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Burst-Correcting Codes for the Classic Bursty Channel 

Abstract-The  purpose of this paper is to  organize  and clarify 
the work  of the past decade  on  burst-correcting  codes. Our method 
is, first,  to  define an idealized  model,  called  the  classic  bursty 
channel,  toward  which  most  burst-correcting  schemes  are  explicitly 
or implicitly  aimed;  next,  to b o y d  the  best  possible performance 
on  this  channel;  and,  finally,  to  exhibit  classes of schemes  which 
are  asymptotically  optimum  and  serve as archetypes of the  burst- 
correcting  codes  actually in use. In this  light  we  survey  and  cat- 
egorize  previous work on  burst-correcting  codes.  Finally,  we  discuss 
qualitatively  the  ways in which  real  channels  fail  to  satisfy’  the 
assumptions of the  classic  bursty  channel,  and  the  effects of such 
failqres  on  the  various  types of burst-correcting  schemes.  We 
conclude  by  comparing  forward-error-correction  to the popular 
alternative of automatic  repeat-request (ARQ). 

INTRODUCTION 

OST WORK  in coding  theory  has been addressed 
to  efficient communication  over  memoryless 
channels.  While  this  work  has been directly 

applicable  to  space  channels [ 13, it   has been of little use 
on all  other  real  channels,  where  errors  tend  to  occur  in 
bursts. The use of interleaving  to  adapt  random-error- 
correcting codes to  bursty  channels  is  frequently pro- 
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posed, but  turns  out  to be a  rather inefficient method of 
burst  correction. 

Of the  work  that  has gone into  burst-correcting codes, 
the  bulk  has been devoted  to  finding codes capable of 
correcting all bursts of length B separated  by  guard 
spaces of length G. We  call  these zero-error burst- 
correcting  codes. It has been  realized  in  the  past few 
years  that  this  work  too  has been somewhat  misdirected ; 
for on channels  for which  such  codes are  suited, called 
in  this  paper classic  bursty  channels, much  more efficient 
communication  is  possiblk if  we require  pnly  that practi- 
cally  all bursts of length B be  correctible. 

The principal  purpose of this  paper is tutorial.  In  order 
to  clarify  the issues  involved  in the design of burst- 
correcting  codes, we examine an idealized  model, the 
classic bursty  channel, on which bursts  are never  longer 
than B nor  guard  spaces  shorter  than G. We see that  the 
inefficiency of zero-error  codes  is  due to  their  operating 
at   the zero-error  capacity of the  channel,  approximately 
(G - B )  / (G + B )  , rather  than  at  the  true  capacity, 
which i s  more  like G / ( G  + B ) .  Operation at   the  true 
capacity  is  possible,  however, if bursts  can be treated  as 
erasures;  that  is, if their  locations  can be  identified. By 
the  construction of some archetypal  schemes in  which 
short Reed-Solomon (RS) codes are used with  inter- 
leavers, we arrive  at  asymptotically  optimal codes of 
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either  the  burst-locating  or  zero-error  type.  (The  useful- 
ness of RS codes in  this  situation is seen t,o be due  to 
their  being  optimal in a  sense  similar  to  that  in  which 
optimal  burst-correcting codes are  optimal.)  Finally, we 
note that  the  sensitivity  to  errors  in  the  guard  space 
which  characterizes  most  known  Ilurst-locating  schemes 
is avoidable a t  a  minor  cost in guard-space-to-burst  ratio. 

When we turn  to  typical  real  channels,  however,  the 
superiority of one  error-correcting  scheme  over  another 
is much  harder  to  assert.  We  discuss  qualitatively  what 
may be  expected  with  various  schemes when the  channel 
does  not fit the idealized  model. Finally, we compare  for- 
ward  error  correction  to  the  more  widely used method 
of automatic  repeat-request (ARQ). 

CLASSIC BURSTY CHANNEL 
The classic, hursty  channel is an  idealization of the  cx- 

perimental  fact  that on most  channels  transmission  is 
poorer a t  some  times  than a t  others. In  this  paper  a 
classic  bursty  channel  is defined as  one  having  the  fol- 
lowing  properties. 

1) The  channel  (like  the  girl  with  the  curl)  has  two 
modes of behavior:  “When  she  was good, she  was  very, 
very good, but when she  was  bad,  she  was  horrid.” We 
call  these  two  states burst and gmrd  space. In  the  burst 
state,  channel  outputs  carry  no  information  about  the 
inputs.  In  the  guard  space, we shall  initially  assume  that 
channel  outputs  are  error-free;  later we shall  allow  some 
small  background  error  probability p .  We  further  dis- 
tinguish between the cases where  the  c,hannel  state  is  un- 
known at  the receiver (the  usual  case),  and  where  the 
channel  state is known,  when  bursts  may  be  regarded  as 
erasure  bursts.  In  the  latter  case we speak of  a classic 
erasure-burst  channel. 

2) The  channel  never  stays  in  burst  mode  for  more 
than B symbols,  nor does i t  ever  stay’  in  the  guard  space 
mode  for  fewer than G symbols. 

The  two-state  assumption [2] ,  while  artificial, is not  a 
crippling  idealization of most  actual  channels,  especially 
when the ’possibility of guard  space  errors is encom- 
passed. It is the second assumption that  is  the Achilles 
heel of this  model;  yet,  as we shall see later,  the  making 
of this  assumption is in a sense unavoidable. 

CAPACITY THE~REMS 
The  capacity C of a  channel is defined as  the  maxi- 

mum  continuous  rate of transnlission  for which arbi- 
trarily low error  probability is achievable. Its zero-error 
capacity C , ,  is  defined as  the  maximum  rate  for which 
zero-error  probability  is  achievable. We recall that on all 
memoryless  channels  except  erasure-type  channels, C,, 
is strictly less than C ;  and  in  fact  that  usually  (on  any 
completely  connected channel) C,, is  zero. 

It is  clear  intuitively  that,  since  the  classic  bursty 
channel  may wipe out B out of every G‘ + B transmitted 
symbols, its capacity  in  symbols  per  transmitted  symbol 
must be bounded  by G/ (G! + B ) . Furthermore, it is evi- 
dent  that  this  capacity bound  retains  its  validity  even 
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when feedback is permitted. An information-theoretic 
proof of these  facts is easily  constructed. 

