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Abstract-In this paper, we show how coding and constella- 
tion shaping may provide significant gains to a discrete multi- 
tone (DMT) system transmitting over spectrally-shaped channels. 
First, we present and analyze a concatenated coding scheme con- 
sisting of an inner trellis code and outer block code when applied 
to DMT modulation, and we address some of the implementation 
issues associated with this scheme. Some laboratory test results 
for a DMT prototype employing the coding scheme are presented. 
Next, we propose a method for applying Forney’s trellis shaper 
across the tones in a DMT system to realize significant shaping 
gain. To illustrate the coding and shaping gains achieved, we use 
scenarios indicative of the newly introduced asymmetric digital 
subscriber line service. By combining a powerful coding scheme, 
shaping, and DMT modulation, we arrive at an implementable 
transceiver that can provide very high data rates over spectrally- 
shaped channels. 

I. INTRODUCTION 
HE transmission of high-speed data over spectrally- T shaped channels can be achieved by a sophisticated 

combined modulation and equalization technique. One 
approach that has been found well suited for a number of 
new applications is the use of multicarrier modulation, and 
we focus upon a particular form of multicamier modulation 
known as discrete multitone (DMT) modulation [ 11. With this 
approach, the channel is divided into a number of independent 
subchannels in the frequency domain, and bits and power 
are allocated among the subchannels to maximize throughput. 
The primary advantage of the multicarrier approach is that the 
problem of bandwidth optimization is greatly simplified, thus 
allowing very high data rates to be achieved with reasonable 
implementation complexity. 

Given a DMT transceiver with the capability of perform- 
ing bandwidth optimization, we address the problem of the 
application of coding and shaping to the system. First, we 
present a flexible, implementable, bandwidth-efficient coding 
scheme consisting of an outer block code and inner trellis 
code operating across the subchannels, and we analyze the 
performance of this scheme for a number of realistic sce- 
narios. Implementation issues specific to DMT modulation 
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are addressed, and some laboratory test results are presented. 
Next, we show how trellis shaping may be applied across the 
tones in a DMT syslem to obtain significant shaping gain. By 
combining the proposed coding and shaping schemes, real (as 
opposed to asymptotic) coding plus shaping gains exceeding 
6.0 dB at a bit error rate (BER) of and 7.0 dB at a 
BER of lo-’ are achieved in the DMT system. To illustrate 
various results, we use examples from the asymmetric digital 
subscriber line (ADSL), a service proposed for providing a 
downstream data rate ranging from 1.544 Mbps to 6.4+ Mbps 
from the telephone company’s central office to the customer, 
along with a lower-speed return channel over existing copper 
twisted pair [ 2 ] .  

In Section 11, we review the concept of DMT modulation 
and establish the baseline DMT system to which we will apply 
both coding and shaping. In Section 111, we show how coding 
is applied to the syslem and analyze the coding gains possible 
with the proposed scheme. Next, in Section IV, we address the 
problem of the application of shaping to DMT modulation, and 
we evaluate the shaping gains realized for the same scenarios 
used in the coding gain analysis of Section 111. Finally, we 
summarize our results in Section V and conclude with the 
presentation of a practical multicarrier encoder structure. 

11. BASELINE DMT SYSTEM 

A simplified block diagram of the basic DMT transmitter 
is presented in Fig. 1 [3]. At the input to the system, the bit 
stream is partitioned into blocks of size b = RT bits, where 
R is the uncoded bit rate, T is the DMT symbol period, and b 
is the number of bits contained in one DMT symbol. The bits 
collected during the mth symbol interval are allocated among 
N subchannels or tones in a manner determined during system 
initialization, with rnore bits given to those subchannels with 
higher signal-to-noise ratios (SNR’ s). Depending upon the data 
rate and SNR function, some of the channels may not be 
assigned any bits. We let b, denote the number of bits assigned 
to the ith tone, so that b = b,. On subchannel i ,  the b, bits, 
represented by the constellation label d,,,, are mapped to a 
complex constellation point X,,, = f[d,,,] in a constellation 
of size 2ba, where .f[.] denotes the mapping operation. Next, 
a block of real time-domain samples, {x%,+}, is formed by 
performing a length N = 2N Inverse Fast Fourier Transform 
(IFFT) on the complex symbols {X t ,m ,  i = O , l , .  . . , N - l}, 
where Xo,,  = 0 and {X,,, = X&--z,m, i = N + 1,N + 
2, . . . , N - 1). A cyclic prefix consisting of the last L/ samples 
of the data block {z , ,~}  is added to the beginning of the block 
to form the signal transmitted over the channel. The receiver 
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i" k R T  bus 

Fig. 1. Uncodedhshaped DMT transmitter. 

corresponding to the transmitter illustrated in Fig. I merely 
consists of the inverse operations. 

