

US Lib

QA I
7fl. 73 SECOND EDITION
C1S ~==========
1'47 lj
19H8 , ,; THE

BRIAN W KERNIGHAN
DENNIS M. RITCHIE

PRENTICE HALL SOFTWARE SERIES

,. • I

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 1 of 15

THE

C

PROGRAMMING

LANGUAGE

Second Edition

Brian W. Kernighan • Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey

it
PRENTICE HALL, Englewood Cliffs. New Jersey 07632

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 2 of 15

Library of Conare• Cataloging-in-Publication Data

Kernighan, Brian W,
The C programming language.

Includes index.
1. C (Computer prog.ram language) I. Ritchie,

Dennis M. 11. Title.
QA76.73.Cl5K47 1988 005.13'3 88-5934
ISBN 0-13-110370-9
ISBN 0-13-110362-8 (pbk.)

Copyright O 1988, 1978 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy­
ing, recording, or otherwise, without the prior wriuen permission of tbe publisher.
Printed in the United States of America. Published sim11ltaneously in Canada.

UNIX is a registered trademark of AT&T.

This book was typeset (pie I tbl I eqn I troff -ms) in Times Roman and Courier by
the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running
the 9th Edition of the UNIX• operating system.

Prentice Hall Software Series
Brian Kernighan, Advisor

Printed in the United States of America

10 9 8 7 6

ISBN
ISBN

0-13-110362-8
0-13-110370-9

{PBK}

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc. , Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

(

C

a

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 3 of 15

Preface

Preface to the First Edition

lnlrodaction

Chapter I.
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Chapter 2.
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

A T•torial Introduction
Getting Started
Variables and Arithmetic Expressions
The For Statement
Symbolic Constants
Character Input and Output
Arrays
Functions
Arguments-Call by Value
Character Arrays
External Variables and Scope

Types, Opentors, and Expressions
Variable Names
Data Types and Sizes
Constants
Declarations
Arithmetic Operators
Relational a nd Logical Operators
Type Conversions
Increment and Decrement Operators
Bitwise Operators
Assignment Operators and Expressions
Conditional Expressions
Precedence and Order of Evaluation

Chapter 3. Control Flow
3.1 Statements and Blocks
3.2 If-Else

EMS
LIB

~n
7t, 13
C/5
k: L/7

Contents /1'6~

ix

xi

5
5
8

13
14
15
22
24
27
28
31

35
35
36
37
40
41
41
42
46
48
so
51
52

S5
55
55

◄

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 4 of 15

fi THE C PROGRAMMING LANGUAGE CONTENTS

3.3 Else-Ir 57

3.4 Switch 58

3.5 Loops-While and For 60

3.6 Loops-Do-while 63

3.7 Break and Continue 64

3.8 Goto and Labels 65

Chapter 4. Functions and Program Stndure 67
4.1 Basics of F1rnctions 67
4.2 Functions Returning Non-integers 71

4.3 External Variables 73

4.4 Scope Rules 80
4.5 Header Files 81

4.6 Static Variables 83

4.7 Register Variables 83

4.8 Block Structure 84

4 .9 Initialization 85

4 .10 Recursion 86
4.11 The C .Preprocessor 88

Chapter 5. Pointers and Arrays 93

5.1 Pointers and Addresses 93

5.2 Pointers and function Arguments 95

5.3 Pointers and Arrays 97

5.4 Address Arithmetic 100

5.5 Character Pointers and Functions 104

5.6 Pointer Arrays; Pointers to Pointers 107

5.7 Multi-dimensional Arrays l!O
5.8 l nitialiution of Poimer Arrays 113

5.9 Pointers vs. Multi-dimensional Arrays 113

5.10 Command-line Arguments 114

5.11 Pointers to Functions 118

5. 12 Complicated Declarations 122

Chapter 6. Structures 127
6.1 Basics of Structures 127

6.2 Structures and Functions 129

6.3 Arrays of Structures 132

6.4 Pointers to Structures 136

6.S Self-referential Structures 139

6.6 Table Lookup 143

6.7 Typedef 146

6.8 Unions 147

6.9 Bit-fields 149

Chapter 7. lnput and Output 151
7.1 Standard Input and Output 151

7.2 Formatted Output-Printf 153

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 5 of 15

THE C PROGRAMMING LANGUAGE

7.3
7.4
7.5
7.6
7.7
7.8

Variable-length Argument Lists
Formatted Input-Scanf
File Access
Error Handling-Stderr and Exit
Line Input and Output
Miscellaneous Functioru;