In  this section we shall  derive  bounds  on  zero-error 
capacity  under  the  sole  restriction  that  infinite  buffering 
not he allowed at   the  encoder.  We  encourage the  reader 
not  to be intimidated  by  the  theorem-proof  format, which 
we have  adopted  for  brevity  and  for  conceptual  clarity; 
the  theorems  are  simple  (and  old),  and  the  proofs  are 
elementary.  We  have  organized  the  argument  to  show 
that  there is  a  fundamental  relationship  between  opti- 
mum codes for  the  classic  bursty  channel  and  the  maxi- 
mum  distance  separable codes [3] ,  [4] ,  such as  the RS 
codes [ 5 ] .  We  have  also  centered  our  attention on burst- 
c r a k e  c,orrection ;% not  only dbes this  approach 1eacI 
easily  and  naturally  to  the usua! hurst-error-correction 
results,  but  it  also  clarifies  what is going on in  burst- 
locating codes. 

We consider  two  different  types of codes. In  order  to 
show the  relation between these  capacity  theorems  and 
well-known  block  code  results, we first  consider (n,  k )  
block  codes, in which k information  symbols  determine n 
encoded symbols.  (All  symbols  ill he taken  as  q-ary 
for  some  integer q ;  one  notable  aspect of the  major  re- 
sults  is  their  independence of q.) The  rated R of a block 
code is k / n .  Second,  in  order to show how general  these 
theorelns are, we consider any encoder of finite  memory, 
say v y-ary memory;elements, and we allow the  number 
of inputs k ( t )  accepted  and  outputs n ( t )  put.  out on the 
channel  in t time  units  to be any monotonic  functions 
of t ,  providing  only  that  the  limit 

exists. We call  this  limit  the code rate R ,  and we call the 
code an ( R ,  v )  finite-memory code. We  then  appeal  to 
the following  simple  lemmas. 

Lemma 1 :  In  an (n,  k )  block  code,  for any  set of k - T 

code  positions,  there  are at  least qr  code  words  all  of 
which  have  identical  symbols  in  those  positions. 

Proof: There  &re q I i  words  in the code, but  only 
qk-r possibilities  for the  symbols  in  any k - T positions, 
so a t  least  one  possibility must be repeated  qr  or  more 
times. 

Le,tnma 1 ( a )  : In  an.(E, Y) finite-memory  code,  for any 
set of k ( t )  - T - v positions  among the n ( t )  outputs be- 
fore  time t ,  there  are  at  least qr  code  words  all of which 
leave  the  encoder  memory  in  the  same  state a t  time t ,  
and  all of which have  identical  symbols in those posi- 
tions. 

Proof: There  are qJict) code words of length n ( t )  and 
- < q u  encoder  memory states, so there  must be at  least 
q J i ( t ) - v  code  sequences  all of which leave  the  encoder  in 
some  identical  state.  There  are  only Q’~(~)-”--? possibilities 
for  the  symbols  in  any k ( t )  - v - T positions, so at  least 
one  possibility  must  be  repeated at  least q7 times  among 
any set’ of at  least q 7 < ; t t ) - v  code  words. 

The minimum distance d of a  block  code is defined as 
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the  minimum  number of positions  in which two  words 
differ; we also define the 7nini,mu.71~ span S of a  code as 
the  minimum  number of consecutive  positions  outside  of 
which two  words  are  the  same.  Trivially d 5 S. Lemma 
1 immediately  yields  the following corollary. 

Corollary 1: In   an  (n, k )  block  code, d I S L n - 
k + 1. 

Proof: By  Lemma 1 there  are  at  least  two words 
which are  the  same in the  first k - 1 positions. 

Block codes for which d = n - k + 1 are called maxi- 
'mum distance  separable  codes. The  only  known  general 
class of such codes is the RS codes. These  are q-ayy  codes 
with  blocklengths q or less,  where qJs a  prime power [6, 
pp. 21-29] ; hence  only the  nonbinary RS codes are non- 
trivial,  Singleton [3] refers  to  constructions which  give 
codes of length q + 1, for q a  prime  power,  and  proves 
that  k I q - 1, n .- k I q - 1 for any  maximum  dis- 
tance  separable code. 

The class of block codes for which S = n - k + 1 is 
much  greater.  The RS codes of course  satisfy  this 
equality;  but, more  generally,  any  cyclic  block code sat- 
isfies S = n - k + 1 (because  any n - k consecutive 
erasures  can  always be cyclically  permuted  .into  the 
check positions). 

Now consider  erasure  correction. A pattern of erasures 
is  called correctible if no  two code  words  have  the  same 
symbols  in  all  positions  outside  the  erasure  pattern. 

Corollary 2:  I n   a n  (n, k) block  code  no pattern of 
more  than n - k erasures  is  correctible. 

That  is ,  every  erasure  to be corrected  requires one 
check  symbol. For example,  a  rate-1/2  block code can 
correct  no  more  than n/2 erasures. 

Theorem 1 :  Any ( E ,  V )  finite-memory code capable of 
correcting  erasure  bursts of length B separated  by  guard 
spaces of length G has  rate R .  5 G / ( G  + B )  . That  is, 
the  'zero-error  capacity of the classic erasure-burst  chan- 
nel is  bounded  by Co 5 G/ (G + B )  . 

Proof: By  Lemma 1 ( a ) ,  if there  are  more  than 
n ( t )  - k ( t )  + v burst  symbols  in  the  first n ( t )  received 
symbols,  then  there  are at least  two code  words  which 
are identical  in  the k ( t )  - v - 1 or fewer  guard  space 
symbols  and  which  leave  the  encoder  in  the  same  state. 
These  two  words  therefore  cannot be distinguished on 
the basis of the  first n ( t )  received symbols,  and  since 
they  both  leave  the  encoder  in  the  same  state  no  informa- 
tion  from  future  received  symbols  can  help to distinguish 
them.  Thus a  decoding  error will occur  for  one or the 
other of these  code  words if the  number N,( t )  of burst 
symbols  in  the  first n ( t )  symbols exceeds n ( t )  - k ( t )  + 
V, or if the  burst  density N ,  ( t )  /n  ( t )  satisfies 
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there  is  a t large  enough that  the  inequality is  satisfied. 
Hence we must  have B, / (G  + B )  5 1 - R to  guarantee 
zero errors. 

Q.E.D. 

For example,  no  rate-1/2  finite-memory code can  have 
a  guard-space-to-burst  ratio of better  than  one-to-one. 

We now take  up  error correction. Twp  patterns of er- 
rors are called sinrultaneously  correctible i f  no  two code 
words  differ  only  in  the  positions covered  by the  union 
of  the  two  error  patterns. For if this  condition  holds,  then 
there is no  common  received  word  into  which'  two  dif- 
ferent code  words can be transformed  by  changing  the 
first code  word  in  some 'of the positions of the  first  error 
pattern  and  the second in some of the positions of the 
second; while if it does  not  hold,  there  is  such  a  common 
received  word. (Note  that  not  every position  in an  error 
pattern  is  required  'actually  to be in  error.)  The close 
relation of error  correction to  erasure  correction  is  shown 
by  the following lemma. 

