

DARMSTADT UNIVERSITY OF TECHNOLOGY

PROGRESS IN AUTOMOBILE LIGHTING

Laboratory of Lighting Technology September 25-26, 2001

ANIMAL FOUNTAIN BY ANTON LUSSMANN, DARMSTAD WGoA EX1031 U.S. Patent No. 11,208,029

Progress in Automobile Lighting

Proceedings of the Symposium

Darmstadt University of Technology Laboratory of Lighting Technology

Published by

Prof. Dr.-Ing. H.-J. Schmidt-Clausen

in the Series

Darmstädter Lichttechnik

Herbert Utz Verlag Wissenschaft

München

ISBN 3-89675-971-X

PAL '01: 2 Volumes, Vol. 8 & Vol. 9; not to be sold separately

Die Deutsche Bibliothek – CIP-Einheitsaufnahme Ein Titeldatensatz für diese Publikation ist bei Der Deutschen Bibliothek erhältlich

ISBN 3-89675-971-X

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen in Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Copyright © 2001 Herbert Utz Verlag GmbH

Herbert Utz Verlag GmbH, München Tel.: 089-277791-00 Fax: 089-277791-01 utz@utzverlag.de www.utzverlag.de

n	-	~	~
μ	α	м	c

Werner Adrian: University of Waterloo, Canada Visual Acuity and its Dependency on Observation Time and Contrast	1
Yukio Akashi: Lighting Research Center, USA The effect of oncoming headlight glare on peripheral detection under a mesopic light level	9
Daniel Armbruster: F. Porsche AG, Germany Motor vehicle signal lamps in a fog environment	23
Gerd Bahnmüller: Automotive Lighting Reutlingen GmbH, Germany Headlamp Development - Reduced Time to Market	28
Gerhard Bierleutgeb: Hella KG Hueck & Co., Germany Interior Lighting Control (ILC) System Aspects for a New Approach	35
Werner D. Bockelmann: Ophthalmologist, Germany Coloured head-down displays (HDD) from the point of view of information transfer	43
Doris Boebel, Automotive Lighting, Germany Signal Image in PES Systems	49
Christian Boehlau: Hella KG Hueck & Co., Germany Optical Sensors for AFS – Supplement and Alternative to GPS	56
Gary Brown: Mira, UK Integrating Pedestrian Impact Protection into Future Headlight Design	61
Berthold Büdel: Audi AG, Germany Clear lenses for lighting components – The actual trend and its problems	74
John D. Bullough: Rensselaer Polytechnic Institute, USA Forward Vehicular Lighting and Inclement Weather Conditions	79
Michael Burg: Hella KG Hueck & Co, Germany Infrared Headlamps for Active Night-Vision Systems	90
Tso-Wei Chang: Lunghwa Institute of Technology, Taiwan Driving Performance Analysis on Interactions among Factors of Center High Mounted Stop Lamp and Road Environment	99
Christophe Chenevier: Valeo Lighting Systems, France Thermal Simulation in Lighting Systems – 5 Days / 5 Degrees	109
Andreas Chudaska: Hella KG Hueck & Co., Germany Headlamp Cleaning Systems – Trends of Development and Future Demands	119
Sharon Cook: Loughborough University, UK Warning beacon intensity	127

