
THE DSP32 DIGITAL SIGNAL
PROCESSOR AND ITS APPLICATION
DEVELOPMENT TOOLS

_______ Jame. R. Boddie, Renato N. Gadenz, Robert N. Kershaw,
W. Patrick Hay., and Jame. Tow

AT&T TECHNICAL JOURNAL

James R. Boddie is
head of the Signal
Processing and Inte­
grated Circuit Design
Department at AT&T
Bell Laboratories in
Holmdel. New Jersey.
W Patrick Hays is a
supervisor; and Ren­
aOO N. Gadenz and
James Tow are mem­
bers of technical staff
in that department.
Robert N. Kershaw is
a supervisor in the
DigitallC Design
Department at AT&T
Bell Laboratories in
Allentown. Pennsylva­
nia. Mr. Boddie 's
department designs
analog and digital sig­
nal processing
integrated circuits and
support systems. Mr.
Boddie joined AT&T in
1977 and has a
B.S.E.E. from Auburn
University. an S.M.
and E.E. from Massa­
chusetts Institute of
Technology (MIT), and
a Ph.D. from Auburn
University. all in elec­
trical engineering. Mr.
Gadenz, who designs
and tests new VLSI
circuits for digital sig­
nal processing, joined
(continued on page 104)

The WE® DSP32 digital signal processor is a high­
speed, programmable, VLSI circuit with 32-bit float­
ing-point arithmetic. The device canbe used cost­
effectively in a wide variety of complex digital signal
processing applications, suchas speech recognition,
high-speed modems, low bit-rate voice coders, multi­
channel signaling systems, and signal processing
workstations. In this paper, we review the architecture
of the DSP32 and present its instruction set, including
some examples. We also discuss the software and
hardware support tools that are available for developing
DSP32 applications.

An Expanding Family
The WE®DSP32 digital signal processor'> is the latestmem­

ber ofa family ofsingle chip, programmable digital signal processors
developed at AT&T Bell Laboratories.

The first family member appeared in 1979 and was called sim­
ply DSp'3It was oneofthe first single-chip, programmable digital signal
processors ever made.

As very-large-scale-integration (VLSI) technology advanced,
the demand for the DSP justified its redesign. The new device-the WE
DSP20-ran twice as fast, used less power, and cost less than the origi­
nal DSp, yet was pin, architecture, and instruction set compatible.

DSP32 Features
Both the DSP and DSP20 are 20-bit, fixed-point processors

and can execute instructions at the rate of 1.25and 2.5 million instruc­
tions per second, respectively.

The DSP32, on the other hand, can execute 4 million instruc­
tions per second, operating on32-bit, floating-point numbers. It also
hasa complete set ofmicroprocessor instructions that operate on16­
bit, fixed-point numbers forease ofuse in logic andcontrol operations.
In addition, the DSP32 offers bothserial andparallel input/output (VO)
with direct-mernory access (DMA) capability. (DMA allows data trans-

89

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 1 of 16

fers from an input buffer to memory or from memory to an
output buffer, without program intervention.)

Like the previous DSPs, the DSP32 has an on-
chip, random-access memory (RAM) for storing variable
data, and an on-chip, mask-programmable read-only mem-
ory (ROM) for storing instructions and fixed data. Thus,
the device can be customized for a wide variety of signal
processing applications.

Although there are many different types of appli-
cations, most require real-time execution of repetitive
multiplications and additions. Like its predecessors, the
DSP32 is optimized for this type of computation. But it
offers a new architecture that allows users to develop more
complex applications requiring floating-point arithmetic.

The DSP32 can be cost-effective for a wide vari-
ety of digital signal processing applications, such as speech
recognition, high-speed modems, low bit-rate voice cod-
ers, multichannel signaling systems, and signal processing
workstations. Algorithms that are suited for floating point
include matrix inversion; spectral analysis; high-quality,
low bit-rate speech graphics; and image processing.

ance high performance with ease of use. By high
performance, we mean fast execution of signal processing
algorithms using a high-quality arithmetic. A major con-
tributor to this goal is the use of a 32-bit, floating-point-
data arithmetic unit.

An 8-bit exponent in the 32-bit, floating-point
word yields a large dynamic range that makes overflow
unlikely, while a 24-bit normalized mantissa gives high pre-
cision, independent of magnitude. Large dynamic range
and high precision are often essential in advanced
algorithms.

Floating point also contributes to ease of use,
because it frees programmers from concern about inter-
mediate scaling to avoid overflow or loss of precision.
Further, algorithms that are initially developed on main-
frame computers or array processors and use floating-
point arithmetic can be easily adapted to run on the
DSP32.

. Our goal in designing the DSP32 has been to bal-

Ease of use applies not only to programming or
interfacing to the DSP32, but to the support tools that are
available for developing DSP32 applications. We will dis-
cuss the architecture, instruction set, and support tools
later.

