

DARMSTADT UNIVERSITY OF TECHNOLOGY

PROGRESS IN AUTOMOBILE LIGHTING

Laboratory of Lighting Technology September 25-26, 2001

ANIMAL FOUNTAIN BY ANTON LUSSMANN, DARMSTAD WGoA EX1029 U.S. Patent No. 11,208,029

Progress in Automobile Lighting

Proceedings of the Symposium

Darmstadt University of Technology Laboratory of Lighting Technology

Published by

Prof. Dr.-Ing. H.-J. Schmidt-Clausen

in the Series

Darmstädter Lichttechnik

Herbert Utz Verlag Wissenschaft

München

ISBN 3-89675-971-X

PAL '01: 2 Volumes, Vol. 8 & Vol. 9; not to be sold separately

Die Deutsche Bibliothek – CIP-Einheitsaufnahme Ein Titeldatensatz für diese Publikation ist bei Der Deutschen Bibliothek erhältlich

ISBN 3-89675-971-X

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen in Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Copyright © 2001 Herbert Utz Verlag GmbH

Herbert Utz Verlag GmbH, München Tel.: 089-277791-00 Fax: 089-277791-01 utz@utzverlag.de www.utzverlag.de

n	-	~	~
μ	α	м	c

Werner Adrian: University of Waterloo, Canada Visual Acuity and its Dependency on Observation Time and Contrast	1
Yukio Akashi: Lighting Research Center, USA The effect of oncoming headlight glare on peripheral detection under a mesopic light level	9
Daniel Armbruster: F. Porsche AG, Germany Motor vehicle signal lamps in a fog environment	23
Gerd Bahnmüller: Automotive Lighting Reutlingen GmbH, Germany Headlamp Development - Reduced Time to Market	28
Gerhard Bierleutgeb: Hella KG Hueck & Co., Germany Interior Lighting Control (ILC) System Aspects for a New Approach	35
Werner D. Bockelmann: Ophthalmologist, Germany Coloured head-down displays (HDD) from the point of view of information transfer	43
Doris Boebel, Automotive Lighting, Germany Signal Image in PES Systems	49
Christian Boehlau: Hella KG Hueck & Co., Germany Optical Sensors for AFS – Supplement and Alternative to GPS	56
Gary Brown: Mira, UK Integrating Pedestrian Impact Protection into Future Headlight Design	61
Berthold Büdel: Audi AG, Germany Clear lenses for lighting components – The actual trend and its problems	74
John D. Bullough: Rensselaer Polytechnic Institute, USA Forward Vehicular Lighting and Inclement Weather Conditions	79
Michael Burg: Hella KG Hueck & Co, Germany Infrared Headlamps for Active Night-Vision Systems	90
Tso-Wei Chang: Lunghwa Institute of Technology, Taiwan Driving Performance Analysis on Interactions among Factors of Center High Mounted Stop Lamp and Road Environment	99
Christophe Chenevier: Valeo Lighting Systems, France Thermal Simulation in Lighting Systems – 5 Days / 5 Degrees	109
Andreas Chudaska: Hella KG Hueck & Co., Germany Headlamp Cleaning Systems – Trends of Development and Future Demands	119
Sharon Cook: Loughborough University, UK Warning beacon intensity	127