L e n m a  2: Any  partition of an  uncorrectible  erasure 
pattern  results  in  two  disjoint  error  patterns which are 
not  simultaneously  correctible. 

Proof :  From  the definition of an  uncorrectible  era- 
sure  pattern  there  are  two code  words  identical  outside 
the union o f  the  two  error  patterns. 

This is the  reason  why  it  always  takes  twice as much 
redundancy  to  correct  errors  as  erasures.  For  example, 
in  block codes we need  two  check symbols  for  every 
error  to be corrected. 

Corollary 3': In   any  (n, k )  block  code there  are  two 
error  patterns of L(n - k) /2 j  + I or fewer  positions 
which are not  simultaneously  correctible;  that is, we can 
guarantee  correction of no  more  than L ( n  - k)/2J errors. 

Note: rz1 is the  least  integer  not less than z, and Lz] 
is the  greatest  integer  not  greater  than x. 

Proof: By  Corollary 2 there is an  uncorrectible 
erasure  pattern of n - k + 1 erasures,  which  may  be 
partitioned  'into  two  subsets of r(n - k + l)/27  and 
L(n - k + 1)/2 J positions  which are  not  simultaneously 
correctible, by  Lemma 2.  The proof is  completed  by 
noting  that 

Let  the  channel  alternate forever  between B burst  bits 
and G guard  space  bits;  then  as t 4 CL, the  burst  density 
approaches B / ( G  + B )  , while the  right  side  approaches 
1 - R for  any  finite V, so that  if B / ( G  + B )  > 1 -' R 

1 2  
n - k + 2 ] + k + , ,  - 2 

For example, a rate-l/2 block  code  can  correct  no 
more  than n/4 symbol  errors.  For  burst  correction, we 
have  the following  corollary. 

Corollary 4: If some pattern of erasure  bursts of length B 
separated  by  guard  spaces of length ' G' is uncorrectible, 
then  there  are at least  two  patterns of error  bursts of 
length 5 rB/21  separated  by  guard  spaces of length 
2 G + LB/2J which are  not  simultaneously  correctible. 

Proof: Partition  the  uncorrectible  erasure  bursts 
into  error  bursts of sizes rB/21  and 'LB/2J separated  by 
guard ' spaces of size G + LB/2_( and G + rB/27, as 
shown  in  Fig. 1, and  apply  Lemma 2. 
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i+-BtG+Bl 

Fig. 1. (a) Uncorrectible  erasure burst  pattern. (b) Two error 
burst  patterns  that  are not, simultaneously correctible. 

Consequently we have  the  following  Theorem. 
Theorem 2: Any ( R ,  Y )  finite-memory code capable  of 

correcting  all  error  bursts of length  B  separated  by  guard 
spaces of length G has R 2 (G  - B )  / (G + B )  . That  is, 
the zero-error  capacity of the classic bursty  channel  is 
bounded  by Co I (G - B ) / ( G  + B )  . 

Proof: By Corollary 4 a  code  satisfying  the  assump- 
tion  is  capable of correcting  all  erasure  bursts of length 
2B  separated  by  guard  spaces of length G - B. But  then 
Theorem 1 implies that R 5 (G  - B )  / ( G  - B + 2B). 

For  example, no rate-1/2  finite-memory code can  cor- 
rect  all  bursts of length  B  unless  they  are  separated  by 
guard  spaces of a t  least  3B. 

Theorem 2 is  known  as  the  Gallager  bound.  S’imilar 
theorems were  proved  by  Reiger [7] ,  for  linear  block 
codes of length B + G, and  by  Wyner  and Ash [8],  for 
convolutional codes with  a  decoding  constraint  length of 
R t- G. Gallager 19, pp. 289-2901 first  proved  the  result 
in  general,  assuming  only  finite  decoding  delay.  Our 
alternate  assumption  here of finite  encoder  memory  is 
possibly  more to  the  point, since i t  shows that  the  limita- 
tions  are  inherent  in  any  realizable code, apart  from  the 
realizability of the decoder.  Massey [ lo]  sketched  a  still 
more  general  proof  showing that  an  error-free decision 
on the  entire  (perhaps  infinite)  transmitted  sequence on 
the  basis of the  entire received  sequence was  possible 
only if R I (G - B ) / ( G  + B ) .  

To summarize, we have shown that  the  capacity of the 
classic  bursty  channel  is  bounded  by C 5 G/(G + B)  , 
that  the zero-error  capacity of the  classic  erasure-burst 
channel  is  bounded  by  the  same  quantity,  but  that  the 
zero-error  capacity of the  classic  bursty  channel  is 
bounded  by Co i (G - B )  / (  G + B ) .  The difference 
between  signaling at  arbitrarily low probability of error 
and a t  zero probability of error  on  the  classic  bursty 
channel  can  therefore be quite  large;  the  guard-space- 
to-burst  ratio  must exceed 

G 1 + R  - > -  B - 1 - R  

for zero error,  but  only 

G‘ R - > -  
B - I - R  

for  arbitrarily low error. For R = 1/2,  for  example, G 2 
3B for zero error,  whereas G 2 B for arbitrarily  small 
error.  We  shall see in  the  next  section that these  bounds 
can  be  effectively  achieved  when G and  B  are  large  and 
there  are no errors in the  guard  space. ,. 

ARCHETYPAL CODING SCHEMES 
We  shall now exhibit some  coding  schemes  which  ap- 

proximately  meet  the  bounds of the  previous  section 
when the  guaM  space  is  error-free.  These schemes are 
offered as  theoretical  archetypes of various  classes of 
schemes of practical  interest,  rather  than  as  practical 
techniques  directly  applicable  to  real  channels.  We  do 
feel that  they  bring  out  clearly  the  important  issues  in 
burst  correction. 

It is evident  from  intuitive  capacity  arguments that 
any code  must  introduce  constraints  over  a  number of 
channel  symbols of the  order of B + G, since  only  over 
this  time  span  can we be  sure of channel  behavior  not 
too  much worse than  average. 

Interleaving  is  the  most  obvious  method of obtaining 
long  code constraint  lengths.  Sophisticated  designers  have 
commonly  avoided it, since the  usual  interleaving 
schemes  proposed  by  unsophisticated  designers  are  rather 
poor  burst  correctors.  However, i t  is still  more  sophisti- 
cated  to  observe  (with [SI) that  there is  nothing  objec- 
tionable  per  se  in  schemes which  combine  short codes 
with  interleaving,  as  long  as  the  decoder  operates 
sensibly. 