Chapter 8.
8.1
8.2
8.3
8.4
8.5
8.6
8.7

The UNIX System Interface
File Descriptors
Low Level 1/O-Rcad and Write
Open, Creal, Close, Unlipk
Random A=ss-Lseek
Example-An Implementation of Fopen and Getc
Example-Listing Directories
Example-A Storage Allocator

Appendix A. Reference Manual
A I Introduction
A2 Lexical Conventions
A) Syntax Notation
A4 Meaning of ldentificrs
AS Objects and Lvalues
A6 Conversions
A 7 Expressions
A8 Declarations
A9 Statements
AI0 External Declarations
A 11 Scope and Linkage
A 12 Preprocessin_g
Al) Grammar

Appendix B. Standard Library
Bl Input and Output: <stdio.h>
B2 Character Class Tests: <ctype.h>
B3 String Functions: <string.h >
B4 Mathematical Fune-lions: <math.h>
BS Utility Functions: <stdlib.b >
B6 Diagnostics: <assert.h>
B7 Variable Argument Lists: <stdarg.b>
BS Non-local Jumps: <setjmp.h>
B9 Signals: <signal.b>
BIO Date and Time Functions: <time.h>
Bl I Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

CONTENTS ,11

155
157
160
163
164
166

169
169
170
172
174
175
179
185

19)
191
191
194
195
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259

263

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 6 of 15

SECTION 7.8 MISCELLANEOUS FUNCTIONS 167

7.8.4 Command Execution

The function system (char • s) executes the command contained in the
character string s, then resumes execution of the current program. The con­
tents of s depend strongly on the local operating system. As a trivial example,
on UNlX systems, the statement

system("date•);

causes the program date to be run; it prints the date and time of day on the
standard output. system returns a system-dependent integer status from the
command executed. In the UNIX system, the status return is the value returned
by exit.

7.8.5 Storage Management

The functions malloc and calloc obtain blocks of memory dynamically.

void •malloc(size_t n)

returns a pointer to n bytes of uninitialized storage, or NULL if the request can­
not be satisfied.

void •calloc(size_t n, size_t size)

returns a pointer to enough space for an array of n objects of the specified size,
or NULL if the request cannot be satisfied. The storage is initialized to zero.

The pointer returned by malloc or calloc bas the proper alignment for
the object in question, but it must be cast into the appropriate type, as in

int •ip;

ip = (int •l calloc(n, sizeof(int));

free (p) frees the space pointed to by p, where p was originally obtained
by a call to malloc or calloc. There are no restrictions on the order in
which space is freed, but it is a ghastly error to free something not obtained by
calling calloc or malloc.

It is also an error to use something after it has been freed. A typical but
incorrect piece of code is this loop that frees items from a list:

for (p = head; p I= NULL; p = p->next)
free(p);

I • WRONG•/

The right way is to save whatever is needed before freeing:

for (p = head; p I= NULL; p • q) {
q = p->next;
free(p);

Section 8.7 shows the implementation of a storage allocator like malloc, in

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 7 of 15

168 INPUT AND OUTPUT CHAPTER 7

which allocated blocks may be freed in any order.

7 .8.8 Mathematical Functions

There are more than twenty mathematical functions declared in <math. h>;
here are some of the more frequently used. Each takes one or two double
arguments and returns a double.

sin(x)
cos(x)
atan2(y,x)
exp(x)
log(x)
log10(x)
pov(x,y)
sqrt(xl
fabs(x.)

sine of x, x in radians
cosine of x, x in radians
arctangent of ylx, in radians
e1tponen\ial functi.on e'
natural (base e) logarithm of x (x > O)
common (base 10) logarithm of x (x>O)
x~
square root of x (x .i:O)
absolute value of x

7 .8 . 7 Random Number Generation

The function rand () computes a sequence of pseudo-random integers in the
range zero to RAND_MAX, which is defined in <stdlib .h>. One way to pro•
d.uce random floating-point numbers greater than or equal to zero but less than

one is

#define frand(l ((double) r .and() / (RAND_MAX+1 . 0))

(If yo1u library already provides a function for floating-point random numbers,
it is Likely to have better statistical properties than this one.)

The function srand(unsigned) sets the seed for rand. The portable
implementation of rand and srand suggested by the standard appears in Sec­
tion 2.7.