Content	page
Francesco Cortese: St Filippo Neri's Hospital, Italy	
A One-Year Experience in a Major Hospital	138
Thomas Dahlem: Volkswagen AG, Germany	
Physiological Investigation of the Proportioning of Headlamp Illumination	155
Maria Teresa Dalmasso: Automotive Lighting, Italy Signal LAMPs with hidden light sources	164
Joachim Damasky: Hella KG Hueck & Co., Germany Trends in Auxiliary Car Lighting and the Influence on OE Development	173
Ad de Visser: Philips Lighting B.V., The Netherlands Activities of CIE relevant to automotive lighting	186
Detlef Decker: Hella KG Hueck & Co., Germany Aspects of dynamic light control in automotive applications	196
Christophe Dubosc: Valeo Lighting Systems, France	***********
Lighting Systems and Show Cars	206
Alexis Dubrovin: Valeo Lighting Systems, France Optimised Lighting Systems Architecture	224
Martin Enders: BMW Group, Germany Pixel Light	234
Jürgen Ewald: Nippon Carbide Industries B. V., The Netherlands Visual Performance of Fluorescent Retroreflective Sheeting	240
Frank Ewerhart: Robert Bosch GmbH, Germany Video Based Curve Light System – Sensor, System and Results	252
Matthias Fiegler: OSRAM GmbH, Germany	
PLANON, a mercury-free flat panel light source, with high potential for automotive applications	266
Michael J. Flannagan: The University of Michigan, USA Feasibility of Developing a Headlighting Rating System	275
Helmut Frank: Mechatronic, Germany	
New Aspects for the Photometric Characterisation of Microprismatic Retroreflective Sheeting	283
Gianpiero Fusco: Automotive Lighting, Italy Headlamps Beam Patterns Evaluation by CCD Camera	309
Takashi Futami: Stanley Electric Co.,Ltd., Japan Development of the "Gatling Beam" Headlamps	316

1007

Content

Reiner Gödecker: Hella KG Hueck & Co, Germany	
Hella introduces MOLIS® - the world's first ,free design' modular lighting system	330
Martin Grimm: Hella KG Hueck & Co., Germany Improved Nighttime Visibility for Drivers through Dynamic Bend Lighting	339
Martin Grimm: Hella KG Hueck & Co., Germany ECE Headlamp Performance Status and Potential for Improvement	348
Helmut Haf: IHH Ingenieurdienstleistungen, Germany SensorLEDIHH – Dual Operational Systemblock to Measure Perceived Brightness and to Simultaneous Adaptive Signal Image Display	355
Michael Hamm: Automotive Lighting, Germany System Strategies for Adaptive Lighting Systems	368
Michael Hamm: Automotive Lighting, Germany Headlamp Performance Specification: A Summary of New and Comprehensive Evaluation Methods	381
Takahiro Hara: University Yoto, Japan Evaluation of AFS from driver's point of view	397
Wolfgang Hendrischk: Hella KG Hueck & Co, Germany From Xenon, BiXenon to Vario Xenon	403
Henning Hogrefe: Automotive Lighting Reutlingen GmbH, Germany Headlamp Design with New Double Filament Bulbs	414
Shao Hong: Fudan University, China The Investigation on Chinese Visual Perception	422
Rainer Huber: OSRAM Opto Seminconductors, Germany Flexible SMT LED Submodules	441
George latan: DBM Reflex Entreprises Inc., Canada Simulation software for complex reflectors	447
S.E. Jenkins, Optical and Photometric Technology Pty Ltd, Australia Use and Measurement of LED Clusters for Signals	454
Norbert L. Johnson: 3M Company, U.S.A. A comparison of Retroreflective Sign Performance in Europe and the United States based on Market Weighted Headlight Data	461
Josef Kalze: Hella KG Hueck & Co., Germany Situation Adapted Light Distributions for AFS-Headlamps	474
Hiroyuki Kanai: Shinshu University, Japan Proposition of Road Visual Environment Simulator for Evaluation Visibility of Driver	485