The  usual  type of interleaver  is  a block interleaver,  in 
which, for example,  bits  are  laid down in  the rows of a 
B x N matrix,  and  read  out  from  the  columns. In  this 
paper we shall  use  a  somewhat  simpler  and  more effec- 
tive  type of interleaver,  which we have  called [ 111 a 
periodic (or convolutional)  interleaver.  (Similar  inter- 
leavers were independently  proposed  by Cowell and  Bur- 
ton [ 121 and  Ramsey [ 131 .) Schematically,  as  illustrated 
in  Fig. 2, symbols  to be interleaved  are  arranged  in 
blocks of N (by  a  serial/parallel  conversion, if neces- 
sary).  The  ith  symbol  in each  block  is delayed  by (i - 
1)NB’  time  units  through  a (i - 1) B’ stage  shift  register 
clocked  once every N symbol  times,  where B’ = B / N .  
( A  time  unit  thus  corresponds  to  the  transmission of a 
block of N symbols.)  Output  bits  may be serialized  for 
channel  transmission.  At  the  receiver,  groups of N sym- 
bols are reblocked, and  the  ith  symbol in  each  block  is 
delayed  by ( N  - i)NB’ time  units  through  an ( N  - 1) B’ 
stage  shift  register. 

We  call  this  a B X N interleaver.  Correspondingly 
there  exists  a  similar  but  inverse B X N deinterleaver, 
also  illustrated  in  Fig. 2. The combination  has  the  fol- 
lowing properties. 

1) All symbols  receive  a  total  delay of ( N  - 1)B’ 
time  units, or N ( N  - 1)B” = ( N  - l ) B  symbol  times 
(plus l;he channel  delay). 
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Fig. 2. Periodic interleaver  and  corresponding 
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deinterleaver 

2)  The  memory  requirements  at  transmitter  and re- 
ceiver are N ( N  - 1)B’/2, or N ( N  - l)B/ = ( N  - l ) B  
total. 

3 )  A single  channel  burst  affecting B’ or fewer  blocks 
( B  - N + 1 or fewer  symbols)  passes  through  the  dein- 
terleaver  in  such  a  way  as  to  affect  only  one of the N 
deinterleaver  output  streams  at  a  time. See Fig.  3.  Re- 
peated  bursts  separated by guard  spaces of ( N  - l )B’  
or more  blocks ( ( N  - 1) B + N - 1 symbols)  also af- 
fect  only  one of the N output  streams at a  time. 

4)  A  channel  burst  affecting kB’ or fewer  blocks  af- 
fects  no  more  than k of the N deinterleaver  output 
streams  at  a  time.  Repeated  bursts  separated  by  guard 
spaces of ( N  - k )  B’ or more  blocks  affect  only k of the 
output  streams at a  time. See  Fig.’ 4. 

The unsophisticated  approach  would now  be to  let  the 
input  symbols  in  any  one  block  be  a  code  word  from  a 
block  code of length N capable of correcting  up  to t 
symbol  errors. For example,  the  rate-112  binary  (24,  12) 
Golay code corrects  up  to 3 bit  errors.  With  this  code 
and a B X 24 interleaver we can  correct  all  bursts of 
length  approximately 3B separated  by  guard  spaces of 
approximately  21B.  This  7-to-1  guard-space-to-burst 
ratio  is  far  inferior  to  even  the  3-to-1  ratio  required  for 
zero-error  capacity. 

We  should  note,  however, that  if the  location of bursts 
can  be  detected,  then  use of a cyclic  symbol-erasure-cor- 
recting  code  is  perfectly  respectable. For example,  the 
(24,  12)  Golay code can  correct  any  12  cyclically con- 
secutive  erasures.  We  see that  with  this  code  and  a B X 
24 interleaver we can  correct  all  bursts of length  ap- 
proximately  12B  separated  by  guard  spaces of approxi- 
mately  12B,  which  is  the  best we can  hope  for. The rea- 
son  this  technique  works well for  burst-erasure  correction 
but  not  for  burst-error  correction  is  that  a  cyclic  binary 
code  achieves  the  bound X < n - k + 1 but  generally 
falls  far  short of the  bound d 5 n - k + 1. 

These  observations  lead  us  to  look  for  a  maximum 
distance  separable  code  for  burst-error  correction.  Let q 
be a prime  power  and  let b be an  integer  such  that qb 2 
N ;  then  there  exists  an RS code of length N with  super- 
symbols  consisting of b q-ary  symbols.  Then  on  each of 
K input  streams we take consecutive  segments of b sym- 
bols as  the  information  supersymbols  in  an ( N ,  K )  RS 
code, and  generate N code supersymbols,  which  then 
form  the  input  streams  to  the  interleaver.  At  the  decoder 
we perform  error-correction on the N deinterleaver  out- 

Fig. 3. Appearance of bursts of B blocks separated  by  guard 
spaces of ( N  - 1)B’ blocks  in N deinterleaver  output,  streams. 

I- 4 
Fig. 4. Appearance of bursts of k B  blocks  separated  by  guard 

spaces of ( N  - k)B’ blocks  in N deinterleaver output streams. 

puts  after  reblocking  into  supersymbols,  as  illustrated  in 
Fig. 5.  

We  can  correct  up  to ( N  - K)J2  errors  with  this  code; 
therefore if  we use B X N interleavers we can  correct 
bursts of length  approximately ( N  - K)B,/2  separated 
by  guard  spaces of approximately ( N  + K)B/2.  (The 
approximation comes from  the  blocking of input  data 
into code blocks of length bN symbols,  and  clearly be- 
comes insignificant if B is  substantially  larger  than bN.)  
Hence we obtain  guaranteed  burst  correction  with a 
guard-space-to-burst  ratio of nearly ( N  + K ) / (  N - 
K) = (1 + R ) / (  1 - R ) ,  in  agreement  with  the zero- 
error-capacity  bound  for  the  classic  bursty  channel. I n  
other  words,  for B >> N log, N ,  there  is  a code of rate 
R = K/N which  meets the  bound, so the bound  is  asymp- 
totically  tight.  (Burton  has  recently come upon  a  similar 
scheme,  with N - K = 2, from  a  different  direction  [14]. 
Peterson [15, pp. 198-1991 suggested  using  very  long 
noninterleaved RS codes  for burst  correction;  such codes 
are  asymptotically  optimum  but  more  complex  and  less 
related  to  other  burst-correction  schemes  than  those 
described  here.) 