Exercise 7-9. Functions like isupper can be implemented to save space or to
save time. Explore both possibilities. D

II
1,

1,

II

_J

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 8 of 15

StiCTION BS

sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
atan2(y,x)
sinh(x)
cosh(x)
tanh(x)
exp(x)
log(x)
log10(x)
pow(x,y)

sine of x
cosine of x
tangent of x

UTILITY FUNCTIONS: <STDLIB.H> 151

sin- 1 (x) in range [-'11'12, '11'/2), x E (-1, I).
cos-1<.r) in range (0, 'II'), x E 1-L, t i.
tan- 1 (x) in range [-'ll'/2, '11'121.
tan- 1 (y!x) in range 1-. 1rl.
hyperbolic sine of x
hyperbolic cosine of x
hyperbolic tangent of x
e,;ponential function e•
natural logarithm ln(x), x >0.
base 10 logarithm log10(x), x>0.
x1 • A domain error occurs if x-0 and y~O, or if
x<O and y is not an integer.

sqrt(x) ✓x, x~0.
ceil(x) smallest integer not less than x, as a double.
floor (x) largest integer not great.er than x, as a double.
fabs(x) absolute value Ix I
ldexp (x,n) x·2"
frexp(x, int •exp)

splits x into a normalized fraction in the interval
[1/2, 1), which is returned, and a power of 2, which is
stored in •exp. lf x is zero, both parts of the result
are zero.

modf(x, double •ip)
splits x into integral and fractional parts, each with the
same sign as x. It stores the integral part in "ip, and
returns the fractional part.

flllOd(x,y) floating-point remainder of x/y, with the same sign as
x. If y is zero, the result is implementation-defined.

BS. Utlllty FuncUona: < atdllb.h>

The header <stdlib. h> declares functions for number conversion, storage alloca­
tion, and similar tasks.

double atof(const char • sl
atof converts s to double; it is equivalent to s trtod(s, (cbau •)NULL).

int atoi(const char •s)
converts s to int; it is equivalent to (int) strtol (s, (charu) NULL, 10).

lo.ng atol(const char •s)
converts s lo long; it is equivalent to strtol (•, (charu) NULL, 10).

double strtod(const char •s, char ••endp)
strtod converts the prefix of s to double, ignoring leading white space; it stores a
point~r to any unconverted suffix in •endp unless endp is NULL. If the answer

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 9 of 15

252 STANDARD LIBRARY APPENDIX 8

would overOow, HUGE_ VAL is returned with the proper sign; if the answer would
underflow, zero is retu.rned. In either case errno is set to ERANGE.

long strtol (canst char •s, ch.ar ••endp, int base)
strtol converts the prefix of s to long, ignoring leading white space; it stores a
pointer to any unconverted suffol in *endp unless endp is NULL. If base is
between 2 and 36, conversion is done assuming that the input is written in that base.
If base is zero, the base is 8, 10, or 16; leading O implies octal and leading Ox or OX
hexadecimal. Letters in either case represent digits from 10 to base-1; a leading
Ox or OX is permitted in base 16. Ir the answer would ove.rOow, LONG_MAX or
LONG _MIN is returned, depending on the sign of the result, and errno is set to
ERANGE.

unsigned long strtoul(const char •s, char ••endp, int base)
strtoul is the same as strtol except that the result is unsigned long and the
error value is ULONG_MAX.

int rand(void)
rand returns a pseudo-random integer in the range O to RAND _MAX, which is at
least 32767.

void srand(unsigned int seed)
srand uses seed as the seed for a new sequence of pseudo-random numbers. The
initial seed is I .

void +calloc(size_t nobj, size_t size)
calloc returns a pointer to space for an array of nobj objects, each of size size,
or NULL if the request cannot be satisfied. The space is initialized to zero bytes.

void •malloc(size_t size)
malloc returns a pointer to space for an object of size size, or NULL if the request
cannot be satisfied. The space is uninitialized.

void •realloc(void *P, size_t size)
realloc changes the size of the object pointed to by p to size. The contents will
be unchanged up to the minimum of the old and new sizes. If the new size is larger,
the new space is uninitialized. realloc returns a pointer to the new space, or
NULL if the request cannot be satisfied, in which case •pis unchanged.

void free(void •pl
free deallocates the space pointed. to by p; it does nothing if p is NULL. p must be
a pointer to space previously allocated by calloc, malloc, or realloc.

void abort{void)
abort causes the program to terminate abnormally, as if by raise(SIGABRT).

void exit(int status)
exit causes normal program termination. atexit functions arc called in reverse
order of registration, open files are flushed, open streams arc closed, and control is
returned to the environment. How status is returned to the environment is
implementation-dependent, but zero is taken ·as successful termination. The values
EXIT_SUCCESS and EXIT_FAILURE may also be used.