The DSP32 can do the following, all with 32-bit,
floating-point precision and dynamic range:

a 1024-point, complex, Fast Fourier Transform (FFT) in
19.2 ms (including bit reversal)
a finite impulse response filter in 250 ns per tap
a second-order section (four multiply) for a recursive,
infinite-impulse-response (IIR) filter in 1 ps.

The device is available in two packages: a 40-pin
dual in-line package, and a 100-pin pin array that can use
external memory to expand the on-chip memory. The chip
is manufactured in 1.5-pm effective channel length, n-type
metal-oxide semiconductor (NMOS) technology, and has
about 155,000 transistors in an 81-mm2 area (12.70 mm by
6.35 mm).

The DSP32 operates with a 16.384-MHz clock
and a single 5V power supply. For the 40-pin device, typical
power dissipation is 1. 8W, while worst-case power dissipa-
tion is 2.3W For the 100-pin package, typical power
dissipation is 2.0W and worst case is 2.6W The device is
now being manufactured in high volumes.

Recently, the DSP32 has been manufactured with
a 10-percent photolithographic shrink. Samples will soon
be available from two different processes; one leads to
higher speed devices and the other to lower power devices.

Its Architecture
The DSP32’s architecture consists of several spe-

cialized sections (Figu’re 1) that work in parallel to achieve
a high throughput. A 32-bit bus interconnects these sec-
tions, and control is distributed among them.

The device has two execution units-the data
arithmetic unit (DAU) and the control arithmetic unit
(CAU)-and its on-chip memory includes 2048 bytes of
ROM and 4096 bytes of RAM. The memory can be
addressed as 8-, 16-, or 32-bit words and is organized to

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 2 of 16

access 32-bit data at the same speed as 8-bit data.

face to a codec, a time-division multiplex line, or another
DSP32, while an 8-bit parallel I/O (PIO) unit allows bidi-
rectional communication with a microprocessor.

tion unit for signal processing algorithms. As Figure 1
shows, it contains a 32-bit, floating-point multiplier; a 40-
bit, floating-point adder; and four 40-bit accumulator regis-
ters (an through a3) that provide temporary storage, thus
reducing memory accesses.

The DAU has a multiply-add structure; that is, the
multiplier output is directly connected to the adder input. It
does 4 million instructions per second of the form,
A = B + C * D. In this instruction, we have both a
floating-point multiplication and a floating-point addition,
which yields a throughput of 8 million floating-point opera-
tions per second.

The DAU multiplier inputs are 32-bit, floating-
point numbers with a 24-bit mantissa and 8-bit exponent.

Inputs to the multiplier and adder can come from
memory, I/O registers, or an accumulator (a 0 -a 3). The
adder inputs from memory or I/O are 8, 16, or 32 bits
wide, while those from the multiplier or an accumulator are
40-bits wide (an 8-bit exponent and a 32-bit mantissa that
includes eight guard bits).

These 40 bits of precision are maintained in the
adder and the accumulators; the eight guard bits of the
mantissa allow extra precision in intermediate accumula-
tions. However, the 40-bit result in an accumulator is
truncated to 32-bits when written to memory or I/O, or
provided as an input to the multiplier.

16-bit integer data. It also converts floating-point data to
and from p-law and A-law companded data formats.

control Arithmetic Unit. The CAU-a 16-bit, fixed-
point unit-has a dual function. It generates and post mod-
ifies addresses for accessing operands in memory, and it
executes microprocessor instructions on 16-bit data for
logic and control operations. (Post modify means incre-

A flexible serial I/O (30) unit allows direct inter-

Data Arithmetic Unit. The DAU is the primary execu-

The DAU converts floating-point data to and from

ment the address after completing the operation.)

purpose registers (r L through r 2 I); a 16-bit program
counter (pc); and a full-function, arithmetic logic unit
(ALU). All CAU registers are static and do not require
refreshing.

DAU, registers r L through r 14 are used as memory
pointers and registers r L 5 though r b 9 hold address
increments. A pointer register contains the address of an
operand in memory that is to be either read or written,
and an increment register contains a number that is added
to the pointer to alter it. This addition is done in the ALU.

Register r 2 0, also called PIN (pointer-in), is the
pointer for serial DMA input, and register r 2 2 , also called
POUT (pointer-out), is the pointer for serial DMA output.
These registers can also be used as general-purpose regis-
ters, but their effect on DMA operations must be
considered.

As stated above, the CAU also executes its own
set of instructions. They implement two’s complement,
fixed-point arithmetic operations; logic functions; control
operations l i e conditional branching; and data moves
between memory, VO, and the CAU registers. Executing
logic and control operations in the CAU not only makes
programming the device easier but also enhances the
DSP32 performance.

Memory. The DSP32 provides on-chip memory
(Figure 1) that includes a 512 by 32-bit ROM and a 1024 by
32-bit RAM that is divided into two equal 512 by 32-bit
segments.

Data can be 8, 16, or 32 bits wide, and memory is
uniformly byte addressable. This means that the four indi-
vidual bytes and the two 16-bit words in each 32-bit word
can be addressed independently.

