
Page 1 of 88 SAMSUNG EXHIBIT 1009

·1
j

I
I
I
I

I I
I

I~ I
It I

• I
l' I

I , I

t I

I . I
! I
I I
I I
I I

I 'I
, , I

I · I
I . I

I · I

I • I

i I I
! I I
I I I

C. Britton Rorabaugh

ERROR
CODING
COOKBOOK

Practical C/C++
Routines and Recipes

for Error Detection

and Correction

DISK 1

Inc luded '

Page 2 of 88

BLDSC

IMPORTANT

NCB
RESTRICTED

STOCK
NOT FOR HOME

READING

This item must be consulted on
library premises only

NOT FOR LONG LOAN

PLEASE DO NOT USE
VAN SCHEME
FOR RETURN

Please
DO NOT REMOVE

This wrapper

Page 3 of 88

. Error Coding
Cookbook

I

Practical CIC++
Routines and Recipes for

Error Detection and Correction
C. Britton Rorabaugh

- , .. -~ , I
•! ~ i • \ _ .,;_ ... "' . . . -

• - # ._ ... -•· .,, ·; I f'• • -

• •

D,vf'\·v" • • l :,~1'\" &..l \.- . , '\,,,.,,, ~... - '
l l FEB 1997

L------

McGraw-HIii
N.w York S.n Francisco Washington, O.C. Auckland Bogota

Caracaa Lisbon Lornton Madrid M• xlco City M.ilan
Montreal New Delhi S.n Juan Singapore

Sydn.y Tokyo Toronto

_j

Page 4 of 88

McGraw-Hill i2
I /)ms:011 o/ nic,\,f.Gru11,'Hill(ornpa,1~

©199fi by The McGraw-Hill Companies.

Printed in thP United States of America. All rights reserved. The publisher takes no
responsibility for the use of any matenals or lllPthods described m this l>ook, nor for
the products thereof.

he 1 2 :3 -l 5 6 7 8 9 DOC/OOC 9 0 0 9 8 'i fi

Produ<:t or brru1d names used in this book may be trade names or trademarks. Where WP. believe
that thnt> may be proprietary claims to such trade names or trademarks, the name tw been
used with an irnha.l capital or it has b4"t•n capitalized in the style used by the name claimant
Reg,ardli>Ss of th<.> capitalization used, all t.uch names have been used in an editorial manner
without any mtent to conwy endorsement of or other affiliation with the name daunant Neither
the author nor the puhli«her intends to Pxpress any judgment as to the validity or legal status of
any such proprietary claims

IJbrary of Congress Cata.loging-in-Pnblicatlon Data
Rorabaugh, C Bntton.

Error coding cookbook: practical CIC++ routines and recipes for error
detection and correction/ by C. Britton Rorabaugh.

p. cm.
Includes index.
ISBN 0-07-911720 I (h)
1 C (Computer program language) 2. Debugging in computer

science. I. Title.
QA76.73.C15R67 1995
005. 7'2-dc20 95-22892

CIP

McGraw Hill books are available at special quantity discoW1ts to w.e as premiums and
sales promotions, or for use in corporate training prograrns. For more infonnation ,
please writf' to the Director of Special Sales, McGraw-Hill, 11 West 19th Street, New
York, NY 10011 Or contact your local bookstore

Acquisitions edit.or: Steve Chapman
Editorial tf'anr Lori Flal1erty, Executive Editor

Andrew Yoder, Book Editor
Produrtion lt>am: Kathenne G. Brown, Director

Lisa M. Mellott. Coding
Wanda S. Ditch, Desktop Operator
Joann Woy, Indexer

Design team: Jaclyn J. Boone, Designer
Katherine Lukaszewicz, Associate Designer

9117201
EL3

This material may be protected by Copyright law (Title 17 U.S. Code)

Page 5 of 88

Introduction xi

1 Strategic Issues 1
1.1 Why Code? 1
1.2 Data Errors 1

Contents

1.2.1 Binary Symmetric Channel 1
1.2.2 Burst Channel 1
1.2.3 Binary Erasure Channel 2

1.3 Software Notes 2

2 Mathematical Tools for Coding 5
2.1 Modulo Anthmetic 5

2.1.1 Modulo-2 Anthmetic 6
2.2 Finite Fields 9

2.2.1 Groups 9
2.2.2 Fields 11

2.3 Introduction to Polynomials 13
2.4 Extension Fields 16
2.5 Binary Extension Fields: Manual Construction 20

2.5. i Constructing the Field 22
2.5.2 Representing the Field Elements 24

2.6 Computer Methods tor Galois Fields 26
2 6.1 Representing Field Elements 27

2.7 More About Polynomials 30
2.8 Cyclotomic Cosets 33
2.9 Finding Minimal Polynomials 36

3 Block and Cyclic Codes 41
3.1 Introduction 41
3.2 Linear Block Codes 44

Page 6 of 88

3.2.1 Encoding for Linear Block Codes 44
3.2.2 Constructing the Generator Matrix 47
3.2.3 Parity-Check Matrix 47

3.3 Cyclic Codes 49
3.4 Manual Encoding Methods for Cyclic Codes 51
3.5 Modifications to Cyclic Codes 52

3.5.1 Extended Codes 53
3.5.2 Punctured Codes 54
3.5.3 Expurgated Codes 54
3.5.4 Augmented Codes 55
3.5.5 Shortened Codes 56
3.5.6 Lengthened Codes 56

3.6 Hamming Codes 56
3.6.1 Shortened Hamming Codes 58

4 BCH and Reed-Solomon Codes 61
4.1-BCH Codes 61

4.1.1 Genesis of the Codes 62
4.1.2 Types of BCH Codes 63
4.1.3 Critical Features 63
4.1.4 Constructing the Generator Polynomial 68
4.1.5 Algorithmic Approach 71
4.1.6 Computer Approach 73

4.2 Nonbinary BCH Codes 79
4.3 Reed-Solomon Codes 82

5 Encoders and Decoders 85
5.1 Division Method tor Encoding Cyclic Codes 85

5.1.1 Hardware Implementation 85
5.1 .2 Software Implementation 88

5.2 Standard Array 89
5.2.1 Hazards in Standard Array Decoding 92

5.3 Syndromes for BCH Codes 93
5.4 Peterson-Berlekamp Method 97
5.5 Error Location 102

6 Convolutional Codes 105
6.1 Canonical Example 105

6.1 .1 Convolutional Encoder Viewed as a Moore Machine 106

Page 7 of 88

6.1.2 Convolut,onal Encoder Viewed as a Mealy Machine 106
6.1.3 Moore Machines vs. Mealy Machines 109
6.1.4 Notation and Terminology 112

6.2 Tree Representation of a Convolutional Encoder 116
6.3 Trellis Representation of a Convolutional Encoder 119
6.4 Distance Measures 123

7 Viterbi Decoding 127
7 .1 Introduction to Viterbi Decoding 127
7.2 Viterbi Decoding Failures 141

7.2.1 Minimum Free Distance 146
7.2.2 Weight Distribution 147
7.2.3 Information Sequence Weight 147

7.3 Vrterb1 Decoding with Soft Decisions 147
7.4 Practical Issues 152

7 4.1 Decoding Depth 153

8 Sequential Decoding 155
8 1 Stack Decoding Algonthm 155

8.1.1 Fano Metric 161
8.2 Software for Stack Decoding 168

8.2.1 Implementing the Stack 171
8.2.2 Received Symbol Buffering 177
8.2.3 State Table 179

8.3 Fano Decoding Algorithm 180

Appendices
A Minimal Polynomials of

Elements in GF(2m) for Chapter 2 191

B Stack Tables for Example 8.1 197

C Stack Tables for Example 8.2 207

D Stack Tables for Example 8.3 215

E Software 227

Index 245
About the Author 251
Disk Warranty 260

Page 8 of 88

Introduction

Error-correction coding has traditionally been one of the most
mathematically challenging of the various specialized disciplines
that come together to make modern data communication and data
storage possible. A good bit of the difficulty no doubt stems from
the use of a type of arithmetic that is different from the usual
"standard" arithmetic that we all use every day. This book is an at­
tempt to change all that. After Chapter 1 provides a brief intro­
duction to the strategic issues involved in error correction coding,
Chapter 2 demystifies those elements of abstract algebra and Ga­
lois field arithmetic that are essential for successful implementa­
tion of encoders and decoders. Some basic software modules for
generating Galois fields and performing arithmetic within these
fields are also developed in Chapter 2. Chapter 3 uses techniques
from Chapter 2 to introduce the basics of block and cyclic codes.
Chapter 4 covers the specific details of BCH codes and Reed­
Solomon codes, which together account for perhaps 80% of all
block codes used in practical applications. In Chapter 5, the details
of encoders and decoders for block and cyclic codes are intro­
duced and particularly efficient decoding techniques for BCH
codes are covered in some detail. The major emphasis is on soft­
ware implementations rather than hardware implementations, but
digital hardware designers will be readily able to "port" the various
software constructions into the corresponding hardware construc­
tions. In addition to Block and Cyclic codes, there is another large
class of codes called convolutional codes, which are also widely
used in practical applications. Chapter 6 introduces convolutional
codes and the notation and terminology commonly associated
with them. Viterbi decoding of convolutional codes is covered in
Chapter 7. This coverage includes the development of software
modules for performing the Viterbi algorithm. Although it enjoys
widespread use, Viterbi decoding does have some limitations. Be­
cause of these limitations, alternative decoding techniques, such
as stack decoding or Farro decoding, must often be used. These al-

Introduction

Page 9 of 88

Introduction

ternative techniques, along with software for performing them, are
covered in Chapter 8.

The subject of error correction coding is vast, and this book covers
only a small part of it. However, the codes and techniques covered
are the most widely used in practical applications. This, after all,
accomplishes this book's original motive, which is to place power­
ful coding techniques as well as the knowledge needed to imple­
ment these techniques in the hands of individuals who need to use
error-correction coding-even though these individuals are not
coding experts.

ii.IE: iW l.iiet~~-JEa,;;;liiiJ..;}:!ll!I, !.: i\lii1<LJ!l~iiMJ

Page 10 of 88

Strategic Issues

1.1 Why Code?
Coding is performed for several different reasons. Cryptographic
codes are used to protect information from unauthorized recep­
tion and to authenticate that a message was in fact sent by the
party listed in the message as the originator. Data compression
codes are used to reduce the amount of bandwidth needed to
transmit data or to reduce the amount of memory needed to store
a message. Error control codes, which are the subject of this
book, are used to detect and/or correct errors that might be intro­
duced into digital data when it is transmitted or stored.

1.2 Data Errors
There are several different mechanisms by which errors are intro­
duced into a data signal. The strategy for coding the signal to protect
it against errors is often tailored to the particular error mechanism
known or assumed to be operating in application of interest.

1.2.1 Binary Symmetric Channel

As shown in Fig. 1-1, in a binary symmetric channel (BSC), the
probability of a 1 to O error and the probability of a O to 1 error are
equal. This mechanism is most often assumed to be the dominant
error-producing mechanism for errors produced by additive Gauss­
ian noise. If the probability of error is independent from bit-to-bit,
the BSC can be further characterized as being a discrete memory­
less channel (DMC) .

1.2.2 Burst Channel

In many situations, the noise in a channel will vary over time, be­
ing weak during some situations and strong during other intervals.
Errors will be more likely to occur in bursts that coincide with in­
tervals of strong noise. Such a channel is referred to as a burst
channel, or a channel with memory.

Data Errors
""Qik""ilil-kC""-'""""' ---·•m-~!lidl ... ~ Z J@£.i:&tiJ.:l:J ifflllilli!IJB'Ulh:.T.W.:.oo:z;;:;;;J~.JJi&SIZWXJi!W4J~~~l,;W! li!!iE ~ it tit£ ~ ... I £.1""""'· ... _ ... ,.,,...,...,HBHm--w .W.W.~

Page 11 of 88

1-p

• 1-1 Transition probabilities in the binary
symmetric channel.

1.2.3 Binary Erasure Channel

Consider a baseband pulse transmission system in which a pulse of
-1 volt is transmitted for a O and a pulse of + 1 volt is transmitted
for a 1. At the receiver, a pulse voltage less than -0. 7 volt is inter­
preted as a 0. A pulse voltage greater than +0.7 is interpreted as a
1. The voltage range between-0.7 and +0.7 is considered as a "no­
man's land" or deadband. Pulse voltages received in this range are
deemed "too close to call" and are not interpreted as either O or 1.
Such decisions not to decide is called erasures, and a channel that
produces erasures is called a binary erasure channel (BEG).
The probability of a transmitted O being so corrupted that the re­
ceived voltage exceeds 0.7 is so small that it is assumed to be im­
possible. Likewise for the probability of a transmitted 1 being so
corrupted that the received voltage falls below -0.7. The probabil­
ities of a 0-to-erasure failure or !-to-erasure failure are not negli­
gible, and special coding strategies are often used for correcting
erasures. The BEC is depicted in Fig. 1-2, with erasures denoted
asx.

1.3 Software Notes
The programs in this book were constructed as a set of modules.
Modules have been described as "poor folks' objects"1 and they are
about as close as we can conveniently get to "true" objects without
stepping up from C to C++. Modules support a subset of object­
oriented programming that has been dubbed object-based pro­
gramming. Modules don't support inheritance, but they do support
abstraction and encapsulation. Modules are implemented in C as
separate source files. This means that the programs in this book

1 McConnell: Code Complete, Microsoft Press, 1993.

Strategic Issues
~~~~~~~~mi~;; -~ff.il:t !i! ;- B!ii&l:-W,ft2i11&. :Sliii '.m:llffl'!E~ 



Page 12 of 88

1-p 

1-p 

• 1-2 Transition probabilities in the binary 
erasure channel. 

are organized into modules that make sense in the context of what 
we're trying to accomplish, but which do not necessarily match up 
with the way chapter contents are organized. 

Each file contains both data and functions which can be declared 
static to make them visible only within the file. Module variables 
are static variables, which are global within the file. Not every 
function in a module makes use of every module variable, so as 
each function is presented in the text, in the way that it interacts 
with module variables is also covered. The software accompanying 
this book is described in Appendix D. 

Software notes 



Page 13 of 88

Mathematical Tools 
for Coding 

Many of the calculations used to perform encoding, decoding, and 
performance analysis for the codes in this book make use of pecu­
liar arithmetic and other mathematical techniques that are a bit out 
of the ordinary. These techniques, which are essential for the work 
in subsequent chapters, include modulo-p arithmetic, extension 
fields, and polynomial arithmetic. These topics sound a lot more 
difficult than they really are, and this chapter attempts to intro­
duce and explain this material in a way that is relatively painless. 
This goal is consistent with the hands-on "cookbook" approach 
chosen for this book. However, presenting these techniques as iso­
lated, unconnected rote procedures will prove somewhat unsatis­
fying to many readers and might actually make it more difficult for 
these readers to embrace these new techniques and begin using 
them. Therefore, this chapter is a compromise between extremes. 
The individual sections present the necessary foundation material 
embedded in a broader mathematical fabric for interested readers. 
However, wherever it is appropriate, the sections begin with a box 
entitled "The Basic Idea." The contents of this box briefly explains 
how the subsequent material in the section fits into the overall 
study of coding with an emphasis on why it is important for prac­
tical coding applications. Most sections end with a box entitled 
"The Bottom Line." This box summarizes the information that the 
reader needs to become familiar with and carry forward into sub­
sequent sections and chapters. 

2.1 Modulo Arithmetic 

Modulo Arithmetic 
~~~;,,). i SIRS#fil ,r~ ... ~11::l!l ... :~..,wg;;,..,Ei!fi"""! ~'""EJ""""""""""'Mffi,""-'""''""'w ... J.&""iiS.IJi_;&i .......... ..,..,,, __ .i.£ ... il t""SL-l l\.1~1~ISIDilli el!W•lo:usm. 


Page 14 of 88

Modulo arithmetic can be viewed as the result of "wrapping" the
integers aroWld a circle (Fig. 2-1) for the specific case of modulo-
5 arithmetic. This wrapping causes 5 to be "the same as" or con ­
gruent to 0. This forces 6 to be congruent to 1, 7 to be congruent
to 2, 10 to be congruent to 0, and so on. The congruences need not
be limited to just positive integers. As shown in the figure, -1 is
congruent to 4, -3 is congruent to 2, etc. The usual mathematical
notation for congruence is a triple-bar equals sign, "=." Thus "1 =
16" is read as "1 is congruent to 16."

I
9 -L

I
I

l
\

I

I
\

I
I

\

'

/
/

/

' ' '

,, ,,
,,. ,,.

10
.,,..,..---t---- _

'

5
,,,,.--+--------

,,. '
//r O ',

....
....

II'/~ .,,.-1--...._ '-\
/./ / ,,. -5 ' \ 6

4 / I \ '\

....

,--1..L .,..
I T - 4 I

I
I

s'I...., ..._ ______ _.

I

I
I
I
I
I

I
I

I
I

' ' ' ' '\
\

\

-.Jal

• 2-1 The modulo-5 number system can be
viewed as the set of integers "wrapped" around a
circle to establish congruences between O and 5,
1 and 6, - 1 and 4, etc.