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 10 of 15

SECTION 8.7 EXAMPLE-/\ STORA.OE ALLOCATOR 185

8.7 Example-A Storage Allocator

ln Chapter 5, we presented a very Umited stack-oriented storage allocator.
The version that we wiU now write is unrestricted. Calls to malloc and free
may occur in any order; malloc calls upon the operating system to obtain more
memory as necessary. These routines illustrate some of the considerations
involved in writing machine-dependent code in a relatively machine-independent
way, and also show a real-life application of structures. unions and typedef.

Rather than allocating f.rom a compiled-in fixed-sized array, malloc will
request s ace from the operating system as needed. Si.nee other activities in the
program may also request space wtthout· calling"this allocator, the space that
malloc manages may not be contiguous. Thus its free storag!!_~_!!,pt a~~ list
of free bl~ch block co~ins a size, a pointer t.Q..J!i~exl.bl~...aruLthe

s p'ace 1tself. The bloclcs are kept in order of increasing storage address, and the
Im block (highest address) points to the first.

free list~

:::::::1 J~e 15'7 J! [~~el'f\:::::I ~ f'1'J[;:::;:
[=:J free, owned by malloc

I in use j in use, owned by malloc

l::: ::: :j not owned by malloc

When a request is made, the free list is scanned until a big-enough block is
found. This algorithm is called "first fit," by contrast with "best fit," which
looks for the smallest block that will satisfy the request. If the block is exactly
the size requested it is unlinked from the list and returned to the user. rr the
block is too big, it is split, and the proper amount is returned to the user while
the residue remains on the free list. If no big-enough block is found, another
large chunk is obtained from the operating system and linked into the free list.

Freeing also causes a search of the free list, to find the proper place to insert
the block being freed. If the block being freed is adjacent to a free block on
either side, it is coa.lesced with it into a single bigger block, so storage docs not
become too fragmented. Determining adjacency is easy because the free list is
maintained in order of increasing address.

One problem, which we alJuded to in Chapter 5, is to ensure that the storage
returned by malloc is aligned properly for the objects that will be stored in it.
Although machines vary, for each machine there is a most restrictive type: if the
most restrictive type ca.n be stored at a particuJ.ar address, all other types may
be also. On some machines, the most restrictive type is a double; on others,
int or long suffices.

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 11 of 15

186 THE UNIX SYSTEM INTERFACE CHAPTER 8

A..free..block contains..a PQinter t_o the next block in the chain, a recptd o_Lthe
size of the block, and then the free space itself; the control information at the
beginning is called the ·"header." To simplify aligninent,ill blocks are multi­
ples of the lfeader size:-and the header is aligned properly. This is achieved by
a union that contains the desired header structure and an instance of the most
restrictive alignment type, which we have arbitrarily made a long:

typedef long Align; /• for alignment to long boundary•/

union header /• block header: • I

} ;

struot {
union header •ptr; I• next block if on free list•/
unsigned size; /• size of this block•/

s;
Align x; /• force alignment of blocks•/

typedef union header Header;

The Align field is never used; it just forces each header to be aligned on a
worst-case boundary.

In malloc, the requested size in characters is rounded up to the proper
number of header-sized units; the block that will be allocated contains one more
unit, for the header itself, and this is lhe value recorded in the size field of the
header. The pointer returned by malloc points at the free space, not at the
header itself. The user can do anything with the space requested, but if any­
thing is written outside of the aUocated space the list is likely to be scrambled. H points to next free block

~ I
l__ address returned to user

A block returned by malloc

The size field is necessary because the blocks controlled by malloc need not be
contiguous-it is not possible to compute sizes by pointer arithmetic.

The variable base is used to get started. lf freep is NULL, as it is at the
first call of malloc, then a degenerate free list is created; it contains one block
of size zero, and points to itse.lf. In any case, the free list is then searched. The
search for a free block of adequate size begins at the point (freep) where the
last block was found; this strategy helps keep the list homogeneous. Cf a too-big
block is found, the tail end is returned to the user; in this way the header of the
original needs only to have its size adjusted. In alJ cases, the pointer returned to
the user points to the free space within the block, which begins one unit beyond
the header.