Content	page
Francesco Cortese: St Filippo Neri's Hospital, Italy Biological and Statistical Profile of Road Accidents Victims in an Urban Area	
A One-Year Experience in a Major Hospital	138
Thomas Dahlem: Volkswagen AG, Germany	
Physiological Investigation of the Proportioning of Headlamp Illumination	155
Maria Teresa Dalmasso: Automotive Lighting, Italy Signal LAMPs with hidden light sources	164
Joachim Damasky: Hella KG Hueck & Co., Germany Trends in Auxiliary Car Lighting and the Influence on OE Development	173
Ad de Visser: Philips Lighting B.V., The Netherlands Activities of CIE relevant to automotive lighting	186
Detlef Decker: Hella KG Hueck & Co., Germany Aspects of dynamic light control in automotive applications	196
Christophe Dubosc: Valeo Lighting Systems, France Lighting Systems and Show Cars	206
Alexis Dubrovin: Valeo Lighting Systems, France Optimised Lighting Systems Architecture	224
Martin Enders: BMW Group, Germany Pixel Light	234
Jürgen Ewald: Nippon Carbide Industries B. V., The Netherlands Visual Performance of Fluorescent Retroreflective Sheeting	240
Frank Ewerhart: Robert Bosch GmbH, Germany Video Based Curve Light System – Sensor, System and Results	252
Matthias Fiegler: OSRAM GmbH, Germany PLANON, a mercury-free flat panel light source, with high potential for automotive applications	266
Michael J. Flannagan: The University of Michigan, USA Feasibility of Developing a Headlighting Rating System	275
Helmut Frank: Mechatronic, Germany	
New Aspects for the Photometric Characterisation of Microprismatic Retroreflective Sheeting	283
Gianpiero Fusco: Automotive Lighting, Italy Headlamps Beam Patterns Evaluation by CCD Camera	309
Takashi Futami: Stanley Electric Co.,Ltd., Japan Development of the "Gatling Beam" Headlamps	316

1007

Content

Reiner Gödecker: Hella KG Hueck & Co, Germany	· •
Hella introduces MOLIS® - the world's first ,free design' modular lighting system	330
Martin Grimm: Hella KG Hueck & Co., Germany Improved Nighttime Visibility for Drivers through Dynamic Bend Lighting	339
Martin Grimm: Hella KG Hueck & Co., Germany ECE Headlamp Performance Status and Potential for Improvement	348
Helmut Haf: IHH Ingenieurdienstleistungen, Germany SensorLEDIHH – Dual Operational Systemblock to Measure Perceived Brightness and to Simultaneous Adaptive Signal Image Display	355
Michael Hamm: Automotive Lighting, Germany System Strategies for Adaptive Lighting Systems	368
Michael Hamm: Automotive Lighting, Germany Headlamp Performance Specification: A Summary of New and Comprehensive Evaluation Methods	381
Takahiro Hara: University Yoto, Japan Evaluation of AFS from driver's point of view	397
Wolfgang Hendrischk: Hella KG Hueck & Co, Germany From Xenon, BiXenon to Vario Xenon	403
Henning Hogrefe: Automotive Lighting Reutlingen GmbH, Germany Headlamp Design with New Double Filament Bulbs	414
Shao Hong: Fudan University, China The Investigation on Chinese Visual Perception	422
Rainer Huber: OSRAM Opto Seminconductors, Germany Flexible SMT LED Submodules	441
George latan: DBM Reflex Entreprises Inc., Canada Simulation software for complex reflectors	447
S.E. Jenkins, Optical and Photometric Technology Pty Ltd, Australia Use and Measurement of LED Clusters for Signals	454
Norbert L. Johnson: 3M Company, U.S.A. A comparison of Retroreflective Sign Performance in Europe and the United States based on Market Weighted Headlight Data	461
Josef Kalze: Hella KG Hueck & Co., Germany Situation Adapted Light Distributions for AFS-Headlamps	474
Hiroyuki Kanai: Shinshu University, Japan Proposition of Road Visual Environment Simulator for Evaluation Visibility of Driver	485
	•

