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The WE® DSP32 digital signal processor is a high­
speed, programmable, VLSI circuit with 32-bit float­
ing-point arithmetic. The device canbe used cost­
effectively in a wide variety of complex digital signal
processing applications, suchas speech recognition,
high-speed modems, low bit-rate voice coders, multi­
channel signaling systems, and signal processing
workstations. In this paper, we review the architecture
of the DSP32 and present its instruction set, including
some examples. We also discuss the software and
hardware support tools that are available for developing
DSP32 applications.

An Expanding Family
The WE®DSP32 digital signal processor'> is the latestmem­

ber ofa family ofsingle chip, programmable digital signal processors
developed at AT&T Bell Laboratories.

The first family member appeared in 1979 and was called sim­
ply DSp'3It was oneofthe first single-chip, programmable digital signal
processors ever made.

As very-large-scale-integration (VLSI) technology advanced,
the demand for the DSP justified its redesign. The new device-the WE
DSP20-ran twice as fast, used less power, and cost less than the origi­
nal DSp, yet was pin, architecture, and instruction set compatible.

DSP32 Features
Both the DSP and DSP20 are 20-bit, fixed-point processors

and can execute instructions at the rate of 1.25and 2.5 million instruc­
tions per second, respectively.

The DSP32, on the other hand, can execute 4 million instruc­
tions per second, operating on32-bit, floating-point numbers. It also
hasa complete set ofmicroprocessor instructions that operate on16­
bit, fixed-point numbers forease ofuse in logic andcontrol operations.
In addition, the DSP32 offers bothserial andparallel input/output (VO)
with direct-mernory access (DMA) capability. (DMA allows data trans-
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fers from an input buffer to memory or from memory to an 
output buffer, without program intervention. ) 

Like the previous DSPs, the DSP32 has an on- 
chip, random-access memory (RAM) for storing variable 
data, and an on-chip, mask-programmable read-only mem- 
ory (ROM) for storing instructions and fixed data. Thus, 
the device can be customized for a wide variety of signal 
processing applications. 

Although there are many different types of appli- 
cations, most require real-time execution of repetitive 
multiplications and additions. Like its predecessors, the 
DSP32 is optimized for this type of computation. But it 
offers a new architecture that allows users to develop more 
complex applications requiring floating-point arithmetic. 

The DSP32 can be cost-effective for a wide vari- 
ety of digital signal processing applications, such as speech 
recognition, high-speed modems, low bit-rate voice cod- 
ers, multichannel signaling systems, and signal processing 
workstations. Algorithms that are suited for floating point 
include matrix inversion; spectral analysis; high-quality, 
low bit-rate speech graphics; and image processing. 

ance high performance with ease of use. By high 
performance, we mean fast execution of signal processing 
algorithms using a high-quality arithmetic. A major con- 
tributor to this goal is the use of a 32-bit, floating-point- 
data arithmetic unit. 

An 8-bit exponent in the 32-bit, floating-point 
word yields a large dynamic range that makes overflow 
unlikely, while a 24-bit normalized mantissa gives high pre- 
cision, independent of magnitude. Large dynamic range 
and high precision are often essential in advanced 
algorithms. 

Floating point also contributes to ease of use, 
because it frees programmers from concern about inter- 
mediate scaling to avoid overflow or loss of precision. 
Further, algorithms that are initially developed on main- 
frame computers or array processors and use floating- 
point arithmetic can be easily adapted to run on the 
DSP32. 

. Our goal in designing the DSP32 has been to bal- 

Ease of use applies not only to programming or 
interfacing to the DSP32, but to the support tools that are 
available for developing DSP32 applications. We will dis- 
cuss the architecture, instruction set, and support tools 
later. 

The DSP32 can do the following, all with 32-bit, 
floating-point precision and dynamic range: 

a 1024-point, complex, Fast Fourier Transform (FFT) in 
19.2 ms (including bit reversal) 
a finite impulse response filter in 250 ns per tap 
a second-order section (four multiply) for a recursive, 
infinite-impulse-response (IIR) filter in 1 ps. 

The device is available in two packages: a 40-pin 
dual in-line package, and a 100-pin pin array that can use 
external memory to expand the on-chip memory. The chip 
is manufactured in 1.5-pm effective channel length, n-type 
metal-oxide semiconductor (NMOS) technology, and has 
about 155,000 transistors in an 81-mm2 area (12.70 mm by 
6.35 mm). 

The DSP32 operates with a 16.384-MHz clock 
and a single 5V power supply. For the 40-pin device, typical 
power dissipation is 1. 8W, while worst-case power dissipa- 
tion is 2.3W For the 100-pin package, typical power 
dissipation is 2.0W and worst case is 2.6W The device is 
now being manufactured in high volumes. 

Recently, the DSP32 has been manufactured with 
a 10-percent photolithographic shrink. Samples will soon 
be available from two different processes; one leads to 
higher speed devices and the other to lower power devices. 