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 12 of 15

SECTION8.7 EXAMPLE-A STORAGE ALLOCATOR]87

static Header base; /. eapty list to get started•/
static Header • freep • NULL; / • start of free list•/

I• malloc: general-purpose storage allocator • /
void •malloc(unaigned nbytes)
(

Header •P, •prevp;
Header •morecore(uneigned);
unsigned nunits;

nunits = (nbytes+eizeof(Header)-1)/sizeof(Header) + 1;
if ((prevp • freep) •= NULL) { I• no free list yet • I

base.s.ptr • freep = prevp • &.base;
base.e.aize = O;

for (p
if

• prevp->s.ptr; ; prevp •
(p- >e.size >• nunits) {

P, P • p->s.ptr) {
/ • big enough•/

/ • exactly•/ if (p->s.size == nunits)
prevp->e.ptr • p->s.ptr;

else { / • allocate tail end•/
p->s.size -• nunits;
p +• p- >e.size;
p->s . size • nunits;

freep = prevp ;
return (void • l(p+11;

)

if (p •• freep) / • wrapped around free list • /
if ((p = morecore(nunits)) •• NULL)

return NULL; / • none left•/

The function morecore obtains storage from the operating system. The
details of how it does this vary from system to system. Since asking the system
for memory is a comparatively expensive operation, we don' t want to do that on
every call to malloc, so morecore requests at least NALLOC units; this larger
block will be chopped up as needed. After setting the size field, morecore
inserts the additional memory into the arena by calling free.

The UNLX system call sbrk(n) returns a pointer to n more bytes of
storage. sbrk returns - 1 if there was no space, even though NULL would have
been a better design. The -1 must be cast to char • so it can be compared
with the return value. Again, casts make the function relatively immune to the
details of pointer representation on different machines. There is still one
assumption, however, that pointers to different blocks returned by sbrk can be
meaningfully compared. This is not guaranteed by the standard, which permits
pointer comparisons only within an array. Thus this version of malloc is port­
able only among machines for which genera l pointer comparison is meaningful.

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 13 of 15

188 THE UNiX S YSTEM INTERFACE CHAPTER 8

#define NALLOC 1024 /• minimum #Uilits to request•/

/• morecore: ask system for more memory•/
static Header *morecore(unsigned nu)
{

char •cp, •sbrk(int);
Header •up;

if (nu< NALLOC)
nu= NALLOC;

cp = sbrk(nu * sizeof(Header));
if (cp == (char •l -1) / • no space at all•/

return NULL;
up= (Header+) cp;
up->s.size = nu;
f ree((void •lCup+1));
return freep;

free itself is the last thing. lt scans the free list, starting at freep, look­
ing for the place to insert the free block. This is either betw«:n two existing
blocks or at one end of the list. In any case, i(the block being freed is adjacent
lo either neighbor, the adjacent blocks are combined. The only troubles are
keeping the pointers pointing to the right things and the sizes correct.

I• free: put block ap in free list+/
void free(void +ap)
{

Header +bp, +p;

bp = (Header •lap - 1; / • point to block header • /
for (p = freep; l(bp > p && bp < p->s.ptr); p = p->s.ptr)

if (p >-= p->s,ptr &&. (bp > p I l bp < p->s.ptr))
break; /• freed block at start or end of arena+/

if (bp + bp->s.size == p- >s.ptr) (/• join to upper nbr • /
bp->s.size += p->s.ptr->s.size;
bp->s .ptr p->s.ptr->s.ptr;

else
bp->s .ptr p->s.ptr;

if (p + p->s.size == bp) (/ + join to lower nbr •/
p->s.size += bp->s.size;
p->s.ptr • bp->s.ptr;

else
p->s.ptr = bp;

freep = p;

Although storage allocation is intrinsically machine-dependent, the code
above illustrates how the machine dependencies can be controlled and confined
to a very small part of the program. The use of typedef and union bandies

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 14 of 15

E

SECTION 1.7 EXAMPLE-A STORAGE ALLOCATOR 189

alignment (given that abrk supplies an appropriate pointer). Casts arrange that pointer conversions arc made explicit, and even cope with a badly-designed system interface. Even though the details hero are related to storage allocation, the general approach is applicable to other situa tions as well.
Exercise 8-6. The standard library function calloc (n, size) returns a poi,,tcr to n objects of size size, with the storage initialized to zero. Write calloo, by colling malloc or by modifying it. D

Exercise 8-7. malloc accepts a size request without checking its plausibility; free believes th.at the block it is asked to free contains a valid size field. Improve these routines so they take more pains with error checking. □
Exercise 8-8. Write a routine bfree (p, n) that will free an a rbitrary block p of n characters into the free list maintained by malloc and free. By using bfree, a user can add a static or external array to the free list at any time. □

CommScope, Inc.
IPR2023-00064, Ex. 1010

Page 15 of 15