Content	page
Takeshi Kimura: Koito Manufacturing Co. Ltd, Japan Japan's Plan for Introducing ECE Regulations Into Japanese Safety Regulations	503
Nils Knollmann: Audi AG, Germany	
Interior lighting concept on the basis of psychological and physiological influences on night-time driving	508
Thomas Knoop: LichtVision GmbH, Germany	
Digital Light Measurement for Automobile Applications	520
Shoji Kobayashi: Koito Manufacturing Co. Ltd., Japan Next Generation Lane Indication/Recognition System, Study of Phase II	522
Toshiyuki Kondo: Stanley Electric Co. Ltd., Japan	
Developing Highly Efficient LED Combination Rear Lamps	546
Prasad Koppolu: Visteon Corporation, U.S.A.	
Knowledge-Based Engineering Application for Lighting Design and Development – KBE-SmartLite	560
Harald Küster: Alanod Aluminium-Veredlung GmbH & Co. KG, Germany Large Area Coating of Aluminium Coils for Automotive Applications	577
Peter Lehnert: BMW Technik GmbH, Germany	
Disability and Discomfort Glare under dynamic Conditions – The Effect of Glare Stimuli on the Human Vision	582
Yandan Lin: Fudan University, China	
Visual Performance at Mesopic Light Levels	593
Thomas Luce: Philips Automotive Lighting, Germany	
Optimized Light Source for High Incoupling Efficiencies in Distributive Lighting Systems (DLS)	599
Peter Ludwig, Delphi Automotive Systems, Germany	
Wiring Integrated Illumination	612
Karl Manz: Lichttechnisches Institut der Universität Karlsruhe, Germany	
The Influence by Size of Headlamp on Discomfort Glare	618
Karl Manz: Lichttechnisches Institut der Universität Karlsruhe, Germany Tolerances of Cut-Off-Measurements	635
Janusz Mazur: Warsaw University of Technology, Poland	
Computer Visualisation into Effect of Lighting Road by Car Projector with Using Programs from Group CAD	646
Stefan Milch: smart microwave sensors GmbH, Germany Pedestrian Detection with Radar and Computer Vision	657

...

Content	page
Wolfgang Möhl: SCHOTT Glas, Germany	
Coating Technology and Materials for Lighting Applications	665
Ulrich Möller: Difa Diemer & Fastenrath GmbH, Germany	
Non Dazzling Reading Lamp	679
Kazumoto Morita: National Traffic Safety and Environment Laboratory, Japan	
Theoretical Analysis of Effect of Daytime Running Lamps on the Visibility of Automobiles	682
Martin Mühlenberg: Hella KG Hueck & Co., Germany	
Vision Sensors and Image Processing – a Contribution to Intelligent Light Function Control	695
Julius Muschaweck: Optics & Energy Concepts, Germany	
Constructive design of free-form optical components for illumination	703
Kohei Narisada: Chukyo University, Japan	
Role of Adaptation in Perception under Traffic Lighting Conditions	712
Rainer Neumann: Visteon Corp. Europe, Germany	723
Future Rear Lighting Trends – Safety and Styling Aspects	125
Bernhard Newe: Hella KG Hueck & Co., Germany Improved Signal Lighting	733
Hiroo Oyama: Stanley Electric Co. Ltd., Japan	
The Development of the "Vertical Shape Line-Beam Headlamp"	738
Salvatore Pierro: Automotive Lighting S.p.A., Italy Plastic Transparent Reflectors for Clear Lens Signal Functions	751
Wilfried Pohl, Bartenbach LichtLabor, Austria	759
Enhancing Visibility by reducing Glare of Street Luminaires and Headlamps	
Thomas Reiners: OSRAM GmbH, Germany Introduction of Optical Features into Light Sources	769
Justin Rennilson: RCS rennilson consulting service, U.S.A.	
International Cooperation in Establishing Requirements	
for Traffic Control Devices	776
Lawrence M. Rice: Guide Corporation, U.S.A.	
Predictive Tools for Automotive Lighting	785
Birgit Richter: Reitter & Schefenacker GmbH & Co.KG, Germany	
Innovative Tail Lamp Concept Enhances Perceptibility	
Under Bad Weather Conditions	793
Hartwig Riehl: OSRAM GmbH, Germany	
Interference Coatings in Signal Lighting	804