In this paper, we assume that N and Y are chosen sufficiently 
large so that the tones are well approximated as indepen- 
dent and memoryless subchannels.' Under these conditions, 
the complex point E,, obtained at the output of the ith 
subchannel is given by Y,,, = H,X,,, + Nz,m, where H, 
represents the complex gain of the subchannel and is 
a sample of a complex Gaussian noise process. Hence, the 
key to analyzing the uncoded and unshaped DMT system is 
to note that each of the N subchannels may be considered 
as supporting a low-speed, memoryless, quadrature amplitude 
modulated (QAM) signal 141. We let P, = E{IXz,m12} denote 
the two-dimensional (2-D) symbol power allocated to the ith 
subchannel and 2,: = E{lNz,m12} the 2-D noise variance. 
With these definitions, the output S N R  for the ith tone is 
given by snr, = T .  P, I H ,  I 

A useful parameter for analyzing the DMT system's per- 
formance is the SNR gap, I', which represents the distance 
between the performance of a QAM signaling scheme and 
capacity over a memoryless channel 171, 181. Using the S N R  
gap approximation, we can relate b, to snr, by the expression 
b, = log,(l + *), where the SNR gap, r ( C , p Z - D ) ,  

is a function of the coding scheme C and 2-D error rate 
Pz-D. In formulating this relationship, we are assuming that 
the DMT system is designed to provide equal error rate on 
each subchannel. 

For an uncoded DMT system operating at a 2-D error rate 
of PZ-D, the SNR gap may be written as r d B ( C , P Z - D )  = 

inal gap (in dB) required to meet the error rate and 
Ym,dB is any required system margin [4]. Using well- 
known QAM relationships, we can show that PZpD = 
4 Q ( d m ) ,  where Q(. )  is the Gaussian probabil- 
ity of error function. When a coding scheme with gain 
Y ~ , ~ B ( C , P Z - D )  and shaping scheme with gain Ys,dB are 
applied, the SNR gap is reduced to r d B ( c , & D )  = 

p2-D = 4Q(J3r(C,  PZ-D)YC(C, PZ-D)Y~/Y~)  141, 181. In 
the remainder of this paper, we present and analyze methods 
for applying coding and shaping to DMT modulation to 
achieve large Yc,dB (C, P ~ - D )  and Ts,dB over spectrally-shaped 
channels. 

rO,dB(PZ-D) f "im,dB, where rO,dB(PZ--D) is the "J3 

r0,dB(p2-D) + "im,dB - "ic,dB(C,P2-D) - Ys,dB and thus 

'See [I], [4] for a discussion of the choice of and [5] ,  [6] for methods 
to reduce the length of v. 

Fig. 2. Coded DMT transmitter. 

Fig. 3. Coded DMT receiver. 

111. &PLICATION OF CODING 

A. Coded DMT System Model 

The coding scheme that we apply to the DMT system should 
have large coding gain, reasonable implementation complex- 
ity, flexibility (adaptable to data rate), and some measure of 
burst immunity. A suitable scheme for achieving all these goals 
is a concatenated coding scheme consisting of an inner trellis 
code operating across the tones as suggested in [9]-[ 111 and 
an outer block code with variable outer code parameters. The 
parameters of the outer code are determined according to the 
desired data rate and even may be determined on a channel 
by channel basis, if necessary. Figs. 2 and 3 illustrate how the 
proposed coding scheme is incorporated in the DMT system, 
where only those portions of the DMT transceiver involving 
the encoding of bits into complex symbols and the decoding ' 
of complex symbols into bits are depicted. 

The binary data stream at the input to the system is first 
encoded by an outer, interleaved Reed-Solorhon (RS) code 
with code length n and information length k. In traditional 
applications, block codes result in an increase in the symbol 
rate (ie., increase in bandwidth) to maintain the same informa- 
tion rate, but for DMT modulation, the redundancy associated 
with the block code is absorbed by increasing the number of 
bits contained in each DMT symbol by a factor of n / k .  As 
a result, the bit allocation algorithm makes the best tradeoff 
between bandwidth expansion, where a greater fraction of the 
N tones are used for transmission, and signal set expansion, 
where the sizes of the constellations supported by a subset of 
the used tones are increased, in distributing the additional bits. 

In contrast to the block encoder, the inner trellis encoder in 
Fig. 2 operates on the bits at the output of the bit allocation 
unit, producing a set of complex symbols that serves as 
the input to the IFFT block. The only change from a basic 
trellis encoder as defined in [12] is that the signal selector 
component must select points from different size constellations 
as the encoder operates across the tones; the convolutional 
encoder and coset selector remain the same. As a result of the 
redundancy of the trellis code, the number of bits on the i th  
subchannel is increased to b, + F ,  where F is the normalized 
redundancy of the code in bits per 2-D symbol. 