Byte addressability is important because, besides
using 32-bit instructions and floating-point data, the
DSP32 uses 16-bit fixed-point integers and 8-bit com-
panded (p-law and A-law) data.

As Figure 1 shows, the CAU has 21 16-bit general

For instructions that are primarily executed in the

The RAM is dynamic and is refreshed either auto-

91

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 3 of 16

matically once every 32 instructions or under program
control. The ROM is masked programmed.

kbytes of memory can be accessed externally. If standard
byte-wide memory chips are used for expanding memory,
no additional interfacing devices are needed. Also, if this
external memory is fast enough (80-1-1s access time), there
is no speed penalty when accessing it.

external memory) is logically divided into two banks:
Lower bank 0, which can be expanded with external mem-
ory, and Upper bank 1. Memory space can be configured in
four different ways using two of the DSP32 pins.

To achieve maximum throughput, memory
accesses must alternate between the two memory banks.
As one memory bank is accessed, the other memory bank
is being addressed. However, if the user chooses not to
interleave, the DSP32 automatically inserts a wait state
when two consecutive accesses occur to the same memory
bank. This flexible memory accessing makes the DSP32
easier to program.

Instructions can be stored anywhere in the
address space (ROM, RAM or external memory) and can
be executed from any memory without a speed penalty, if
interleaving between the two memory banks is used. Each
instruction cycle consists of four machine states, and one

For the 100-pin pin array package, an additional 56

92

The DSP32 memory space (ROM, RAM, and

read or write operation can occur during each state.

version of input data and parallel-to-serial conversion of
output data. Serial input and output operations are inde-
pendent and asynchronous with respect to each other and
to program execution. The SIO control signals allow direct
interface to a codec, a time-division multiplexed line, or
another DSP32.

Input to the SIO (Figure 1) is loaded into the input
shift register (isr), and then into the input buffer
(ibuf) . SIO outputs are loaded into the output buffer
(obuf), and then put into the output shift register (osr).
This double buffering permits a second serial transmission
to begin before the first transmission has been processed.

Data widths can be 8, 16, or 32 bits. The I/O con-
trol register ioc in the SIO is used to select various 110
conditions, bit lengths, internal or external clocks, and
internal or external synchronization signal, thus allowing
flexibility when interfacing to external hardware.

For example, in the active mode, the DSP32 gen-
erates the I/O clocks and the synchronization signal for
external hardware. In the passive mode, the DSP32 acts as
a slave and the external hardware generates its clocks and
synchronization signal.

SIO transfers could occur under program control
or using direct memory access. To enable DMA, the user

Serial vo. The SIO is used for serial-to-parallel con-

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 4 of 16

Figure 1. Block diagram of the DSP32 digital signal proces-
sor. The numbers in parentheses designate the size of a
particular register or bus. The symbols at the left represent
pins on the device package.

93

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 5 of 16

sets the i o c register appropriately. If DMA is enabled, an
implicit DMA request to the DSP32 control occurs when-
ever the input buffer is full or the output buffer is empty.

which the user can set, serve as pointers for the DMA
transfers and are automatically incremented after each
DMA access. The serial IiO DMA allows data samples to
be transferred in and out of memory without interrupting
execution of the DSP32 program.

Parallel vo. The PI0 (Figure 1) is used for bidirec-
tional communication between the DSP32 and a
microprocessor over an %bit, external PI0 data bus
(PDB).

As in the SIO, PI0 transfers can be made under
program or DMA control. In either case, data is trans-
ferred in both directions through the 16-bit, parallel data
register (p d r) . In the DMA mode, the 16-bit parallel
address register (p a r) contains the DMA pointer. The
microprocessor initializes p a r , which can be incremented
automatically after each memory access.

The parallel IiO DMA allows a microprocessor to
download a program without interrupting execution of
another DSP32 program. (Each DMA operation steals one
instruction cycle.) The microprocessor can then alter a
branch address in the original program, which causes the
DSP32 to execute the new program. Thus, the DSP32 can
be dynamically programmed.

Program outputs can also occur through the paral-
lel interrupt register (p i r) , a register that an external
microprocessor can also read. When the DSP32 loads this
register, it also raises an interrupt flag that the micropro-
cessor recognizes. The microprocessor can then take
action.

The PI0 can also be used to handle error condi-
tions, such as floating-point overflow or underflow in the
DAU, or loss of external synchronization signal. When an
error occurs, a bit is set in the 6-bit, error source register
(esr) that is readable by an external microprocessor. The
10-bit, error mask register (emr), which is written by the
microprocessor, conditions the DSP32 to ignore the error

CAU registers r 2 o (PIN) and r 2 L (POUT),

94

or send an interrupt signal to the microprocessor. If the
latter happens, the DSP32 could also halt itself.

%bit, parallel control register (p c r), which the external
microprocessor can also access. This allows the user, for
example, to start or restart the DSP32 (after a halt), or
enable or disable automatic refreshing of the RAM.