Its Architecture 
The DSP32’s architecture consists of several spe- 

cialized sections (Figu’re 1) that work in parallel to achieve 
a high throughput. A 32-bit bus interconnects these sec- 
tions, and control is distributed among them. 

The device has two execution units-the data 
arithmetic unit (DAU) and the control arithmetic unit 
(CAU)-and its on-chip memory includes 2048 bytes of 
ROM and 4096 bytes of RAM. The memory can be 
addressed as 8-, 16-, or 32-bit words and is organized to 
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access 32-bit data at the same speed as 8-bit data. 

face to a codec, a time-division multiplex line, or another 
DSP32, while an 8-bit parallel I/O (PIO) unit allows bidi- 
rectional communication with a microprocessor. 

tion unit for signal processing algorithms. As Figure 1 
shows, it contains a 32-bit, floating-point multiplier; a 40- 
bit, floating-point adder; and four 40-bit accumulator regis- 
ters (an through a3) that provide temporary storage, thus 
reducing memory accesses. 

The DAU has a multiply-add structure; that is, the 
multiplier output is directly connected to the adder input. It 
does 4 million instructions per second of the form, 
A = B + C * D. In this instruction, we have both a 
floating-point multiplication and a floating-point addition, 
which yields a throughput of 8 million floating-point opera- 
tions per second. 

The DAU multiplier inputs are 32-bit, floating- 
point numbers with a 24-bit mantissa and 8-bit exponent. 

Inputs to the multiplier and adder can come from 
memory, I/O registers, or an accumulator (a 0 -a 3). The 
adder inputs from memory or I/O are 8, 16, or 32 bits 
wide, while those from the multiplier or an accumulator are 
40-bits wide (an 8-bit exponent and a 32-bit mantissa that 
includes eight guard bits). 

These 40 bits of precision are maintained in the 
adder and the accumulators; the eight guard bits of the 
mantissa allow extra precision in intermediate accumula- 
tions. However, the 40-bit result in an accumulator is 
truncated to 32-bits when written to memory or I/O, or 
provided as an input to the multiplier. 

16-bit integer data. It also converts floating-point data to 
and from p-law and A-law companded data formats. 

control Arithmetic Unit. The CAU-a 16-bit, fixed- 
point unit-has a dual function. It generates and post mod- 
ifies addresses for accessing operands in memory, and it 
executes microprocessor instructions on 16-bit data for 
logic and control operations. (Post modify means incre- 

A flexible serial I/O (30) unit allows direct inter- 

Data Arithmetic Unit. The DAU is the primary execu- 

The DAU converts floating-point data to and from 

ment the address after completing the operation.) 

purpose registers (r L through r 2  I); a 16-bit program 
counter (pc); and a full-function, arithmetic logic unit 
(ALU). All CAU registers are static and do not require 
refreshing. 

DAU, registers r L through r 14 are used as memory 
pointers and registers r L 5 though r b 9 hold address 
increments. A pointer register contains the address of an 
operand in memory that is to be either read or written, 
and an increment register contains a number that is added 
to the pointer to alter it. This addition is done in the ALU. 

Register r 2 0, also called PIN (pointer-in), is the 
pointer for serial DMA input, and register r 2 2 ,  also called 
POUT (pointer-out), is the pointer for serial DMA output. 
These registers can also be used as general-purpose regis- 
ters, but their effect on DMA operations must be 
considered. 

As stated above, the CAU also executes its own 
set of instructions. They implement two’s complement, 
fixed-point arithmetic operations; logic functions; control 
operations l i e  conditional branching; and data moves 
between memory, VO, and the CAU registers. Executing 
logic and control operations in the CAU not only makes 
programming the device easier but also enhances the 
DSP32 performance. 

Memory. The DSP32 provides on-chip memory 
(Figure 1) that includes a 512 by 32-bit ROM and a 1024 by 
32-bit RAM that is divided into two equal 512 by 32-bit 
segments. 

Data can be 8, 16, or 32 bits wide, and memory is 
uniformly byte addressable. This means that the four indi- 
vidual bytes and the two 16-bit words in each 32-bit word 
can be addressed independently. 

Byte addressability is important because, besides 
using 32-bit instructions and floating-point data, the 
DSP32 uses 16-bit fixed-point integers and 8-bit com- 
panded (p-law and A-law) data. 

As Figure 1 shows, the CAU has 21 16-bit general 

For instructions that are primarily executed in the 

The RAM is dynamic and is refreshed either auto- 
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matically once every 32 instructions or under program 
control. The ROM is masked programmed. 

kbytes of memory can be accessed externally. If standard 
byte-wide memory chips are used for expanding memory, 
no additional interfacing devices are needed. Also, if this 
external memory is fast enough (80-1-1s access time), there 
is no speed penalty when accessing it. 

external memory) is logically divided into two banks: 
Lower bank 0, which can be expanded with external mem- 
ory, and Upper bank 1. Memory space can be configured in 
four different ways using two of the DSP32 pins. 