2.1.1 Modulo-2 Arithmetic

The vast majority of the computations used to perform encoding and
decoding involve modulo-2 arithmetic. This is due primarily to the
close relationship between modulo-2 arithmetic and the Boolean al­
gebras commonly used by designers of digital logic circuits.

Mathematical Tools for Coding
""""""""""""''""""""""""""'""""'""""-.."""'"'"""""""""""""""""'""""-~~~~;;~1121li1%1,ZM&kii,il£JJW:J!l1 i JliiilLl£l&l,)..JiiWil&jilJ.i..W

Page 15 of 88

Boolean Algebras

Encoders and decoders (not to mention computers) are con­
structed from logic circuits of various types. The logical behavior
of these circuits can be modeled and analyzed using a particular
type of algebra called Boolean algebra (which is named in honor
of its inventor George Boole). Strictly speaking, Boolean algebra
includes several different algebras, each of which uses different
sets of logical operations, such as {AND, OR, INVERT} or {NAND, NOR,
INVERT}. In the particular Boolean algebra of interest here, there
are two elements or values as well as two logical operations. The
values are TRUE or FALSE, and the operations are AND, and XOR (ex­
clusive or). The results of these operations are listed in Tables 2-1
and 2-2.

Modulo-2 Arithmetic

II Table 2-1 The logical AND
operation of Boolean algebra.

AND
F
T

F
F
F

T
F
T

II Table 2-2 The logical XOR
operation of Boolean algebra.

XOR
F
T

F
F
T

T
T
F

A mathematical analog or isomorphism to the logical0 valued
Boolean algebra of Tables 2-1 and 2-2 uses values of O and 1, and
operations of modulo-2 multiplication and addition, as shown in
Tables 2-3 and 2-4. The. value O corresponds to FALSE, and the
value 1 corresponds to TRUE. Modulo-2 multiplication corresponds
to the logical AND operation. The result of (a AND b) is true only if
a and bare both TRUE.

Similarly, the result of a x bis 1 only if a and b both equal 1. Mod­
ulo-2 addition corresponds to the logical XOR operation. The result
of (a XOR b) is 1 only if either a orb (but not both) is TRUE. The re­
sult of a + b is 1 only if either a orb (but not both) is 1.

Modulo Arithmetic
~~~it@'~~~.1:0·~.,, ,..,. _____ .... """"'·""'• """"'""""'""""'·'T~1"'~/2?~~~~,#ffili;".{!I:'~,EI(EJ( ~:!=Im. 



Page 16 of 88

• Table 2-3 
Binary multiplication. 

X 

0 
1 

0 
0 
0 

1 
0 

l 

• Table 2-4 
Modulo-2 addition. 

+ 
0 
1 

0 
0 
1 

1 
1 
0 

Programming Considerations Modulo arithmetic can be implemen­
ted in C for arbitrary moduli using the remainder operator. The 
expression x%y returns the remainder produced by dividing x by y. 
Assuming that x and y are both "legal" values modulo-q (i.e. 0::;; x 
< q and O ::; x < q) then modulo-q addition and multiplication can 
be easily implemented, as shown in the following code fragment. 

int x, y, q, sum, product 
/*************************************/ 
/* Note: if q==O, a divi de-by-zero */ 
/* error wil l occur. */ 

/* modulo-q addition */ 
sum= (x+y ) %q; 

/* modulo -q mul t iplicat i on */ 
product = (x*y) %q; 

/** end of fragment **/ 

Modulo-2 arithmetic occurs so frequently that it might lead to 
greater program efficiency if we use Boolean operations in place of 
the remainder operation for modulo-2 arithmetic. As shown in the 
following code fragment, there are a number of possibilities. 

int x, y, q, suml, sum2, sum3, prodl, prod2 

/* modulo-2 addition */ 

suml = x A y; I* 
s umZ = x != y; /* 
s um3 = ! ( x && y) ; I* 

to 

uses bitwi se XOR */ 
uses NOT EQUALS */ 
uses l ogi cal NOT with 

impl ement logical NANO 
logical AND 
*I 

Mathematical Tools for Coding _,---·----------·"··-··· --------------------



Page 17 of 88

/* modulo-2 multiplication */ 
prodl = x & y /* uses bitwise AND */ 
prod2 = x && y I* uses logical ANO */ 

/** end of fragment **/ 

2.2 Finite Fields 

2.2.1 Groups 

Modulo-2 addition is an example of a mathematical structure 
called a group, and we can use modulo-2 addition to illustrate a 
number of important properties that are shared by all groups: 

1. The set of integers (1,0} is said to be closed under the 
operation of modulo-2 addition, because the modulo-2 
addition of any two elements in the set produces a result that 
is also in the set. 

2. The modulo-2 addition operation is associative, meaning that 

(a+ b) + c =a+ (b + c) 

for all a, b, and c which are elements of (0,1). 

3. The element 0 is called the identity element and has the 
property that 

a+0=0+a=a 

for all a, which are elements of (0,1). 

4. For each element a in (0,1), there is an element -a that when 
added to a produces a result of 0: 

0+0=0 1+1=0 

The element -a is called the additive inverse of a. (In 
modulo-2 addition, each element is its own inverse, but in 
general, this will not be true of other groups.) 

1 R. J. McEliece: Encyclopedia of Mathematics and Its Applications, Vol. 3: The 
Theory of Information and Coding, Addison-Wesley, Reading MA, 1977. 

Finite Fields 



Page 18 of 88

The group formed by modulo-2 addition is further identified as a 
commutative group or abelian group because a + b = b + a for 
all a and b, which are elements of {0,1). 

It turns out that modulo-q addition forms a commutative group for 
any value of q = 2,3,4, ... 

Example 2.1 Show that modulo-3 addition forms a commutative 
group. 

Solution Modulo-3 addition results are summarized in Table 2-5. 

• Table2-5 
Modulo-3 addition. 

+ 0 1 2 
0 0 1 2 
l 1 2 0 
2 2 0 1 

Each of the five prerequisites for a commutative group are satisfied: 

D Inspection of Table 2-5 reveals that modulo-3 addition is 
closed. All results are elements of the set {0,1,2). 

• Modulo-3 addition is associative. 

• The identity element for modulo-3 addition is 0. 

D Inspection of Table 2-5 reveals that each element has an 
additive inverse. Specifically, 

-0 = 0 -1 = 2 -2 = 1 

\end{array} 

• Table 2-5 is symmetric about its main diagonal; therefore, the 
operation is commutative. 

Modulo-3 multiplication also forms a commutative group over 
the nonzero elements {l, 2}. The results for modulo-3 multiplica­
tion are summarized in Table 2-6. 

• Table 2-6 
Modulo-3 multiplication. 

X 0 1 2 
0 0 0 0 
1 0 1 2 
2 0 2 1 



Page 19 of 88

The five prerequisites (some of them reworded slightly for multi­
plication) are satisfied: 

• Inspection of the table reveals that modulo-3 multiplication is 
closed over {l, 2). 

• Modulo-3 multiplication is associative. 

• The identity element for multiplication ( or multiplicative 
identity) is 1. 

• Inspection of Table 2-6 reveals that each element in { 1, 2} has 
a multiplicative inverse. Specifically, 

lxl=l 2x2=1 
• In algebraic form, the multiplicative inverse of a is denoted as 

a-1. 

(Note: In general, each element will not be its own 
multiplicative inverse as it is here. For example, in modulo-5 
multiplication, the multiplicative inverse of 2 is 3.) 

It turns out that the set of nonzero elements {l, 2, ... , p - l} mod­
ulo-p with multiplication forms a group over for all prime values of 
p. However, for composite (i.e., nonprime) values of q, modulo-q 
multiplication does not form a group over the set {l, 2, ... , q - l}. 

Example 2-2 Show that modulo-4 multiplication does not form a 
group over the elements {l, 2, 3}. 

Solution Modulo-4 multiplication results are summarized in Table 
2-7. The set of nonzero values (1, 2, 3} is not closed under modulo-
4 multiplication because examination of the table reveals that 2 x 
2 = 0. Furthermore, there is no multiplicative inverse for the ele­
ment 2. 

II Table 2-7 
Modulo-4 multiplication. 

X 0 I 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 

3 0 3 2 l 

2.2.2 Fields 

A set F, in conjunction with two operations (one "addition-like" 
called addition and one "multiplication-like" called multiplication) 

Finite Fields 



Page 20 of 88

defined over the elements of F forms a mathematical structure 
called afield if and only if the following conditions are satisfied: 

1. The elements of F form a commutative group under the 
operation of addition. 

2. The nonzero elements of F (that is all elements except the 
additive inverse) form a commutative group under the 
operation of multiplication. 

3. The multiplication operation distributes over the addition 
operation. 

The number of elements in a field can be either finite or infinite. 
The set R of real numbers, in conjunction with ordinary addition 
and multiplication, is an example of an infinite field. In coding the­
ory, we will be concerned exclusively with finite fields. 

Definition 2.1 The number of elements in a field is called the order 
of the field. 

Finite fields are also called Galois fields in honor of Evariste Ga­
lois who outlined the connection between groups and polynomial 
equations in a letter to his friend Auguste Chevalier written on 
the eve of a duel on May 30, 1832 in which Galois was fatally 
wounded.2 A Galois field of order q is denoted as GF(q). The field 
specified by Tables 2-3 and 2-4 is thus denoted as GF(2). This field 
has 2 elements and makes use of modulo-2 addition and modulo-2 
multiplication. It is possible to extend this idea to a field withp el­
ements using modulo-p arithmetic, provided that p is prime. Such 
a field is called a prime field. As you will see in Section 2.4, it is 
also possible to construct fields GF(q), where q = pm, m = 1, 2, ... 

2 I. Stewart: Galois Theory, 2nd ed., Chapman & Hall, London, 1989. 

Mathematical Tools for Coding 
&Ea ... , __ , ____ .., _____ ,....,,,..~ ... = ffi--i!iiiim""'M"'""'""""' __ .., .. _;fail~l:i!:w.iElil " imf!E.&:ffl'.l~til! 3 i !U im.:::Z ;zc =~II§ ~ Rilllllllil~~-l~ll~ffl :lillilml!II 



Page 21 of 88

2.3 Introduction to Polynomials 

Much of coding theory (including the construction of extension 
fields to be covered shortly) is based on polynomial arithmetic. 
A polynomial in xis simply a weighted sum of powers of x. Some 
examples of polynomials in x are 

f 1(x)=5x2 + 3x+l 

f2(x)=x4 +x3 +1 

fs(x) =X3 -2 

The degree of the polynomial is the highest power of x appearing 
in the polynomial. The degree off1 (x) is 2; the degree off/x) is 4; 
and the degree offlx) is 3. 

Introduction to Polynomials 
zJ:Jil!lllblll!!$l~lHJl~;;sll oom;~ u~~ ±JI lmlif.iil™ 



Page 22 of 88

In coding theory, we will often be interested in polynomials in 
which the coefficient of each term is either O or 1. In the context 
of coding theory, such a polynomial is called a polynomial over 
GF(2). Of the three example polynomials shown,J;(x) is the only 
polynomial over GF(2). When performing arithmetic on polynomi­
als over GF(2), powers of x can be multiplied in the usual way; 
that is, 

x2-x3=x5 

X • x7 = x8 
X•X=X2 

However, the addition of coefficients is performed using modulo-2 
addition. For example, 

and 

x 2 + x 2 = 1 • x 2 + 1 • x 2 = (1 + 1) • x 2 = 0 • x2 = 0, 

(x + 1) + (x2 + x) = 1 • x + 1 + 1 • x 2 + 1 • x 
= l •x2+ (1 + 1) •X+ 1 
=l•x2 +0•x+l=x2 + 1 

x 5 + x 5 + x 5 = (1 + 1 + 1) • x 5 = 1 • x5 = x 5 

Because each element in GF(2) is its own inverse, subtraction of 
polynomials over GF(2) is the same as addition: 

x3+x+I=x3+x+l 

-(x3 + x2 + 1) = +(x3 + x2 + 1) 
x 2 +x+l 

However, this is not true for polynomials over GF(p) p > 2. Con­
sider the subtraction of two polynomials over GF(3): 

x3+x+l=x3 +x+l 

-(2x3 + x2 + 2) = +(x3 + 2x2 + 1) 
2x·3 +2x2 + x +2 

[Note that in GF(3), -2 = 1, -1 = 2.] 

A general polynomial of degree N can be written as 

f(x) = bNxN + bN_1xN- I + ... + b2x 2 + b1x + b0 (2.1) 

where some of the bn might be zero for n < N. (If bN = 0, the degree 
of the polynomial is not N.) A more compact notation is 

N 

f(x) = .I, bnxn (2.2) 
n= O 



Page 23 of 88

e 
y 

.. 
' 

"" 

Programming Considerations How can a polynomial such as Eqs. 2.1 
or 2.2 be represented in software? We can store the coefficients of 
f(x) in an array, for example coef[], with the coefficient for x 11 in lo­
cation n. When the polynomial is represented this way, it is easy to 
multiply or divide the polynomial by a power of x . To multiply J(x) 
by xk, fork~ 0, simply shift the coefficients upward by k locations 
in the array, as shown in the following code fragment: 

/** fragment to multiply polynomial by x**k **/ 

/* shift original N coefficients */ 

for( n=N; n>=O; n--) 

{ 
coef[n+k] 
} 

coef [n ]; 

/* store zeros for the k lowest-order new coefficients */ 

for( n=k-1; n>=O; n--) 
{ 
coef[n] = 0; 
} 

/* increase degree of polynomial by k */ 

N += k; 

/** end of fragment **/ 

To dividej(x) by xk fork 2: 0, shift the coefficients downward by k 
locations in the array as shown in the following program fragment. 
The k lowest-order terms in the original polynomial will become 
the remainder of the division operation. 

/** fragment to divide polynomial by x**k **/ 

/* save remainder */ 

for( n=O; n<k ; n++) 
( 
remainder[n] coef[n]; 
} 

/* downshift the higher-order coefficients by k places */ 

for( n=O; n<=(N·k); n++) 
{ 
coef[n] coef[n+k]; 
) 

/* store zeros i n locations originally occupied by k 
higher -order terms */ 

Introduction to Polynomials 
~~1':mmi'.!~ill&iidi2:IJ il!f," lfcil?mlJitii.m!S $'. l\:D)lla\:BI~ g IE! m;:mmim: Eawh~A)H!~ij .iL.Slii%:i~r1-il!lM;;;;;c;,1..:1s;s;:j&L lR wa:i:;;;:;;;;z;:z;: ..m@k.&,&:::Whi.i!i::lr&M:.!i!l ~£m·l#Zii:.i.~· .· 



Page 24 of 88

for( n=(N-k+l); n<=N; n++) 
{ 
coef[n] 0; 
l 

/** end of fragment **! 

2.4 Extension Fields 

Mathematical Tools for 

As demonstrated in Section 2.1, it is a simple matter to construct 
a field GF(p) for any prime p by using modulo-p addition and mul­
tiplication. In working with various codes, it turns out to be very 
useful if all of the necessary manipulations can be performed 
within a field having 2m elements, with each element being an m­
bit binary value. But so far, we have seen only fields in which the 
number of elements is a prime number; and of course, 2m is not 
prime form> l. What happens if we try to construct a field with 
2rn elements using modulo-2m arithmetic? 

Example 2.3 Consider the specific case of 2m = 23 = 8. The opera­
tions of modulo-8 addition and modulo-8 multiplication are de­
fined in Tables 2-8 and 2-9. Examination of Table 2-8 reveals that 
modulo-8 addition does form a commutative group (see Section 
2.2.2). However, examination of Table 2-9 reveals that there are no 
multiplicative inverses for the even numbers 2, 4, and 6. This 
means that the integers 1, 2, 3, 4, 5, 6, and 7 do not form a group 
under modulo-8 multiplication; therefore, modulo-8 arithmetic 
cannot be used to construct a field GF(2m). 

Although it is not possible to construct a Galois field GF(2m) using 
modulo-2m multiplication, it is possible to construct such a field 
using polynomial ari thmetic. 



Page 25 of 88

II Table 2-8 Modulo-a addition. 

+ 0 I 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 2 3 4 5 6 7 0 
2 2 3 4 5 6 7 0 1 
3 3 4 5 6 7 0 1 2 
4 4 5 6 7 0 1 2 3 
5 5 6 7 0 1 2 3 4 
6 6 7 0 1 2 3 4 5 
7 7 0 l 2 3 4 5 6 

II Table 2-9 Modulo-8 multiplication. 

X 0 I 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 
3 0 3 6 I 0 3 6 1 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 
7 0 7 6 5 4 3 2 1 

Another Way to Create Fields 

So far we have considered fields in which the elements are inte­
gers and the operations are modulo-p addition and modulo-p mul­
tiplication. Except for the "wrap-around" that occurs between p -
1 and 0, these operations are closely related to the usual arith­
metic operations of addition and multiplication. In order to con­
struct fields having a composite (nonprime) number of elements, 
we must resort to operations that are not so closely related to the 
operations of ordinary arithmetic. Despite their unfamiliarity, 
these operations are not difficult; and virtually all of coding theory 
is based on fields that are built upon a few simple rules. 

Our principal applications for error-correction coding will involve 
digital values in binary form. Therefore, we will focus on finding a 

Extension Fields 



Page 26 of 88

way to construct finite fields having 2m elements with each ele­
ment being an m-bit binary value. 

Consider a commutative group based on elements that are 3-bit 
binary values and the operation of bit-by-bit modulo-2 addition (or 
equivalently, bit-by-bit logical exclusive OR). The results of this op­
eration are listed in Table 2-10. All of the requirements for a group 
are satisfied: 

D The operation is associative. 

• The identity element is 000. 

D Each element is its own inverse. 

• Table 2-10 Bit-by-bit modulo-2 addition of 3-bit values. 

000 001 010 011 100 101 110 111 
000 000 001 010 011 100 101 110 111 
001 001 000 011 010 101 100 111 110 
010 010 0ll 000 001 llO 111 100 101 
011 011 010 001 000 111 110 101 100 
100 100 101 110 111 000 001 010 0ll 
101 101 100 lll 110 001 000 011 010 
110 110 111 100 101 010 011 000 001 
111 lll 110 101 100 011 010 001 000 

Assume that this is the additive group for our desired field. We 
must now find a "multiplication-like" operation that forms a com­
mutative group over the nonzero elements 001, 010, 011, 100, 101, 
llO, and 111. By "multiplication-like," we mean that whatever this 
operation turns out to be, it must distribute over the bit-by-bit 
modulo-2 addition defined by Table 2-10. An operation that meets 
all of the requirements is defined by Table 2-11. "What are the rules 
used to define this table? None of the logical operations-AND, OR, 
NAND, NOR, etc.-fits the bill. To find suitable rules, we need to 
turn to polynomial arithmetic. Let each value in Table 2-11 repre­
sent a polynomial in a. Each bit within a value represents the co­
efficient of a particular power of a. Specifically, 

111 represents a2 + a + 1 
110 represents a2 + a 
101 represents a.2 + 1 
100 represents a.2 

011 represents a + 1 
010 represents a 
001 represents 1 
000 represents 0 

Mathematical Tools tor Coding . . . .... .. . . . . .. . . . . . 
~~~~~~~a1ir<fWW,:'lWfitlW.!!7.@ll"ld,~J!2l!!)i~i~i!W"'~ 


Page 27 of 88

• Table 2-11 Multiplication-like operation for 3-bit values.