, 
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In the receiver, depicted in Fig. 3,  a single Viterbi decoder 
operates across the subchannels on the noisy constellation 
points at the output of the FFT, which is not pictured. In 
using the Viterbi decoder across the subchannels, we are 
implicitly exploiting the important fact that the subchannels are 
independent and memoryless in the DMT system. Hence, the 
gain obtained from applying the trellis code will essentially be 
the same as that obtained in an intersymbol interference-free 
environment. 

B. Theoretical Pegormance 

To determine the theoretical coding gain afforded by the 
codes when applied to the DMT system, we consider the 
components of the overall gain individually. During the course 
of the analysis, it will be convenient to work with 2-D 
symbol error rates, bit error rates, and RS symbol error rates, 
depending upon what part of the system is being considered. 
For simplicity, we assume that these quantities are related by 
constant factors, and we use the 2-D error rate as a common 
basis. In particular, 2-D error rates are converted to bit error 
rates by multiplying by one-half. Similarly, 2-D error rates 
are converted to RS symbol error rates by multiplying by a 
constant c, where c represents the average number of tones 
contributing bits to each RS symbol. 

With Pbi t  denoting the required bit error rate at the output of 
the overall system, the net coding gain is conveniently divided 
into the following components: 

1) Yrs,dB((n, k ) ,  &t), the gain obtained by the RS code 
without taking into account the penalty for the increased 
data rate. 

2) Ytc,dB( (n, k ) ,  Pbi t ) ,  the gain provided by the trellis code 
at the error rate required by the RS code to achieve Pbi t .  

3) Yloss,dB( (n,  k ) ,  b ) ,  the loss incurred for increasing the 
data rate. 

The overall coding gain is computed as 

Yc,dB((nn, k ) i  Pbi t )  = Ytc,dB((n,  k ) ,  Pbi t )  + ?rs,dB((n, IC), Pbi t )  

- Yloss,dB((n, k ) ,  b ) .  (1) 

Each of the coding gain components is now considered in turn. 
A RS codeword is correctly decoded 

provided it contains no more than t = L(n - k)/21 errors 
[ 131. Assuming sufficient interleaving so that the errors appear 
random at the RS decoder's input and assuming the RS 
decoder does not attempt to correct the codeword if greater 
than t errors are detected, we may relate the output RS symbol 
error rate Pr, to the input RS symbol error rate P, by 

+ r s , d ~  ((n, k )  &): 

Pr, = - 2 P:(l- Ps)n-i 
n i=t+l 

Hence, given the output bit error rate Pb i t ,  we equate Prs = 
and iteratively solve (2) for P,. The corresponding input 

bit error rate is given by Pb((n, k ) ,  Pbi t )  = Ps / (2c ) .  This bit 
error rate is equated to the error rate at the output of a QAM 

demodulator to obtain Pb((n, k ) ,  &It)  = 2 Q ( G ) ,  from 
which an expression for the SNR gap rrS is derived.2 Now, 
we define the SNR gap required for an uncoded system 
to achieve the output bit error rate Pbl t  as the solution to 
Pbl t  = 2 Q ( a ) .  The gain of the RS code without taking 
into account the data rate penalty is computed as the difference 

?rs,dB((n,, k ) ,  Pbit) = r 0 , d B  - r r s ,dB .  (3)  

Ytc,dB((n,  k ) ,  Pbl t ) :  In the concatenated coded system, the 
2-D error rate required at the output of the trellis decoder is 
given by Pz-D = :2Pb((n, k ) ,  &it), where Pb((n, k ) ,  Pbi t )  

is the bit error rate required at the input to the RS decoder 
to achieve Pb l t .  Given PZ-D, we determine the SNR gap 
r tc ,dB(PZ-D)  required to achieve this error rate by using the 
trellis code's performance curve. The gain of the trellis code 
is given by 

?/tc,dB((n,  k ) ,  pbit)  = rO,dB(PZ-D) - r t c , d B ( P 2 - D )  (4) 

where rO,dB(PZ-D) is the SNR gap for an uncoded system at 
the error rate P2-D.  