I n  exactly  the  same  way,  the  use of an  erasure-correct- 
ing ( N ,  K )   R S  code with  a B x N interleaver on the 
classic  erasure-burst  .channel  succeeds  in  correcting  all 
erasure  bursts of length  approximately ( N  - K ) B  sepa- 
rated  by  guard  spaces of approximately KB,  for  a  guard- 
space-to-burst  ratio of nearly K / ( N  - K )  = R/ (1 - 
R )  , which  is the  zero-error-capacity  bound  for  the  classic 
erasure-burst  channel. 

Since the  erasure  zero-error-capacity  bound  equals  the 
capacity  bound,  this  suggests that  we could  approach 
the  capacity of the classic bursty  channel  with  a  similar 
scheme if the  decoder  could  only  tell  with  high  proba- 
bility  where  the  bursts  were.  But  this  is  really  not SO 

difficult. Again we suppose  an ( N ,  K )  RS code  used with 
a B X N interleaver.  We  suppose  initially  there  has been 
no  burst  for  some  time.  When  a  burst  begins,  as soon as 
an  error  appears  in  the  bottommost  stream i t  is  detected, 
since  an ( N ,  K )  RS code can  detect  up  to ( N  - K )  
symbol  errors.  At  this  point  the start  of the  burst  has 
been located  with  probability (1 - qwL) to be within  the 
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Fig. 5. Use of an ( N ,  K )  RS code with :t B X N interleaver. Fig. 6. Zegers' time-diversity  scheme. 

last ~n blocks (if  we assume that  the  probability  that no 
error  occurs  in  any  burst mode symbol  is l / g ) .  If the 
burst  is  assumed  to  cover  no  more  than ( N  - Kj B' - nz 
blocks,  then we know how it  will appear  at  the  deinter- 
leaver  outputs  to  within 712 blocks of uncertainty: 
namely,  in  the  pattern  illustrated  in  Fig. 4. Hence,  by 
taking  the  cross-hatched  positions  as  erasures, we can 
correct  the  entire  burst.  Furthermore,  after  a  guard 
space of KB' + 711 blocks, we can  start  all  over  again. I n  
summary, we can  correct  bursts of length  about ( N  - 
K ) B  - n z N  separated  by  guard  spaces of length  about 
K B  - 7nN with  error  probability less than q"L per  burst. 
For B large,  the  probability of failing  to  correct  a  burst 
may be made  arbitrarily  small,  while  the  guard-space- 

In conclusion,  for G and B large,  the  combination of 
a short, code with  a  simple  interleaver  achieves  asymp- 
totically  optimum  performance  on  the  classic  bursty 
channel  with  error-free  guard  space,  whether zero error 
or arbitrarily  small  error  is  desired.  To  show  that  the 
solution to the  problem of efficient communication  over 
the classic bursty  channel  is  in  principle so simple  is  not 
to  belittle  the  substantial  past  work  applied  to  the con- 
struction of burst-correction  schemes,  since  the  real  test 
of any scheme  is  how it  performs  on  real  channels  in 
relation  to  its  complexity;  but it is to  assert  that,  to be 
a  significant  contribution,  a  burst-correction  scheme  must 
have  more going  for it  than  asymptotic  optimality. 

to-burst  ratio  is  held  near  the  optimal K / ( N  - Kj = 
R / ( 1  - R ) .  This suggests that  the  capacity of the 
classic  bursty  channel  is  for  all  practical  purposes  indeed 
G / ( G  + B )  for G and B large.  (This  scheme  does  not 

us  arbitrarily low error  probabilities.) 
To  recapitulate:  with high probability we can  easily 

determine  the  approximate  location of error  bursts;  then 
we can  deal  with  the  easily-handled  erasure-burst  chan- 
nel. The  amount of additional  information  which we 
must  extract  from  the  received  symbols  to  locate  the 
burst becomes  negligibly  small  compared to the  amount 
( B  symbols) needed to  correct  the  burst  as B becomes 
large. 

REMARK ON CONCATENATION 

The classic  bursty  channel  is  an  excellent model  when 
the  basic  channel  itself  involves  coding,  for  typically 

a I,rOOf, since for fixed B and G i t  cannot give any decoder  makes  either  no e ~ ~ o r s  or lots  of  errors. 
Furthermore,  the  span of errors  in a typical  decoding 
error  burst is usually well  controlled  (particularly in 
block  code  schemes, of course),  and  the  occurrence of 
decoding errors can  usually be detected  with high prob- 
ability. It is  therefore  not  surprising  that  RS codes have 
generally been  used as  outer codes in so called  con- 
catenat,ed or hybrid [6, pp. 63-1051, [17],  [18], coding 
schemes,  just  as we have used them  here for burst 
correction. 

To  illustrate how simple  these  ideas  are,  suppose we 
desire an  asymptotically  optimum  rate-1/2  binary code. 
In  this case the  (2, 1) R S  code  degenerates  into  thc 
binary  repetition code, and  the B X N interleaver  to 
simple  time  diversity of order B, as  illustrated  in  Fig. 6. 
At  the decoder the  prescription  is  as  follows:  starting 
from  a  quiet  state,  watch  the  upper  and lower channel 
outputs;  whenever  they  first  differ, a burst  is  assumed  to 
have  started  on  the lower channel  within  the  last 7-71. time 
units  (since  bursty  data  appear on the lower channel 
first),  Therefore  take  data from the  upper  channel  for 
the  next B/2  - m time  units ; then  switch  and  take  data 
from  the lower channel  for  the  next B/2  time  units; 
finally  reenter  the  quiet  state.  Evidently  the  scheme cor- 
rects  bursts of length B - 2nz - 1 channel  bits  separated 
by  guard  spaces of B + 27n + 1 channel  bits  with  a 
probability of failing  to  conlpletely  correct  a  burst of 
less than 2-". A version of this  scheme  was  proposed  by 
Zegers [16], and  apparently  implemented  with  some  suc- 
cess by  Philips. 

ERROR CORRECTION IN THE GUARD SPACE 

Correction of errors  in  the  guard  space  is  possible 
provided that  the  guard-space-to-burst  ratio  is  increased 
somewhat  over  the  theoretical  minimum.  In  this  section 
we briefly discuss  capacity  theorems  and  archetypal cod- 
ing  schemes  for  such  situations. 