001 010 011 100 101 110 111
001 001 010 011 100 101 110 111
010 010 100 llO 011 001 111 101
011 011 110 101 111 100 001 010
100 100 011 111 110 010 101 001
101 101 001 100 010 111 011 110
ll0 110 lll 001 101 0ll 010 100
111 111 101 010 001 110 100 011

We can try defining a multiplicative operation over this set of poly­
nomials using the ordinary rules of algebraic multiplication. For
example

a• (a+ 1) = a.2 +a<=> (010) • (011) = (110)

However, multiplication defined in this way is not closed over the
set of 3-bit elements. For example

a • (a.2 + 1) = a.3 + a.2

and we have no way to represent a.3 in our 3-bit scheme. In much
the same way that we define p = 0 to force closure in modulo-p
arithmetic, we can define a.3 = a + 1. This relationship can be used
to express a 3 , a4, a.5 , ... in terms of 1, a, and a.2. For example, we
can write

a.3 = a + 1 (by definition)
a 4 = a • a.3 = a.(a. + 1) = a.2 + a
a.5 =a. a 4 = a.(a2 + a) = a.3 + a.2

= (a + 1) + a2 = a.2 + a + 1
a6 = a • a5 = a(a.2 + a + 1) = a.3 + a.2 + a.

= (a + 1) + a.2 + a = a2 + 1

Table 2-12 lists elements a.0 through a10 expressed in terms of 1, a,
and a2. Looking at the table, we see that a7 = a 0, a.8 = a.1, a.9 = a.2 ,

etc. Similarly to the way that defining 5 = 0 created a closed finite
subset of the integers used to construct GF(5), defining a3 =a+ 1
has created a closed finite subset of the powers of a. Therefore,
we can conclude that the operation at work in Table 2-11 is the
special form of polynomial multiplication, based upon the relation­
ship a.3 = a + 1. Tables 2-10 and 2-11 comprise exactly the sort of
thing we said we needed-a field containing 2m elements where
each element has an m-bit binary value. Such fields are called ex­
tension f ields of GF(2), and the field GF(2) is called the ground
field or prime field of GF(2m).

Extension Fields
~!&1~i~1iiibiiii.liiil .fi~m-=---zz•"'""''"""""'J.mi!IJl!f...,_,., ~ffi ... U~ ... :!ilir.!..,EfflH,.,,2]E..,2E,_R~-ffli2...,£.=""""""'""""-""'i~ ~~ ... ®!§!,...I~..,. ffl./Cf/,iiil!i;~"",iiiisfi°"',ii@.iR.il""""'.b"°""""~•""''"™""""""'""'•/5¾""'M""""'""''

Page 28 of 88

• Table 2-12 Three different
representations for GF(23).

Power Polynomial 3-tuple
form form form

0 0 000
l 1 001
a. a. 010
a.2 a.2 100
a.3 a.+ 1 011

. u4 a.2 + a. 110
(j,5 a2+a+ 1 111
(j,6 u2+ 1 101
u7 001
us u 010
a9 u2 100
ulO u+l Oll

2.5 Binary Extension Fields: Manual Construction

If q is not prime, the set of elements (1,2, ... ,q - l} does not form a
group under modulo-q multiplication; therefore, modulo-q multi­
plication cannot be used to define a field GF(q). However, in Sec­
tion 2.4, we found that it is possible to define a field GF(23). In
fact, it is possible for any prime p to define fields having p m ele­
ments by using polynomial arithmetic in place of modulo arith-

Mathematical Tools for Coding
,u,.,.:!!1'""""""'"""""":m:""'n,w""sm.,.·m:..,;a;vn"""'""'sm,..,,,_,.,.,._.:iio, w-,.,.211ii1"5"'"''"'"""'1u""1~""'"""""la.,.1!1trSi?F.E'""""'B21""'-"'""""""""""""'""""'""'ilS~.,.,.,., ,_,, __ , -$@"""'""'"""""'~&----;.;1 ___ ;;,~~

Page 29 of 88

metic. However, in this book, we are primarily interested in exten­
sion fields of the form GF(2m) having 2m elements. A particular
type of polynomial called a primitive polynomial, plays a role in
the construction of extension fields that is similar to the role
played by the modulus in construction of prime fields.

Definition 2.2 Let p(x) be a polynomial of degree mover GF(2). If
p(x) is not divisible by any polynomial over GF(2) of degree one
through m - 1, then p(x) is irreducible over GF(2).

Result 2.1 Any irreducible polynomial over GF(2) of degree m di­
vides x2m - 1 + 1.

Definition 2.3 We know from Result 2.1 that if p(x) is an irreducible
polynomial over GF(2) of degree m, thenp(x) divides xn + 1 for n
= 2m - 1. If this value of n is the smallest positive integer for which
p(x) divides xn + 1, then p(x) is a primitive polynomial of de­
gree mover GF(2).

Binary Extension Fields: Manual Construction
-W:WillfflLl!f..if .s!l:Bl~iJlM !~: J !a: r I _!,'!!_ffi··~~-~!ie mzt Lii.iJii!iGiid.kli,~

Page 30 of 88

Primitive polynomials over GF(2) for 2 :=:: m :s;; 30 are listed in Ap­
pendix C.

2.5.1 Constructing the Field

Mathematical Tools for

For the case of binary coefficients, there are 2m different polyno­
mials of degree '?.m - l. The field GF(2m) will have 2m elements,
each of which will be one of the possible 2m polynomials of degree
m - l. In order to preserve the properties of addition and multipli­
cation that are needed in order to have a field, each of the 2m poly­
nomials must be assigned to the elements of GF(2m) in a particular
order. Recipe 2.1 provides a means for making this assignment
correctly.

Recipe 2.1 Constructing the binary extension field GF(2m). The
complete extension field will consist of 2m elements whose power
forms are 0, 1, a , a2, a 3, ... ,a2m- 2. The purpose of this recipe is to
generate the polynomial forms for each of these elements.

1. Each of the elements 0, 1, a, a 2, ... ,am- l has a polynomial form
that is exactly the same as its power form.

2. Select a primitive polynomial of degree mover GF(2). (In
other words, select a primitive polynomial of degree m having
coefficient values of O or 1.) Let p(x) denote the primitive
polynomial selected:

p(X) = xm + f m-lx m- 1 + f m_zXm- 2 + ... + f 2X2 + f1X + fo

3. Substitute a for x, set p(a) = 0 and solve for am

a,m =fm_/Xm -l + fm_zCJ..m- 2 + ··· + f 2a 2 + f/J.. + fo (2.3)

4. Fork = m, m + l, m + 2, ... ,2m - 3, we can obtain a
polynomial expression for ak + 1 by multiplying the polynomial
for ak by a:

Sometimes the result will contain a term for am and sometimes the
degree of the highest-degree term will be m - l or less. When the
result does not contain a term for am, the result is the correct
polynomial form for the ak + 1 element. When the result does con­
tain a term for am, substitute the polynomial form for am (Eq. 2.3)
and simplify to obtain the polynomial form for ak + 1.

Recipe 2.1 can be used directly to construct an extension field
GF(2m) for any m, but it can also be used as the theoretical basis
for a more easily mechanized procedure that will be presented in

Page 31 of 88

Section 2.6. We can see now that the relationship a,3 =a+ l that
we used in Section 2.4 is derived fromp(x) = x 3 + x + l, which is
a primitive polynomial of degree 3 over GF(2).

Example 2.4 Construct an extension field GF(24).

Solution
1. The first five elements are 0, 1, a, a2, and a 3.

2. A primitive polynomial of degree 4 over GF(2) is p(x) = x 4 + x
+ 1.

3. p(a) = a4 +a+ 1 = 0 • a4 =a+ 1

A. a 5 =a• a4 = a(a + 1) = a2 + a
B. a 6 =a• a 5 = a(a2 +a)= a 3 + o:2

C. a7 = a• a6 = a(a3 + a,2) = cx,4 + a,3

substituting a 4 = a + 1 yields
a,7 = a,3 +a+ 1

D. a 8 = a • a 7 = a(a3 + a + 1) = a 4 + a2 + a
substituting a 4 = a + 1 yields
a 8 = a2 + 1

E. a9 =a• a 8 = a(o:2 + 1) = a 3 + a
F. a 10 = a • a9 = a(a3 + a) = a 4 + a 2

substituting a4 = a + 1 yields
a10 = a2 +a+ 1

G. o:11 =a• a 10 = a(a2 +a+ 1) = a3 + a2 + a
H. a 12 = a• a 11 = a(a3 + a2 + a) = a4 + a3 + a 2

substituting a4 = a + 1 yields
a,12 = a3 + a,2 +a+ 1

I. a,13 = a. a,12 = a(a3 + az + a+ l) = a4 + a,3 + a,2 + a

substituting cx.4 = a + 1 yields
a,13 = cx,3 + a,2 + 1

J. a,14 = a. a,13 = a(as + a2 + l) = a4 + a,3 + a
substituting a 4 =a+ 1 yields
a,14 = a,3 + 1

These results are summarized in Table 2-13.

Binary Extension Fields: Manual Construction
_,..lmi&ml7.""'"""""ul!l""! """" llmOEl!J 1-il 2 ... l f--""'°"""""""W@'.l""il!J""~~-m ... :lilillli _,, ____ ,._..,n;.,,mm,.., 'iiEil1&%1"_.....,_£.~;IJ;§1l!:$i:: § !'ii Elii"ll!i Z£&C .. £W'5.iJ:'@l&n~W~

Page 32 of 88

• Table 2-13 Three different
representations for GF(24).

Power Polynomial 4-tuple
form form form

0 0 0000
l 1 0001
a a 0010
a,2 a2 0100
a,3 a,3 1000
a4 a+l 0011
a,S a,2 + a 0110
a6 a,3 + az llOO
a,7 a,3+ a+l 1011
as az+ 1 0101
a9 a3+ a 1010
alO a 2 +a+ 1 0111
a,11 a,3 +az +a 1110
a,12 a 3 +a2 +a+ 1 1111
a,13 a,3 +az+ 1 1101
al4 a3+ 1 1001

2.5.2 Representing the Field Elements

Mathematical Tools for

Each element of the extension field GF(pm) can be represented
by an m-digit base-p value. For the specific case of GF(2m), this
means that each element is represented by an m-bit binary value.
Each bit within a value corresponds to a coefficient in a polynomial
of degree m - l. Obviously, for such a representation to be unam­
biguous, the bits must correspond to the coefficients of the poly­
nomials when the terms of the polynomials are in some specified
order. Four obvious schemes can be used for this representation:

1. The polynomial is arranged from lowest-degree term to
highest-degree term with the leftmost bit assigned to the a0

term. Form= 4, this approach yields:

1 +a+ a 2 + a .3 H 1111
1 + aH 1100

1 H 1000
()(+ a3 H 0101

This approach is used by Rhee,3 Lin and Costello,4 and by Mac­
Williams and Sloane.5

3 M. Y. Rhee: Error Correcting Coding Theory, McGraw-Hill, New York, 1989.

4 S. Lin and D. J. Costello: Error Control Coding: Fundamentals and
Applications, Prentice.Hall, Englewood Cliffs, NJ, 1983.

5 F. J. Mac Williams and J. J. A. Sloane: The Theory of Error-Correcting Codes,
North Holland, Amsterdam, 1977.

Page 33 of 88

2. The polynomial is arranged from lowest-degree term to
highest-degree term with the rightmost bit assigned to the aP
term. Form = 4, this approach yields:

1 + a + a2 + a3 H 1111
1 + 0: H 0011

1 H 0001
Cl+ 0:3 H 1010

This approach is used by Berlekamp.6

3. The polynomial is arranged from highest-degree term to
lowest-degree term with the rightmost bit assigned to the aP
term. Form = 4, this approach yields:

0:3 + o:2 + 0: + 1 H 1111
0: + 1 H 0011

l H 0001
a3 + Cl H 1010

This approach is used by Peterson and Weldon. 7

4. The polynomial is arranged from highest-degree term to
lowest-degree term with the leftmost bit assigned to the a0

term. Form = 4, this approach yields:

a3 + o:2 + a + l H 1111
o:+1Hll00

1 H 1000
o:3 + 0: H 0101

Although it is not as frequently used as approach 1, approach 3 is
the most computationally convenient and is therefore used in the
remainder of this book.

6 E. R. Berlekamp: Algebraic Coding Theory, McGraw-Hill, New York, 1968.

7 W.W. Peterson and E. J. Weldon, Jr.: Error-Correcting Codes, 2nd ed., MIT Press,
Cambridge, MA, 1972.

Binary Extension Fields: Manual Construction
____________ ...,.. ___________ ~~~

Page 34 of 88

2.6 Computer Methods for Galois Fields

Programming Considerations Now let's examine the results of Exam­
ple 2.4 with an eye towards computer realization of Recipe 2.1:

1. The first element is 0000.

2. The second element is 0001.

3. The third element can be obtained by shifting the second
element one place to the left to obtain

CL1 H 0010

4. Likewise, the fourth and fifth element can be obtained by left­
shifting the third and fourth elements to obtain:

CL2 H0100
a3 H 1000

5. Ifwe try to obtain a,4 by a simple left shift of a3, we will obtain
the 5-bit value of 10000, which is incorrect. Instead, the sixth
element a 4 is defined by the minimal polynomial selected in
step 3 of Example 2.4:

a4 = a+ 1 B 0011

6. The binary values for a..5 and a..6 can be obtained via left­
shifting of a,4 and a,5:

a5 B0ll0
CL6 H 1100

7. If we shift the binary value for a..6 one bit to the left, we obtain
11000, which is a 5-bit value. The correct value for a..7 is 1011.
The trick is to keep only the rightmost 4 bits of 11000 and add
0011. What is this really doing? It's simply making use of a.4 =
a. + l. Removing the leftmost bit of 11000 corresponds to
subtracting a..4 from the polynomial, and adding 0011
corresponds to adding a + 1 to the polynomial.

Mathematical Tools for Coding
~ffilm § StiiUJ 'Jlii.J JIJ\, .Em ii : ~ $:ii iS!L ;;:z ii i&ii, i' "Ill "i' 6\1.l!ll'w'ilgWi.'l..(2.a::;;:: Q)SLS;f!iiiiil,~-li;. t.:i;O.JJl IW;k Q.W OJ. ~ Sl!B!!l!Wi' i ffl

Page 35 of 88

These observations can be generalized into the following recipe
which can be used directly to obtain them-bit binary representa­
tions of the elements in GF(2m).

Recipe 2.2 Constructing the binary extension field GF(2m).

1. The first element is the all-zero value.

2. The second element has the least significant bit (LSB) set to
1, Vvith all remaining bits set to 0.

3. Shift all bits one position to the left, shifting a zero into the
LSB. If this shifting operation causes a 1 to be shifted out of
the leftmost bit of the rightmost m bits, then mask away all
but the rightmost m bits and exclusive-or (XOR) the result
Vvith the m-bit binary representation corresponding to a m.