Yloss,dB((n, k ) ,  b ) :  TO determine the loss for the increased 
data rate associated with the RS code, we first define Pco,(b) 
as the minimum amount of power required to achieve the data 
rate b in a DMT system with a gap of 0.0 dB. This quantity 
is determined as the solution to the following optimization 
problem 

subject to b = b;, 
2=1 

where the ith term in the first summation is understood 
to be equal to zero if b, = 0 and snrch,, = 0. In (5 ) ,  
{b,} represents the DMT bit distribution, and snr,h,% = 
lH,I2/(2u,2) is the channel gain-to-noise function. With d( . )  
denoting the permutaiion of the subchannel indices that results 
in a decreasing sequence for snr,h,d(,), the solution to the 
optimization problem is given by 

The parameter u signifies the number of subchannels actually 
used for transmission and is determined by finding the largest 
integer u 5 such that loga(KsnrCh,d(u~) > 0. Hence, the 
power distribution is simply given by a discrete version of the 
well-known water-pour distribution 

(7) 

and the minimum power by 

'The factor of two in front of the &(.) function results from our assumption 
that bit error rates are one-half the 2-D error rates. 
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The loss now may be expressed as 

C. Integer Constraints 

The theoretical coding gain analysis provided in Section 
II1.B assumes infinite bit granularity and allows infinite con- 
stellation sizes. In a practical DMT system, the bit granularity 
is determined by the complexity of the signal selector, while 
the constellation size is limited by finite precision, nonlinear- 
ity, and timing jitter constraints. Hence, we now consider the 
coding gains realized under more practical constraints on the 
bit distribution. 

We assume that the number of bits assigned to each carrier 
must be an integer before the application of the trellis code. 
In addition, we restrict the number of bits per used tone to 
lie in the range blow 5 b, 5 b,,,, where blow and b,, are 
integers; typically,we have blow = 2. The analysis remains 
the same as in Section 1II.B except for the computation of 
yloss,dB((n, k ) ,  b ) ,  which is now given by 

Yloss,dB((nn, I C ) ,  b )  = i)t*ot,dB(nb/k) - p:ot,dB(b) (lo) 

where p&(b) is the solution to the following integer- 
constrained optimization problem 

rv 
subject to b = b, 

z = 1  

b, E {O,blow,how + 1,*..,bm,}. (11) 

The solution to (1 1) is too difficult to compute in a practical 
DMT system. However, this optimization problem is closely 
related to the problem of determining the optimum bit and 
power allocation schemes for maximizing the margin of a 
DMT system at a given data rate. A practical, albeit ad-hoc, 
method for computing the DMT bit and power distributions 
is proposed in [14], and versions of this algorithm are imple- 
mented in current DMT products. It can be verified that for 
practical scenarios, the theoretical coding gains do not change 
as long as b,, is not too small. For instance, in the ADSL 
application b,, = 10 is usually sufficient, and b,, = 15 
covers the worst scenarios. 

D. Accommodation of Trellis Code Redundancy 

Unlike the situation for traditional single-carrier systems, a 
trellis-coded DMT system that allows a fractional normalized 
redundancy, T ,  must accommodate many different multidimen- 
sional constellation sizes. While these different constellations 
could be supported by using an algorithmic multidimensional 
encoder based on generalized cross constellations [15], [I61 or 
some other multidimensional technique, the additional com- 
plexity may be unwarranted in a practical DMT system. 
Indeed, even with an integer bit assignment, a DMT system 
based on 2N-point FFT’s effectively supports a bit granularity 
of l / N  bits per 2-D symbol. 

Under the constraints that the bit distribution must be integer 
and that b, 5 b,, for both the cases of a system with and 
without trellis coding, we provide the following method by 
which a practical bit and power allocation algorithm that solves 
(1 1) can be used to determine the bit and power allocations 
for the trellis-coded DMT system: 

1) Solve (11) for n b / k  bits and find u, the number of 
subchannels required. 

2) Compute utc = F, the number of tones to be used in 
the trellis-coded case. 

3) Sort the channel gain-to-noise ratios in descending order: 

4) Set snr,h,d(,) = 0, i > utc. 
5) Set bt, = n b / k  + Tutc.  
6) Solve (11) for bt, given sqr,h,d(%). 
The suboptimal approach for accommodating the trellis code 

redundancy should result in approximately the same SNR loss 
as would be expected for expanding the constellation by a 
factor of 2T on each tone. However, an exception arises when 
many of the tones are already constrained by the limitation 
of bmax. Under these conditions, the redundant bits are forced 
onto poor subchannels, leading to a degradation in the gain 
expected for the trellis code. We refer to this effect as bit- 
capping. If p;ot,dB(nb/k) denotes the required power for the 
system without trellis coding and &!ot,dB ( btc) the required 
power for the system with trellis coding, the bit-capping loss 
incurred is given by 