Control of parallel communications is set up in the

Instruction Set

tions for signal processing algorithms. These instructions
are divided into two types: instructions that are executed
primarily in the DAU, and those that are executed primar-
ily in the CAU. After they are assembled, all instructions
are 32 bits wide.

instructions. The multiplylaccumulate instructions perform
operations on 32-bit floating-point signal processing data.
The special function instructions perform nonlinear opera-
tions, such as rounding and data conversions between
floating-point and k-law, A-law, or integer formats.

operands; the first two are multiplied, and the resulting
product is added to the third. The instruction specifies the
sources for these three operands (where the data resides).
One source must be an accumulator; the other two oper-
ands can come from either an accumulator, memory, or
IiO. The CAU generates the addresses for memory
operands.

Operands from memory or IiO are transferred
over the 32-bit data bus into the DAU. The result of the
multiplyiadd operation is always stored in an accumulator
and, as an option, can also be written to memory or 110.
This transfer again occurs over the 32-bit data bus.

tions are

The DSP32 supports a powerful set of instruc-

DAU Instructions. There are two groups of DAU

A multiplyiaccumulate instruction requires three

The formats for DAU multiplyiaccumulate instruc-

[Z = I aN = [-JaM {+, -} Y * X

aN=[-]aM{+,-}(Z=Y) * X

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 6 of 16

In these instructions, a N and aM can be any of the four
accumulators (ao-aj) . The x and Y operands are mem-
ory locations, serial I/O input buffer, or an accumulator.
The Z operand is either a memory location or the serial
110 output buffer.

Also, the [] and { } are not part of the assembly
language syntax. Values enclosed in brackets [] are
optional, and one of the values enclosed in braces { } must
be used. For example, “ Z = ” is in brackets because the
result of a multiply/accumulate operation can optionally be
written to memory.

the Y operand is written to the location that z specifies, in
addition to being operated on by the DAU. This is espe-
cially useful for memory-to-memory moves for tap update
in finite-impulse-response filters.

The second format is similar to the first, except

The format for special function instructions is

[Z =] a N = f u n c t i o n (Y)

Here, the specified function operates on the value Y , and
the result is placed in the accumulator a N . As an option,
the result can then be written to the location that z
specifies.

We will give examples of these formats shortly.
The DSP32 instruction syntax is similar to the C

programming language and makes the programmer’s code
almost self-documenting. An asterisk indicates multiplica-
tion, but an asterisk preceding a pointer (e. g., * r 7)
means memory location Pointed to by the pointer. An equal
sign is assignment, a plus sign means addition, and the
plus plus (+ +) that follows a pointer indicates post incre-
ment (increment the pointer after reading from or writing
to memory). Here, pointers are always CAU registers.

Consider the DAU multiply/accumulate instruction

r L 0 and r 7 , and add the result to the contents of accu-
mulator a ~ . Then, store this result in accumulator aL and
the memory location pointed to by CAU register r 5. Also,
post increment the contents of register r L o using the
contents of register r L 7 , and post increment the contents
of register r 5 by one. (In reality, this is an increment by
one 32-bit word address, which is equivalent to an incre-
ment by four byte addresses.)

gle instruction.

is

Clearly, much computation is represented in a sin-

An example of a DAU special function instruction

a0 = f l o a t (i b u f)

In this example, the contents of the input buffer i b u f
(assume that the serial input word is 16 bits wide) are con-
verted to DSP32 32-bit, floating-point format, and the
result is stored in accumulator a O .

instructions: arithmetic and logic, data move, and control.
The CAU uses two’s-complement, 16-bit fixed-point
ari t h e tic.

tion of a CAU instruction is completed before execution of
the next instruction begins. This feature greatly simplifies
using the CAU for logic and control operations.

Here are the formats for the three groups of CAU
instructions:

CAU Instructions. There are three groups of CAU

Except for a register load from memory, execu-

r D = r D o p {rS , N}

{MEM, I / O } = r D

or
*r5++ = a1 = a0 + *r7 * *rLO++rL7

r D = {MEM, I / O }
that reads from right to left as follows. Multiply the con-
tents of the memory locations pointed to by CAU registers i f (C O N D) g o t o r H , N , { r H + N , r H - N }

95

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 7 of 16

The first format represents the arithmetic and
logic group. These instructions do 16-bit fixed-point inte-
ger arithmetic, such as addition and subtraction, or logic
operations, suchas A N D , O R , X O R , a n d s h i f t . The
values of r D and r S are the contents of any of the 21 16-
bit CAU registers (r b - r 2 2) , and N is a 16-bit integer.

group. These instructions transfer data between the CAU
registers and memory, or between the registers and serial
or parallel I/O. In this form of instruction, ME M is an 8- or
16-bit memory location that is specified by a direct address
or a CAU register. Data can also be moved to or from the
serial or parallel I/O.