4. Repeat step 3 a total of 2m - 2 times .

2.6.1 Representing Field Elements

Elements of GF(2m) can be represented in a computer in one of
two different ways. Consider the extension field Gr'(24) shown in
Table 2-13. The computer representation of each element can be
either an integer 0, 1, 2, .. . ,(2m- 2) that equals the exponent of the
element when expressed as a power of a, or the element can be
expressed as an m-bit value directly corresponding to the m-tuple
representation of the element. Each form has advantages and dis­
advantages. As shown previously, multiplication is very easy with
the exponential form; the exponents are simply added:

a m • a,n = a,Cm + n)

However, addition is easier in the m-tuple form. In the approach
used for manual computations , the multiplications are performed in
exponential form, and additions are performed in m-tuple form.
One form is easily converted to the other by referring to a table of
the elements in the particular extension field of interest. This ap­
proach can also be implemented in a computer for relatively small
values of m. Large values of m require large amounts of memory to
hold the table of field elements. The table containing the elements
for GF(2m) will require 2m, locations Vvith each location containing
at least m bits. Form = 16, the table will need 131,072 bytes of
memory. For some computer systems this might not be a problem;
but for many small systems, an alternative approach might be
needed. The ideal solution would be an algorithmic means for con­
verting directly between the exponential form and m-tuple form
without using a table lookup. Unfortunately, a simple direct con­
version algorithm does not exist. However, there are several algo-

Computer Methods for Galois Fields
~ ~iiil!W.W~~,r.-#;;i,,;w~~~W.~iZIW~~~ •. ~~A .. w:r . .;;~; .. ::~:™T:::¥.-::'!:ii>~:.rawff~~~~.ffi'!.~~~~

Page 36 of 88

rithmic conversion strategies that can be used in lieu of a memory­
hogging lookup table.

Brute Force

A brute force approach would entail generating the desired field
GF(2m) one element at a time without permanently saving the re­
sult. As each element is generated, it is examined to see if it is the
element needed for the conversion being performed. Each ele­
ment in succession is generated, examined, and discarded until
the required element is obtained. Once the required element is ob­
tained, the conversion is performed and the process is finished.
This approach is very thrifty with memory, but on average, it will
require 2m - 1 iterations to reach the field element required for a
conversion.

Modified Method

The brute force approach can be modified to reduce somewhat
the number of iterations needed to find the required field element
when converting from exponential form tom-tuple form. Simply
generate the field elements using the methods of Section 2.5, but
only store every k-th element. This will create an array of m-tuple
values for elements a) withj = 1, 1 + k , 1 + 2k, 1 + 3k, ... To con­
vert an exponent, for example e, into m-tuple form we find the
j -th element in the table such thatj :'.£ e <(j + k). Then, starting
with them-tuple representation for a/, we use the method of Sec­
tion 2.5 to generate them-tuple representations for a)+ 1, a) + 2,

a.J + 3 , .•. stopping when the element a,e is reached. For m = 16, the
brute force method will take, on average, 32, 768 iterations to per­
form the conversion. For m = 16 and k = 1,024, the modified
method will take on average only 512 iterations to perform this
conversion. For this particular case, the table needed for the
brute force method will occupy only 128 bytes of memory. The
speed-for-memory trade can be tailored to any particular com­
puter system by an appropriate selection for k. Several different
combinations of table size and iterations per conversion for the
m = 16 case are listed in Table 2-14.

Mathematical Tools for Coding __________ ,..,., ________ .,,,,._ ... -----------------

Page 37 of 88

• Table 2-14 Table sizes and iteration
counts for converting forms of GF(2k).

Table size Avg. iterations
k (bytes) per conversion

1 131,072 0
2 65,536 1
4 32,768 2
8 16,384 4

16 8,192 8
32 4,096 16
64 2,048 32

128 1,024 64
256 512 128
512 256 256

1,024 128 512
2,048 64 1,024
4,096 32 2,048
8,192 16 4,096

16,384 8 8,192
32,768 4 16,384

Software Implementation

Listing 2-1 contains the BuildExtensionField() function that builds a
table of field elements for small values of m. The required input
alpha_m can be obtained by setting a primitive polynomialp(a) of
degree mover GF(2) equal to zero and then solving for am. The
variables Galois_Field[] and Num_Field_Elements are module vari­
ables that are shared with other functions in module gfield.c. This
module contains a function GetAlphaM[] that accesses a data file
primpoly.dat to obtain a value of am in the proper format to use as
an input to BuildExtensionField(). As sho-wn, BuildExtensionField{)
uses unsigned integers in order to represent field elements in m­
tuple form form~ 16. Before BuildExtensionField() can be used to
construct GF(2m) form> 9, the dimensions of Galois_Field[] must
be increased to a value greater than or equal to zrn: The Software
Appendix discusses number of utility functions that are provided
for performing arithmetic and format conversions on field ele­
ments.

Listing 2-1

static unsigned int Ga1ois_Field[512J;
static unsigned int Num_Field_Elements;

Page 38 of 88

Mathematical Tools for

/*****************************/
/* */
/* BuildExtensionField() */
/* */
/*****************************/

void BuildExtensionField(int m, int alpha_m)
(
unsigned int shifted_out_mask, keeper_mask, i ;

shifted_out_mask = IntPower(2, m);
keeper_mask = shifted_out_mask-1;
Galois_Field[OJ=l;

for(i=l; i<keeper_mask; i++) (
Galois_Field[i] = Galois_Field[i-1]<<1;
if(Galois_Field[i] >= shifted_out_mask)

Galois_Field[i] &= keeper_mask;

}

Galois_Field[i] A= alpha_m;
)

Num_Field_Elements = IntPower(2,ml;
return;
l

Assume that we have a polynomial in x with coefficients drawn
from GF(2m):

N

f(x) = L ~,,,,xn
n=O

R 2 3 2"' 2 t-'n E {O, 1, a, a , a· , ... ,a - }

(2.4)

How can we represent such a polynomial in software? We could
store the coefficients of f(x) in an array, for example beta[], with
the coefficient for xn stored in location n. However, we are faced
with a choice between storing the coefficients in m-tuple form or
as the exponents of their power form.

Page 39 of 88

Before making a choice between the m-tuple or exponential rep­
resentations, we should take a close look at the implications of op­
tion. Them-tuple representation has the following properties:

• Addition of two coefficients in m-tuple form is accomplished
as the bit-by-bit exclusive-or (XOR) of the coefficients.

D Storage of the element O presents no special problems.

• Multiplication of two coefficients is not straightforward.

The exponential representation has the following properties:

• Multiplication of two coefficients is accomplished by adding
the two exponents and reducing the sum modulo (2m - 1).

• The exponential form for the element O is a-=. This form might
require special handling. (The value of O is reserved for
representing a0.) Two obvious candidates for representing a­
are -1 and 2m - 1. Any positive value (including 2m - 1) is
probably a bad idea because there might be times when we
need these values to temporarily store the result of an
operation before reducing the exponent modulo (2m -1).

D Addition of two coefficients is not straightforward.

Back to our original problem; we wish to multiply a polynomial
p(x) by (x + ak)_ Assume that m-bit binary representations of the

More About Polynomials
lli i i:ffli:ffi:ll.!lill!eJI ml!!Z£6!EU!!m:a3: 1~5 iE!l£Bi!tHf ~ J lll;,.;Wl..&::#.¼lil.EWEll:i& £iJiW1 I 1 Hillm,,J,~

Page 40 of 88

coefficients for p(x) are stored in an array beta[], with the coeffi­
cient for the xn term stored in beta[n]. We further assume that the
highest degree term inp(x) is xN (or, in other words, beta[i] = 0 for
i = N + l, N + 2, N + 3, ...). We begin the design of our polynomial
multiplication algorithm by noting that

(x + a,k) p(x) = xp(x) + a,kp(x)

Implementation of the term xp(x) from this expansion is very
easy-we simply shift the contents of location n into location n +
1 for n = N, N - l, N - 2, ... , 0. Implementation of the t erm a.kp(x)
is straightforward; simply multiply each location of beta[] by a.k. Of
course, this multiplication must be performed using the rules of
multiplication defined for GF(2m), and the result must be added to
the location-shifted version of beta[] using the rules of addit ion de­
fined for GF(2m). The tricky part is to efficiently combine both op­
erations so that the coefficient array can be updated "in place."
The following fragment of C code makes use of function MultEx
ponFieldElems() and AddExponFieldElems() to accomplish the de­
sired arithmetic over GF(2m). Code to multiply a polynomial over
GF(2m) by a binomial over GF(2m) is also incorporated in the Build
OntoPolynomial() function presented in Section 2.9 for construct­
ing minimal polynomials. In that code, the operations embedded
within MultExponFieldElems() and AddExponFieldElems() are ex­
panded inline to illustrate an alternative approach.

Program Fragment

/* The following fragment computes (x +alpha) * p(x)
where p(x)
is a polynomial in x of degree nn ori ginall y and of
degree nn+l after the mult i plicat i on. The coeffici ents
of p(x) are stored in beta [], and the va l ues of t hese
coefficients are elements of the symbol f ield GF(2**m).
*I

for(n=nn ; n>=O; n--){
beta[n+l] = AddExponFieldElems(beta [n] ,

MultExponFi eldEl ems (alpha, beta[nJ));
}

nn++;

/* end of fragment */

Mathematical Tools for Coding
~~;m:wm,.s rarn,.;:zw~llli~l!i.V"~~-~:ii@!li"8~ Z a.~~1£SiZWi\i~~,liefflt(22ZZ :rn X::ZlE~3!Ml!id!ii&l.MlBl!.m~~., >.sD.£?.M di .-.: ,ffi~.1'.S,fflU..11!'-.!:1}3~

Page 41 of 88

2.8 Cyclotomic Cosets

Assume that we are interested in the extension field GF(2m). As
shown in Section 2.3, the nonzero elements of GF(2m) can be writ­
ten in exponential form as aP, a 1, a 2, ... , a 2m- 2. This set of elements
can be just as easily represented by the set of their exponents (0,
1, 2, ... , 2m - 2}. We could, if we wished, partition this set of expo­
nents into subsets in any number of ways. For coding work, it
turns out to be very useful to partition the set of exponents in one
particular way. The partitioning technique is easier to understand
if we begin with a specific example. Consider the set of exponents
corresponding to the nonzero elements of GF(24):

C = {O, 1, 2, .. . , 14}

The exponent O always goes into a subset by itself:

C0 = {O}

Begin the next subset with the element 1:

c1 = {l ,

To add another element to CP multiply the newest element by 2
and reduce the result modulo 24 - 1 = 15:

C1 = (1, 2,

Continue adding elements in this fashion until the new element to
be added is 1:

Cl =(l,2
!

2 x 2 = 4 (modl5)
j,

0 1 = (1, 2, 4
!

2 x 4 = 8 (mod 15)
!

Cl={l , 2,4,8
!

2 x 8 = 1 (mod 15)
C1 =(1,2, 4,8}

Cyclotomic Cosets
fa!lll:t ~ ~ .tiln!Sl'mfflhik k&.n.:&Zd!J ·1; $$1 ~~

Page 42 of 88

The next subset is started with the smallest element in C that has
not already been placed in a subset. In this particular example, we
have

C3 = (3,

We continue adding elements as we did for Cl' but this time we
stop when the new element to be added is 3:

C3 = { 3
J,

2x3=6
j,

C3 = { 3, 6
j,

2 x 6 = 12 (mod15)
j,

C3 = {3, 6, 12
J,

2 x 12 = 9 (mod 15)
j,

C3 = (3, 6, 12, 9
J,

2 x 9 = 3 (mod 15)
C3 = {3, 6, 12, 9)

The next unused element is 5, so we have

C5 = { 5
j,

2X5=10
j,

C5 = { 5, 10
J,

2 x 10 = 5 (mocl.15)
C5 = {5,10}

Continuing in a similar fashion, we find

C7 = (7, 14, 13, 11)

Now each element of Chas been placed into one and only one sub­
set:

C0 = {OJ

C1 ={1,2,4,8)

C3 = {3, 6, 12, 9)

C5 = {5, 10)

C7 = {7, 14, 13, 11)

Mathematical Tools for Coding
~iill:!&31 :iiil~fflire~,..~l~..,m!Z ... ~i'.!:ffi""&"'"i?ilM""""""'""':,,m_;;;~'""""'iW.ME.1-.mMM¼: ... O--•""·"""';m-•--""'""":;""' ... ,:.1....,,,,.:tWM""""""U""tH ... U!!lmimi§l,..l~--... .1: ... ; lilll:l..,IUi""'"""'ffl""''"'"' ,..,....,..,.,..,,..il;."""""'™""""''"""""""!!l;~i

Page 43 of 88

Subsets formed in this manner are called cyclotomic cosets mod
zm - 1. The concept of cyclotomic cosets can be generalized to any
set of .integers mod pm - 1, with each cos et consisting of

{s, ps, p2s, p3s, ... , pn-1s)

where each element is reduced modulo p m - 1 and n is the small­
est .integer for which pns = s(modpn - 1).

Software Notes Listing 2-2 contains the BuildCyclotomicCosets()
function that separates the integers {l, 2, ... , pm - 2) .into cyclo­
tomic cosets. The variables Coset_Array[][] and Num_Cosets are
module variables that are shared with other functions in module
gfield.c.

Listing 2-2

stat i c exponent Coset_Array[32J[MAX_ELEMENTSJ;
static int Num_Cosets;

/********************************/
I* *I
/* BuildCyc l otomicCosets */
I* *I
/********************************/
void BuildCyclotomicCosets(int p,

int m)

/* - .. . - .. - - - - - - - - - - - - - - - - . - - - - - * I
/* This routine partitions the integers */
/* {1,2,3 , ... ((2**m)-2) J into cyclotomic */
/* cosets and pl aces these cosets in the */
/* module variable Coset_Array[J. For cosets */
/* produced by this routine, the first element */
/* in each coset will be t he smallest element */
/* in that coset . The first elements will */
/* also be odd. Therefore, without fear of */
/* conflict, we can place the coset with */
/* first element k into row (k+l)/2 of the */
/* module variable Coset_A r ray[J . The first */
/* location in each row (i.e. Coset_Array[kJ[OJl */
/* contains the number of elements in that row's*/
I* coset . */

(
int modulus, i ,j, f irst_element ,coset_index ;
int working_element ;
int element_count, total_count ;
logica l match ;

modulus= IntPower(p.m) -1 ;
match= FALSE ;
coset_index=O;
total_count = O;
f i rst_element=-1 ;

Cyclotomic cosets
~~~~""-""'· .., . ..,_ ·""""'·""""'~""'·""·""· ,._....,,,....,""""'"'"""·~""' ~;;rzm~~l.ftii:?2.4.'l™.!ii-»¥£rt~ 



Page 44 of 88

Coset_Array[l][OJ=O: 

do { 
/* keep checking successive odd i ntegers until 

one is found that is not already in one of 
the compl eted cosets. */ 

do { 
first_element +=2: 
match = FALSE: 
for(i=l: i<=coset_index: i++) { 

for(j=l: j<=(signed)Coset_Array[i)[OJ; j++) 
/* if a candidate el ement is already 
in a coset. skip the row corresponding 
to this coset in Coset_Array[J and move 
on to the next odd candidate first element.*/ 

if(first_element = (signed)Coset_Array[i][j)) 
match= TRUE; 
Coset_Array[(first_element+l)/2][0]=0; 
i=coset_index+l; 
break; 
} 

) 
while(match); 
/* match remains FALSE if the element under 
consideration is suitable for use as the 
first element in a new coset. */ 
coset_index++; 

/* Gene ra te all the elements of the next coset */ 

working_element=first_element; 
element_count=O: 
do { 

tot a l_count++; 
element_count++; 

Coset_Array[coset_indexJ[element_count)=(exponent )worki ng_element; 
working_elernent=(p*working_elernent) % modulus; 
) 

while (working_element != first_e l ement); 

/* El ement zero hol ds the number of elements in this coset */ 

Coset_Array[coset_index)[OJ=(exponent )element_count; 
) 

whil e (total_count<(modul us-1)); 
Num_Cosets = coset_index; 
return; 
l 

2.9 Finding Minimal Polynomials 
For an element ~ of GF(2m), the minimal polynomial <!>(x) is the 
polynomial of smallest degree with coefficients drawn from GF(2) 

Mathematical Tools for Coding 
~~~,.,~ ... :;s,.,zz;:.,.,,,..;::. :..,,,,·;i_u,..m~""'i%.lir."",,;m.;,il,.;;;:;;m_.Me!k"''"":w""'"":,;lll:""!!!a"""""'"'"'"°"'"'""·llli8!i""!§!""""'""''""''""""'~'!i1\,M.i, J~ ~@i!i:!51--iW'mlfill&<Ni!:ii~.:".-~ -~;;: r.~ 


Page 45 of 88

such that <l>CP) = 0. For example, the element a5 from GF(24) has
as its minimal polynomial

because

qi5(x)=x2 +x+l

<I> (as) = (a5)2 + (as) + 1
5

= a10 +as+ I
= (a2 +a+ 1) + (a2 + a) + I
=0

Defining and finding minimal polynomials is more than just an aca­
demic exercise-minimal polynomials are crucial to the construction
of certain types of codes, such as BCH codes and Reed-Solomon
codes.

Clearly, the minimal polynomial of the element O is always (jl(x) =
x for any extension field GF(2m). The minimal polynomial $1/x)
for any nonzero element ak can be obtained as

q,k(x) = \1 [x + (ak)2r]
r=O

where R is the smallest integer such that (ak)'2f< = ak.