To achieve maximum throughput, memory 
accesses must alternate between the two memory banks. 
As one memory bank is accessed, the other memory bank 
is being addressed. However, if the user chooses not to 
interleave, the DSP32 automatically inserts a wait state 
when two consecutive accesses occur to the same memory 
bank. This flexible memory accessing makes the DSP32 
easier to program. 

Instructions can be stored anywhere in the 
address space (ROM, RAM or external memory) and can 
be executed from any memory without a speed penalty, if 
interleaving between the two memory banks is used. Each 
instruction cycle consists of four machine states, and one 

For the 100-pin pin array package, an additional 56 
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The DSP32 memory space (ROM, RAM, and 

read or write operation can occur during each state. 

version of input data and parallel-to-serial conversion of 
output data. Serial input and output operations are inde- 
pendent and asynchronous with respect to each other and 
to program execution. The SIO control signals allow direct 
interface to a codec, a time-division multiplexed line, or 
another DSP32. 

Input to the SIO (Figure 1) is loaded into the input 
shift register (isr), and then into the input buffer 
( ibuf ) .  SIO outputs are loaded into the output buffer 
(obuf), and then put into the output shift register (osr). 
This double buffering permits a second serial transmission 
to begin before the first transmission has been processed. 

Data widths can be 8, 16, or 32 bits. The I/O con- 
trol register ioc in the SIO is used to select various 110 
conditions, bit lengths, internal or external clocks, and 
internal or external synchronization signal, thus allowing 
flexibility when interfacing to external hardware. 

For example, in the active mode, the DSP32 gen- 
erates the I/O clocks and the synchronization signal for 
external hardware. In the passive mode, the DSP32 acts as 
a slave and the external hardware generates its clocks and 
synchronization signal. 

SIO transfers could occur under program control 
or using direct memory access. To enable DMA, the user 

Serial vo. The SIO is used for serial-to-parallel con- 
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Figure 1. Block diagram of the DSP32 digital signal proces- 
sor. The numbers in parentheses designate the size of a 
particular register or bus. The symbols at the left represent 
pins on the device package. 
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sets the i o c  register appropriately. If DMA is enabled, an 
implicit DMA request to the DSP32 control occurs when- 
ever the input buffer is full or the output buffer is empty. 

which the user can set, serve as pointers for the DMA 
transfers and are automatically incremented after each 
DMA access. The serial IiO DMA allows data samples to 
be transferred in and out of memory without interrupting 
execution of the DSP32 program. 

Parallel vo. The PI0 (Figure 1) is used for bidirec- 
tional communication between the DSP32 and a 
microprocessor over an %bit, external PI0 data bus 
(PDB). 

As in the SIO, PI0 transfers can be made under 
program or DMA control. In either case, data is trans- 
ferred in both directions through the 16-bit, parallel data 
register ( p d r ) .  In the DMA mode, the 16-bit parallel 
address register ( p a r )  contains the DMA pointer. The 
microprocessor initializes p a r ,  which can be incremented 
automatically after each memory access. 

The parallel IiO DMA allows a microprocessor to 
download a program without interrupting execution of 
another DSP32 program. (Each DMA operation steals one 
instruction cycle. ) The microprocessor can then alter a 
branch address in the original program, which causes the 
DSP32 to execute the new program. Thus, the DSP32 can 
be dynamically programmed. 

Program outputs can also occur through the paral- 
lel interrupt register ( p i r ) ,  a register that an external 
microprocessor can also read. When the DSP32 loads this 
register, it also raises an interrupt flag that the micropro- 
cessor recognizes. The microprocessor can then take 
action. 

The PI0 can also be used to handle error condi- 
tions, such as floating-point overflow or underflow in the 
DAU, or loss of external synchronization signal. When an 
error occurs, a bit is set in the 6-bit, error source register 
(esr) that is readable by an external microprocessor. The 
10-bit, error mask register (emr), which is written by the 
microprocessor, conditions the DSP32 to ignore the error 

CAU registers r 2 o (PIN) and r 2 L (POUT), 
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or send an interrupt signal to the microprocessor. If the 
latter happens, the DSP32 could also halt itself. 

%bit, parallel control register ( p c  r), which the external 
microprocessor can also access. This allows the user, for 
example, to start or restart the DSP32 (after a halt), or 
enable or disable automatic refreshing of the RAM. 

Control of parallel communications is set up in the 

Instruction Set 

tions for signal processing algorithms. These instructions 
are divided into two types: instructions that are executed 
primarily in the DAU, and those that are executed primar- 
ily in the CAU. After they are assembled, all instructions 
are 32 bits wide. 

instructions. The multiplylaccumulate instructions perform 
operations on 32-bit floating-point signal processing data. 
The special function instructions perform nonlinear opera- 
tions, such as rounding and data conversions between 
floating-point and k-law, A-law, or integer formats. 

operands; the first two are multiplied, and the resulting 
product is added to the third. The instruction specifies the 
sources for these three operands (where the data resides). 
One source must be an accumulator; the other two oper- 
ands can come from either an accumulator, memory, or 
IiO. The CAU generates the addresses for memory 
operands. 