Content Joachim Ripperger: BMW AG, Germany Luminance: the Future Photometric for Rear- and Brake-lights Ernst-Olaf Rosenhahn: Automotive Lighting, Germany Adaptive Headlamp Systems concerning Adverse Weather: Fog Kåre Rumar: The University of Michigan, U.S.A. Intensity of High-Beam Headlights Kåre Rumar: VTI Dev, Sweden Night traffic and the zero vision Arnulf Rupp: Osram GmbH, Germany Discharge Lamps in Automotive Lighting Torsten Ruths: Hella KG Hueck & Co., Germany Vehicle signature Luca Sardi: Automotive Lighting, Italy Light Guides for new Lighting Systems Takashi Sato: Stanley Electric Co. LTD., Japan The Smart Headlamp System with Variable Low-Beam Pattern Thomas Schnell: The University of Iowa, U.S.A. The Development of a Nighttime Driver Visibility Model for ultra-violet activated Pavement Markings Gabriel Schwab: Volkswagen AG, Germany	page
Luminance: the Future Photometric for Rear- and Brake-lights	810
	817
	829
	849
	859
	871
	878
	883
The Development of a Nighttime Driver Visibility Model	890
Gabriel Schwab: Volkswagen AG, Germany GEOSim – a Tool for the Development of Adaptive Frontlighting System Control	904
Touichirou Shiozawa: Koito Manufacturing Co. Ltd., Japan Thermal Air Flow Analysis of an Automotive Headlamp	915
Michael Sivak: The University of Michigan, U.S.A. Quantitative Comparisons of the Benefits of Applying Adaptive Headlighting to the Current U.S. and European - Low-Beam Patterns	942
Tomasz Targosinski: Motor Transport Institute, Poland	
Analysis of the Properties of the ECE Requirements Concerning Headlights	958
Qifei Tu: The Institute of light sources, Fudan University, China Perspectives of LED Automotive Signal Lights in China	969
Wout van Bommel: Philips Lighting, The Netherlands Road Lighting Research: yesterday, today and tomorrow	974
Mark van den Berg: LumiLeds Lighting, The Netherlands Development of High Brightness LED's for Automotive Applications	987
John van Derlofske: Rensselaer Polytechnic Institute, U.S.A. Evaluation of High Intensity Discharge Automotive Forward Lighting	994

-

and the second second second

Х

Content	page
Stephan Völker: Hella KG, Germany Investigation of the visible range of different types of headlamps	1009
Alexander von Hoffmann: Volkswagen AG, Germany Analysis of Adaptive Light Distributions with AFSim	1018
Pieter L. Walraven: Em TNO Human Factors, The Netherlands Required changes in $V_M(\lambda)$	1030
Herbert Wambsganß: Hella Innenleuchten Systeme GmbH, Germany Innovations in Lighting Technology in Vehicle Interiors	1035
Takao Watanabe: Koito Manufacturing Co. LTD., Japan The Research on the Effectiveness of AFS Bending Lamp in Japanese Road Environment	, 1042
Christine Weber: Reitter & Schefenacker, Germany Micro controlled LED rear combination lamp with innovative signal configurations	1054
Thomas Weber: Hella KG Hueck & Co., Germany Virtual Night Drive	1062
Peter Weissleder: Audi AG, Germany The Demand for Attraction – Styling meets Design	1070
Gösta Werner: Swedish National Testing and Research Institute, Sweden Conspicuouity of road workers at night and day, experiences of two Swedish studies	1078
Wei Xu: Institute of Electric Light Sources, Fudan University, China The Measurement of Photometric Parameters of Lamps	1083
Wojciech Żagan: Warsaw University of Technology, Poland Chosen luminance measurement results of the cars' signal lamps	1088
Jiyong Zhang: Fudan University of Shanghai, China Computer Simulation of Headlamp Beam Pattern and Its Potential Utilization	1096
Li Zhou: Institute of Light Sources, Fudan University, China The Monte Carlo Method in Design of Automobile Lighting	1104
Wei Zhou: Fudan University, China Measurement of the Temperature Distribution on the Filaments of the Automotive Lamps Using the Spectroscopic Method	1110

The Research on the Effectiveness of AFS Bending Lamp in Japanese Road Environment

6**3**

Takao Watanabe, Noriyuki Nakamura, Naoki Matsumura: Koito Manufacturing Co. LTD., Japan

1. Introduction

The achievement of good low-beam visibility at low and medium driving speeds is a particularly important task in Japan's general road environment. To examine the effectiveness of AFS bending lamps in achieving this task, we manufactured and tested a prototype AFS (Adaptive Front-lighting System) featuring a modified light distribution below the cutoff line.