Based upon the way the field GF(2m) is defined, it will always be
the case that (ak) 2m = a,k. However, for some values of ak, it might
turn out that (o;k)zR = ak for some values of R less than m. Because
a2m - 1 = 1, we can conclude that

whenever

k2R = k (modulo 2m -1) (2.5)

For any given k and m, it is a simple matter to find the smallest R
for which Eq. 2.5 is satisfied by successively trying R = 1, R = 2,
and so on up to R = m. (Remember that R = m is guaranteed to
work.) This leads us directly to the recipe for finding a minimal
polynomial.

Recipe 2.3 Generating the minimal polynomial for element ak of the
field GF(2m).

1. Determine the smallest positive integer R for which
k2R = k (modulo zm - 1)

2. Using the value of R found in step 1, compute the minimal poly­
nomial <jlk(x) of the element ak as

<Pix) = Ril (x + o;kz') (2.6)
r=O

Finding Minimal Polynomials
~-~~

Page 46 of 88

Example 2.5

Find the minimal polynomial for each element in GF(24).

l. R = 1 for a:O; R = 2 for a 5 and a 10; and R = 4 for all other
elements.

2. Using Eq. 2.6, we obtain
q>0(x) = x + a0 = x + 1
<1>1(x) = (x + a)(x + a2)(x + a4)(x + a,8)

= (x2 +ax + a2x + a3)(x2 + asx + a,4x + a12)

= x4 + a8x3 + a4x3 + a12x2 + ax3 + a 9x2

+ a,5x2 + al3x + a2x3 + a,10x2 + a.,6x2

+ a,I4x + a3x2 + allx + a,7x + a15

= x4 + x3 (as + a4 + a + a,2)

+ x2(aP + a9 + a5 + a10 + a6 + a3)

+ x(al3 + a,14 + all + cx-7) + 1

=X4 +x+l

In a similar fashion, minimal polynomials can be obtained for a.2

through a 14:

<1>2(x) = <1>/x) = <!>8(x) = x 4 + x + 1
<1>lx) = <1>/x) = <j>g(x) = q>12(x) = x 4 + x 3 + x2 + x + 1

q>5(x) = q>10(x) = x 2 + x + 1

<!>ix)= <1>11 (x) = <1> 1aCx) = <j)14(x) = x 4 + x 3 + 1

Tables of minimal polynomials of elements in GF(2m) for 2 ~ m ~ 9
are provided in Appendix.

Software Notes Listing 2-3 contains the BuildMinimalPolynomials()
function from the module gfield.c. This function constructs the
minimal polynomials for the extension field GF(2m) that resides in
the module variable Galois_Field[]. The polynomial under construc­
tion is multiplied by successive binomial factors via calls to Build
OntoPolynomial() . The variables Num_Field_Elements, Coset_Array[][],
Minimal_Polynomial[], Degree_Of_Min_Poly[], and Num_Cosets are
module variables that are shared with the other functions in mod­
ule gfield.c.

Listing 2-3

static unsigned int Num_Field_Elements;
static exponent Coset_Array[32J[MAX_ELEMENTSJ ;
static word Minimal_Polynomial[MAX_ELEMENTSJ;
static int Degree_Of_Min_Poly[MAX_ELEMENTSJ;
static int Num Cosets;
static int Degree_Of_Field;

Mathematical Tools for Coding
_______________________ , __ , ______________ _

Page 47 of 88

/*******************************/
I* *I
/* BuildMi nimalPolynomials() */
/* *I
/*******************************/

void BuildMinimalPo lynomials(void)

/*- -* I
/* all of the roots for any particular minimal */
/* polynomial will be contained within a single */
/* cyclotomic coset. Therefore, th i s routine */
/* makes use of the module variable Coset_Array[J[J */
/* and assumes that th i s array has been properly */
/* filled with each row containing the elements */
/* of one coset and the first location in each row */
/* containing the number of elements in the coset . */
l
element poly_coeff[64] ;
element root ;
int n. num_roots;
int max_degree,coset_index,first_index_in_poly_coeff;
logical high_degree_to_left;
word packed_min_poly;

/*- -- -*/
/* the coefficients of intermediate results will be */
/* elements of GF(2**m) , so the working polynomials */
/* are left in unpacked form. */

for(n=O ;n<64 ;n++) poly_coeff[n]=O;
for(coset_index=l; coset_index<=Num_Cosets; coset index++)

max_degree = l;
num_roots = Coset_Array[coset_index][OJ;
poly_coeff[lJ=l;
po ly_coeff[OJ = ExponToTuple(Coset_A r ray[coset_indexJ[lJ) ;

for(n=2; n<=num_roots; n++) {
root = Coset_Array[coset_indexJ[nJ ;
BuildOntoPolynomial(poly_coeff, &max_degree, root) ;
printf("max_degree set to %d\n " ,max_degree);
}

/* -* I
/* The coefficients of the final result will be */
/* elements of GF(2), so we can pack the minimal */
/* polynomial ' s coefficients into a single */
/* binary word . */
high_degree_to_left = TRUE ;
first_index_i n_poly_coeff = O;
PackBitslong(poly_coeff,

&packed_min_poly,
max_degree + 1,
f irst_index_in_poly_coeff,
high_degree_to_left) ;

/*- * I
/* copy packed representation of minimal polynomial into*/
/* each array location corresponding to one of i ts roots . */
/* The table so defined wi 11 be very useful for decoding . * /

Page 48 of 88

/* The table is held in the rrodu le variable minimal Polynani al[],*/
/* and routines external to this module can access the table*/
/* using the function GetMinPoly(). */
for (n=l; n<=num_roots; n++) I

Minimal_Pol ynomia l [(Coset_Array[coset_indexJ [n])J=packed_min_pol y;
Degree_Of_Min_Pol y[(Coset_Array[coset_index] [n]) J=max_degree;
printf("Oegree_Of_Mi n_Poly [%d] set to %d\n",

Coset_Ar ray[coset_index][n], max_degree);
}

printf("\n %dl M%d = ",coset_index,
Coset_Array[coset_index][l]);

for(n=max_degree; n>=O; n--) I
pri ntf("%d", poly_coeff[nJ l;
}

printf(" = %#lx",packed_min_pol y):
}

printf("\n");
ret urn;
}

Mathematical Tools for Coding
~~~~~..a;;;;;;;Ul.i£iW@.fi !ll!/i:J!Wli~~Ri l!4'3Sirillllill!ll~? 1 l!liii'mi 



Page 49 of 88

Block and Cyclic Codes 

3.1 Introduction 
A block code is a code that operates upon fixed-length blocks of 
information bits. (This is in contrast to convolutional codes that 
operate upon a continuous stream of information bits.) For ease of 
reference, the blocks of information bits are usually called message 
blocks- even though it might take many such blocks to transmit 
what we would normally think of as a "message" (a telegram, mili­
tary orders, a computer-to-computer file transfer, etc.). As shown 
in Fig. 3-1, a block-code encoder takes a message block of k bits 
and produces an n -bit block, which is referred to as a code word, 
code vector, or code block. For any code, n will always be greater 
thank, so the encoder must supply (n - k) additional bits. These 
additional bits are obtained by applying some particular set of 
rules to the bits in the k-bit message block. The exact nature of 
these rules is what defines a specific code: Hamming, Reed-Solomon, 
BCH, etc. The encoder might or might not produce a code word 
that explicitly contains the message block somewhere within the 
code word. Because each message block contains k bits, 2k possi­
ble messages can be conveyed by each block. Each code word con­
tains n bits, so there could be as many as 2n distinct code words. 
However, block codes are designed to use only 2k of the 2n possi­
ble code words- one n-bit code word for each distinct k-bit mes­
sage. Viewed another way, a block code uses n bits to transmit a 
message containing only k bits of useful information. Therefore, 
the code word contains some redundancy. It is this redundancy that 
is the source of the code's ability to detect and/or correct errors . 

Assume that noise or other channel impairments corrupt the code 
word so that one of the unused n-bit patterns appears at the re­
ceiver. Because this is an unused or "illegal" pattern, the receiver 
"knows" that an error must have occurred. The trick is to devise a 
decoding scheme that will let the receiver decide which of the le­
gal code words was actually transmitted. If too many bits within 
the block are corrupted, the receiver might make this decision in-

Introduction 
~~~~~kb~.:XC i. ili:'~h¥,;"'&#~-:i:i:~£~~,V.~~.~..:'"~~f.!-):~W~ 


Page 50 of 88

message block

I (ti I .._0_-.._1 ___._2_._;,.., /1---&.. _ _... _ __._ _ _..._k ___ 1 .,,_

Encoder

..,_o__.__ l _2 ---3 ---..4 ..__....,,c(Jo:]
codeword

• 3-1 Operation of a block encoder.

correctly. In fact, if enough bits are corrupted, it is possible for a
legal (but incorrect) code word to appear at the receiver. In such
a situation, the receiver will not even be aware that an error has
occurred. In general, the more redundancy there is in the code
word [i.e. , the larger that (n - k) is], the more bit errors the code
will be able to detect and/or correct.