Operands from memory or IiO are transferred 
over the 32-bit data bus into the DAU. The result of the 
multiplyiadd operation is always stored in an accumulator 
and, as an option, can also be written to memory or 110. 
This transfer again occurs over the 32-bit data bus. 

tions are 

The DSP32 supports a powerful set of instruc- 

DAU Instructions. There are two groups of DAU 

A multiplyiaccumulate instruction requires three 

The formats for DAU multiplyiaccumulate instruc- 

[ Z  = I  aN = [-JaM {+, -} Y * X 

aN=[-]aM{+,-}(Z=Y) * X  
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In these instructions, a N  and aM can be any of the four 
accumulators (ao-aj) .  The x and Y operands are mem- 
ory locations, serial I/O input buffer, or an accumulator. 
The Z operand is either a memory location or the serial 
110 output buffer. 

Also, the [ ] and { } are not part of the assembly 
language syntax. Values enclosed in brackets [ ] are 
optional, and one of the values enclosed in braces { } must 
be used. For example, “ Z  = ” is in brackets because the 
result of a multiply/accumulate operation can optionally be 
written to memory. 

the Y operand is written to the location that z specifies, in 
addition to being operated on by the DAU. This is espe- 
cially useful for memory-to-memory moves for tap update 
in finite-impulse-response filters. 

The second format is similar to the first, except 

The format for special function instructions is 

[Z =] a N  = f u n c t i o n  ( Y )  

Here, the specified function operates on the value Y ,  and 
the result is placed in the accumulator a N .  As an option, 
the result can then be written to the location that z 
specifies. 

We will give examples of these formats shortly. 
The DSP32 instruction syntax is similar to the C 

programming language and makes the programmer’s code 
almost self-documenting. An asterisk indicates multiplica- 
tion, but an asterisk preceding a pointer (e. g., * r 7 )  
means memory location Pointed to by the pointer. An equal 
sign is assignment, a plus sign means addition, and the 
plus plus ( + + ) that follows a pointer indicates post incre- 
ment (increment the pointer after reading from or writing 
to memory). Here, pointers are always CAU registers. 

Consider the DAU multiply/accumulate instruction 

r L 0 and r 7 ,  and add the result to the contents of accu- 
mulator a ~ .  Then, store this result in accumulator aL and 
the memory location pointed to by CAU register r 5. Also, 
post increment the contents of register r L o using the 
contents of register r L 7 ,  and post increment the contents 
of register r 5 by one. (In reality, this is an increment by 
one 32-bit word address, which is equivalent to an incre- 
ment by four byte addresses.) 

gle instruction. 

is 

Clearly, much computation is represented in a sin- 

An example of a DAU special function instruction 

a0 = f l o a t  ( i b u f )  

In this example, the contents of the input buffer i b u f  
(assume that the serial input word is 16 bits wide) are con- 
verted to DSP32 32-bit, floating-point format, and the 
result is stored in accumulator a O .  

instructions: arithmetic and logic, data move, and control. 
The CAU uses two’s-complement, 16-bit fixed-point 
ari t h e  tic. 

tion of a CAU instruction is completed before execution of 
the next instruction begins. This feature greatly simplifies 
using the CAU for logic and control operations. 

Here are the formats for the three groups of CAU 
instructions: 

CAU Instructions. There are three groups of CAU 

Except for a register load from memory, execu- 

r D  = r D  o p  {rS , N} 

{MEM, I / O }  = r D  

or 
*r5++ = a1 = a0  + *r7 * *rLO++rL7 

r D  = {MEM, I / O }  
that reads from right to left as follows. Multiply the con- 
tents of the memory locations pointed to by CAU registers i f  ( C O N D )  g o t o  r H ,  N ,  { r H + N ,  r H - N }  
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The first format represents the arithmetic and 
logic group. These instructions do 16-bit fixed-point inte- 
ger arithmetic, such as addition and subtraction, or logic 
operations, suchas A N D ,  O R ,  X O R ,  a n d s h i f t .  The 
values of r D  and r S  are the contents of any of the 21 16- 
bit CAU registers ( r b - r 2 2 ) ,  and N is a 16-bit integer. 

group. These instructions transfer data between the CAU 
registers and memory, or between the registers and serial 
or parallel I/O. In this form of instruction, ME M is an 8- or 
16-bit memory location that is specified by a direct address 
or a CAU register. Data can also be moved to or from the 
serial or parallel I/O. 

The third format represents the control group, 
whose instructions alter the program counter to change 
the sequence of program execution. The DSP32 can 
branch on many conditions ( i f  . . . g o t  o) ,  including 
CAU, DAU, and I/O conditions. The control instructions 
also include an unconditional branch ( g o t o ) ,  and a call to 
and return from a subroutine. 