Content	page
Takeshi Kimura: Koito Manufacturing Co. Ltd, Japan Japan's Plan for Introducing ECE Regulations Into Japanese Safety Regulations	503
Nils Knollmann: Audi AG, Germany	
Interior lighting concept on the basis of psychological and physiological influences on night-time driving	508
Thomas Knoop: LichtVision GmbH, Germany	
Digital Light Measurement for Automobile Applications	520
Shoji Kobayashi: Koito Manufacturing Co. Ltd., Japan Next Generation Lane Indication/Recognition System, Study of Phase II	522
Toshiyuki Kondo: Stanley Electric Co. Ltd., Japan	
Developing Highly Efficient LED Combination Rear Lamps	546
Prasad Koppolu: Visteon Corporation, U.S.A.	
Knowledge-Based Engineering Application for Lighting Design and Development – KBE-SmartLite	560
Harald Küster: Alanod Aluminium-Veredlung GmbH & Co. KG, Germany Large Area Coating of Aluminium Coils for Automotive Applications	577
Peter Lehnert: BMW Technik GmbH, Germany	
Disability and Discomfort Glare under dynamic Conditions – The Effect of Glare Stimuli on the Human Vision	582
Yandan Lin: Fudan University, China	
Visual Performance at Mesopic Light Levels	593
Thomas Luce: Philips Automotive Lighting, Germany	
Optimized Light Source for High Incoupling Efficiencies in Distributive Lighting Systems (DLS)	599
Peter Ludwig, Delphi Automotive Systems, Germany	
Wiring Integrated Illumination	612
Karl Manz: Lichttechnisches Institut der Universität Karlsruhe, Germany	
The Influence by Size of Headlamp on Discomfort Glare	618
Karl Manz: Lichttechnisches Institut der Universität Karlsruhe, Germany Tolerances of Cut-Off-Measurements	635
Janusz Mazur: Warsaw University of Technology, Poland	
Computer Visualisation into Effect of Lighting Road by Car Projector with Using Programs from Group CAD	646
Stefan Milch: smart microwave sensors GmbH, Germany Pedestrian Detection with Radar and Computer Vision	657

...

Content	page
Wolfgang Möhl: SCHOTT Glas, Germany	
Coating Technology and Materials for Lighting Applications	665
Ulrich Möller: Difa Diemer & Fastenrath GmbH, Germany	
Non Dazzling Reading Lamp	679
Kazumoto Morita: National Traffic Safety and Environment Laboratory, Japan	
Theoretical Analysis of Effect of Daytime Running Lamps on the Visibility of Automobiles	682
Martin Mühlenberg: Hella KG Hueck & Co., Germany	
Vision Sensors and Image Processing – a Contribution to Intelligent Light Function Control	695
Julius Muschaweck: Optics & Energy Concepts, Germany	
Constructive design of free-form optical components for illumination	703
Kohei Narisada: Chukyo University, Japan	
Role of Adaptation in Perception under Traffic Lighting Conditions	712
Rainer Neumann: Visteon Corp. Europe, Germany	703
Future Rear Lighting Trends – Salety and Styling Aspects	125
Bernhard Newe: Hella KG Hueck & Co., Germany Improved Signal Lighting	733
Hiroo Oyama: Stanley Electric Co. Ltd., Japan	
The Development of the "Vertical Shape Line-Beam Headlamp"	738
Salvatore Pierro: Automotive Lighting S.p.A., Italy	751
Wilfried Pohl, Bartenbach LichtLabor, Austria	750
Ennancing visibility by reducing Glare of Street Luminaires and Headilamps	
Thomas Reiners: OSRAM GmbH, Germany Introduction of Optical Features into Light Sources	769
luctin Ponnilson: PCS rennilson consulting service 11 S A	
International Cooperation in Establishing Requirements	
for Traffic Control Devices	776
Lawrence M. Rice: Guide Corporation, U.S.A.	
Predictive Tools for Automotive Lighting	785
Birgit Richter: Reitter & Schefenacker GmbH & Co.KG, Germany	
Innovative Tail Lamp Concept Enhances Perceptibility	
Under Bad Weather Conditions	/93
Hartwig Riehl: OSRAM GmbH, Germany	
Interference Coatings in Signal Lighting	804