2. The Road Environment in Japan

2.1. Road Environment Features

Japan is an island nation with predominantly mountainous geography, and inhabitable regions account for only about 20% of the nation's total land area. Passenger cars are used most frequently for commuting. The principal characteristics of Japan's road environment can be summarized as follows, in relation to commuting routes at night.

No.	Home location	Work location	Road environment	Visibility issue	
(1)	Plain region		(1) Mainly straight roads & intersections(2) Fair number of road lamps in cities/suburbs(3) Mainly national & prefectural roads	Pedestrian visibility on roads and at intersections Improved by road lamps	
(2)	Hilly region	Plain	 Mainly curved roads in hill areas Small number of road lamps in hill areas Mainly prefectural and township roads 	Lane visibility on curved roads	
Note	<u></u>	\$	In plain big-city areas, commuting is primarily by	rail.	

Table 1 Commuting road environment

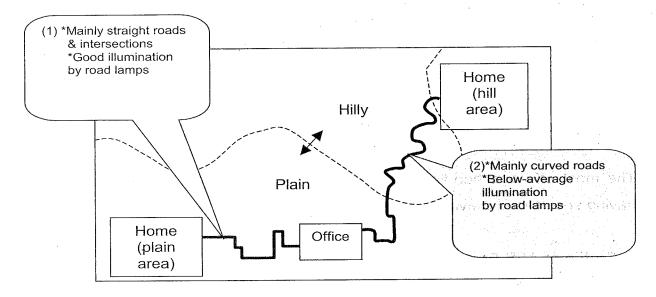


Fig.1 Typical examples of commuting routes in Japan

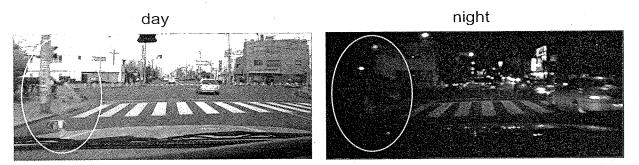


Fig.2 View of a city intersection

Fig.3 Curved prefectural road in suburbs

- 2.2. Characteristics of Curved Roads (township, prefectural)
- (1) Small curvature (R16-40, driving speed of 20-50 km/h)
- (2) No more than two lanes
- (3) Minimum road lamp illumination at sight-blocking curves
- (4) Heavy traffic even at night (i.e., mostly low-beam driving)

The most effective headlamp system under these road conditions is an AFS having specialized swiveling lamps to cover below the cutoff line.

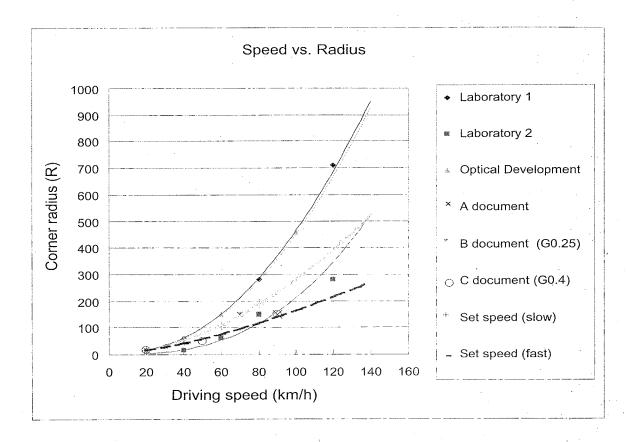
19

3. Profile of AFS Prototype

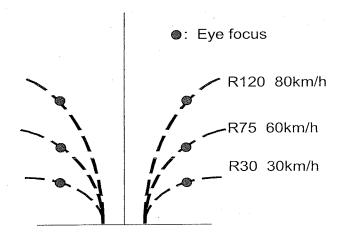
3.1. Development Concept

To develop a headlamp system which will provide <u>satisfactory visibility</u> especially for low- to mid-speed cornering.

* "Satisfactory visibility": A sufficiently visible field obtained through light distribution around the driver's eye focus point.


(Photometry for intersections not included as a target of this development.)