The values of r D  , r S, and rH are the contents 
of any of the 21 16-bit CAU registers. However, r H  can 
also be the contents of the program counter (pc). As 
before, N is a 16-bit integer. 

Examples of CAU instructions are: 

The second format represents the data move 

96 

*r7++ = r 2 0  

i f  ( e q )  g o t o  r3 + 2 2  

The first instruction belongs to the arithmetic and 
logic group. It does a logical A N D  of the contents of CAU 
registers r b i’ and r b b and places the result back into 
r b b .  

The second instruction belongs to the data move 
group. It takes the contents of CAU register r 1 0  and 
writes it to the 16-bit memory location pointed to by CAU 
register ri’. Then, register ri’ is post incremented so 

that it points to the next 16-bit integer location in memory 
(an increment of one 16-bit word, or two bytes). 

group, illustrates a conditional branch. If the result of the 
last CAU operation equaled zero, then go to the memory 
location specified by the contents of CAU register r3 
plus 12. 

Appendixes A and B present two examples of 
DSP32 programs. 

The last instruction, an example of the control 

Development Support Tools 

bility of a good set of tools that allow a user to translate 
algorithms into working applications. 

The DSP32 software library, DSP32-SL, is writ- 
ten in the C programming language and resides in a host 
computer that runs the UNIX@ operating system. Soft- 
ware tools4 include an assembler, linkerlloader, and 
simulator. The hardware development system, DSP32-DS4 
allows real-time program debugging and in-circuit emulation. 

assembly language program into the binary code that 
DSP32 uses for instructions. A notable feature of this 
assembler that distinguishes it from typical microprocessor 
and other DSP assemblers is its use of the high-level syn- 
tax just presented. 

The assembler generates relocatable code that 
another software tool, the linker/loader, can easily alter. 
The relocatable code can reside anywhere in the addressa- 
ble space and can be combined with code that was 
assembled separately. 

operations of the DSP32 program in a nonreal-time envi- 
ronment. For full program debugging, the simulator allows 
access to all registers and memories. It also provides an 
interface to the DSP32 hardware development system. 

The simulator provides precise simulation down 
to the timing of synchronous IIO. When running on the 
AT&T 3B2/300 computer, it executes about 750 instruc- 
tions per second. 

As we mentioned, ease of use requires the availa- 

software TOOIS. The assembler translates the user’s 

The simulator is a program that simulates the 
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Figure 2. The DSP32 
development environ- 
ment. At the center is 
the hardware develop- 
ment system, DSP32- 
DS. The assembler 
and simulator are part 
of the software 
library, DSP32-SL. 

In the simulator, the user can freeze processing on 
many conditions, such as the execution of a specified 
instruction, access of a specified register or memory loca- 
tion, or occurrence of a specified number of I/O events. 
Input data can be supplied by a file, while output data can 
be captured in a file. The user can refer to memory loca- 
tions by their symbolic names rather than their absolute 
addresses. In addition, the user can define complex com- 
mand sequences and display formats, and invoke them 
with a simple command. 

system consists of a small circuit board that contains a 
DSP32, 14k words of external memory, a control micro- 
processor, and an RS232C interface. It can be used stand- 
alone or as an in-circuit emulator to the user’s system. 

The DSP32-DS can run DSP32 programs in an 
environment where its input and output are connected to 
the user’s DSP32 system. The development system also 
retains many of the simulator debugging features. 

Figure 2 depicts a typical DSP32 software and 
hardware development environment. Normally, the DSP32- 
DS is connected to a standard computer terminal and a 
host computer that runs the DSP32 simulator program. 

With a special simulator command, the user’s 
application program can be loaded and run using the devel- 
opment system, instead of the simulator. The user can 
switch back and forth between the simulator and the devel- 

Hardware TOOLS. The DSP32 hardware development 

opment system to compare results. 

DSP32-DSs can be connected to a single computer and ter- 
minal system. The user can selectively communicate with 
each system or the simulator program. One application for 

more DSP32-DSs as digital signal generators or signal ana- 
lyzers for testing a program in another DSP32-DS. 

DSP32-DS can become a powerful digital signal processing 
workstation that consists of a flexible set of programmable 
function generators, filters, power meters, detectors, and 
spectrum analyzers. 

For multiple DSP32 applications, up to seven 

the multiple DSP32-DS configuration is the use of one or 97 

With the appropriate application software, a 

Conclusion 

point, programmable, digital signal processor-and its 
support tools for developing applications. 

its ease of use, make it suitable for a variety of advanced 
signal processing applications in telecommunications, 
speech, imaging, and graphics. The device can also be 
used as a 16-bit fixed-point microcomputer. 

with DMA capability on both serial and parallel inter- 
faces-provide the ability to program the DSP32 
dynamically and interact easily with the user’s system. 