snrch,d( ) -  

E. DMT Coding Gain Results 

By using the analysis discussed above, we computed the 
coding gains expected at BER’s of lop7 and lo-’ for two 
ADSL scenarios. The first scenario corresponds to a frequency- 
division multiplexed system operating at 1.6 Mbps over ANSI 
loops [ 171 in the presence of near-end crosstalk (NEXT) from 
49 digital subscriber line (DSL) disturbers. The second is 
for the case of an echo canceled system transmitting at 6.4 
Mbps over CSA loops [18] in the presence of NEXT from 10 
DSL and 24 high bit-rate DSL (HDSL) disturbers, and NEXT 
and far-end crosstalk (FEXT) from 10 ADSL disturbers. The 
configurations of the eight specific loops used in the analysis 
are given in Fig. 4, where the two numbers above each segment 
give the length of the segment in feet and the gauge of the wire 
(AWG). Based on the spectral efficiencies typically required 
for the two data rates along with simulation results, we set 
c = 2.5 for the 1.6 Mbps scenario and c = 1.5 for the 6.4 Mbps 
scenario, The parameters common to both scenarios include 
a RS information length of 5 = 200, the use of 512-length 
FFT’s, a 4.0 kHz DMT symbol rate, bit assignment constraints 
of blow = 2 and b,, = 10, a 4.3125 kHz carrier spacing, and 
the presence of additive white Gaussian noise (AWGN) with 
a two-sided power spectral density of -143.0 dBmIHz. 

Table I presents the maximum coding gains achieved at 
BER’s of lop7 and lo-’ for both the cases of an applied RS 
code over GF(256) and a concatenated code consisting of an 
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loop, rate (Mbps) 

ANSI 1, 1.6 

ANSI6, 1.6 

ANSI9, 1.6 

ANSI 15, 1.6 

io-’ e m r  rate 

RS RSf Wet RS RSf Wet 

1 0 P  e m r  rate 

7qdB n f ,dB n 7c.dB n 7e,dB n 

3.5 226 5.4 212 4.3 226 6.4 212 

3.4 226 5.2 210 4.3 226 6.2 214 

3.7 228 5.4 210 4.5 234 6.4 212 

3.6 226 5.4 212 4.5 228 6.4 214 

CSA 1, 6.4 

CSA 4. 6.4 1 3.1 216 1 5.2 208 1 3.9 218 I 6.1 210 

3.1 216 5.2 208 3.9 220 6.2 208 

CSA 6, 6.4 

outer RS code and an inner 16-state, 4-D trellis code devised 
by Wei [15]. The performance of the Wei code was obtained 
by combining Monte Carlo simulation results for high error 
rates and distance spectrum analysis for low error rates to 
generate an accurate curve over a wide range of error rates 
[19]. In obtaining the DMT coding gains, we used integer bit 
distributions and accommodated the trellis code redundancy in 
the suboptimal fashion described in Section 1II.D. Also listed 
in Table I is the optimum code length for realizing each of the 
coding gains listed. From the results, we find that RS codes 
can provide over 3.0 dB of gain at a BER of lop7, while the 
concatenated code provides over 5.0 dB of gain at the same 
error rate. We note that the gains obtained for a RS(216,200) 
code, the default code specified in the ADSL standard for the 
two data rates considered, differ from the optimum gains listed 
in Table I by at most 0.35 dB. 

To confirm our coding gain analysis, we conducted labora- 
tory tests on a DMT prototype for ADSL in October, 1993 at 
Amati Communications Corporation. The Amati DMT system 
operates at a sampling rate of 2.208 MHz and a DMT symbol 
rate of 4.0 kHz. A length 512 FFT is used for modulation 
and demodulation in the downstream direction, resulting in a 
carrier spacing of 4.3125 kHz. Furthermore, a maximum of 
b,,, = 11 bits per tone is supported. We tested performance 
at an effective data rate of 6.208 Mbps over a 6 kft, 26 AWG 
loop in the presence of AWGN with two different RS codes, 
a RS(202,194) code and a RS(210,194) code. Plots of the 
data points obtained in the lab are presented in Fig. 5 along 
with solid error rate curves derived using the same analysis 
techniques as those used to obtain the results in Table I. The 
theoretical curve and set of data points on the far right of the 
graph correspond to the uncoded system, while the group of 

3.2 216 5.3 208 3.9 218 6.2 208 

normalized snr (de) 

Laboratory results for case of AWGN and a 6 kft, 26 AWG loop. Fig. 5. 

curves on the far left correspond to the concatenated RS + Wei 
coded system. The middle group of curves pertain to the case 
where only a RS code was applied to the data stream. 

The correspondence between the data points and the the- 
oretical performance curves is quite good, thus verifying the 
accuracy of our anadysis. We note that the apparent coding 
gains in Fig. 5 are larger than any of the gains in Table 
I because the “uncoded” curve in Fig. 5 is actually for an 
uncoded system at the same data rate as the RS(202,194) 
coded system. In other words, all the curves in the figure 
that correspond to system performance with coding do not 
include the penalty for the addition of eight check bytes.3 The 
penalty is easily determined to be 0.8 dB in this case, and by 
subtracting 0.8 dB from the coding gains implied by Fig. 5,  we 
find that the extrapolated gains are 3.1 dB for the RS(210,194) 
code and 5.2 dB for the RS(202,194) + Wei code at a BER 
of 10-7. 