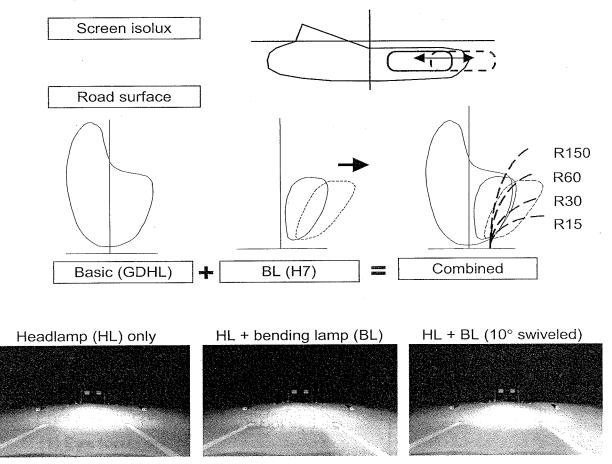
3.2. Aim of Light Distribution


3.2.1. Photometric conditions for low/mid-speed cornering

- (1) Eye focus on:
 - a. Center lane marking in case of right cornering
 - b. Left lane marking in case of left cornering
 - c. Forward point arriving about 1.5 seconds later
- (2) Corner radius and assumed driving speed

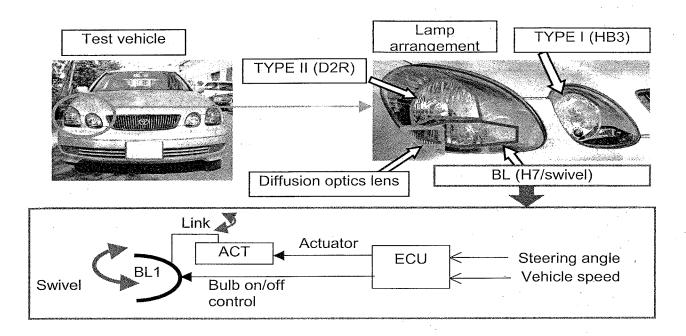
	Speed	Radius	
Low	20-40	15-40	
Medium	40-60	40-75	
	60-80	75-120	
High	80-	120-	

Relation between Radius, Speed, Eye Focus (arriving point 1,5 sec. later)



3.2.2. Designed light distribution for low/mid-speed cornering

To ensure an illuminance of 50 lx or more in the eye focus area during low- or mid-speed cornering, we examined the basic light diffusion patterns of gasdischarge headlamps. It was found that, if the diffusion becomes excessive, the far visibility declines and the overall illuminance of the visible field decreases. To overcome this problem, additional lamps (H7) were introduced to ensure


sufficient illuminance by reducing the light diffusion requirement of the

headlamps. Further, by providing a reflector-swiveling capability to the additional lamps, a necessary amount of light was distributed to the eye focus area during cornering.

3.2.3. Construction and control

In our AFS prototype, the ECU functions to turn on/off the bending lamp and to adjust the reflector swivel angle during cornering in response to the input of steering angle and vehicle speed data. Thus the AFS prototype automatically optimizes the light distribution in the eye focus area.

4. Verification of Effectiveness

4.1. Selection of a Test Course

In view of Japan's typical road conditions reported in section 2 and the AFS prototype concept introduced in section 3, possible test courses were investigated around the Koito Shizuoka plant. A section of Prefectural Road 75 located in the Takayama district of Shimizu City was selected for testing.

	No. of lanes	Road width	Curvatures	Road lamps
Typical prefectural roads	2	7-9m	R 20-60	In sight-blocki ng corners
Takayama section of Pref. Road 75	2	7m	R 16-85	In each corner

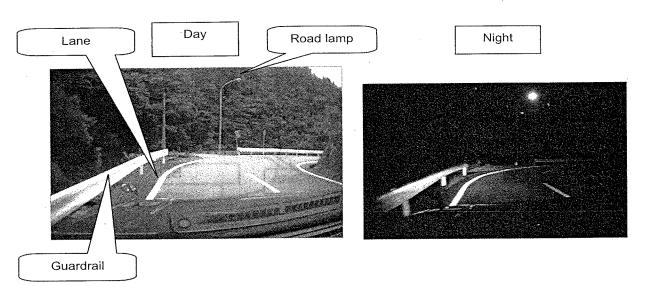


Fig.4 Approach to R16 right corner on test course

- 4.2. Visibility Rating Method
- 4.2.1. Perceptual rating by human subjects
 - (1) Subjects

Five subjects were selected among those having a driving experience of at least five years, normal eyesight, and aged between 20 to 59.