Content	page
Joachim Ripperger: BMW AG, Germany	
Luminance: the Future Photometric for Rear- and Brake-lights	810
Ernst-Olaf Rosenhahn: Automotive Lighting, Germany Adaptive Headlamp Systems concerning Adverse Weather: Fog	817
Kåre Rumar: The University of Michigan, U.S.A. Intensity of High-Beam Headlights	829
Kåre Rumar: VTI Dev, Sweden Night traffic and the zero vision	849
Arnulf Rupp: Osram GmbH, Germany Discharge Lamps in Automotive Lighting	859
Torsten Ruths: Hella KG Hueck & Co., Germany Vehicle signature	871
Luca Sardi: Automotive Lighting, Italy Light Guides for new Lighting Systems	878
Takashi Sato: Stanley Electric Co. LTD., Japan The Smart Headlamp System with Variable Low-Beam Pattern	883
Thomas Schnell: The University of Iowa, U.S.A. The Development of a Nighttime Driver Visibility Model for ultra-violet activated Pavement Markings	890
Gabriel Schwab: Volkswagen AG, Germany GEOSim – a Tool for the Development of Adaptive Frontlighting System Control	904
Touichirou Shiozawa: Koito Manufacturing Co. Ltd., Japan Thermal Air Flow Analysis of an Automotive Headlamp	915
Michael Sivak: The University of Michigan, U.S.A. Quantitative Comparisons of the Benefits of Applying Adaptive Headlighting to the Current U.S. and European - Low-Beam Patterns	942
Tomasz Targosinski: Motor Transport Institute, Poland	
Analysis of the Properties of the ECE Requirements Concerning Headlights	958
Qifei Tu: The Institute of light sources, Fudan University, China Perspectives of LED Automotive Signal Lights in China	969
Wout van Bommel: Philips Lighting, The Netherlands Road Lighting Research: yesterday, today and tomorrow	974
Mark van den Berg: LumiLeds Lighting, The Netherlands Development of High Brightness LED's for Automotive Applications	987
John van Derlofske: Rensselaer Polytechnic Institute, U.S.A. Evaluation of High Intensity Discharge Automotive Forward Lighting	994

-

and the second second second

Х

Content	page
Stephan Völker: Hella KG, Germany Investigation of the visible range of different types of headlamps	1009
Alexander von Hoffmann: Volkswagen AG, Germany Analysis of Adaptive Light Distributions with AFSim	1018
Pieter L. Walraven: Em TNO Human Factors, The Netherlands Required changes in $V_M(\lambda)$	1030
Herbert Wambsganß: Hella Innenleuchten Systeme GmbH, Germany Innovations in Lighting Technology in Vehicle Interiors	1035
Takao Watanabe: Koito Manufacturing Co. LTD., Japan The Research on the Effectiveness of AFS Bending Lamp in Japanese Road Environment	, 1042
Christine Weber: Reitter & Schefenacker, Germany Micro controlled LED rear combination lamp with innovative signal configurations	1054
Thomas Weber: Hella KG Hueck & Co., Germany Virtual Night Drive	1062
Peter Weissleder: Audi AG, Germany The Demand for Attraction – Styling meets Design	1070
Gösta Werner: Swedish National Testing and Research Institute, Sweden Conspicuouity of road workers at night and day, experiences of two Swedish studies	1078
Wei Xu: Institute of Electric Light Sources, Fudan University, China The Measurement of Photometric Parameters of Lamps	1083
Wojciech Żagan: Warsaw University of Technology, Poland Chosen luminance measurement results of the cars' signal lamps	1088
Jiyong Zhang: Fudan University of Shanghai, China Computer Simulation of Headlamp Beam Pattern and Its Potential Utilization	1096
Li Zhou: Institute of Light Sources, Fudan University, China The Monte Carlo Method in Design of Automobile Lighting	1104
Wei Zhou: Fudan University, China Measurement of the Temperature Distribution on the Filaments of the Automotive Lamps Using the Spectroscopic Method	1110

Development of High Brightness LED's for Automotive Applications:

Mark van den Berg , LumiLeds Lighting Netherlands

1. Introduction

In recent years the efficiency of Light Emitting Diode (LED) technology has increased dramatically making it the preferred light source in many different applications. Typical examples of applications utilizing the improvements of the LED developments are full color video signs, information signs, traffic signals and flashers.

In the automotive market LED's are the preferred solution for High Mounted Stop Lamps. Several Rear combination Lamps are using high brightness LED's, and in the United States the first Emergency Vehicles are using Light-bars on top of the car using LED's.