The third format represents the control group,
whose instructions alter the program counter to change
the sequence of program execution. The DSP32 can
branch on many conditions (i f . . . g o t o) , including
CAU, DAU, and I/O conditions. The control instructions
also include an unconditional branch (g o t o) , and a call to
and return from a subroutine.

The values of r D , r S, and rH are the contents
of any of the 21 16-bit CAU registers. However, r H can
also be the contents of the program counter (pc). As
before, N is a 16-bit integer.

Examples of CAU instructions are:

The second format represents the data move

96

*r7++ = r 2 0

i f (e q) g o t o r3 + 2 2

The first instruction belongs to the arithmetic and
logic group. It does a logical A N D of the contents of CAU
registers r b i’ and r b b and places the result back into
r b b .

The second instruction belongs to the data move
group. It takes the contents of CAU register r 1 0 and
writes it to the 16-bit memory location pointed to by CAU
register ri’. Then, register ri’ is post incremented so

that it points to the next 16-bit integer location in memory
(an increment of one 16-bit word, or two bytes).

group, illustrates a conditional branch. If the result of the
last CAU operation equaled zero, then go to the memory
location specified by the contents of CAU register r3
plus 12.

Appendixes A and B present two examples of
DSP32 programs.

The last instruction, an example of the control

Development Support Tools

bility of a good set of tools that allow a user to translate
algorithms into working applications.

The DSP32 software library, DSP32-SL, is writ-
ten in the C programming language and resides in a host
computer that runs the UNIX@ operating system. Soft-
ware tools4 include an assembler, linkerlloader, and
simulator. The hardware development system, DSP32-DS4
allows real-time program debugging and in-circuit emulation.

assembly language program into the binary code that
DSP32 uses for instructions. A notable feature of this
assembler that distinguishes it from typical microprocessor
and other DSP assemblers is its use of the high-level syn-
tax just presented.

The assembler generates relocatable code that
another software tool, the linker/loader, can easily alter.
The relocatable code can reside anywhere in the addressa-
ble space and can be combined with code that was
assembled separately.

operations of the DSP32 program in a nonreal-time envi-
ronment. For full program debugging, the simulator allows
access to all registers and memories. It also provides an
interface to the DSP32 hardware development system.

The simulator provides precise simulation down
to the timing of synchronous IIO. When running on the
AT&T 3B2/300 computer, it executes about 750 instruc-
tions per second.

As we mentioned, ease of use requires the availa-

software TOOIS. The assembler translates the user’s

The simulator is a program that simulates the

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 8 of 16

-
Terminal

Computer
UNIX@ system

DSP32 assembler
DSP32 simulator -

I RS232

1 Breakpoint
trigger FI*

analyzer

User system %
Figure 2. The DSP32
development environ-
ment. At the center is
the hardware develop-
ment system, DSP32-
DS. The assembler
and simulator are part
of the software
library, DSP32-SL.

In the simulator, the user can freeze processing on
many conditions, such as the execution of a specified
instruction, access of a specified register or memory loca-
tion, or occurrence of a specified number of I/O events.
Input data can be supplied by a file, while output data can
be captured in a file. The user can refer to memory loca-
tions by their symbolic names rather than their absolute
addresses. In addition, the user can define complex com-
mand sequences and display formats, and invoke them
with a simple command.

system consists of a small circuit board that contains a
DSP32, 14k words of external memory, a control micro-
processor, and an RS232C interface. It can be used stand-
alone or as an in-circuit emulator to the user’s system.

The DSP32-DS can run DSP32 programs in an
environment where its input and output are connected to
the user’s DSP32 system. The development system also
retains many of the simulator debugging features.

Figure 2 depicts a typical DSP32 software and
hardware development environment. Normally, the DSP32-
DS is connected to a standard computer terminal and a
host computer that runs the DSP32 simulator program.

With a special simulator command, the user’s
application program can be loaded and run using the devel-
opment system, instead of the simulator. The user can
switch back and forth between the simulator and the devel-

Hardware TOOLS. The DSP32 hardware development

opment system to compare results.

DSP32-DSs can be connected to a single computer and ter-
minal system. The user can selectively communicate with
each system or the simulator program. One application for

more DSP32-DSs as digital signal generators or signal ana-
lyzers for testing a program in another DSP32-DS.

DSP32-DS can become a powerful digital signal processing
workstation that consists of a flexible set of programmable
function generators, filters, power meters, detectors, and
spectrum analyzers.

For multiple DSP32 applications, up to seven

the multiple DSP32-DS configuration is the use of one or 97

With the appropriate application software, a

Conclusion

point, programmable, digital signal processor-and its
support tools for developing applications.

its ease of use, make it suitable for a variety of advanced
signal processing applications in telecommunications,
speech, imaging, and graphics. The device can also be
used as a 16-bit fixed-point microcomputer.

with DMA capability on both serial and parallel inter-
faces-provide the ability to program the DSP32
dynamically and interact easily with the user’s system.