- (2) Rating procedures
 - a. The subjects were conditioned to the test course by driving a conventional (non-AFS) car three round trips along the test course.
 - b. Five rating targets were set in the test course, where the subject was asked to rate the visibility of those targets during driving operation according to a five-point rating:

5 points: Very good visibility

to

1 point: No visibility at all.

The rating by the subject was recorded by an instructor in the adjacent passenger's seat.

- c. Each subject underwent the above rating test two times, using a conventional car and an AFS-equipped car.
- d. The rating results were analyzed.

Rating target		Curvature R (m)	Spped (km/h)	Rated target
1	Mid-speed corner 1 (righ	nt) 85	70	center lane marking (long.)
2	Mid-speed corner 2 (left) 85	70	left lane marking (long.)
3	Mid-speed corner 3 (righ	nt) 55	60	center lane marking (long.+lat.)
4	Mid-speed corner 4 (left) 55	60	left lane marking (long.+lat.)
5	Low-speed corner 1 (rig	ht) 16	35	center lane marking (lat.)
6	Low-speed corner 2 (lef	t) 16	35	left lane marking (lat.)

Note: Long. means "emphasis on longitudinal extension" and lat. means "emphasis on lateral diffusion."

Table 2 Targets in the Visibility Rating Test

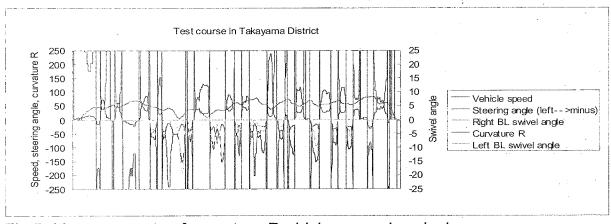
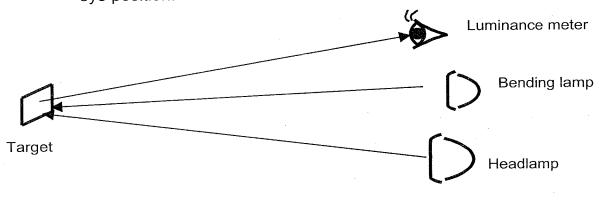


Fig.5 Measurements of curvature R, driving speed, swivel

4.2.2. Quantitative evaluation of eye focus area visibility


(1) Investigation of eye focus position

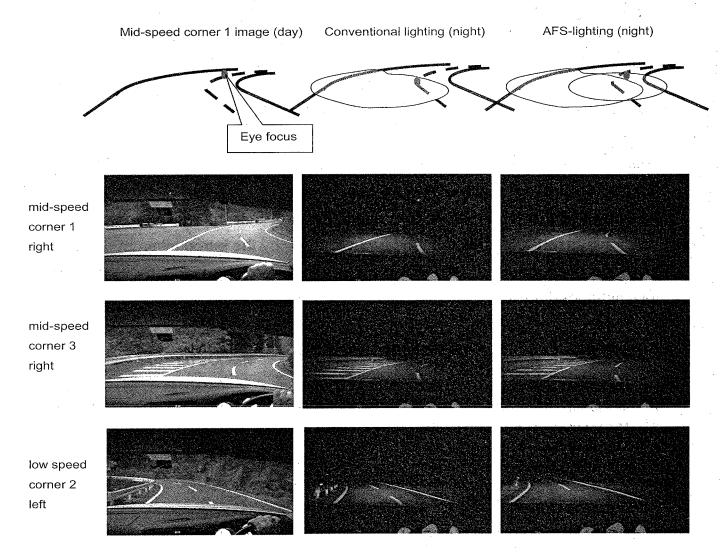
It was assumed that, during driving, drivers fixate their eyes at a point where the vehicle will arrive in 1.5 seconds later and which varies slightly according to corner curvature and driving speed.