The reason for this large scale conversion is the fact that high brightness LED's are offering a unique set of benefits such as lower power consumption, Long operating life, compact size, increased reliability and very low maintenance requirements depending on the application.

2. History of LED Technology

The first LED's appeared during the late 1960s with typical efficiencies (Luminous watt output per electrical watt input) of 0.05 Lumens/Watt (Im/W). It wasn't until the late 1980s with the introduction of Aluminium Gallium Arsenide (AlGaAs) technology did LED's really begin to come close to incandescent bulbs in terms of efficiency at 7Lm/W in Red.

AIGaAs technology remained the standard "High Brightness" material until the introduction of Aluminium Indium Gallium Phosphide (AlInGaP) and Indium Gallium Nitride (InGaN) in the mid 1990s with dramatically increased performance in Lumens/Watt making LED's more efficient than filtered incandescent and later even Tungsten Halogen

The AllnGaP material produces colours ranging from Amber 588 nM through to Red 630nM.

InGaN material produces colours from Blue 470nM through to Green 530nM. The InGaN material is also used for producing White LED's by taking a Blue chip and including a phosphor layer in the LED.

3. Different types of LED's

There are several types of LED's available in the market. The conventional 3mm or 5mm through hole LED's, the Surface Mount LED's (SMD) which are being produced by the billions every year.

SMD LED's are very popular for dashboard backlighting. In the late 1990s the Super Flux LED's have been introduced (Picture 1). This LED became a standard in the Automotive industry for High Mount Stop Lamps. Whereas most conventional LED's are limited in light-output, this Super Flux LED's had the capability to maintain reliable at higher currents due to improved heat management.

The Super Flux LED can be driven at 70mA. Utilizing the best available TS (Transparent Substrate) AlInGaP material this LED has set new records in light output per LED opening up a range of new application. This LED was initially available in Red and Amber but will in 2001 also become available in Blue,Green,Cyan and White

Picture 1: Super Flux LED's

The next step towards higher performance LED's was the SnapLED[™] LED introduced by LumiLeds Lighting in the late 1990s. This LED could be used at current of 150mA while maintaining reliability and efficiency. This LED also enabled the reduction of the number of LED's used in specific applications which helped to reduce the overall system costs, as well as had the possibility to do stylish 3-dimensional array designs.

The trend was clearly set. In order to enable more applications inside and outside automotive a few things need to happen.

- 1. continue to improve the efficiency of the AlInGaP and InGaN material to enable higher Lumens/Watt values
- 2. Improve packaging of the chip to get the light in the correct direction as efficient as possible
- 3. Find a way to drive the chips harder while keeping the same reliability , same forward Voltage and same efficiency to enable higher Light-output.
- 4. Further reduce the number of LED's used, and reduce the overall system cost per application.

LumiLeds Lighting introduced in 1998 a high flux emitter (Luxeon $^{\text{TM}}$) (Picture 1) with even higher current capabilities. The main characteristics of the LED are the large LED Chip (Picture 3), excellent thermal characteristics and an optimized light extraction making it possible to drive the AllnGaP LED's at 250mA and the InGaN LED's at 350mA.

The LED's show a dramatic increase in light output per device and per unit area when compared to other LED's. There is no sacrifice in reliability caused by the increase in total device current since the current per unit area in unchanged. (Larger Chip). The LED chip itself is mounted on a slug that serves as a heatsink to dissipate the heat from the chip and to transfer this heat to a secondary heat sink. The slug is fixed in a body that support the cathode- and anode lead. On the topside a plastic lens covers the LED chip. The body and the plastic lens can accommodate a high expansion and shrinkage due to the temperature differences, and the chip is surrounded by a low stress optocoupling gel. Both lens and gel are highly resistant to UV radiation (from outside) to ensure high lumen maintenance.

Picture 2: Luxeon ™ High Flux Emitter

Picture 3: Large AllnGaP Chip vs. small chip

The Luxeon LED is available in 2 different radiation pattern. A Batwing radiation pattern with a peak intensity near 40 degrees with a steep drop-off of intensity outside this angles. This pattern has been designed to provide uniform incidence to a planar secondary optic.