Block and Cyclic Codes
~~~ffll,if11ii~:-(~'i!Ul:3iiilL3.Jk.Ji2f'fili""ii1"ii )j,~~.GW..t::iffi:13!li:lii;~ Jt ~ialm ~H~~~~~z W . .!~:Jg;·;;]§ EIES;il'f.i~.llJ~ 



Page 51 of 88

• Table 3-1 An example 
of a simple block code. 

Info Code 
block word 

0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 1 
0 0 1 0 0 0 1 0 1 
0 0 1 1 0 0 1 1 0 
0 1 0 0 0 1 0 0 1 
0 1 0 1 0 1 0 1 0 
0 1 1 0 0 1 1 0 0 
0 1 1 1 0 1 1 1 1 
1 0 0 0 1 0 0 0 1 
l O O 1 l O O 1 0 
1 0 1 0 1 0 1 0 0 
1 0 1 l 1 0 1 1 l 
1 1 0 0 1 1 0 0 0 
1 1 0 l 1 1 0 1 l 
1 1 1 0 l 1 1 0 l 
1 1 1 1 1 1 1 1 0 

Example 3.1 A parity scheme that appends one bit to each four-bit 
nibble in a computer memory is a simple example of a block code 
that is capable of detecting a single-bit error within each nibble. 
There are 4 bits in each message block and 5 bits in each code­
word. Table 3-1 lists the message blocks and code words for such 
a scheme using an even-parity rule. 

It is fairly common (but not universal) to use n to denote the total 
number of bits in a code word and to use k to denote the number 
of information bits. The difference (n - k) is the number of parity 
bits in the code word. Clearly, there are zn -k different combina­
tions of the n - k parity bits. Each different k-bit message block 
will use only one of these 2n - k possible combinations of message 
bits. [This is not to say that each different k-bit message block will 
use a different (n - k)-bit parity field. Many coding schemes assign 
the same parity field to two or more different k-bit message 
blocks. In fact, for codes in which k > (n - k), individual parity 
fields must be assigned to more than one block because the num­
ber of different message blocks (2k) will be greater than the num­
ber of different parity fields (211 -k).] 

A large part of coding theory is concerned with identifying "good" 
ways to assign particular parity fields to message blocks. In fact, 

Introduction 
~i.Jk.ib UI~ffi!i!§o~~ra;ii~~.i;'!~l~~~iii;:i~JM:1h~~~------,.._-_,.,_,.,,~ 



Page 52 of 88

the rules for assigning parity fields to message blocks are what re­
ally defines any particular code. Another large part of coding the­
ory is concerned with rules for extracting the original message 
block from a (possibly corrupted) code block. 

3.2 Linear Block Codes 
Much of the work done in the area of block codes is confined to 
linear block codes, which are an important subset of all possible 
block codes. The usual definition for a linear block code is couched 
in terms of the mathematical structures defined in Chapter 2. 

Definition 3.1 A binary block code having 2k codewords (i.e., kin­
formation bits) and n-bits per codeword is a linear (n, k) code if 
and only if the 2k codewords constitute a k-dimensional subspace 
of the vector space formed by all then-tuples over the field GF(2). 

This definition can be recast in a more practical, user-oriented 
form as follows: 

Definition 3.2 A binary block code is linear if and only if the mod­
ulo-2 sum of any two codewords is also a codeword. 

3.2.1 Encoding for Linear Block Codes 
By Definition 3.1, the code C is a k-dimensional vector space; 
therefore, C can be completely defined by k linearly independent 
codewords. This can be exploited to form the generator matrix G 
such that the encoding operation is represented mathematically as 

v=u•G 

where vis a vector of the encoded bits, u is a vector of k informa­
tion bits, and G is the generator matrix. Take a more detailed 
look at the specific case of a block code having a total of n bits per 
code word, with k of these being information bits and (n - k) be­
ing parity bits. For such a code, v will haven bits, u will have k 
bits, and G will have k rows and n columns: 

G= 

Bf(!ck af1d. Cyclic Codes 

u = [u0 u 1 

v = [v 0 v1 

[ ~:: ~:~ 
9 k- l,O gk - 1,l 

uz ... u k-1 ], 
V2 ... Vn- 1], 

902 9o,n- l ] 
912 91,n-l 

9 k- 1,2 ... 9 k- l ,n -l 



Page 53 of 88

By the standard "row-by-column" definition of matrix multiplica­
tion, each component of vis given by 

k-1 

vi= I upJi 
)=0 

(3.1) 

where the summation is performed using binary addition. 

Programming Considerations The following fragment of C code im­
plements Eq. 3.1 for each of then components in v: 

/****************************************/ 

for ( i =0 ; i < n ; i ++) { 
v[ i J =O; 
fo r ( j =O ; j < k ; j ++ ) { 

) 

v[i] = v[i] A (u[j] & g[j][i]); 
} 

/* end of fragment */ 
/****************************************/ 

If the codewords within a code can be partitioned into two parts, 
with one part consisting of the k-bit information word and the 
other part consisting of the n - k parity digits, the code is said to 
be a systematic code or a code in systematic form. The alterna­
tive, in which the message digits do not appear directly in the 
codeword, is described as a nonsystematic code. If a code is in 
systematic form, its generator matrix will be separable into two 
submatrices such that one of the submatrices is the k x k identity 
matrix. This is the part of the generator matrix that "copies" the k­
digit message word into the code word. The remaining submatrix 
calculates the parity digits as linear functions of the message dig­
its. Notationally: 

G = [lkP] 

where 

Ik = k X k 

P = k x ( n - k) matrix of parity-check coefficients 

Any linear code that is not in systematic form can be converted into 
systematic form by performing elementary row operations and col­
umn transpositions on its generator matrix. Any changes to G via 
elementary row operations leaves the total set of codewords un­
changed-even though it changes the particular one-to-one corre­
spondence between k-bit information vectors and n-bit codewords. 

Linear Block Codes 



Page 54 of 88

Example 3.2 Consider the (7, 4, d = 3) code shown in Table 3-2 and 
having a generator matrix given by 

[

1100010] 
0 1 1 0 0 0 1 

G= 
0 0 1 1 1 0 1 

0 0 0 1 0 1 1 

(3.2) 

Perform row operations as necessary to obtain an equivalent (7, 4, 
d = 3) code in systematic form. 

• Table 3-2 A block 
code in nonsystematic 
form for Example 3.2. 

Info Code 
block word 

0 0 0 0 0000000 
0 0 0 1 0001011 
0 0 l 0 0 0 l 1 1 0 l 
0 0 1 1 0 0 l O 1 1 0 
0 1 0 0 0110001 
0 1 0 1 0 1 l 1 0 1 0 
0 l 1 0 0101100 
0 l 1 1 0 l O O 1 1 1 
1 0 0 0 1 l O O O l 0 
l O O 1 l 1 0 1 0 0 1 
l O l 0 1111111 
1 0 1 1 l 1 l O l O 0 
l 1 0 0 1010011 
l 1 0 1 1 0 l 1 0 0 0 
l 1 l 0 1 0 0 1 1 l 0 
l 1 1 1 1000101 

Solution Starting with the matrix given in Table 3-2, perform the 
following row operations: 

1. Add row 4 to row 3. 

2. Add the new row 3 to row 2. 

3. Add the new row 2 to row 1. 

The resulting matrix is 

G= 010011 

[

1000100111] 

0 0 1 0 1 1 

0 0 0 1 0 1 

(3.3) 

Block and Cyclic Codes ------------------------------



Page 55 of 88

!ft iZA..i 

The corresponding code is listed in Table 3-3. Notice that the first 
four columns of the new matrix form a submatrix that is an iden­
tity matrix. Comparison of the two tables reveals that G from Eq. 
3.2 and its systematic form from Eq. 3.3 generate the same sixteen 
7-tuples. 

• Table 3-3 Block 
code in systematic 

form for Example 3.2. 

Info Check 
block block 
0 0 0 0 0 0 0 
0 0 0 l 0 I l 
0 0 l 0 l 1 0 
0 0 l I l O l 
0 1 0 0 I 1 l 
0 1 0 l 1 0 0 
0 l I 0 0 0 1 
0 l 1 1 0 l 0 
1 0 0 0 1 0 I 
1 0 0 1 1 1 0 
l O l 0 0 l l 
l O 1 1 0 0 0 
l 1 0 0 0 l 0 
1 1 0 l 0 0 1 
1 l 1 0 1 0 0 
1 1 1 l 1 1 1 

3.2.2 Constructing the Generator Matrix 

How do we go about obtaining a generator matrix? As we will see 
in later chapters, some codes (e.g. , Hamming codes) are defined 
directly in terms of their generator matrices, while most cyclic 
codes are defined in terms of their generator polynomial. 

3.2.3 Parity-Check Matrix 

For any linear code C, it is possible to construct a matrix H 
such that 

v • H.L = 0 (3.4) 

if and only if then-tuple vis a codeword in C. This matrix His 
usually called the parity-check matrix for code C. If a particular 
n-tuple r is received, Eq. 3.4 can be used to determine whether or 

Linear Block Codes 



Page 56 of 88

not r is a legal codeword in C. The decoder computes the syn­
dromes as 

s = r • H.L (3.5) 

The matrix H has n - k rows and n columns, and the vector r has 
n components. Therefore, based on the definition of matrix multi­
plication ("row by column"), we know that the syndrome s will be 
a vector having n - k components 

Block and Cyclic Codes 

s = [so, Si, ... , sn-k-1] 

Ifs= [0, 0, ... , OJ, then r is a codeword in C. Ifs ;t: [0, 0, ... , O], then r 
is not a codeword in C. The study of decoding is primarily con­
cerned with ways that nonzero values of the syndrome s can be 
exploited to actually locate and correct errors within the received 
word r. 

The parity-check matrix H can be obtained from the generator 
matrix G via 

G = [Ik Pl 
H = [- P.L I ] n-k (3.6) 

where p.L is the transpose of P. The minus sign on p .L is moot in the 
binary case because -1 = 1, but it is included here for consistency 
in nonbinary applications. 

Example 3.3 Using the generator matrix for the (7, 4) systematic 
code found in Example 3.2, find the parity-check matrix H. 

Solution We first partition G into the form [lkP] as 

G=[~;~~ it~J 
Making use of Eq. 3.6, we obtain Has 

[
1110 100] 

H= 0111 010 

1 1 0 1 0 0 1 

Let's take a closer look at what's really happening in Eq. 3.5. Based 
on the partitioning of H given in Eq. 3.6, we can write H.L ands as 

-~_,,., __ , ____________________ _ 



Page 57 of 88

Poo P oi Po,n - k - 1 

P10 Pu P1 ,n - k-l 

= [ro, r1, ... , rn-il 
pi< - 1,0 pk - 1,1 pk - 1,n -k-l 

1 0 0 0 

0 1 0 

0 0 0 1 

The ith component of s is obtained as the vector multiplication of 
r with column i of H..L 

Si= roPoi + rlpli + ... + rk - lpk - 1,i + rk+ i 
k-1 

= ri<+i + I ripJi 
J=O 

The first term, r k + i' is simply the ith parity bit as received at the 
decoder. The summation is a recomputation of this same parity bit 
using the parity-check coefficients p and the k received message 
bits r 0 through r k _ 1. If the received parity and recomputed parity 
are equal, the sum of these two will be zero. 

Definition 3.3 Let H be the parity-check matrix of code C. If we use 
H as a generator matrix instead of a parity-check matrix, the re- . 
sulting code Cd is called the dual code of C. 

3.3 Cyclic Codes 
A special class of linear block codes, called cyclic codes, possess 
mathematical properties that make them easier to encode and de­
code than linear codes in general. The two most widely used types 
of linear block codes-BCH codes and Reed-Solomon codes-are 
cyclic codes. 

Given any n-tuple v = [v0, v1, . . . , vn - 1], it is possible to cyclically 
shift the n-tuple so that each component moves one place to the 
right and the rightmost component becomes the leftmost com­
ponent. 

Cyclic Codes 
~U~lffffi~Sl!!~JJ.£1:c;;;;;;.::u::;ii!l!l!l!li~.11:a!~~,,www:;u.,1z;:,,c .!la .. ~.~fui'.w.1,@,~H!l&,'»,%.D)t~~~~~"WP.~~~~~~I,<! 



Page 58 of 88

This concept can be extended to include shifts of multiple places 
and shifts .in either direction. 

Definition 3.4 An (n, k) l.inear block code C is a cyclic code if every 
cyclic shift of a codeword .in C is also a codeword in C. 

Example 3.4 Consider the code from Example 3.2. We can sort the 
codewords .into groups as shown .in Table 3.4 such that the code­
words with.in each group are cyclic shifts of each other. Each 
group contains all possible shifts of the basic pattern correspond­
.ing to that group. 

• Table 3-4 
Codewords for linear (7,4) code 

sorted into groups such that 
all codewords within a group 
are cyclic shifts of each other. 

Info Check 
block block 

0 0 0 0 0 0 0 
0 0 0 l 0 1 1 
0 0 1 0 1 1 0 
0 1 0 1 1 0 0 
1 0 1 1 0 0 0 
0 1 1 0 0 0 l 
1 1 0 0 0 1 0 
1 0 0 0 1 0 1 
0 l O 0 1 1 1 
1 0 0 1 1 1 0 
0 0 1 1 1 0 1 
0 1 1 1 0 1 0 
1 1 1 0 1 0 0 
l 1 0 1 0 0 l 
1 0 1 0 0 1 1 
1 1 l 1 1 1 1 

By def.inition, if a particular n-tuple is a legal codeword for a cyclic 
code C, then all cyclic shifts of this n-tuple are also legal code­
words. Conversely, if a particular n-tuple is not a legal codeword 
for a cyclic code C, then none of the cyclic shifts of the n-tuple can 
be a legal codeword. 

Result 3.1 In a cyclic code C, the nonzero code polynomial of mini­
mum degree is unique. (Recall from Section 2.5 that each element 
of an extension field can be represented in polynomial form. Be-



Page 59 of 88

cause each codeword in a block code can be represented as an el­
ement of an extension field, it follows that each codeword can be 
represented by a polynomial.) 

Definition 3.5 For a cyclic code C, the nonzero code polynomial of 
minimum degree is called the generator polynomial of the code. 
It is customary to denote the generator polynomial by g(x ). 

Result 3.2 If the generator polynomial of a cyclic code is given by 

g(x) = Xr + gr - lxr-1 + Q,._ 2Xr-2 + ... + glX + g O 

the constant term g O will always equal 1. 

Result 3.3 In an (n, k) cyclic code C, the degree of the generator 
polynomial is n - k, i .e. , 

g(X) = x n -k + g n-k- lxn-k-1 + g n-k- 2xn-k-2 + ... + g 2x 2 + glX + 1 

Result 3.4 Let g(x) be the generator polynomial of a cyclic code C. 
A polynomial of degree n - 1 or less with binary coefficients is a 
code polynomial of C if and only if the polynomial is divisible by 
g(x) . 

Result 3.5 If g(x) is the generator polynomial of an (n, k) cyclic 
code, g(x) is a factor of x n + I. 

Result 3.6 If g(x) is a polynomial of degree n - k and is a factor of 
xn + I, then g(x) is the generator polynomial for some (n, k) 
cyclic code. 

This last result says that g(x) will generate some (n, k) cyclic 
code- it does not say that every g(x) that is a factor of x n + 1 pro­
duces a good code. 

3.4 Manual Encoding Methods for Cyclic Codes 
In our explorations of specific codes, it will be useful to have a 
manual pencil-and-paper method for generating codewords corre­
sponding to specific information fields. Recipe 3.1 provides such a 
method. 

Recipe 3.1 Manual encoding for cyclic codes 

1. Obtain the generator polynornialg(x). For a code with k 
information bits and n total bits per code word, the generator 
polynomial will be of degree n - k. 

2. Form the polynomial representation of the k-bit information 
sequence. 

3. Multiply this polynomial by xn-k_ 

Manual Encodi~g Methods for Cyclic Codes 



Page 60 of 88

4. Divide this product by g(x). This division yields a quotient 
q(x) and a remainder r(x). This remainder is the polynomial 
representation of the check bits. 

5. Form the code word by appending the check bits to the 
information bits. 

Example 3.5 Given the generator polynomial g(x) = x3 + x2 + 1, use 
Recipe 3.1 to generate the 7-bit codeword for the 4-bit information 
sequence 0100. 

1. We have g(x) = x 3 + x2 + 1, with n = 7 and k = 4. 

2. The information sequence 0100 corresponds to the polynomial 
u(x) = x2. 

3. Multiply u(x) by xn-k, 

xn-ku(x) = x3x2 = x5 

4. Divide x5 by x3 + x 2 + 1 

x 2 +x+l 
x 3 + x 2 + I)x5 

x5 +x4 +x2 

+x2 

x 4 +x3 +x 
x3+x2+x 
x 3 +x2 +1 

x +l 

The remainder shown corresponds to the 3-bit parity sequence 
011. 

5. The code word is formed by appending the parity bits to the 
information bits: 

parity 
..----. 

0100 011 
info 

3.5 Modifications to Cyclic Codes 

Block and Cyclic Codes 
~ 1 ire m~~w; r.m;ng;rn;:l!E ;: ;ru 

The various codes produced in the quest for good error-correction 
properties might not always be the right size to fit conveniently 
into real-world applications. This section will present several tech­
niques that are available for adjusting the sizes of n, k , and d for 
existing cyclic codes. 



Page 61 of 88

3.5.1 Extended Codes 
One simple way to moclify a code is to extend the code by includ­
ing additional check digits. In the binary case, this is frequently ac­
complished by appending an overall parity bit to an (n, k, d) code 
to obtain an (n + 1, k, d') code. If the original code's minimum dis­
tance d is odd, and the parity rule for the extra bit results in an 
overall even parity, the extended code's minimum distance will be 
d' = d + 1. 

Example 3.6 Consider the (7, 4, d = 3) code listed in Table 3-5. An 
overall even parity bit can be appended to yield the (8, 4, d = 4) 
extended code listed in Table 3-6. 

II Table 3.5 
A (7, 4, d = 3) 

block code for 
modification examples. 

Info Check 
block block Weight 
0 0 0 0 0 0 0 0 
0 0 0 1 1 0 1 3 
0 0 1 0 1 1 1 4 

0 0 1 1 0 1 0 3 
0 1 0 0 0 1 1 3 
0 1 0 1 1 1 0 4 

0 1 l 0 1 0 0 3 
0 1 1 1 0 0 1 4 
1 0 0 0 l 1 0 3 
1 0 0 l 0 1 1 4 

1 0 1 0 0 0 1 3 
1 0 1 1 1 0 0 4 
1 1 0 0 1 0 1 4 
1 1 0 l 0 0 0 3 
1 1 1 0 0 1 0 4 

1 1 1 1 1 1 1 7 

Modifications to Cyclic Codes 
~~""=If~""'~""· ,..x!Z.J ... :u: ... ;:m,,.;·,:fl ... )l;l~i"""!iiW"'11.""""E:!6:,..,. "'=""· ''"'-iSitii"">l?'..,,~ ......... -~ ........ !l!?<~""""""'i;8'.""'kZ""""'""'LEI0"'""'11""'Bl""~""'l$,'~""'· "'1ffl,zSI..,,.,..., .,,,.;,;g ... -:i;;~.,.·1r~,.,•¥~""'f.1{$i"".w;""'.i~=2 •maml!l8,!b::::n§:i!!iSi?/.@$41Y//2~fam~ ::: S:i:iii.1~ 



Page 62 of 88

• Table 3-6 The (8, 4, d = 4) 
extended code resulting 

from adding an overall even 
parity bit to the code of Table 3-5. 

Info Check 
block block Weight 
0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 1 1 4 
0 0 1 0 1 1 1 0 4 
0 0 1 1 0 1 0 1 4 
0 1 0 0 0 1 1 1 4 
0 1 0 1 1 1 0 0 4 
0 1 l 0 l O O 1 4 
0 1 l 1 0 0 1 0 4 
1 0 0 0 1 l O 1 4 
1 0 0 1 0 l 1 0 4 
l O l 0 0 0 1 1 4 
1 0 1 1 1 0 0 0 4 
1 1 0 0 1 0 1 0 4 
1 1 0 1 0 0 0 1 4 
l 1 1 0 0 1 0 0 4 
l 1 1 1 1 1 1 l 8 

3.5.2 Punctured Codes 

Puncturing a code decreases the nwnber of check bits and the to­
tal number of bits, while leaving the number of information bits 
and the nwnber of codewords unchanged. This is accomplished by 
simply deleting bit positions from the check portion of the code­
word structure. In most cases, puncturing will also decrease the 
minimwn distance of a code. Puncturing can be viewed as the in­
verse of extending a code. Suppose that we are starting with a 
code that has an even minimwn distance, such as the one in Table 
3-6. Such a code can detect up to d/2 errors per block, but its er­
ror-correction capability is no better than a code that has an odd 
minimwn distanced' = d- 1. Therefore, in situations where we are 
only concerned with error correction, it might be desirable to de­
crease the length of a code by eliminating one of the check bits, 
provided that this can be done without decreasing the nwnber of 
errors that can be corrected. 

3.5.3 Expurgated Codes 

Block and Cyclic Codes 

Expurgation of a code decreases the nwnber of information bits k 
without changing the total nwnber of bits n. The nwnber of code-

m'.L Z ZDJ 1JJl;;:J!Bm::eBEm!:?.lillffll Z.i/4 111::;;;;;w MWL k 



Page 63 of 88

words is always 2k, so each time k is decreased by 1, the number of 
codewords is halved. The most common approach to expurgation 
deletes all the odd-weight codewords. Deletion of odd-weight 
codewords is equivalent to replacing the original code's generator 
polynomial g(x) with g'(x) == (x + 1) g(x). When applied to the (7, 
4, d == 3) code of Table 3-5, this approach yields the (6, 2, d == 4) 
code of Table 3-7. In the new code, the boundary between infor­
mation bits and check bits has been shifted to take one bit away 
from the information portion and prepend it to the check portion. 
The remaining information bits cover all 23 possible 3-bit mes­
sages. Will it always work out this way, or for some expurgated 
codes will some possible messages be covered twice while others 
are not covered? In Table 3-5, the codewords can be paired up so 
that within each pair the first 3 of the 4 information bits are iden­
tical. In the general case, it will always be possible to pair up the 
codewords so that within each pair, the first k - 1 of the k infor­
mation bits are identical. For any code not already having (x + 1) 
as a factor of its generator polynomial, one codeword of each pair 
will have odd weight and one codeword will have even weight. 
Therefore, when we eliminate all the odd-weight codewords, the 
even-weight members of each pair will survive and thereby 
"cover" a112k - l possible combinations of k - l information bits. 

• Table 3-7 
The (7, 3, d = 4) block code 
resulting from expurgation. 

Info Check 
block block Weight 
0 0 0 0 0 0 0 0 
0 0 1 0 1 1 1 4 
0 1 0 1 1 1 0 4 

0 1 1 1 0 0 l 4 
1 0 0 1 0 1 1 4 
1 0 1 l 1 0 0 4 

1 1 0 0 1 0 1 4 
1 1 1 0 0 1 0 4 

3.5.4 Augmented Codes 
Augmentation can be viewed as the inverse of expurgation. Any 
code having (x + 1) as a factor of its generator polynomial g(x) 
can be augmented by replacing the original generator polynomial 
with g'(x) == g(x) /(x + 1). In most practical applications, augmen­
tation has little to offer. 

Modifications to Cyclic Codes 
"""""""'""'~""m""'jlt ... , ....,,_,.,,..fiii]""'' __ a ... ,,.., ... 51 ""!ffi?&&""i.l"'"""""':n-:m~ .......... 3 ......... ,..,,,,,,,,i&z_,.,. .. __ ,_~~llfl!ll!llifii iliiilal&1: - l~~i6 -~= UiUJ JLlH!§ ~ 



Page 64 of 88

3.5.5 Shortened Codes 
In any linear block code, half of the codewords will have O in the 
most significant bit (MSB) of the information segment and half will 
have 1. We can shorten an (n, k, d) code by discarding all code­
words with 1 in the MSB of the information portion and then elim­
inating this bit from the codeword structure to obtain an ( n - l, k 
- 1, d') code. The mirumum distance of the shortened code will be 
at least as large as the minimum distance of the original code (i. e., 
d' 2:: d ). This shortening process can be extended to multiple bits 
by retaining only those codewords having all zeros in the z most 
significant bit positions and then eliminating these z positions 
from the codeword structure to obtain an (n -z, k-z, dz) code. 

Example 3.7 Consider the (7, 3, d = 4) code shown in Table 3-7. If 
we retain only those codewords with O in the MSB of the informa­
tion portion, and then eliminate this bit position, we obtain the (6, 
2, d = 4) code shown in Table 3-8. 

• Table 3-8 The (6, 2, d = 4) block 
code resulting from shortening 

the (7, 4, d = 4) code of Table 3-7. 

Info Check 
block block 
0 0 0 0 0 0 
0 1 0 1 1 1 
1 0 1 1 1 0 
1 1 l O O 1 

3.5.6 Lengthened Codes 
Lengthening can be viewed as the inverse of shortening, but it is 
rarely used in practical applications. 

3.6 Hamming Codes 
Hamming codes were one of the first codes developed specifically 
for error correction. Like many binary codes·, the lengths of Ham­
ming codes are constrained to be of the form 

n = 2m-1 

However, unlike other codes of similar length, there is a much 
tighter coupling between the number of check bits and the length 
of the code- for n = 2m - 1, the number of check bits is m and the 

Block and Cyclic Codes 
~~~!0.i.~1/m- !S!:i!!EIIITldBi Iii! lir,!!lliii§'lifc3ilt.W..Z: W!WZ J.~ ijl,\i(; li~~§l!iimll!ooll!ii~ Z2 W jiJZ..Jj:!!,~~iieL'iMi.¼;s&woo~,. 