Suppose that  information  symbols  arrive at  rate R 
per  channel  symbol.  Then (G + B )  R information  sym- 
bols must be decoded from  every G + B received sym- 
bols. If B of these  are  burst  symbols,  then  only G of these 
are  information-bearing  symbols. I n  effect the code rate 
for  guard  space  symbols  is  then R, = R ( G  + B ) / G ;  
that  is, we ought  to be able  to  correct  errors  in  the  guard 
space  with  the efficacy of a code of rate R,. Conversely, 
if we can  signal  over  the  guard  space  channel at  rate R, 
with  acceptable  quality,  then we should be able  to  signal 
over the classic  bursty  channel at a  net  rate of R = R,G/ 
( G  + B j , since the  channel  is  in  guard  space mode at 
least  a  fraction G/(G + B )  of the  time.  These  considera- 
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tions  lead us to  conjecture  without  formal proof the fol- 
lowing capacity  theorems,  valid  for B and  G  asymp- 
totically  large. 

Theorem 3: Let C, be the  capacity of the  guard  space 
channel;  then  the  overall  channel  capacity of the classic 
bursty  channel  is C = C,G/ (G + B )  . 

Theorem 4: Let Cos be the zero-error  capacity of the 
guard  space  channel;  then  the  overall  zero-error  capacity 
of the classic  bursty  channel  is Co = C,,, (G - B ) /  (G  + 
B ) .  

Theorem 3 would imply,  for  example,  that  with a  rate- 
1/2 code on a  binary  channel we could tolerate  a  back- 
ground  error  probability of p = 0.01 with GIB = 1.2 
(R,  = 0.92), of p = 0.025 with  G/B = 1.5 (R ,  =. 5/6), 
of p = .04 with  G/B = 2 (R ,  = 3/4), of p = 0.06 with 
G/B = 3 (R,  = 2J3),  and so forth.  Theorem  4 would 
imply,  for  example,.that  with  a  rate-1/2 code on a  hinary 
channel we could guarantee  correction of all  bursts of 
length B separated  by  guard  spaces of length  G = 4B 
with  as  many  as E = G/100  errors  in  the  guard  space. 

Let  us now  see  how well we  can  do  by  modifying  the 
archetypal  coding  schemes of the  last section.  Again 
we  suppose an  ( N ,  K )  RS code with a B X N interleaver. 
At  the decoder  we  shall  use N - K - 2E of the check 
supersymbols  for  burst  correction  and 2E for  correction 
of errors  in  the  guard space.  Since the RS code can 
correct  any  pattern ' of E errors while detecting  any 
pattern of N - K - 2E errors;  we can  locate a burst 
affecting no  more  than N - K - 2E of the RS super- 
symbols  to  within a small  region of uncertainty as before, 
if no  more  than E errors  occur  in  any of the K + 2E 
corresponding  guard  space  supersymbols.  Thereafter we 
can correct  up to  E errors  in the guard  space  simulta- 
neously  with N - K - 2E erased  burst  supersymbols. 
Thus we can  correct  with  this  scheme  practically  all 
bursts of length ( N  - K - 2E)B' blocks  separated  by 
guard  spaces of length (K + 2E)B' with  up  to E errors 
in  any K + 2E deinterleaved  guard  space  supersymbols 
(up  to E errors  in b(K + 2E) deinterleaved  guard  space 
channel  symbols,  where b = rlog, N1).  If we define 
Re = E / ( K  + 2E), then 

where the code rate R equals K / N .  For typical  hack- 
ground  error  probabilities of or less, R ,  can  safely 
be  made of the  order of a  few percent,  and we can  correct 
an  unlimited  number of errors  in  the  guard  space a t  
rather  small sacrifice  in  guard-space-to-burst  ratio,  al- 
though a t  a  significant  increase  in  decoder  complexity. 

PERFORMANCE ON REAL  CHANNELS 

I n  addition  to  errors  in  the  guard  space,  there  are 
numerous  other  ways  in which real  channels  deviate  from 
the classic bursty  channel  model. Some we can  do  some- 
thing  about; some  we  cannot. 

First,  it  would be desirable  to  have  the  ability  to  cor- 
rect  multiple  short  bursts  as well as isolated  long  bursts, 
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as long as  the  guard-space-to-burst  ratio were main- 
tained. If we return  to our archetypal  schemes, we see 
that  to correct  a  short  burst, w e  need  a  clean guard  space 
only  during  the  times  that  the  bursty  segments  are 
actually being  corrected. In effect  each little  burst of 
size b requires  its own little  guard  space of size g, with 
g /b  z G/B.  The  erasure-burst  and zero-error  burst- 
correcting  schemes  require  no  modification to benefit 
from  this  observation;  however,  the efficient burst-locat- 
ing  scheme  needs to be  modified to  detect  the end of the 
first Ixmt, the  start  and end  of  the second burst,  and so 
forth,  as well as  to  keep  track of all  the  burst  locations 
in  its  control  memory.  Thus we can  correct  multiple 
bursts  as  long  as one burst does  not  fall  in  the  guard 
space belonging to  another.  There is of course  a  lower 
limit  to  the size of  bursts  that  can'be effectively  corrected 
in  this  way: of the  order of A T  log, iV symbols  for  the 
erasure-burst  and  zero-error scht?mes, and of the  order of 
? n N  log,[ N for the  burst-locating  scheme. 

Second, w e  recognize that  many  bursty  channels  are 
not  really  two-state  channels,  but  meander  erratically  in 
quality. (For certain  fading  channels,  such  as  tropo- 
spheric  scatter  channels,  the  two-state  girl-with-the-curl 
model  does seem valid.)  When  this  is so, the  performance 
of  a  burst-locating  scheme  may be sgriously  affected, 
while typically  that  of a  scheme of the zero-error type 
is less  affected, and  that of a  scheme of the  unsophisti- 
cated  interleaving  type  is  affected  very  little.  In  other 
words, the  performance  spread between  these  schemes  is 
narrowed  on  meandering  channels,  and  may  indeed  be 
reversed. On the notoriously  messy HF channel,  for ex- 
ample,  several  studies  [20]-  [22]-  have  indicated  that,  to 
first approsimation coding performance  depends  only on 
overall code rate  and  constraint  length,  and  not  on  the 
details of the scheme used. Forward-error-correcting 
codes capable of exploiting quality  variations  have  not, 
to our knowledge,  been  developed. 