We have presented the DSP32-a 32-bit, floating-

The high performance of the device, coupled with

The flexible on-chip memory and I/O-the latter

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 9 of 16

Acknowledgments

the following people to the design, testing, and fabrication
of the device and the development of its software and
hardware support tools: L. E. Bays, G. G. Burgstresser,
R. J. Canniff, J. D. Cuthbert, C-E Chen, D. B. Cuttriss, J.
C. Desko, B. J. Dutt, D. J. Emrich, C. J. Faust, E. M.
Fields, R. L. Freyman, J. A. Grant, C. J. Garen, G. E.
Hall, D. J. Hart, J. Hartung, J. W Hendricks, T D. Hop-
mann, W C. Ingram, l? W Kempsey, J. J. Klinikowski, D.
E Koehler, R. D. Lippincott, D. A. McGillis, C. R. Miller,
K. Mondal, H. 0. Morris, H. S. Moscovitz, H. N. Nham,
G. D. O’Donnell, A. A. Pignone, Y. Rotblum, M. A.
Steele, l? A. Stiling, E Subramaniam, W A. Stocker, T G.
Szyrnanski, L. L! Tran, C. J. Van Wyk, A. J. White, D. Wil-
lauer, W Witscher, Jr., D. S. Yaney and E. J. Yurek.

We gratefully acknowledge the contributions of

References
1. R. N. Kershaw, et al., “A Programmable Digital Signal Processor

with 32b Floating Point Arithmetic,” Dgest ofTechnica1 Papers,
1985 ISSCC, February 13-15, 1985, pp. 92-93.

2. W. E Hays, et al., “A 32-bit VLSI Digital Signal Processor,” IEEE
Journal ofsolid-State Circuits, Vol. SC-20, No. 5, October 1985,

98

pp. 998-1004.
3. Digital Signal Processor, The Bell System Technical Journal, Vol.

4. WE@ DSP32 Digital Signal Processor-Information Manual, AT&T
60, No. 7, Part 2, September 1981.

Technolonies. Inc.. 1986.
5. L. R. Rabiner and B.’ Gold, Theory and Application ofDigita1 Sig-

nal Processing, Prentice-Hall, Englewood Cliffs, N. J., 1975, p.
367.

6. G. Szentirmai, “FILSYN: A General Purpose Filter Synthesis Pro-
gram,” Proceedings ofthe IEEE, Vol. 65, October 1977, pp.
1443-1458.

Appendix A. IIR Filter Program

impulse-response (IIR) filter. It assumes that the DSP32
digital signal processor is connected to a 16-bit linear
codec and uses four-coefficient, second-order, IIR sections
connected in cascade. With the DSP32 floating-point capa-
bility, there usually is no need to consider pole-zero
pairing, ordering of sections, or gain distribution associ-
ated with a fixed-point arithmetic implementation (which
would also require five-multiply sections).

listing (Example l), where comments and the # d e f i n e
feature of the C preprocessor (lines 1 to 8) are used to
enhance program readability. Line 9, an assembler direc-
tive, defines global variables that the DSP32 simulator and
development system can reference as symbols.

Line 10 programs the serial inputioutput for 16-bit
transfers and uses the DSP32 on-chip clocks to drive an
external 8-kHz sampling rate, analog to digital and digital
to analog converter chip.

Line 11 shows a wait for the arrival of the serial
input sample, indicated by a full input buffer. If i b e (input
buffer empty) is true, the program will stay in the loop,
lines 11 and 12. (All DSP32 branching instructions are
delayed brunches; i. e., the instruction that follows any
branch instruction will always be executed before the
branch occurs.) Line 12 sets up register r L o as a loop
counter for use in line 21.

Reading of i b u f , line 13, will empty the input
buffer. Lines 18, 19, 20, and 22 do the four multiply and
accumulate operations for the direct-form implementation
of a second-order IIR section (Figure A).

Execution of a DSP32 instruction proceeds from
right to left. For example, line 19 first forms the product of
A i2 (the coefficient of the denominator z p 2 term) with the
appropriate state variable (SJ2 in Figure A) and decrements
the state variable pointer. Next, it forms a sum in aO,
stores the sum as an updated state variable (pointed to by
r L 3) , and then increments r 2 3 .

This example shows how to implement an infinite-

The line numbers in the text refer to the program

The updated state variable value will be used in

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 10 of 16

output Input

section section
from (i-1)th to (i + 1)th

*

the next sample, because DAU memory write operations
become effective only after a four-instruction delay. By
contrast, accumulator updates can be accessed immedi-
ately by the adder.

ensures that the repeat-loop goes through each section
once per sample (here, nine sections). The branch occurs
if the content of register r L o is greater than or equal to
zero. Then, the content of the register is automatically
decremented by one.

the next sample value. Line 24 converts the 32-bit, float-
ing-point value back to a 16-bit integer for output via the
output buffer (obuf) . Because of the delayed branching,
line 24 will always be executed after the execution of
line 23.