We have presented the DSP32-a 32-bit, floating- 

The high performance of the device, coupled with 

The flexible on-chip memory and I/O-the latter 

CommScope, Inc. 
IPR2023-00064, Ex. 1012 

Page 9 of 16



Acknowledgments 

the following people to the design, testing, and fabrication 
of the device and the development of its software and 
hardware support tools: L. E. Bays, G. G. Burgstresser, 
R. J. Canniff, J. D. Cuthbert, C-E Chen, D. B. Cuttriss, J. 
C. Desko, B. J. Dutt, D. J. Emrich, C. J. Faust, E. M. 
Fields, R. L. Freyman, J. A. Grant, C. J. Garen, G. E. 
Hall, D. J. Hart, J. Hartung, J. W Hendricks, T D. Hop- 
mann, W C. Ingram, l? W Kempsey, J. J. Klinikowski, D. 
E Koehler, R. D. Lippincott, D. A. McGillis, C. R. Miller, 
K. Mondal, H. 0. Morris, H. S. Moscovitz, H. N. Nham, 
G. D. O’Donnell, A. A. Pignone, Y. Rotblum, M. A. 
Steele, l? A. Stiling, E Subramaniam, W A. Stocker, T G. 
Szyrnanski, L. L! Tran, C. J. Van Wyk, A. J. White, D. Wil- 
lauer, W Witscher, Jr., D. S. Yaney and E. J. Yurek. 

We gratefully acknowledge the contributions of 

References 
1. R. N. Kershaw, et al., “A Programmable Digital Signal Processor 

with 32b Floating Point Arithmetic,” Dgest ofTechnica1 Papers, 
1985 ISSCC, February 13-15, 1985, pp. 92-93. 

2. W. E Hays, et al., “A 32-bit VLSI Digital Signal Processor,” IEEE 
Journal ofsolid-State Circuits, Vol. SC-20, No. 5, October 1985, 

98 

pp. 998-1004. 
3. Digital Signal Processor, The Bell System Technical Journal, Vol. 

4. WE@ DSP32 Digital Signal Processor-Information Manual, AT&T 
60, No. 7, Part 2, September 1981. 

Technolonies. Inc.. 1986. 
5. L. R. Rabiner and B.’ Gold, Theory and Application ofDigita1 Sig- 

nal Processing, Prentice-Hall, Englewood Cliffs, N. J., 1975, p. 
367. 

6. G. Szentirmai, “FILSYN: A General Purpose Filter Synthesis Pro- 
gram,” Proceedings ofthe IEEE,  Vol. 65, October 1977, pp. 
1443-1458. 

Appendix A. IIR Filter Program 

impulse-response (IIR) filter. It assumes that the DSP32 
digital signal processor is connected to a 16-bit linear 
codec and uses four-coefficient, second-order, IIR sections 
connected in cascade. With the DSP32 floating-point capa- 
bility, there usually is no need to consider pole-zero 
pairing, ordering of sections, or gain distribution associ- 
ated with a fixed-point arithmetic implementation (which 
would also require five-multiply sections). 

listing (Example l), where comments and the # d e f i n e  
feature of the C preprocessor (lines 1 to 8) are used to 
enhance program readability. Line 9, an assembler direc- 
tive, defines global variables that the DSP32 simulator and 
development system can reference as  symbols. 

Line 10 programs the serial inputioutput for 16-bit 
transfers and uses the DSP32 on-chip clocks to drive an 
external 8-kHz sampling rate, analog to digital and digital 
to analog converter chip. 

Line 11 shows a wait for the arrival of the serial 
input sample, indicated by a full input buffer. If i b e  (input 
buffer empty) is true, the program will stay in the loop, 
lines 11 and 12. (All DSP32 branching instructions are 
delayed brunches; i. e., the instruction that follows any 
branch instruction will always be executed before the 
branch occurs.) Line 12 sets up register r L o as a loop 
counter for use in line 21. 

Reading of i b u f ,  line 13, will empty the input 
buffer. Lines 18, 19, 20, and 22 do the four multiply and 
accumulate operations for the direct-form implementation 
of a second-order IIR section (Figure A). 

Execution of a DSP32 instruction proceeds from 
right to left. For example, line 19 first forms the product of 
A i2 (the coefficient of the denominator z p 2  term) with the 
appropriate state variable (SJ2 in Figure A) and decrements 
the state variable pointer. Next, it forms a sum in aO, 
stores the sum as  an updated state variable (pointed to by 
r L 3 ) ,  and then increments r 2 3 .  