Finally,  the  most  serious deficiency of these  schemes 
is the  requirement  that  bursts  never  be  longer  than B 
symbols, or more  generally that  no  more  than B out  of 
any  B + C: symbols  be  bursty.  Unfortunately,  on  typical 
real  channels  the  probability of a  burst of length B de- 
creases  distressingly  slowly  with B.  Bursts  longer  than B 
will certainly  lead to decoding  errors  with  any of our 
archetypal-  schemes.  But  this  limitation  is  inherent  in 
any code generated by an encoder  with  finite  memory ; 
for a t  best an encoder  with Y symbols  of  memory  can 
ride out a  burst of v / R  channel  symbols  before  over- 
flowing, even if i t  knows the  channel  state  at  all  times. 
While  our  archetypal  schemes  meet  this  memory  bound 
only  for K / N  = 1/2,  there  is  no  scheme  which  can cor- 
rect  long  bursts  with  a  short  encoder  memory. It is 
therefore  necessary  to choose an encoder  large  enough 
to buffer the incoming data  for enough  time that  the 
probability of the  channel  being  significantly worse than 
expected for longer than  that  time  is negligible. This  not 
only  costs  money  and  introduces  delay,  but is also  im- 
possible;  for  it  is well known  that  real  channels  are 
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due  to  Frey 1381, Gallager [9, pp. 302-3041, Tong [39], 
and R.eddy [40]. It is perhaps  significant that  all  but  the 
last o:f these  schemes  have been implemented-  and offered 
commercially. Frey’s  scheme  has  the  virtue of acting  like 
an  interleaved  random-error-correcting  block code  when- 
ever  the  channel is not  purely  bursty;  against  the  classic 
bursty  channel,  however, i t  falls  somewhat  short of 
asymptotic  optimality.  Gallager’s  scheme  is  distinguished 
by  its efficiency and  extreme  simplicity,  but  although  it 
has  the  capability  to  correct  a few isolated  errors, it is 
helpless  against  errors in the  guard  space.  Tong’s  “burst- 
trapping”  scheme  (independently  reported  by  Reddy)  is 
quite  similar  to  Gallager’s,  but  uses  a block  code rather 
than a threshold-decoda1,le convolutional code for  burst 
tletcction and  isolated-crror  correction ; it  can  thus choose 
from a wider  variety of code structures,  at some  cost in 
complexity.  Schemes  capable of correcting  errors  in the 
guard  space  have  recently been reported  by  Reddy (401, 
Burton e t  al. [41], and  Sullivan [42] ; the efficiencies of 
these  schemes are  comparable  to  wilat would be sug- 
gested by  Theorems 3 and 4. 

SURVEY OF EXISTING CODING  SCHEMES 

Work on  developing  burst-correcting codes has been 
underway  for  somewhat  more  than  a  decade.  In  this 
section we attempt  a brief survey of the  significant 
proposals  which  have  appeared in the  literature, follow- 
ing  our  classification of schemes  into  three  basic  types: 
interleaving  with  random-error  correction,  zero-error 
burst  correcting,  and  burst.  locating  (“adaptive”). We 
apologize to  those whose pet  schcmcs  are  omitted  or 
otherwise  slighted. 

Elias 1221 originally  pointed  out  that  interleaving 
allows  transmission a t  a  certain  minimum  rate  on  chan- 
nels with  memory. We forbear  from  enumerating  the  dif- 
ferent  occasions  upon  which  interleaving  a  basically 
random-error-correcting code has  subsequently been pro- 
posed.  Such  schemes are even  implemented  from  time  to 
time,  and  are  in  fact  not  totally  inappropriate  for  chan- 
nels  whose error  statistics  are  variable  and  messy,  i.e., 
most  real  channels.  Various  product code  schemes [23], 
1241, when  used for  burst  correction,  have  essentially 
similar  properties. 

The problem of constructing  asymptotically  optimum 
zero-error  burst-correcting  schemes,  both  for  error  bursts 
and  erasure  bursts-that  is,  schemes  capable of correcting 
all  bursts of length B separated  by  guard  spaces of length 
G-was essentially  solved in 1960 by  Reed  and Solomon 
[5],  although  this is clear  only  in  retrospect.  Berlekamp 
[25] solved the  erasure-burst  problem  more  neatly. 
Asymptotically  optimum  burst-error-correcting codes 
are  due  to  Wyner  and Ash (for R = 1/2)  [8], Berle- 
kamp 1261 and  Preparata [27] (with  a  decoding  tech- 
nique  due  to  Massey I:2S]), Massey [29] and  Iwadare 
[30], Ebert  and  Tong [31], Hsu [32], and  Burton [14]. 
It is  noteworthy that  the  most widely  known  such  codes, 
and  the  only ones to  our knowledgc that  have been im- 
plemented,  are  not  generally  asymptotically  optimum: 
the  Fire [33] cyclic  block  codes, the  Hagelbarger [34] 
convolutional  codes,  and  the  Massey-Kohlenberg  diffuse 
[35] convolutional codes. Peterson [15, pp. 218-2261 de- 
vcloped  asymptotically  optimum  variants of Hagelbar- 
ger’s  codes for  rate 1/2. The diffuse  codes,  which to  our 
knowledge are  the  most widely  used  codes  on this class, 
correct  a  certain  number e of isolated  errors  as well as 
(but  not necessarily  simultaneously  with) ’ bursts,  and 
are  fairly  robust  against  messy  channel  error  statistics, 
as well as being extremely  simple  to  implement.  While 
optimum  diffuse codes for  certain  rates  are  known  for 
small e, none  are  yet  known  for  large e ;  indeed no large 
e codes  were known a t  all  until  the  recent  work of Tong 
[36] and  Ferguson [37]. 

Aside from  the  archetypal Zegers [ 161 scheme  men- 
tioned  earlier,  burst-locating  (“adaptive”)  schemes  are 

FORWARD ERROR CORRECTION A N D  ARQ 

Most  present-day  systems  requiring error control  use 
none of the previously  mentioned  forward-error-correc- 
tion  techniques,  but  rather  some  variant of ARQ  (auto- 
matic-repeat-request) . Typically,  ARQ  systems block 
data  into  characters or long  blocks  for  transmission,  in- 
cluding  a  small  amount of redundancy  which  enables  the 
receiver to  detect  the  blocks  which  contain  errors  and 
request  retransmission.  There  do  exist  situations  such  as 
broadcast,  deep-space,  or  secure  one-way  communica- 
tion,  or  data  storage  in  computers,  where  a  feedback  link 
is difficult or  impossible  to  provide,  and  in  these  cases 
only  forward  error  correction  can be  used. In  this section 
we make  a few remarks on the  relative efficacy of for- 
ward  error  correction  and  ARQ,  assuming  the  availa- 
bility of a  reverse  channel  with  negligible  delay. 