We obtained the IIR filter coefficients (lines 25 to
34) directly from a computer program based on Reference
6. The filter design corresponds to a 0.01-dB ripple in the
passband (950 to 1050 Hz) and 100-dB stopband loss
below 900 Hz and above 1100 Hz. We can easily meet
these stringent specifications with the DSP32.

On line 21, the CAU conditional branch instruction

Line 23 instructs the DSP32 to go back to process

Figure A. Direct-form
implementation of a
second-order IIR sec-
tion. A,,, and B,,,
(where n = 1, 2) are
section denominator
and numerator coeffi-
cients, respectively.
The S,,, (where n = 1,
2) are state variables,
and z- is a delay
element.

99

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 11 of 16

I / * Example L -- Cascade 2 n d o r d e r I I R f i l t e r s
2 r L 1 & rL3 p o i n t t o d a t a (s t a t e v a r i a b l e s)
3 r L 2 p o i n t s t o f i l t e r c o e f f i c i e n t s * /
4 #def ine N m i n u s 2 7 / * Number of Sec t ions - 2 * /
5 #de f ine A i L * r L 2 + + / * A i l , A i 2 a r e i t h s e c t i o n * /
6 #def ine A i 2 * rL2++ / * denominator c o e f f i c i e n t s * /
7 #de f ine B i L * r 2 2 + + / * B i L , B i 2 a r e i t h s e c t i o n * /
8 #def ine B i 2 * rL2++ / * numerator c o e f f i c i e n t s * /

9 . g l o b a l sample, r e p e a t , e n d , c o e f , d a t a

L O ioc=OxO987
L L sample: i f (i b e) goto sample
12 r 1 O = N m i n u s 2 / * nine-sec t ion IIR f i l t e r * /
2 3 a0 = f l o a t (i b u f) / * conver t t o 32-bi t * /
1 4 r L L = d a t a / * i n i t i a l i z e p o i n t e r s * /
1 5 rL3 = d a t a
1 6 r L 2 = coef

100 27 a0 = a0 * *rL2++ / * (i n p u t) x (c o n s t a n t m u l t i -) * /

L8 r e p e a t : a0 = a0 - *rL1++ * A i l
1 9 *rL3++ = a0 = a0 - * r L L - - * A i 2
2 0 a0 = a0 + (*rL3++ = * r L L + +) * B i L
2 1 i f (r L O - - > = O) goto r e p e a t
2 2 a0 = a0 + * r L L + + * B i 2

2 3 goto sample
2 4 e n d : obuf = a0 = i n t (a 0) /*conver t back t o 1 6 - b i t * /

2 5 c o e f :
26
27
2 8
29
3 0
31
3 2
3 3
3 4

f l o a t
f l o a t
f l o a t
f l o a t
f l o a t
f l o a t
f l o a t
f l o a t
f l o a t
f l o a t

9.5L24534e-7 / * c o n s t a n t m u l t i p l i e r * /
-2.36984481 0 . 9 6 4 0 2 2 3 5 r -1 .5L64367, L.0
-1 .36897321 0 . 9 6 6 7 8 6 3 3 , - 1 . 2 3 6 0 0 1 2 , 1.0
- 1 . 4 2 4 6 4 9 5 r 0.96782737r -1.55827L2r 1.0
-1 .3555562 , 0 . 9 7 4 7 6 5 9 L r - 1 . 2 9 7 2 4 6 4 , 1.0
- ~ . 4 3 7 9 9 1 7 , o . w ~ ~ a 0 3 4 , - ~ . 2 6 ~ 0 6 0 3 , 1.0
-1.3498066, 0.96484090, - 1 . 6 5 L 6 2 3 4 1 1.0
- 1 . 4 5 6 1 7 4 4 l 0.9859330Lr - 1 . 5 2 7 3 6 6 4 , L.0
-1.35058581 0.99500383, -2.0599482, 1.0
- 1 . 4 6 8 3 5 1 4 , 0 . 9 9 5 4 0 2 5 4 , 0 . 1 -L.O

35 d a t a : 3O*float 0 . 0 / * i n i t i a l i z e d a t a t o ze ro * /

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 12 of 16

Appendix B. FFT Program

processor program that implements an in-place, decima-
tion-in-time, radix 2, Fast Fourier Transform (FFT)
algorithm.

The loop numbers 5, 6, 7, 10, and 20 that we use
in the program listing (Example 2) have a one-to-one cor-
respondence with the FORTRAN program in Reference 5.

The complex input sequence is stored in the array
A (reall, imaginaryl, real& imaginary2, ...) of size up to
1024 complex numbers. The size of the FFT is N = Z’,
where N and M are declared by the user at assembly time
($ N , $ M). Here, N is 256.

If we exclude storage for the array A, the program
requires 328 bytes of memory. The computation time
required for a complex FFT with 128, 256, 512, and 1024
points (including bit reversal) is 2.0, 4.3, 9.0, and 19.2 ms,
respectively.