This example shows how to implement an infinite- 

The line numbers in the text refer to the program 

The updated state variable value will be used in 
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output Input 

section section 
from (i-1)th to ( i  + 1)th 

* 

the next sample, because DAU memory write operations 
become effective only after a four-instruction delay. By 
contrast, accumulator updates can be accessed immedi- 
ately by the adder. 

ensures that the repeat-loop goes through each section 
once per sample (here, nine sections). The branch occurs 
if the content of register r L o is greater than or equal to 
zero. Then, the content of the register is automatically 
decremented by one. 

the next sample value. Line 24 converts the 32-bit, float- 
ing-point value back to a 16-bit integer for output via the 
output buffer (obuf ) .  Because of the delayed branching, 
line 24 will always be executed after the execution of 
line 23. 

We obtained the IIR filter coefficients (lines 25 to 
34) directly from a computer program based on Reference 
6. The filter design corresponds to a 0.01-dB ripple in the 
passband (950 to 1050 Hz) and 100-dB stopband loss 
below 900 Hz and above 1100 Hz. We can easily meet 
these stringent specifications with the DSP32. 

On line 21, the CAU conditional branch instruction 

Line 23 instructs the DSP32 to go back to process 

Figure A. Direct-form 
implementation of a 
second-order IIR sec- 
tion. A,,, and B,,, 
(where n = 1, 2) are 
section denominator 
and numerator coeffi- 
cients, respectively. 
The S,,, (where n = 1, 
2) are state variables, 
and z-  is a delay 
element. 
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I / *  Example L -- Cascade 2 n d  o r d e r  I I R  f i l t e r s  
2 r L 1  & rL3 p o i n t  t o  d a t a  ( s t a t e  v a r i a b l e s )  
3 r L 2  p o i n t s  t o  f i l t e r  c o e f f i c i e n t s  * /  
4 #def ine  N m i n u s 2  7 / *  Number of Sec t ions  - 2 * /  
5 #de f ine  A i L  * r L 2 + +  / *  A i l ,  A i 2  a r e  i t h  s e c t i o n  * /  
6 #def ine  A i 2  * rL2++  / *  denominator c o e f f i c i e n t s  * /  
7 #de f ine  B i L  * r 2 2 + +  / *  B i L ,  B i 2  a r e  i t h  s e c t i o n  * /  
8 #def ine  B i 2  * rL2++  / *  numerator c o e f f i c i e n t s  * /  

9 . g l o b a l  sample,  r e p e a t ,  e n d ,  c o e f ,  d a t a  

L O  ioc=OxO987 
L L  sample: i f  ( i b e )  goto sample 
12 r 1 O  = N m i n u s 2  / *  nine-sec t ion  IIR f i l t e r  * /  
2 3  a0 = f l o a t ( i b u f )  / *  conver t  t o  32-bi t  * /  
1 4  r L L  = d a t a  / *  i n i t i a l i z e  p o i n t e r s  * /  
1 5  rL3 = d a t a  
1 6  r L 2  = coef 

100 27 a0 = a0 * *rL2++ / *  ( i n p u t )  x ( c o n s t a n t  m u l t i - )  * /  

L8 r e p e a t :  a0 = a0 - *rL1++ * A i l  
1 9  *rL3++ = a0 = a0 - * r L L - -  * A i 2  
2 0  a0 = a0 + (*rL3++ = * r L L + + )  * B i L  
2 1  i f  ( r L O - -  > = O )  goto r e p e a t  
2 2  a0 = a0 + * r L L + +  * B i 2  

2 3  goto sample 
2 4  e n d :  obuf = a0 = i n t ( a 0 )  /*conver t  back t o  1 6 - b i t  * /  

2 5  c o e f :  
26  
27  
2 8  
29 
3 0  
31 
3 2  
3 3  
3 4  

f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  
f l o a t  

9.5L24534e-7 / *  c o n s t a n t  m u l t i p l i e r  * /  
-2.36984481 0 . 9 6 4 0 2 2 3 5 r  -1 .5L64367,  L.0 
-1 .36897321  0 . 9 6 6 7 8 6 3 3 ,  - 1 . 2 3 6 0 0 1 2 ,  1.0 
- 1 . 4 2 4 6 4 9 5 r  0.96782737r -1.55827L2r 1.0 
-1 .3555562 ,  0 . 9 7 4 7 6 5 9 L r  - 1 . 2 9 7 2 4 6 4 ,  1.0 
- ~ . 4 3 7 9 9 1 7 ,  o . w ~ ~ a 0 3 4 ,  - ~ . 2 6 ~ 0 6 0 3 ,  1.0 
-1.3498066, 0.96484090, - 1 . 6 5 L 6 2 3 4 1  1.0 
- 1 . 4 5 6 1 7 4 4 l  0.9859330Lr - 1 . 5 2 7 3 6 6 4 ,  L.0 
-1.35058581 0.99500383, -2.0599482, 1.0 
- 1 . 4 6 8 3 5 1 4 ,  0 . 9 9 5 4 0 2 5 4 ,  0 . 1  -L.O 

35 d a t a :  3O*float  0 . 0  / *  i n i t i a l i z e  d a t a  t o  ze ro  * /  
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Appendix B. FFT Program 

processor program that implements an in-place, decima- 
tion-in-time, radix 2, Fast Fourier Transform (FFT) 
algorithm. 

