms
as used in the claims. Hence, no limitation, element, property,
feature, advantage or attribute that is not expressly recited in
a claim should limit the scope of Such claim in any way. The
specification and drawings are, accordingly, to be regarded in
an illustrative rather than a restrictive sense.
What is claimed is:
1. A method comprising:
analyzing a first document to identify a first set of one or

more tags; and
responsive to identifying the first set of one or more tags:

automatically producing a second document based in
part on first set of one or more tags, wherein the second
document includes one or more accessibility features
that were not in the first document;

wherein the method is performed by at least one device
comprising a processor.

2. The method of claim 1, wherein automatically produc
ing the second document comprises

replacing each tag in the first set of one or more tags with a
corresponding tag in a second set of one or more tags.

3. The method of claim 1, wherein automatically produc
ing the second document comprises:

based at least in part on the first set of one or more tags:
parsing the first document to identify a plurality of ele

ments within the first document;
generating a data structure comprising the plurality of

elements and representing a relationship between two
or more elements of the plurality of elements:

producing the second document based on the data struc
ture.

4. The method of claim 3, wherein the data structure com
prises a plurality of nodes, wherein each node of the plurality

ACCESSIBE LTD EXHIBIT 1009
Page 15 of 18

US 2013/01 04029 A1

of nodes represents an element within the plurality of ele
ments, and wherein producing the second document com
prises:

traversing each node in the plurality of nodes within the
data structure, wherein traversing a particular node of
the plurality of nodes comprises determining a data
value for the particular node and a relationship of the
particular node to at least one other node in the plurality
of nodes.

5. The method of claim 3, further comprising generating a
cascading style sheet for formatting one or elements, in the
second document, that was not formatted using any cascading
style sheet associated with the first document.

6. The method of claim 3, wherein the data structure is
generated using a document object model (DOM) application
programming interface.

7. The method of claim 1, wherein producing the second
document comprises one or more of modifying the first
document to obtain the second document or creating the
second document that is separate from the first document.

8. The method of claim 1, wherein automatically produc
ing the second document comprises one or more of

modifying at least one tag, in the first set of one or more
tags, that would not properly be interpreted by a particu
lar assistive technology;

replacing at least one tag, in the first set of one or more tags,
that would not properly be interpreted by a particular
assistive technology with a different tag:

adding an identification value or label to at least one tag in
the first set of one or more tags; or

based at least on the first set of one or more tags, adding a
description that (a) can be interpreted by a particular
assistive technology and (b) is not displayed when the
second document is rendered for display by a browser;

based at least on the first set of one or more tags, reformat
ting one or more elements in the first document using
cascading style sheets.

9. The method of claim 1, wherein the one or more acces
sibility features allow a user to navigate between two or more
elements in the second document using a keyboard that could
not navigated using the keyboard in the first document.

10. The method of claim 1, further comprising converting
a website that is not accessibility-enabled to a accessibility
enabled website by:

automatically performing the analyzing and producing
steps for each of a plurality of web pages served by the
website for producing an updated set of web pages; and

storing the updated set of web pages.
11. The method of claim 1, wherein automatically produc

ing the second document is performed by executing instruc
tions that are stored, at least in part, within the first document.

12. The method of claim 1, wherein automatically produc
ing the second document is performed by a component of a
browser, executing on the device, that renders the second
document for display.

13. The method of claim 1, wherein automatically produc
ing the second document is performed after the first document
has been requested by an application, wherein the second
document is delivered instead of the first document to the
application.

14. The method of claim 1, wherein automatically produc
ing the second document is performed after the first document
has been delivered to an application that requested the first
document.

Apr. 25, 2013

15. The method of claim 14, wherein the application is one
or more of an application that renders the document for
display or an application that interprets the document for
audio readout.