- a. Subjects were asked to drive an AFS car both in the day and night and a conventional car in the night. During each driving test, the subject was questioned at the above-mentioned five target locations as to the position of their eye focus.
- b. Of the responses from the subjects, the most frequent response was taken as indicating the eye focus position at each of the target locations.

- (2) Quantitative data in eye focus areas
- a. Measurement of target luminance, background luminance and their contrast

Since it is extremely difficult to measure the luminance of visibility rating targets on a real road for traffic reasons, the measurement was performed in a secluded visibility test ground offering various road curvature conditions. As illustrated below, a target was placed in a setting simulating the positions of the eye, bending lamp and headlamp. Then the luminance values of the target and its background were measured with a luminance meter placed at the eye position.

b. Reflectivity of Target
The target plate, measuring 20 cm by 20 cm and colored gray mat,
had a reflectivity of 5%.

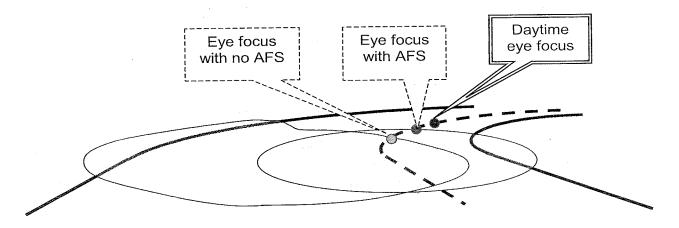

4.3. Evaluation Results

4.3.1. Perceptual rating by subjects

The results of visibility rating by the five subjects clearly indicate that the cornering visibility improved by changing from a conventional car to an AFS-equipped car.

Results of Perceptual Rating

Rating target		Curvature R (m)	Spped (km/h)	Rating point Conventional car	AFS-equipped car
1	Mid-speed corner 1 (rig	ht) 85	70	3	4
2	Mid-speed corner 2 (lef	t) 85	70	3	4
3	Mid-speed corner 3 (rig	ht) 55	60	2	3
4	Mid-speed corner 4 (lef	t) 55	60	2	3
5	Low-speed corner 1 (rig	ht) 16	35	1	2
6	Low-speed corner 2 (let	t) 16	35	1	2


day

non-AFS (night)

AFS (night)

4.3.2. Quantitative evaluation by luminance contrast

The contrast between the luminance of the target and that of the background was compared between AFS and conventional headlamp systems. The results indicate that the luminance contrast increased in most of the target sites by replacing the conventional headlamp system with our AFS prototype.

4.3.2.1. Luminance contrast at eye focus

As shown in the table below, the results indicate that the luminance contrast value increased 1.5 times to stand at around 1.0 by the introduction of an AFS. Thus we confirmed that the AFS markedly improved the nighttime visibility in low/mid-speed driving.

Rat	ing target	Curvature R (m)	Spped (km/h)	Contra Non AFS (A)	st AFS (B)	(B) (A)
1	Mid-speed corner 1 (righ	t) 85	70	0.630	0.933	1.48
2	Mid-speed corner 2 (left)	85	70	0.630	0.962	1.53
3	Mid-speed corner 3 (righ	t) 55	60	0.630	1.005	1.60
4	Mid-speed corner 4 (left)	55	60	0.631	1.027	1.63
5	Low-speed corner 1 (righ	nt) 16	35	0.630	0.989	1.57
6	Low-speed corner 2 (left		35	0.630	1.073	1.70

5. Conclusion

5.1. Perceptual rating by subjects

Visibility improved with an AFS.

As the visible field expanded farther and sideways, the road curve lines became more easily recognizable.

The eye focus moved closer to the daytime eye focus position.

5.2. Quantitative evaluation by luminance measurement

The luminance contrast and road surface illuminance in the eye focus area increased with an AFS

According to the above

Perceptual rating and quantitative evaluation in agreement

5.3. Overall

Under the Japanese traffic environment, Introduction of bending lamps into AFS beneficial for low/mid-speed driving