Iv. APPLICATION OF SHAPING 

A. Shaping Across the Tones 

Now that a good coding scheme for achieving large 
Y ~ , ~ B ( C , P ~ - D )  in a DMT system has been derived and 
analyzed, we turn to the problem of the application of shaping 
to achieve large Ts,dB. As in the case of trellis coding, a 
straightforward approach would be to shape the constellations 
on each of the subchannels individually, but this would require 
too much delay, storage, and complexity. Hence, we consider 
a method of applying trellis shaping [20] across the tones in 
the DMT system. For simplicity, we focus only on the 4-state 
shaper discussed in [20], and we concentrate on the case in 
which one large circular constellation is stored in memory 
with an embedded labeling scheme to support the various size 
constellations needeld on the DMT subchannels. The embedded 
labeling scheme is generated by ordering points on the half- 
integer grid Z 2  + 1(0.5,0.5) according to increasing energy 

3The curves involving a RS(210,194) code do include the penalty for 
increasing from 6.464 Mbps to 6.720 Mbps. 

CommScope, Inc. 
IPR2023-00064, Ex. 1009 

Page 5 of 9



2946 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 43, NO. 12, DECEMBER 1995 

bi-1 , ld%-2i2isn,dh-3im, ... doim] 
I c 

Fig. 6. The 4-state, 2-D trellis shaper applied across the tones. 

and assigning larger labels to points with higher energy, where 
labels are interpreted as unsigned integers. For the interested 
reader, an algorithmic encoder that generates square and cross 
constellations with labeling schemes that work well with the 
4-state shaper is provided in [all.  

Fig. 6 illustrates the trellis shaper that is applied across the 
tones. The first step in applying the shaper is to double the size 
of the constellation on each tone. Next, the sequence of most- 
significant bits {&;'} of the unshaped constellation labels is 
passed through a rate one-half coset representative generator 
( H ; ~ ( D ) ) ~  to form an initial sequence of region specifier 
bits { u : ; ~ ,  v;,";'} for the expanded constellations. Since an 
embedded labeling scheme is used, the region specifier bits 
(vp;,,, , v:;;') produced during symbol period m designate one 
of four concentric circular rings. Ths concept is depicted in 
the left-hand side of Fig. 7, where the four regions are labeled 
with the four possible values of (v:;~,v:;;'). The sequence 
{ v g ; , , ~ ~ ; ~ ' }  is subsequently modified by the modulo two 
addition of a codeword {e&, e&} from the rate one-half 
convolutional code C, with generator matrix G,(D) = [l + 
0' 1 + D + D2] and parity check matrix H,(D) to form the 

choice of codeword is determined by performing the Viterbi 
algorithm to search for the lowest-energy sequence out of 
an equivalence class of possible transmit sequences 1201. In 
particular, the squared magnitude of the constellation point 

sequence {z,":,,.~,":;'} = b CB C&,V;;;' CB e&}. n e  

I 

(13) 
may serve as the weight of a branch in the trellis for the 
shaping code, where the branch is associated with the label 
(c,",,, e:,,). In (13), fo [.] represents the mapping of labels to 
points in the stored constellation, and P,(b,) is the average 
2-D symbol power of a 2bs-point constellation based on the 
half-integer gnd. Hence, division by d m  normalizes the 
unshaped constellation to unity energy, while multiplication by 
fl incorporates the DMT power distribution. Once a trellis 
path is chosen, a mapping operation that includes transmit 
power scaling is performed to obtain the transmitted points 
{xZ,m}. 

Before assessing the performance of shaping across the 
tones in a DMT system, it is instructive first to evaluate the 
performance of the 4-state shaper for different Jixed constel- 
lation sizes. Simulation results reported in [20] show that 
a gain on the order of 1.0 dB with respect to a "square" 
constellation is obtained for the case of a 128-point constel- 

Fig. 7. Illustration of standard and modified labeling schemes. 

O 2 i  '2 3 4 5 6 7 8 9 I O  

brts per 2D symbol 

Fig. 8. 
lation sue.  

Performance of 4-state trellis shaping code as a function of constel- 

lation. However, it is not clear whether such gains may be 
achieved for small constellations for which the continuous 
approximation [ 161 does not hold. To ascertain the relationship 
between Constellation size and shaping gain, simulations were 
conducted using constellation sizes ranging from 4 to 1024 
points, and the results are presented in Fig. 8 for the shaping 
gains achieved with respect to the original, unshaped, circular 
constellation. The lower curve in Fig. 8 corresponds to the 
case in which the original embedded labeling scheme was 
maintained, whereas the upper curve was achieved when the 
labeling scheme was modified as discussed in [20] such that 
the points in the outer-most and next-to-inner-most rings were 
labeled from high energy to low energy and the two most- 
significant bits of each constellation label in the two middle 
rings were interchanged. The latter modification is equivalent 
to interchanging our definitions of regions one and two. Fig. 
7 compares the standard embedded labeling scheme (left-hand 
side) with the modified labeling 'scheme (right-hand side) for 
an arbitrary constellation size, where the arrows indicate the 
direction of increasing constellation labels within each region. 