The loop numbers 5, 6, 7, 10, and 20 that we use 
in the program listing (Example 2) have a one-to-one cor- 
respondence with the FORTRAN program in Reference 5. 

The complex input sequence is stored in the array 
A (reall, imaginaryl, real& imaginary2, ...) of size up to 
1024 complex numbers. The size of the FFT is N = Z’, 
where N and M are declared by the user at assembly time 
($ N , $ M). Here, N is 256. 

If we exclude storage for the array A, the program 
requires 328 bytes of memory. The computation time 
required for a complex FFT with 128, 256, 512, and 1024 
points (including bit reversal) is 2.0, 4.3, 9.0, and 19.2 ms, 
respectively. 

/ *  E x a m p l e  2 -- I n  p l a c e  r a d i x  2 FFT * /  

This example illustrates a DSP32 digital signal 

# d e f i n e  i r l  
# d e f i n e  j r 2  
# d e f i n e  c n t  r5 
# d e f i n e  k r3 
# d e f i n e  t r4 
# d e f i n e  w r4 
# d e f i n e  j c n t  r b  
# d e f i n e  l c n t  r 7  
# d e f i n e  leL r 0  
# d e f i n e  l e o  r9 
# d e f i n e  lx r l O  
# d e f i n e  i z  r l l  
# d e f i n e  k z  r l 2  
# d e f i n e  lem r b ’ i  
# d e f i n e  u r  a 2  
# d e f i n e  u i  a3 
# d e f i n e  O N E  *rL3++ 
# d e f i n e  Z E R O  *rL3-- 
# d e f i n e  TWO a 1  
# d e f i n e  a p  rL4 
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$N = 2 5 6  / *  a s s e m b l y - t i m e  v a r i a b l e  * /  
$M = 6 / *  a s s e m b l y - t i m e  v a r i a b l e  * /  
$ N M 3  = $ N  - 3 
$N4 = $ N * 4  
$MM2 = $M-2 

j = A  
i = A  
cn t=$NM3 

l o o p o :  i - j  
i f  ( g e )  g o t o  l o o p 5  
noP 

*i++ = a 0  = *j++ / *  B e g i n  c o m p l e x  e x c h a n g e  * /  
*i-- = an = *j-- / *  T = A ( J )  * /  
noP 
*j++ = a 0  = *i++ / *  A ( J )  = A(1) * /  
*j-- = a 0  = *i-- / *  A(1) = A ( J )  * /  102 

l 0 0 p 5 :  k=$N4 
lOOpb:  t = k + ( A - 8 )  

t- j 
i f  ( g e )  g o t o  l o o p 7  
noP 

j = j - k  
g o t o  l o o p b  
k = k / 2  

l o o p 7 :  j = j + k  
i f  ( c n t - -  >= 0 )  g o t o  l o o p 0  
i = i + 8  

lcn t=$MM2 
lx=$N 
l e o = 4  
l e L = L  
w=w 
r l 3 = t w o  
TWO = *rL3++ 
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100~20: i=j 
iz=i 
k= i 
k=k+leo 
kz=k 
cnt=lx+(-2) 

loop10: a0 = *i + ur * *k++ / *  T=A(i)r+Ur*A(k)r * /  
*iz++=aO=aO-ui * *k-- / *  A(i)r=T=T-Ui*A(k)i * /  
*kz++=aO=-aO+TWO * *i++ / *  A(k)r=-T+Z*A(i)r * /  
a0 = *i + ui * *k++ / *  T=A(i)i+Ui*A(k)r * /  

*iz++lem=aO=aO+ur* *k++lem / *  A(i)i=T=T+Ur*A(k)i * /  
if (cnt-- >= 0) goto loop10 

*kz++lem=aO=-aO+TWO* *i++lem / *  A(k)i=-T+?*A(i)i * /  
a0 = ur * *w++ / *  Compute new twiddle * /  
ur = a0 - ui * *w / *  u = u * w  * /  
a0 = ur * *w-- 
ui = a0 + ui * *w 
if (jcnt-- >= 0) goto loop20 
j=j+a 

if (lcnt-- >= 0) goto loop30 
w=w+a 

two : float 2.0, 1.0, 0.0 

A: 

/ *  cos(pi/l),-sin(pi/l) * /  
/ *  cos(pi/2),-sin(pi/2) * /  
/ *  cos(pi/4),-sin(pi/4) * /  
/ *  cos(pi/a) ,-sin(pi/a) * /  
/*cos(pi/1b),-sin(pi/1b)*/ 
/*cos(pi/32),-sin(pi/32)*/ 
/ *  cos and -sin(pi/b4) * /  

/ *  cos and -sin(pi/12a) * /  
/ *  cos and -sin(pi/ZSb) * /  
/ *  cos and -sin(pi/S12) * /  

103 
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