If the  channel were truly  a  classic  bursty  channel, we 
have  seen  previously  that we could signal  nearly a t  
capacity  with  simple  burst-locating  techniques,  and  that 
feedback could not  improve  the  data  rate.  Depending on 
systems  considerations, AR.Q systems could be marginally 
simpler  to  implement,  and at  rates  other  than R = 1/2 
could require less  encoder and decoder  memory, but  any 
difference  would  be marginal. 

On inore  realistic  channels  subject  to  short  as well as 
long  bursts  and  to  meandering  quality,  the  margin of 
ARQ  systems would generally  increase,  due  to  the  greater 
insensitivity of ARQ  systems  to  detailed  error  statistics. 
Under  the  assumption of constant  data-rate  transmission, 
Ilowever, any  ARQ  system  must  still be  designed for 
some  worst  expected  operating  quality,  and will  overflow 
its buffers and  make  errors  whenever  the  channel  quality 
is  worse than  this design quality  for  too  long  a  time. 
Such  performance  is  still  qualitatively  similar  to  what 
can he obtained  with  forward  error  correction. 

CommScope, Inc. 
IPR2023-00064, Ex. 1008 

Page 8 of 10



780 

However,  in  actual  practice  many  ARQ  systems  are 
dramatically  superior  to  any  forward  error-control  sys- 
tems  in  the following respects:  they  have  much  higher 
data  throughput,  and  are  suhstantially  error  free.  We 
wish merely  to  observe  that  thcse  vcry  desirable  proper- 
ties  require  the  breakdown of our  assumptions that in- 
formation  is  arriving a t  a  constant  rate,  and  that wc 
must  move it or lose it.  These  ARQ  systems  obtain  their 
high throughput  by  pumping  data  through  the  channcl 
a t  a high rate  while  channel  quality  is good, thus  match- 
ing  data  rate  to  short-term  channel  capacity;  they qb- 
tain  error-free  performance by continuing  to  retransmit 
data  again  and  again  for  as  long  as  is  necessary  for  bad 
channel  conditions  to  improve  (assuming  enough  re- 
dundancy so that undetected  error  probability  is negligi- 
ble).  In other  words,  they  depend  upon  the  source  being 
controllable, or, in  effect,  upon  infinite  encoder  memory. 
Thus we conclude that, while  feedback  is of course  neces- 
sary  to  make  any  use of a  controllable  source,  feedback 
alone is not sufficient to  bring  dramatic  improvements  in 
the  absence of effectively  infinite  source  memory. 

With  the  increasing use of satellite  channels,  where 
the  roundtrip  delay  increases  ARQ  buffering  require- 
ments,  and  the  increasing  number of situations  in  which 
thc  source is not control!able,  such as where data  are 
generated or encrypted  remotely  from  the  communica- 
tions  terminal, we might  expect  to see the  balance  shift 
somewhat  from  ARQ  to  forward  error  correction.  Fur- 
thermore,  on poor channels (or very efficiently used 
channels)  ARQ  cannot  operate  effectively  without for- 
ward  error  correction being embedded  in  the  system. 
However, on most  bursty  channels i t  seems  likely that  
error  control will continue  to he best  performed by some 
sort of ARQ. 

CONCLUSIONS 

We  have  shown  that  it  is  not difficult to  construct 
reasonably  simple,  asymptotically  optimum codes for 
the classic bursty  channel. On a  true  classic  bursty  chan- 
nel,  schemes of the  burst-locating  type  are  most efficient, 
although  these  schemes  may  breakdown on real  channels 
where  bursts  may  not be so well  defined. Their  suscepti- 
bility t o  errors  in the  guard  space  is  correctible  at a m a l l  
sacrifice  in  guard-space-to-burst  ratio  and a moderate 
increase  in  complexity. On most  real  channels,  however, 
whenever  there  exists  not  only  the  possibility of feedpack 
but  also a controllable  source,  error-free  communication 
at  rates  near  the  instantaneous  capacity of the  channel, 
which cannot be achieved  with  forward  error  correction 
alone, will usually  be  achievable  with  an  appropriate 
ARQ  system. 
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Error Correction  Code  Performance on 
HF, Troposcatter, and Satellite Channels 

KENNETH  BRAYER, MEMBER, IEEE 

Absfract-Four  forward error correction techniques  are  examined 
and  their  performance  compared on several  real  channels.  Tech- 
niques of both  adaptive  and  nonadaptive  .block  and convolutional 
coding are  examined.  The Gol&,Code is considered  in  a  random- 
error  correcting  mode and  in &I adaptive  burst-random  model 
Both versions employ  interleaving as  an added  error correction 
aid.  The  adaptive convolutional  code is a diffuse  threshold-decoded 
Gallager  code  requiring a variable  guard  space,  while  the non- 
adaptive is a  Massey code. The  codes  are commonly used  rate 1/2 
codes. 

The  codes  are  evaluated  and compared on three  channels:  a 
transcontinental HF 4800 bit/s channel  between  San Diego, 
Calif., and Bedford, Mass.;  a mixed  wireline  microwave  troposcatter 
2400 bit/s  channel  dominated by  a 583-mi troposcatter  hop;  and a 
2400 bit/s  satellite  communications circuit  from  Ascension Island 
to Andover,  Me.,  with  wireline  transmission  from  Andover, Me., 
to  Greenbelt,  Md. All three  channels  exhibit  burst  errors with the 
error  rate  decreasing  and  the  burst  error  density  increasing  in  the 
order  in which channels  were  identified. 
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The  adaptive  codes  are  shown to  perform  better  than  nonadaptive 
codes,  although  the  difference  is  less significant  for  convolutioiial 
codes. Furthermore,  the convolutional  codes  give better  performance 
than  nonconcatenated  block  codes. 

1 
I. INTRODUCTION 

N RECENT  years,   an intensive  study of the  perform- 
ance of error  correcting codes has been undertaken. 
The  objective of this  study  has been a search  for 

codes  which provide  performance  that is sufficient to  as- 
sure a substantial  reduction in the  error  rates obserired 
in  digital  data  transmission on  commonly  used  communi- 
cation  channels (HF radio,  troposcatter  radio,  telephone, 
and  satellite  circuits). 

The need for  error  correcting codes has risen  through 
the  rapid increase  in the  transmission of information be- 
tween  remote  locations. The information is translated 
into  binary  sequences  and  transmitted  via  digital  data 
modulation  techniques.  These  techniques,  while  very 
efficient for high-speed  transmission, suffer from  the 
defect  that if a few bits  are  received  incorrectly,  the  mes- 
sage  cannot be translated  back  to  the  original  text. A 
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