16. A non-transitory computer readable storage medium
comprising instructions which, when executed by one or
more processors, causes performance of steps comprising:

analyzing a first document to identify a first set of one or
more tags; and

responsive to identifying the first set of one or more tags:
automatically producing a second document based in
part on first set of one or more tags, wherein the second
document includes one or more accessibility features
that were not in the first document;

wherein the method is performed by at least one device
comprising a processor.

17. The non-transitory computer readable storage medium
of claim 16, wherein

automatically producing the second document comprises
replacing each tag in the first set of one or more tags with
a corresponding tag in a second set of one or more tags.

18. The non-transitory computer readable storage medium
of claim 16, wherein

automatically producing the second document comprises:
based at least in part on the first set of one or more tags:

parsing the first document to identify a plurality of ele
ments within the first document;

generating a data structure comprising the plurality of
elements and representing a relationship between two
or more elements of the plurality of elements:

producing the second document based on the data struc
ture.

19. The non-transitory computer readable storage medium
of claim 18, wherein the data structure comprises a plurality
of nodes, wherein each node of the plurality of nodes repre
sents an element within the plurality of elements, and wherein
producing the second document comprises:

traversing each node in the plurality of nodes within the
data structure, wherein traversing a particular node of
the plurality of nodes comprises determining a data
value for the particular node and a relationship of the
particular node to at least one other node in the plurality
of nodes.

20. The non-transitory computer readable storage medium
of claim 18, further comprising instructions which, when
executed by the one or more processors, cause: generating a
cascading style sheet for formatting one or elements, in the
second document, that was not formatted using any cascading
style sheet associated with the first document.

21. The non-transitory computer readable storage medium
of claim 18, wherein the data structure is generated using a
document object model (DOM) application programming
interface.

22. The non-transitory computer readable storage medium
of claim 16, wherein producing the second document com
prises one or more of modifying the first document to obtain
the second document or creating the second document that is
separate from the first document.

23. The non-transitory computer readable storage medium
of claim 16, wherein automatically producing the second
document comprises one or more of

modifying at least one tag, in the first set of one or more
tags, that would not properly be interpreted by a particu
lar assistive technology;

ACCESSIBE LTD EXHIBIT 1009
Page 16 of 18

US 2013/01 04029 A1

replacing at least one tag, in the first set of one or more tags,
that would not properly be interpreted by a particular
assistive technology with a different tag:

adding an identification value or label to at least one tag in
the first set of one or more tags; or

based at least on the first set of one or more tags, adding a
description that (a) can be interpreted by a particular
assistive technology and (b) is not displayed when the
second document is rendered for display by a browser;

based at least on the first set of one or more tags, reformat
ting one or more elements in the first document using
cascading style sheets.

24. The non-transitory computer readable storage medium
of claim 16, wherein the one or more accessibility features
allow a user to navigate between two or more elements in the
second document using a keyboard that could not navigated
using the keyboard in the first document.

25. The non-transitory computer readable storage medium
of claim 16, further comprising instructions which, when
executed by the one or more processors, cause converting a
website that is not accessibility-enabled to a accessibility
enabled website by:

automatically performing the analyzing and producing
steps for each of a plurality of web pages served by the
website for producing an updated set of web pages; and

storing the updated set of web pages.
26. The non-transitory computer readable storage medium

of claim 16, wherein automatically producing the second
document is performed by executing instructions that are
stored, at least in part, within the first document.

27. The non-transitory computer readable storage medium
of claim 16, wherein automatically producing the second
document is performed by a component of a browser, execut
ing on the device, that renders the second document for dis
play.

28. The non-transitory computer readable storage medium
of claim 16, wherein automatically producing the second
document is performed after the first document has been
requested by an application, wherein the second document is
delivered instead of the first document to the application.

29. The non-transitory computer readable storage medium
of claim 16, wherein automatically producing the second
document is performed after the first document has been
delivered to an application that requested the first document.

30. The non-transitory computer readable storage medium
of claim 29, wherein the application is one or more of an
application that renders the document for display or an appli
cation that interprets the document for audio readout.