Page 65 of 88

number of information bits is k = 2m - m - 1. The minimum dis­
tance is fixed at 3; consequently, the number of correctable errors
per block is t = l. The systematic form of the generator matrix is
given by

where

Ik = k x k identity matrix

Q.L = k x m matrix whose rows are the k m-tuples of weight 2 or
larger.

The corresponding parity-check matrix is given by

H = [Q 1ml

Example 3.8 Construct the generator and parity-check matrices for
a Hamming code with m = 4.

Solution Form= 4, we haven= 24 -1 = 15 andk = n - m = 11. One
possible realization of the generator matrix is

10000000000

0 1 0 ... 0

0010... 0

0 ... 010... 0

0 ... 0 1 0 0

0 ... 010 ... 0

0 ... 010 ... 0

0... 010 ... 0

0 ... 0 1 0 0

0 0 1 1

0 1 0 1
0 1 1 0

0 1 1 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0
1 1 0 1

0 ... 010 1110

00000000001 1111

The corresponding parity-check matrix is given by

[

00001111111

H= 01110001111

1 0 1 1 0 1 1 0 0 1 1

1 1 0 1 1 0 1 0 1 0 1

1 0 0 0]
0 1 0 0

0 0 1 0

0 0 0 1

(3.7)

(3 .8)

It would be impractical to list the 211 = 2,048 possible codewords
for this code.

Hamming Codes
lli,":!li!§J;ll;SQ i:\i/Jit&it.ll. E~"""• _, ... ,,_,.,_..,._, ... l!i:!llt:;l,r,~lt~I SM 42&Lmm;J;iffi:l!il!l~l'.:WL:1L:W::CWIJ.&Cd!iW<O l~'filMltif.ll:l:I!..~~

Page 66 of 88

3.6.1 Shortened Hamming Codes

Block and Cyclic Codes

It is possible to shorten an (n = 2m-1, k = 2m- m - l , d = 3) Ham­
ming code to produce an (n = 2m- 1, k = 2m- 1 - m, d = 4) code.
Simply delete all columns of even weight from the submatrix Q
and all rows of even weight from the submatrix Q.L. A minimum
distance of 4 is not large enough to correct more than one error,
but it will allow simultaneous correction of one error and detection
of two errors if the following decoding strategy is followed:

1. Compute the syndrome from the received word r .

2. If the syndrome is zero, assume that no errors have occurred.

3. If the syndrome is nonzero and has odd weight, assume that a
single error has occurred. Perform correction based on the
single-error pattern corresponding to the syndrome observed.

4. If the syndrome is nonzero and has even weight, assume that
an uncorrectable error pattern has been detected.

Example 3.9 Shorten the (15, 11, d = 3) Hamming code of Example
3.8 to create an (8, 4, d = 4) code.

Solution Delete all rows of even weight from the Q.L submatrix
shown in Eq. 3.7 and combine with a 4-x-4 identity matrix to obtain

G=[~~~~
0 0 1 0

0 0 0 1

0 1 1 ll
1 0 1 1

1 1 0 1

1 1 1 0

Delete all columns of even weight from the Q submatrix shown in
Eq. 3.8 and combine with a 4-x-4 identity matrix to obtain

[

0 1 1 1

H= 1011
1 1 0 1

1 1 1 0

1 0 0 ol 0 1 0 0
0 0 1 0

0 0 0 1

The resulting code is listed in Table 3-9.

~85Sl!i:i!UJ .l;l hSJ J ~iiliZJUEillmllil~ I 2 TI 51 .

Page 67 of 88

• Table 3-9 The (8, 4, d = 4)
code obtained by shortening the

(15, 11, d = 3) Hamming code of Example 3.8.

Info Check
bits bits Weight

0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 4
0 0 1 0 1 1 0 1 4
0 0 1 l 0 0 1 1 4
0 l O 0 1 0 1 1 4
0 1 0 1 0 1 0 1 4
0 1 1 0 0 1 1 0 4

0 1 1 1 1 0 0 0 4

1 0 0 0 0 1 1 1 4

1 0 0 1 l O O 1 4

1 0 1 0 1 0 1 0 4
1 0 l 1 0 1 0 0 4
1 1 0 0 l 1 0 0 4

1 1 0 1 0 0 1 0 4
1 1 1 0 0 0 0 1 4
1 1 1 1 1 l l 1 8

Hamming codes
.ciJ\il&iJ&a. a .. smM :rnrums~

Page 68 of 88

Convolutional Codes

Convolutional codes are a different breed than the block codes
that have been covered thus far. Some authors contend that the
two types of codes are very different, while other authors tend to
emphasize their similarities. McEliece1 shows how convolutional
codes can be viewed as a special type of block code. The mathe­
matical basis of convolutional coding is not as developed or rigor­
ous as it is for block codes, and there are some fundamental
obstacles that might cause this to always remain true. Neverthe­
less, convolutional codes are important weapons in the error-cor­
rection wars and they are used in many real-world systems.

6.1 Canonical Example
The easiest way to introduce convolutional codes is to start with a
specific example.2 Consider the structure shown in Fig. 6-1. Bits
are shifted into the left end of the 3-stage shift register. The switch
changes position at twice the input-shifting rate, alternately se­
lecting the output of the top XOR gate and bottom XOR gate. The
structure shown is an encoder for a single-input, 2-output, convo­
lutional code with memory of length 3.

It is often useful to analyze a convolutional encoder as a state ma­
chine, and to represent the behavior of this machine in the form of
a state diagram. The encoder of Fig. 6-1 has a memory of 3 bits,
and upon casual observation, it seems as though it would therefore
have 23 = 8 possible states. This encoder can, in fact, be repre­
sented as a state machine with 8 states as we will demonstrate in
Section 6.1.1. However, as you will subsequently discover in Sec­
tion 6J.2, the operation of this encoder can be represented using
only four states.

1 R. J. McEliece: Encyclopedia of Mathematics and Its Applications, Vol 3: The
Theory of Information and Coding, Addison-Wesley, Reading MA, 1977.

2 J. H. van Lint has dubbed this particular example the "canonical example" because
it is used in almost every introduction to convolutional coding.

J.H. van Lint: Introduction to Coding Theory , Springer-Verlag, Berlin, 1992.

Canonical Example ---------------------·-·- ·---

Page 69 of 88

111111 6-1 The so-called "canonical example" of
a simple convolutional encoder.

6.1.1 Convolutional Encoder Viewed as a Moore Machine

Start with the assumption that the encoder does have 8 possible
states, with each state being defined by one of the eight possible
combinations of 3 bits in the register. It's easy enough to associate
a pair of outputs Tu, TL with each state by realizing that

where

Tu= bL + bM + bR

TL= bL + bR

Tu = upper output
TL= lower output
bL = left bit in register
b M = middle bit in register
bR = right bit in register

Depending on its value, a new input bit will drive the machine from
its old state to one of two possible new states. The new output is
issued after arrival at the new state. The corresponding state dia­
gram is shown in Fig. 6-2. Each state is represented by a circle
containing its defining 3-bit combination and its corresponding
two bits of output. A machine such as this one, in which the out­
puts are associated with the states, is called a Moore machine.

6.1.2 Convolutional Encoder Viewed as a Mealy Machine

Convolutional Codes

Let's examine the first few steps in the operation of the example
encoder to see how it might be possible to eliminate some steps:

1. Assume that at time 0, all three register stages contain zeros.
The output bits are 00.

~!l§Jl:Brffl!J!IOOIT 1 ifalh : ~~ iii :&ili'!~llff~ JL 1filil!WliW~~~l!;;mi!$!®:IU F J !lim& 2!!&

Page 70 of 88

0

0

0

II 6-2 State diagram for the encoder of Fig. 6-1 represented as a
Moore machine.

2. The first input bit, ul' is then shifted into the leftmost stage of
the register. The register contents are (u1, 0, 0). The first
output bit v1 is obtained from the output of the upper
summer. Therefore,

v1 = u 1 + 0 + 0 = u 1

The second output bit, v2, is obtained from the output of the
lower summer as

V2 = ul + 0 = ul

The content of the leftmost stage is shifted into the middle
stage, and second input bit, u 2, is shifted into the leftmost
stage of the register. The register contents are now (u2, ul' 0).
The third output bit, v3, is obtained from the output of the
upper summer as

v3 = u 2 + u 1 + 0

The fourth output bit, v 4, is obtained from the output of the
lower summer as

V 4 = u 2 + 0

4. The content of the middle stage is shifted into the right stage,
and the content of the left stage is shifted into the middle
stage. The third input bit, u3, is shifted into the left stage. The
register contents are now (u3 , u 2, u 1). The fifth and sixth
outputs are given by

V 5 = U3 + U2 + Ul

v6 = U 3 + u1

Canonical Example ""'""·-""""""'•""="'1_, m&,...,,:W,B"'°~""'·""""""""" ____ """" _____ ~~-~ IZ,!-iii/;..Al§&.Gh&.'S'lii:!illil1i!!l!~;&El~!!ii'l!:'ii!ll~!:x:a!i!!E21lra .,;;t;J£.£J.h.~:!i!ml

Page 71 of 88

Convolutional Codes

5. The content of the right stage is shifted out of existence, the
content of the middle stage is shifted into the right stage, and
the content of the left stage is shifted into the middle stage.
The fourth input bit, u 4, is shifted into the left stage. The
register contents are now (u4 , u 3 , uz). The seventh and eighth
outputs are given by

V7 = U4 + U 3 + U2

Va= U4 + U2

In each case, the outputs are determined by the three stages of the
new register contents, or equivalently by the value of the input
along with the old contents of the two leftmost stages of the reg­
ister just prior to insertion of the new input bit. The insertion of
the new input bit will push the contents of the rightmost stage
completely out of the register. Therefore, two register states
which differ only in the rightmost stage will yield the same next
state for any given input. It seems as though we could redefine our
sequential state machine in terms of just four 2-bit states, which
are defined by the contents of the two leftmost stages of the regis­
ter. The outputs, which are defined in terms of the original 3-bit
states, must be mapped into the equivalent combinations of inputs
and 2-bit states. This mapping is listed in Table 6-1.

• Table 6-1 Mapping from
3-bit states to combinations
of 2-bit states and inputs.

3-bit 2-bit
state Output state Input
0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 1 1 1 0
1 0 0 1 1 0 0 1
l O 1 0 0 0 1 1
1 1 0 0 1 1 0 1
1 1 1 1 0 1 1 1

Each 2-bit state appears in the table twice, and each appearance
has a different output. (For example, 2-bit state 01 appears once
with output 11 for the 3-bit state 001 and once with output 00 for
the 3-bit state 101.) Therefore, the outputs cannot be placed in
the state circles as they are in Fig. 6-2. Instead, the outputs must
be associated with the transition arrows, which are the only enti-

Page 72 of 88

ties in the diagram that embody both input information and 2-bit
state information. (Each transition arrow starts at the 2-bit state
and is labeled with the input value that triggers the depicted tran­
sition.) A state diagram using 2-bit states is shown in Fig. 6-3.
Each state is represented by a circle, labeled with the two leftmost
register-bits that define the state. The transitions have two-part la­
bels. The bit before the slash is the value of the input that will
cause the indicated transition to occur. The two bits after the slash
are the two output bits associated with the indicated transition. A
machine, such as this one, in which the outputs are associated
with the transition, is called a Mealy machine.

0/0

0/3 1/3

0/2 • 6-3 State diagram for
the encoder of Fig. 6-1
represented as a Mealy

1/0 machine.

0/1 1/1

1/2

6.1.3 Moore Machines vs. Mealy Machines
It is always possible to convert a Mealy machine into an equivalent
Moore machine and vice versa. The number of states in a Moore
machine will equal or (usually) exceed the number of states in the
equivalent Mealy machine. The Mealy machine of Fig. 6-3 can be
converted into the Moore machine of Fig. 6-2 using a few rules of
sequential machine design. First, a few definitions must be intro­
duced to support the algorithm to follow.

Definition 6.1 A state of a Mealy machine is z-homogerieous if the
output associated with each transition line incident (i.e., pointing
into) to that state is the same; otherwise, it is z-nonhomogeneous .

A z-nonhomogeneous state of a Mealy machine can be split into an
equivalent set of z-homogeneous states.

Canonical Example
ww.s '" tm && : z.~m "'

Page 73 of 88

Convo/utional Codes

Definition 6.2 A Mealy machine is z-homogeneous if every state of
the machine is z-homogeneous; otherwise it is z-nonhomogeneous.

A z-homogeneous Mealy machine is equivalent to a Moore machine.
Because the outputs associated with all the transitions incident to
a z-homogeneous state are equal, the output can b~ associated di­
rectly with the state.

Example 6.6.1 Incident to state 10 in Fig. 6-3 are two transitions­
one with output 00 and one with output 11. Hence, state 10 is
z-nonhomogeneous. We can split state 10 into two states (for ex­
ample, state l0z00 and state lOzll) as sho-wrl in Fig. 6-4. State
lOz00 becomes the target for all transitions incident to state 10
with output 00, and state lOzll becomes the target for all transi­
tions incident to state 10 with output 11. All transitions out of
state 10 must be duplicated for both states lOz00 and l0zll. (The
transition labeled 0/10 going from state 10 to state 01 has been re­
placed with a transition from state lOz00 to state 01 plus a transi­
tion from state lOzll to state 01.)

1/01

0/01

1/10

• 6-4 State diagram of a Mealy machine
showing how z-nonhomogeneous state 1 O
can be split into two z-homogeneous states
1 Oz 11 and 10z00.

Page 74 of 88

Splitting states gets just a bit trickier for states that have slings
(i.e., transitions that start and end at the same state) . In these
cases , one of the new "post-split" states will retain the sling and
there will be a transition from each of the other "post-split" states
to the state that retains the sling. The input/output label on each
of these transitions will match the input/output label on the sling.

Example 6.6.2 Incident to state 11 in Fig. 6-4 are three transitions­
two with output 01 and one (a sling) with output 10. We can split
state 11 into two states llz0l and llzlO as shown in Fig. 6-5.

0/00

0/01

1/10

II 6-5 State diagram of a Mealy machine show­
ing how a z-nonhomogeneous state with a sling
(state 11) can be split into two z-homogeneous
states 11z01 and 11z10.

This is Example 1: Example 6.6.1. The results of Example 6.2 can
be further extended by splitting state 00 to obtain Fig. 6-6 and
then splitting state 01 to obtain Fig. 6-7, which is a z-homogeneous
Mealy machine. Comparison of Figs. 6-7 and 6-2 reveals that the
two machines are equivalent with the following correspondences
between their states:

00z00 = 000
00zll = 001
lOzll = 100

Canonical Example
a&m~-~-!11..5 ~ 12 !!i~:IE@ffllilIDi~~""'""'"""lll§lm,-...,.;ai;Ri""iilfti~"""'""'·""'""',_""'·"""'""""',..,.,1mu.,.:• 12m,i:!m~_a...,¼s""'.mi""'z:i~..,mfii!i..,~.,.z:mi'iiiMi_,,,;.,11€r~=- •

Page 75 of 88

1 /01

0/10

0/01 1/10

II 6-6 Result of splitting state 00 in the
Mealy machine of Fig. 6-5.

l0z00 = 101
0lzl0 = 010
0lz0l = 011
llzOl = 110
llzll = 111

It often seems natural to think of the tran.sitions as transient phe­
nomena, which are short-lived relative to the possibly long dwell
time that the machine spends within a state while waiting for an in­
put to trigger the next transition. For this reason, texts on sequential
machines often treat the outputs of a Mealy machine as pulses and
the outputs of a Moore machine as levels. For purposes of encoder
design, the outputs can be viewed as either pulses or levels.

6.1.4 Notation and Terminology

Convo/utional Codes

Notation and terminology for describing convolutional codes is not
standard throughout the literature. This can be a source of con-

Page 76 of 88

0/00

1 /11

0/11

1/01

0/10 1/00

0/11

• 6-7 The z-homogeneous Mealy machine
obtained by splitting state 01 in the Mealy
machine of Fig. 6-6.

siderable confusion for novices attempting to use multiple
sources. Some of the confusion seems related to the choice be­
tween the Moore machine and Mealy machine for representing the
encoder behavior.