?;he modified labeling scheme' is not compatible with the 
embedded labeling scheme that would be used to store a 
constellation in the DMT system. Moreover, creating different 
look-up tables for all possible constellation sizes is clearly 
impractical. Fortunately, the desired labeling scheme may be 
induced on a stored, embedded constellation by using the 
following algorithm to modify the signal selector. 
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Given an Z-bit constellation label, (dl- ' ,  d2-', dl-3, 

... , d2, d', do) ,  first check to see whether or not I 5 4. If 
so, then the constellation point X is obtained in the normal 

denotes the original mapping operation. On the other hand, if 
I > 4, then the mapping is performed based on the values of 
the region specifier bits (dl-', 

I-1 dl-2 dl-3 . . .  d2 dl do] way: X = f,[d > , > > , , 9 where fJ.1 

as follows 

dl-ldl-2 = 00 =+ x = fo[dl-l,dl-2,dl-3,. . . ,d2, d l , d O ] ,  
dl-ldl-2 - - 01 =+ x = jo[2-l, 2-2, d l - 3 , .  . . , d2, d l ,  do], 

dZ-ldl-2 - - 11 =+ x = f o [d l - l , d l -2 ,2 -3 , .  . . ,2, d l ,  do] 
dl-ldl-2 - - 10 * x = j 0 [Z- l ,  2 - 2 , 2 - 3 , .  . . , K ,  d l ,  do] ,  

where 2 is the binary complement of d. Inverse operations 
may be performed in the receiver to retrieve the original 
constellation labels. 

The dependency of the achievable shaping gain on the size 
of the constituent constellation implies that the overall shaping 
gain will depend on the DMT scenario and in particular on the 
bit and power distributions. If a separate trellis shaper were 
applied to each tone, then we could calculate the shaping gain 
as 

(14) C a E U  Pt 
Ys,tot = 

CaEu 

where ys (b,) represents the dependency of the shaping gain on 
the constellation size as illustrated in Fig. 8. The summations 
in (14) are taken over the set of indices M corresponding to 
tones actually used for transmission. However, the shaping 
gain achieved when applying shaping across the tones will 
not be exactly the same as for separate trellis shapers, and the 
gain must be obtained through simulation. In fact, we claim 
that the gain will always be better than for separate shapers, 
whenever the power distribution is nonflat. This assertion is 
difficult to prove for low numbers of bits per 2-D symbol, 
although it has been verified through simulations. A theoretical 
justification based on the continuous approximation, which is 
valid for large numbers of bits per 2-D symbol, is given in 
Appendix A. 

B. Coding and Shaping 
To this point, we have considered the application of shaping 

to DMT modulation without regard to our applied coding 
scheme. The block code and applied shaping scheme are 
nearly separable, but for the trellis code, the shaper must not 
violate the sequence of least-significant bits of the constellation 
labels. In the case of the 4-state trellis shaper, two possible 
solutions for ensuring compatibility with a mod-2 trellis code 
are presented in [21], where the assumption is made that the 
DMT system accommodates the redundancy of the trellis code 
by using the algorithm proposed in Section 1II.D to achieve 
an integer bit distribution. The first solution is to simply 
exclude carriers supporting only two bits from the shaping 
operation, while the second is to prune branches (Le., limit 
allowable transitions) from the shaping trellis at transitions 
corresponding to 4-point carriers so that the least-significant 
bits are not violated on any possible path. The advantage of 

TABLE 11 
PERFORMANCE OF TRELLIS SHAPING FOR DMT EXAMPLES 

the second solution firom an implementation standpoint is that 
the regularity of the Viterbi operation is not altered. Both 
approaches yield approximately the same shaping gains. 

C. DMT Shaping Gain Results 

To evaluate the aplproach to shaping for DMT modulation 
discussed in Section IV.A, we used the same scenarios as 
investigated in Section 1II.E. Shaping gains were obtained 
for the bit and power distributions corresponding to the 
optimal concatenated code parameters listed in Table I. The 
constellation expansilon associated with the trellis shaper was 
accommodated by allowing a maximum constellation size 
of 2048 points after shaping. For simplicity, trellis code 
compatibility was maintained by excluding carriers supporting 
two bits from the shaping operation. 