/ * E x a m p l e 2 -- I n p l a c e r a d i x 2 FFT * /

This example illustrates a DSP32 digital signal

d e f i n e i r l
d e f i n e j r 2
d e f i n e c n t r5
d e f i n e k r3
d e f i n e t r4
d e f i n e w r4
d e f i n e j c n t r b
d e f i n e l c n t r 7
d e f i n e leL r 0
d e f i n e l e o r9
d e f i n e lx r l O
d e f i n e i z r l l
d e f i n e k z r l 2
d e f i n e lem r b ’ i
d e f i n e u r a 2
d e f i n e u i a3
d e f i n e O N E *rL3++
d e f i n e Z E R O *rL3--
d e f i n e TWO a 1
d e f i n e a p rL4

101

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 13 of 16

$N = 2 5 6 / * a s s e m b l y - t i m e v a r i a b l e * /
$M = 6 / * a s s e m b l y - t i m e v a r i a b l e * /
$ N M 3 = $ N - 3
$N4 = $ N * 4
$MM2 = $M-2

j = A
i = A
cn t=$NM3

l o o p o : i - j
i f (g e) g o t o l o o p 5
noP

*i++ = a 0 = *j++ / * B e g i n c o m p l e x e x c h a n g e * /
*i-- = an = *j-- / * T = A (J) * /
noP
*j++ = a 0 = *i++ / * A (J) = A(1) * /
*j-- = a 0 = *i-- / * A(1) = A (J) * / 102

l 0 0 p 5 : k=$N4
lOOpb: t = k + (A - 8)

t- j
i f (g e) g o t o l o o p 7
noP

j = j - k
g o t o l o o p b
k = k / 2

l o o p 7 : j = j + k
i f (c n t - - >= 0) g o t o l o o p 0
i = i + 8

lcn t=$MM2
lx=$N
l e o = 4
l e L = L
w=w
r l 3 = t w o
TWO = *rL3++

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 14 of 16

100~20: i=j
iz=i
k= i
k=k+leo
kz=k
cnt=lx+(-2)

loop10: a0 = *i + ur * *k++ / * T=A(i)r+Ur*A(k)r * /
*iz++=aO=aO-ui * *k-- / * A(i)r=T=T-Ui*A(k)i * /
*kz++=aO=-aO+TWO * *i++ / * A(k)r=-T+Z*A(i)r * /
a0 = *i + ui * *k++ / * T=A(i)i+Ui*A(k)r * /

iz++lem=aO=aO+ur *k++lem / * A(i)i=T=T+Ur*A(k)i * /
if (cnt-- >= 0) goto loop10

kz++lem=aO=-aO+TWO *i++lem / * A(k)i=-T+?*A(i)i * /
a0 = ur * *w++ / * Compute new twiddle * /
ur = a0 - ui * *w / * u = u * w * /
a0 = ur * *w--
ui = a0 + ui * *w
if (jcnt-- >= 0) goto loop20
j=j+a

if (lcnt-- >= 0) goto loop30
w=w+a

two : float 2.0, 1.0, 0.0

A:

/ * cos(pi/l),-sin(pi/l) * /
/ * cos(pi/2),-sin(pi/2) * /
/ * cos(pi/4),-sin(pi/4) * /
/ * cos(pi/a) ,-sin(pi/a) * /
/*cos(pi/1b),-sin(pi/1b)*/
/*cos(pi/32),-sin(pi/32)*/
/ * cos and -sin(pi/b4) * /

/ * cos and -sin(pi/12a) * /
/ * cos and -sin(pi/ZSb) * /
/ * cos and -sin(pi/S12) * /

103

/ * Complex input array stores here * /

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 15 of 16

Biographies (continued)
AT&T in 1973. He has an lngeniero Civil Electricista degree
from Universidad de Chile in Santiago, Chile, an M.S.E.E.
from the University of Pittsburgh (Pennsylvania), and a Ph.0.
in electrical engineering from the University of California at
Los Angeles. MI: Hays was head architect and supervisor
responsible for the DSP32 and is now technical manager of a
new venture called Array Processor Systems that he launched
to design circuit boards and subsystems based on DSP32. He
joined AT&T in 1980 and has an A. B. from Harvard College
and a Ph. 0. from MIT, both in physics. MI: Kershaw, who
joined AT&T in 1963, is responsible for a group that designs
integrated circuits. He has a B.S.E.E. from Lafayette College
and an M.S. E. E. from Lehigh University MI: Tow, who joined
AT&T in 1966, is responsible for applications of digital signal
processing. He has a B. S. E. E., M. S. E. E., and Ph. D. in electri-
cal engineering from the University of California at Berkeley

104 (Manuscript received May 13, 1986)

SEPTEMBEWOCTOBER - VOLUME 65 -ISSUE 5

AT&T TECHNICAL JOURNAL

CommScope, Inc.
IPR2023-00064, Ex. 1012

Page 16 of 16