The second radiation pattern is a Lambertian "point source" pattern.

Good thermal system design is critical to achieve the best efficiency and reliability of the Luxeon[™] LED's. AllnGaP LED's (Red and Amber) experience a temporary loss in light output as the temperature increases. The lower the die or the junction temperature is kept, the better the luminoue efficiency of the product.

In 2001 LumiLeds released the Lambertian LED in Red, Red-Orange and Amber with capabilities to use at current of 385mA, achieving records in light output performance of typical 44 lumens per LED in Red. The Lambertian LED is using a new type of special shaped chip which maximized the light output efficiencies.

Also the Batwing Luxeon™ has been qualified at 350mA for all colors.

Type of LED	SMD	5mm	Super	SnapLED	Luxeon	Luxeon
			Flux		Batwing	Lambertian
DC Forward current	20mA	20m	70mA	150mA	350mA	385mA
		A				
Typical light output	0.5 lm	1 lm	3 lm	6 lm	25 lm	44 lm
(red)						

Table of Power development:

4. Potential Applications for LED's in Automotive

can start to make use of the benefits of LED's.

As stated earlier, several applications are today using LED technology as the preferred solution. Main applications on the road today are dashboard backlighting, indicators, Air-conditioning – and Radio backlighting as well as High Mount Stop Lamps and Rear Combination Lamps in Automotive exterior. As the LED's are getting brighter and brighter more applications in Automotive

In the next year we will see the first cars on the road using Amber LED's for Turn Signals. White LED's for puddle lamps or position lamps , as well as Red,Green,Blue LED's for Navigation systems.

Inside the car High Flux LED's are being considered for mood-lighting, ambient lighting and reading lamps.

In addition to all these potentials, the probably biggest potential for LED's in Automotive is in Headlamps. As LED's are achieving a brightness of 150 – 200 Lumen in White it will be possible to achieve the needed brightness levels.

991

Application	LED used today LED for the future		
Interior :			
Dashboard-	SMD	SMD or Luxeon (Edge-	
backlighting		lighting)	
Buttons	SMD	SMD	
AC / Radio	SMD	SMD or Luxeon	
Navigationsystem	No	Luxeon	
Mood Lighting	No	Luxeon	
Ambient Lighting	No	Luxeon	
Reading Lamps	No	Luxeon	
Exterior :			
Rear Combination	Super Flux or	Super Flux, SnapLED or	
Lamp	SnapLED	Luxeon	
High Mount Stop	Super Flux or	Super Flux or SnapLED	
Lamp	SnapLED		
Front Trun Signal	Super Flux or	Super Flux, SnapLED or	
	SnapLED	Luxeon	
Back-up Lamp	No	Luxeon	
License Plate Lamp	No	Super Flux or Luxeon	
Puddle Light	No	Super Flux or Luxeon	
Signal Mirror	Super Flux or	Super Flux, SnapLED or	
	SnapLED	Luxeon	
Side Repeater	Super Flux or	Super Flux, SnapLED or	
	SnapLED	Luxeon	
Position Lamps	No	Luxeon	
Headlamps	No	Luxeon	

ورد

Table of LED / Application

5. Summary and Outlook

High Flux LED's will play a big role in the future of Lighting. More and more applications in general illumination will start to use LED's. In the Automotive market there is a big potential to use the High flux LED's in a lot of different applications, giving both the end-user as well as the car-maker benefits. The Luxeon[™] LED's will allow further reduction in LED's and in specific applications reduce the overall system costs.

Important is to use the LED's in the right way in order to achieve the maximum result and benefits.

The future of the LED is bright. Enclosed a flux per LED roadmap for the next years for the main colors in Automotive Red, Amber and White

Colour	2001	2002	mid 2003	mid 2004
Red	12	44*	48	50
Amber	12	36*	40	44
White	18	40	75	120

Typical performance of LED in Lumens/LED. Chip size or current density might change

* new special shaped chip @385mA

All values are subject to change, and are best on expectations.