Lin and Costello

The convention followed by Lin & Costello3 and Rhee4 allows the
input to be "used" without first being shifted into a register. Thus,
they would draw the encoder of Fig. 6-1 in the form shown in Fig.
6-8. This approach uses only 2 stages in the shift register and is
perhaps more intuitively consistent with the 4-state Mealy ma­
chine of Fig. 6-3. Further bolstering this consistency is the fact
that the outputs are shown directly as functions of both the 2-bit

3 S. Lin and D. J. Costello: Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1983.

4 M. Y. Rhee: Error Correcting Coding Theory, McGraw-Hill, New York, 1989.

Canonical Example
lfmPiml!i.i&.am; m~'lllb¼/iGLL~•• 1.P!i:!!!nm111et1I~!!J!l~ll~l.'IS: ~~!!!! ;;QL%~',~'i~i~h00,!il~~~~

Page 77 of 88

Convolutional Codes

register state and the input. Both systems characterize convolu­
tional codes using the ordered triple (n, k, m) where

n = number of outputs
k = number of inputs

m = memory order or memory length

In the code from Lin & Costello and Rhee, the constraint length
nA is defined as

nA = n(m + 1)

The code implemented by Figs. 6-1 and 6-8 would be classified as
(2, 1, 2) code with a constraint length of 6. The connections to the
shift register are specified by associating a polynomial with each of
the outputs:

Clark and Cain

upper XOR gate: gO) = (1 1 1)
lower XOR gate: gC2) = (1 0 1)

Clark and Cain5 characterize a convolutional code in terms of the
code rate, and implicitly assume that when the code rate is ex­
pressed as a common fraction, min, then m is the number of in­
puts and n is the number of outputs. They denote the number of
stages as k and call this quantity the constraint length. [For codes
with multiple registers, k is the total number of register stages.]
This definition of constraint length is different than that of Lin &
Costello and Rhee. Using the conventions of Clark and Cain, the
code implemented by Fig. 6-1 would be characterized as a rate ½,
constraint length 3 code.

Michelson and Levesque

Michelson and Levesque6 structure their notation and presenta­
tion around the idea that each input shift can accept a multi-bit
symbol rather than just a single bit. Each symbol shift is called a
cycle and the following notation is used

b = bits per cycle
k = number of register stages
V = number of outputs

The number of register stages k is in units of symbol stages, i.e.,
for b > l, k is given by

total number of register bits
k= b

5 G. C. Clark and J. B. Cain: Error-Correction Coding for Digital
Communications, Plenum Press, New York, 1981.

6 A M. Michelson and A H. Levesque: Error-Control Techniques for Digital
Communication, Wiley-Interscience, New York, 1985.

Page 78 of 88

:_.-[\

..]

a

• 6-8 The canonical example encoder redrawn following the
convention used by Lin and Costello.

Constraint length is defined as the number of symbol registers k.
(It should be noted that Michelson and Levesque warn their read­
ers about alternative definitions for constraint length.)

Viterbi

Viterbi7 defines the constraint length as the number of bit stages
in the encoder shift register. The number of symbol stages is de­
noted by K, and the constraint length is bK, where b is the number
of bits per symbol. For the binary case, b = 1, and the constraint
length is simply K. Viterbi describes an encoder similar to Fig. 6-8
as having a 3-stage shift register, and hence the corresponding
code is described as having a constraint length of 3. (The two
boxes in Fig. 6-8 should be thought of as delay elements between
the stages rather than as the stages of the shift register. The three
stages are the three signal nodes labeled A, B, and C in the figure.)

Rather than associating a polynomial with each output, Viterbi as­
sociates a polynomial with each stage of the shift register.

Summary

node a: g0 = (1, 1)
node b: g1 = (1, 0)
node c: g2 = (1, 1)

With the possible exception of k, it's not really a big deal which
particular letters are used to denote specific parameters. How­
ever, it is very common for communications engineers to speak of
a "rate ½, k = 7" convolutional code. These engineers (many of
whom have never seen the Clark and Cain code) don't say "mem-

7 A. J. Viterbi and J. K. Omura: Principles of Digital Commuwication and Coding,
McGraw-Hill, New York, 1979.

Page 79 of 88

ory of 7" or "m = 7"; they say "k = 7." Apparently, because of just
common usage, the notation used by Clark and Cain seems to have
acquired a certain "preferred" status despite the fact that it dis­
agrees with that of Lin and Costello, which is somewhat of a de
facto "standard" with regard to other terminology.

In addition to the notation and terminology discussed so far, there
are a number of items on which there is general agreement.

Just as for a block code, we can define the code rate as the ratio of
information bits to total channel bits. Conceptually, the output of
a convolutional encoder is semi-infinite, beginning at time zero
and continuing forever. Therefore, the code rate R would simply
be the ratio of encoder inputs to encoder outputs.

R = !i_
n

However, in the real world, the sequence of input bits will always
be finite in length, and it will be necessary to append several zero
bits to the input in order to "flush" the encoder registers and ob­
tain all the output bits associated with the final information bit in
the input sequence. This will increase slightly the percentage of
noninformation bits in the encoder's output sequence. If the input
sequence contains L bits and the encoder has m bits of memory,
the truncated code rate Rr will be given by

R -----R -~ -R 1---kL (L ') (m)
r- n(m+L) - m+L - m+L

The quantitym/(m +L) is sometimes referred to as thefractional
rate loss.

6.2 Tree Representation of a Convolutional Encoder

Convolutional Codes

The state diagram of an encoder is a compact way to depict all of
the possible states and transitions between them, but it does not
provide a good view of the encoder operation as being sequential
in time. Let's try to adapt the state diagram into something which
is better able to depict the sequential nature of encoder operation.
Consider the state diagram in Fig. 6-3. Assume that at t = 0 the en­
coder is in state 00. Fort= l, only two states are possible: the en­
coder will remain in state 00 if the input is 0, or the encoder will
change to state 10 if the input is 1. We can illustrate this fact by
drawing just a portion of the state diagram as shown in Fig. 6-9.
Notice how the states fort = l have been placed in a vertical col­
umn directly above the notation "t = l." Now for transitions from t
= 1 to t = 2, we must consider two cases. If the encoder is in state

: HULS I lJ I l

Page 80 of 88

0/00

1 /11

t =1

• 6-9 Portion of the state
diagram used to show
possible encoder states tor t
= 1.

00 at t = l, it can be in either state 00 or state 10 at t = 2. (Which
one depends upon the input value.) Similarly, if the encoder is in
state 10 at t = l, it can change to either state 01 or state 11 at t =
2. We can illustrate these possibilities by adding another column to
the diagram of Fig. 6-9 to obtain the diagram shown in Fig. 6-10.
We could repeat the process for transitions from t = 2 tot= 3, and
obtain the diagram shown in Fig. 6-11. It's easy to see how this di­
agram could quickly become unwieldy for even moderate values of

0/00

0/00 1/11

t =0

1/11 0/10

1/01

t =1

t =2

• 6-10 Modified state
diagram used to show
possible encoder states for t
=2.

Page 81 of 88

Convolutional Codes
Jih At.%&£.

0/00

0/00 1/11

1/11 0/10

1/01

• 6-11 Modified state diagram used to show
possible encoder states fort "' 3.

t. Several simplifications are usually made to make the diagram
more compact:

1. In Fig. 6-11 each state is represented by a circle with one
transition incident from the left and two transitions leaving
from the right. This can be simplified by eliminating the circle
and allowing the state to be implicitly represented by the
intersection of the three transition lines. (If the input is not
binary, there will be more than two transitions leaving from
each state.)

2. The transitions leaving to the right of each state can be
arranged in order of input value so that it becomes
unnecessary to label each transition with the input value that
triggers it. In most of the literature, the transition
corresponding to a O input is drawn above the transition
corresponding to a 1 input for binary encoders, but in some
cases8 the order is reversed.

8 A. M. Michelson and A. H. Levesque: Error-Control Techniques for Digital
Comm unication, Wiley-Interscience, New York, 1985.

Page 82 of 88

The result of these simplifications is called a tree. A tree for the
encoder of Fig. 6-1 is shown in Fig. 6-12. At each fork, the number
of branches equals the number of possible values for a single input
symbol. The bits superimposed on each branch are the outputs is­
sued in response to the input values corresponding to the branch.

Example 6.6.3 Assume that the encoder register contains all zeros
prior to the arrival of the first input bit. The sequence of input bits
is 1, 0, 0, 1, 0. Figure 6-13 shows the tree of Fig. 6-12 with the path
corresponding to this input sequence highlighted. Following along
the highlighted path we find the output sequence 11, 10, 11, 11, 10.

Figure 6-12 shows a tree the way it usually appears in the litera­
ture. I have found that it is sometimes easier to keep things
straight if each fork is annotated with the encoder state as in Fig.
6-14.

6.3 Trellis Representation of a Convolutional Encoder
Even with simplifications, a tree can become difficult to draw as t
increases. For binary encoders, each state will appear 21 - 2 times
in the column fort = 'C. This amounts to unnecessary repetition be­
cause for each appearance of a particular state, the output and
next state will always be the same for a given input.

Example 6.6.4 Examination of Fig. 6-12 reveals that:

1. State 00 always reacts to an input of O by issuing 00 as output
and remaining in state 00.

2. State 00 always reacts to an input of 1 by issuing 11 as output
and changing to state 10.

3. State 01 always reacts to an input of Oby issuing 11 as output
and changing to state 00.

4. State 01 always reacts to an input of 1 by issuing 00 as output
and changing to state 10.

5. State 10 always reacts to an input of Oby issuing 10 as output
and changing to state 01.

6. State 10 always reacts to an input of 1 by issuing 01 as output
and changing to state 11.

7. State 11 always reacts to an input of O by issuing O 1 as output
and changing to state O 1.

8. State 11 always reacts to an input of 1 by issuing 10 as output
and remaining in state 10.

Trellis Representation of a Convolutional Encoder
r.irl.!i!ml i&JiUJ@li,ffi-i&Ji/4&.lil'.it2R~7.~L&ifJJZiJ ·;r~~.Q!~~~~ra;,;~x.:m!i&?.~~wJcr:ui!lffi. ; ,.www;;.;;m;: J.i4LJ44A :a,-

Page 83 of 88

Convo/utional Codes

00

00

11

10

11

01

_____r-- 00
00 ~

00 -[11

11 -c 10

01
11

-[
10-Coo

11

-C
01

01
10

_____r-- 00
11 L_

10 -[11 -c 10
00

01
11

-[
01 -Coo

01 -c 01
10

10

-[
oo-C~~

11 -c 10
11

01

_____r--11
10 L__

00 -[00 -c 01
01

10

_____r-- 00
11 L_

01 -[11 -c 10
00

01

-c11

10 -[01 00

-c 01
10

10

• 6-12 A tree used to depict possible sequences of encoder states for
the encoder of Fig. 6-1.

~~~-p:~~%9.iW~'§i:!ili!!!i1£'1;!!11!m'~~ Z.4. £/4~fflili:i!Uffl'B;~~Jb,.AZ.Ji..:&l. Ull7 £.SJ@ Ii 4lilt .:§ia5!~i~i~~ 



Page 84 of 88

-coo 00 

OO -[ 11 
-c10 11 

00 
01 
11 

11 
-[10-C 00 

-C01 01 

00 
10 
00 

10 
-[11-C1, 

-c10 00 

11 
01 
11 

01 
-[01 -Coo 

-C01 10 
10 

-coo 00 

11 -[ 11 
--c10 11 

10 
01 

-c11 10 

00 -[ 00 
-C01 01 

11 
10 

-c oo 11 

01 -[ 11 
-c10 00 

01 
01 

-c11 01 

10 -[ 00 
-c01 10 

10 

• 6-13 An encoder tree with path highlighted for the input sequence 
10010. 

Trellis Representation of a Convolutiona! Encoder 



Page 85 of 88

00 

00 

11 

10 

11 

01 

oo r;;;; 00 I 1°101 
00 

-[Q]Q] ~ 11 _[TIQJ 

10101 11 -{Ei<i[ 10 -ru 01 -ITill 
11 r;:;:; 1° 1 10111 

11 
- 10101 

~ oo-[TIQ] 
01 ~01 -[QITJ 

10 -ITill 
1D _s;::; 11 I 10101 oo -10101 
~ 11-rn 

[,j(5] 00 1111o1 
10 

- ru 
01 -ITill 

01 r;;= 01 I 1°111 
11 

-1°1°1 -@ 00 -[ITQ] 
10-(EQ[01 -[2DJ 

10 -ITill 

11 ~··· r;;;; 00 11°101 °
0 

- 1°1° .. 1 

~ 0 1 11-rn 

ru 11 1111o1 
10 

-ru 
01 -ITill 

00 ~r;;:; 10 --{7oE[ 11 - m 
~ oo-rn 

01 ~ 01 - [2DJ 

10 -ITTIJ 

01 r;;;;: 11 I 10101 
00 

- m ~ 11 -[TIQ] 
ITill oo 111 101 10-ru 

01 -ITill 

10 ~~r;;= 01 ~ 11 - [i5i]ilj -@ 00 -[ITQ] 
10 ~ 01 -~ 

10 - ITill 
• 6-14 Ti ree with t s ate annotat· tons. 

Convolutional C d - o es 
~~ ____ _ _ _ ._.=~_-·_··· -:·:_,.:~_~---~~1:~;·:.:;.,;;;::,;;~~,f.i;i,'.~~W~./,i;;:;i:,:.;;v,~~..&~Y~~ ~ 



Page 86 of 88

A tree can be turned into a trellis by allowing each state to appear 
only once in each column. Because of the fact that a given input 
will always produce the same output and next state for each ap­
pearance of a given state, it will always be possible to draw the 
necessary transitions between columns of the trellis without cre­
ating conflicts or ambiguities. The trellis corresponding to Fig. 6-12 
is shown in Fig. 6-15. There are several different approaches for 
keeping track of which transitions are caused by which inputs. 
Figure 6-15 follows the same convention used in drawing trees­
the states are arranged within each column so that for the transi­
tions leaving a state, the transition caused by a O input is drawn 
above the transition because of a 1 input. For some codes, it might 
be difficult or impossible to find an order for the states that will al­
low this convention to be used. For binary codes, many authors 
use solid lines to draw transitions corresponding to O inputs and 
dashed lines to draw transitions corresponding to 1 inputs as 
shown in Fig. 6-16. It might be possible to extend this convention 
to nonbinary codes with small symbol alphabets by using different 
types of broken lines such as small dashes, long dashes, dashes al­
ternated with dots, etc. Although it leads to more cluttered dia­
grams, the one approach guaranteed to work for all codes is to 
simply retain the two-part "input/output" label used in state dia­
grams, as shown in Fig. 6-1 7. 

6.4 Distance Measures 
In the analysis of block codes, the minimum distance of a code 
proves to be an important measure for assessing the performance 

10 10 10 10 10 

• 6-15 A trellis used to depict possible sequences of encoder states for 
the encoder of Fig. 6-1. 

Distance Measures 
1/ml):ia;ilrum J M ti!~] l\1:'.11~ ~g ~ii.511fil(&;1'§'illf:12 ~ !5l!lll!lillll LLk.l'BliliSiiiil&J& lf1! MW&ildiUi~ml~rnl1m.Ub!klili~i~!fa.%XstZIZX: :!Ul'm!U!~ 



Page 87 of 88

00 
', 00 ', 00 ',00 

' ' 11 •, 11 •, 
' ' 10 • 

01 • • 
\ 

\ 

11 • • 

\ 
\ 

\ __ _., __ 
10 10 

\ 
01 , 

--•--
10 10 

\ 

\ 

01\ 
\ --~----10 

• 6-16 Trellis with dashed lines used to draw transitions corresponding to 
input= 1. 

0/00 

1/11 

10 • 

01 • 

11 • 
1/10 1/10 1/10 1/10 1/10 

• 6-17 Trellis having each transition labeled with both input and output. 

Convolutiona/ Codes 

of the code. The same is true of convolutional codes, but the defi­
nition of "minimum distance" needs to be adjusted slightly for the 
different nature of convolutional codes. 

For convolutional codes, the minimum distance between any two 
codewords is called the minimum free distance and is denoted 
as dfree· Because a convolutional code is a linear code, we can take 
one of the codewords as the all-zero codeword and view the mini­
mum free distance as the weight of the minimum-weight nonzero 
codeword. Consider the code defined by the state diagram of Fig. 
6-3. Because all codewords begin and end with the encoder at 
state 00, each nonzero codeword corresponds to sequence of state 
transitions that departs from state 00 for some number of state 

,.,_.,,,...,, ... :t ... LZL"";J"""""_.,..,_..._.,,.,_.,.~iB!i ... ,..,,,..;00lt§] __ ...... .,_.,, ""1lti!.!. _ _ , ... YlU&!ii!iM ___ !IW..,~U..,i!&w_m ... ,..,J/l?iffli""""'"""""-""" -t mm"""'"'''"'"'ff""""' ___ ... ..,, ... " ""W.""1¾ii""""""kt.,,, __ !i!_,.,. 



Page 88 of 88

times before returning to state 00. Thus, the minimum-weight 
nonzero codeword corresponds to the minimum-weight path that 
departs from and returns to state 00. The encoder defined by Fig. 
6-3 is simple enough that we can find such a minimum-weight path 
by inspection. The only way out of state 00 is via the transition to 
state 10. This transition has a weight of 2. Similarly, the only way 
back into state 00 is via the transition from state 0 1. This transition 
also has a weight of 2. The transition from state 10 to state 01 has 
a weight of 1. The minimum-weight path that departs from and re­
turns to state 00 goes through states 10 and 0 1 and has a total 
weight of 2 + 1 + 2 = 5. 

Distance Measures 