31. A system comprising:
one or more processors;
a non-transitory computer readable storage medium com

prising instructions which, when executed by one or
more processors, causes performance of steps compris
ing:
analyzing a first document to identify a first set of one or
more tags, and

responsive to identifying the first set of one or more tags:
automatically producing a second document based in
part on first set of one or more tags, wherein the
second document includes one or more accessibility
features that were not in the first document;

wherein the method is performed by at least one device
comprising a processor.

11
Apr. 25, 2013

32. The system of claim 31, wherein automatically produc
ing the second document comprises replacing each tag in the
first set of one or more tags with a corresponding tag in a
second set of one or more tags.

33. The system of claim 31, wherein automatically produc
ing the second document comprises:

based at least in part on the first set of one or more tags:
parsing the first document to identify a plurality of ele

ments within the first document;
generating a data structure comprising the plurality of

elements and representing a relationship between two
or more elements of the plurality of elements:

producing the second document based on the data struc
ture.

34. The system of claim 33, wherein the data structure
comprises a plurality of nodes, wherein each node of the
plurality of nodes represents an element within the plurality
of elements, and wherein producing the second document
comprises:

traversing each node in the plurality of nodes within the
data structure, wherein traversing a particular node of
the plurality of nodes comprises determining a data
value for the particular node and a relationship of the
particular node to at least one other node in the plurality
of nodes.

35. The system of claim33, further comprising instructions
which, when executed by the one or more processors, cause:
generating a cascading style sheet for formatting one or ele
ments, in the second document, that was not formatted using
any cascading style sheet associated with the first document.

36. The system of claim 33, wherein the data structure is
generated using a document object model (DOM) application
programming interface.

37. The system of claim 31, wherein producing the second
document comprises one or more of modifying the first
document to obtain the second document or creating the
second document that is separate from the first document.

38. The system of claim 31, wherein automatically produc
ing the second document comprises one or more of

modifying at least one tag, in the first set of one or more
tags, that would not properly be interpreted by a particu
lar assistive technology;

replacing at least one tag, in the first set of one or more tags,
that would not properly be interpreted by a particular
assistive technology with a different tag:

adding an identification value or label to at least one tag in
the first set of one or more tags; or

based at least on the first set of one or more tags, adding a
description that (a) can be interpreted by a particular
assistive technology and (b) is not displayed when the
second document is rendered for display by a browser;

based at least on the first set of one or more tags, reformat
ting one or more elements in the first document using
cascading style sheets.

39. The system of claim 31, wherein the one or more
accessibility features allow a user to navigate between two or
more elements in the second document using a keyboard that
could not navigated using the keyboard in the first document.

40. The system of claim 31, further comprising instructions
which, when executed by the one or more processors, cause
converting a website that is not accessibility-enabled to a
accessibility-enabled website by:

ACCESSIBE LTD EXHIBIT 1009
Page 17 of 18

US 2013/01 04029 A1 Apr. 25, 2013
12

automatically performing the analyzing and producing
steps for each of a plurality of web pages served by the
website for producing an updated set of web pages; and

storing the updated set of web pages.
41. The system of claim 31, wherein automatically produc

ing the second document is performed by executing instruc
tions that are stored, at least in part, within the first document.

42. The system of claim 31, wherein automatically produc
ing the second document is performed by a component of a
browser, executing on the device, that renders the second
document for display.

43. The system of claim 31, wherein automatically produc
ing the second document is performed after the first document
has been requested by an application, wherein the second
document is delivered instead of the first document to the
application.

44. The system of claim 31, wherein automatically produc
ing the second document is performed after the first document
has been delivered to an application that requested the first
document.

45. The system of claim 44, wherein the application is one
or more of an application that renders the document for
display or an application that interprets the document for
audio readout.

ACCESSIBE LTD EXHIBIT 1009
Page 18 of 18