Table I1 presents the shaping gains obtained with the 4- 
state trellis shaper for the two error rates considered earlier. 
The gains in the columns labeled as separate were obtained 
by applying an independent shaper to each tone, and those 
listed in columns labeled as down block were achieved by 
performing shaping down the DMT symbol. The gains in 
these four columns indicate the reduction in transmit power 
afforded by the shaping technique when measured relative to 
the original, unshaped signaling scheme. Additional columns 
labeled w.7.t. sq/cr are included in Table I1 to illustrate the 
shaping gains achieved for the case of shaping across the 
tones when measured relative to a DMT system that uses 2-D 
squares and crosses on the subchannels. This normalization 
is useful for comparing DMT systems that employ different 
signal selectors. The results in Table I1 show that trellis shaping 
across the tones provides anywhere from 0.85-1.10 dB of 
shaping gain for these scenarios. In addition, the down-the- 
block approach is found to perform slightly better than when 
independent shapers are applied, as expected. 

v .  SUMMARY 

Fig. 9 depicts the encoder structure at which we finally 
arrive by putting all the components considered in this paper 
together. Combining the results provided in Tables I and I1 to 
form Table 111, we find that over 6.0 dB of coding plus shaping 
gain is achieved at a BER of lop7 and 7.0 dB at lo-'. 

The encoder in Fig. 9 is both high-performing as well as 
implementable. In addition, it should be noted that the encoder 
is not specific to DMT modulation; the only function of the 
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Fig. 9. Coded and shaped multicanier encoder. 

TABLE JX 
COMBINED CONCATENATED CODING PLUS SHAPING GAINS FOR DMT EXAMPLES 

ANSI 1, 1.6 

ANSI 6 ,  1.6 

ANSI 9, 1.6 

ANSI 15, 1.6 6.4 7.3 

CSA 1. fi.4 

structure is to convert sequences of bits into N sequences of 
complex symbols. For this reason, we refer to the encoder in 
Fig. 9 as a multicarrier encoder. Given this structure, all that 
we need is some method for converting a spectrally-shaped 
transmission channel into a number of parallel, independent, 
memoryless subchannels; and a variety of approaches for 
accomplishing this partitioning have been proposed in the 
literature [22], [23]. However, DMT modulation currently 
provides the most efficient means for achieving the channel 
partitioning. Hence, by combining the encoder of Fig. 9 with 
DMT modulation, we arrive at an implementable transceiver 
structure that comes closer to the capacity of spectrally-shaped 
channels in practice than any other structure of which we 
know. 

APPENDIX A 
OPTIMAL SHAPING FOR NONFLAT POWER DISTRBUTION 

In this Appendix, we give a theoretical argument as to why 
trellis shaping across the tones perfoms better than trellis 
shaping on a tone by tone basis, whenever the power dis- 
tribution is nonflat. Our assertion is based on the observation 
that selecting points from an optimal 2N-dimensional region in 
each 2-D coordinate is not optimal when compared to selecting 
points from an optimal 2N-dimensional region that takes into 
account the different scaling in each of the coordinates? We 
state this observation as the following theorem. 

Theorem 1 [Optimal Shaping for a Non$at Power 
Distribution:] An optimized 2N-dimensional shaper operating 
down the block will provide higher performance than when 

4Note that we place no constraints on complexity or constellation expansion 
in defining optimal. 

optimized on a tone by tone basis, whenever the power 
distribution is nonfiat. 

ProoJ Consider the optimal selection of points from a 2N- 
dimensional region. Let { b z )  i = 1, . . . , N }  and {Pt) i = 
1, . . . , N} denote the initial bit and power allocation schemes 
over N 2-D coordinates based on square constellations. By 
the continuous approximation, Pz = 2b”d:/6, where d, is 
the minimum distance between constellation points on the 
ith subchannel. Hence, the average transmit power per 2-D 
symbol is given by 

When a 2N-dimensional shaper is applied to each tone sep- 
arately, the optimum scheme is to choose points in each 
subchannel from a 2N-dimensional sphere, resulting in an 
average t ransmi t  power of 

where y s 8 ~  = ( T ( N  + 1))/(6(N!)1//”) is the shaping gain of 
a 2N-sphere [ 161. On the other hand, when shaping is applied 
down the block, the points are selected from a sphere on a 
lattice scaled by d: in each 2-D coordinate. Letting R denote 
the radius of the sphere, we have 

where AV = n,”=, d,” is the fundamental volume, p = 
& E,”=, ba is the normalized data rate, and V@,(R) = 
( T ~ / N ! ) R ~ ~  is the volume of a 2N-dimensional sphere of 
radius R. The average power of a 2N-sphere is P@N(R) = 
R2/ (N  + l), and thus the average power required is 

Taking the ratio of (16) and (1 S), we find that the advantage 
of down-the-block is given by 

Since the arithmetic average of a set of non-negative numbers 
is always greater than or equal to the geometric average, 
P , e p / P b l k  2 1 with equality obtained when P, = P3 Q i ) j .  0 
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