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Human Melatonin Regulation is Not Mediated by the Three Cone Photopic Visual System

ABSTRACT The aim of this study was to test if the three cone
input for human circadian regulation by determining the effects of d

photopic visual system is the primary ocular photoreceptor
ifferent wavelengths on light-induced melatonin suppression.

Healthy subjects with stable sleeping patterns (wake-up time 7:30 AM + 12 min) and normal color vision were exposed at night

to full-field 505 nm or 555 nm monochromatic stimuli or darkness for 90 min. Plasma collected

before and after exposures was

quantified for melatonin. Subjects exposed to 10 irradiances at 505 nm showed no significant differences across mean pre-exposure
melatonin values (F=0.505). A sigmoidal fluence-response curve fitted to the melatonin suppression data (R2=0.97) indicated
that 9.34 x1012 photons/cm?/sec induced a half-saturation response (EDsg) while 6.84 x10!3 photons/cm?/sec induced a
saturation melatonin suppression response. Further, a dose of 4.19 x1013 photon/cmZ/sec at 505 nm was significantly stronger
(P<0.01) than an equal photon dose at 555 nm for melatonin suppression. These data demonstrate that the cone system that
mediates human photopic vision is not the primary photoreceptor system to transduce light stimuli for melatonin regulation.

Introduction

The underlying neuroanatomy and neurophysiology
which mediate vision have been studied extensively over the
past two centuries. More recently, the retinohypothalamic
tract (RHT), a distinct neural pathway which supports
circadian regulation by environmental light, has been shown
to project from the retina to the suprachiasmatic nuclei
(SCN) in the hypothalamus (1, 2). A well-defined
multisynaptic neural pathway extends from the SCN to the
pineal gland which transmits information about light and
circadian time for entraining the rhythmic production and
secretion of the hormone melatonin (1-4). In addition to
synchronizing pineal indolamine circadian rhythms, ocular
exposure to light during the night can acutely suppress
melatonin synthesis and secretion (5, 6). Light-induced
melatonin suppression is a well-defined, broadly used marker

for photic input to the RHT and SCN (2, 4, 7, 8).
Currently, it is not known what photoreceptors
transduce light stimuli for circadian regulation. Studies on
animals with hereditary or light-induced retinal degeneration
have raised the possibility that neither the rods nor the cones
used for vision participate in light-induced melatonin
suppression, circadian locomotor phase-shifts, or
photoperiodic responses (8-12). Furthermore, bilateral
removal of the eyes from rod-less, cone-less transgenic mice
abolished light-induced circadian phase-shifting and acute
melatonin suppression (8, 12). Recently, light-induced
melatonin suppression and circadian entrainment have been
demonstrated in humans with complete visual blindness (13)
and with specific color vision deficiencies (14). The study
on humans with color vision deficiencies showed that
protanopic and deuteranopic subjects who lacked functioning
long wavelength-sensitive cones (red, or L cones), and
middle wavelength cone photoreceptors (green, or M cones),
exhibited normat light-induced melatonin suppression and
entrainment of the melatonin rhythm (14). Thus, by
themselves, neither the red nor green cone system could be

Page 7 of 22

the primary input for melatonin regulation, at least in
humans with color vision deficiencies. Together, the results
from human and animal circadian studies on different forms
of visual blindness suggest that melatonin regulation by
light is controlled, at least in part, by photoreceptors which
differ from the photoreceptors that mediate vision.

Recent studies with various vertebrate species have
identified several new molecules which may serve as
circadian photopigments. These putative photopigments
include both opsin-based molecules, such as vertebrate
ancient (VA) opsin and melanopsin, as well as non-opsin
molecules like the cryptochromes (15-17). Among these
new photopigments, only melanopsin has been specificaily
localized to the human retina (18). The molecular
identification of these candidate photopigments and their
localization in the retina and/or neural components of the
circadian system make them well-suited to act as circadian
phototransducers. Functional data confirming their direct
role in circadian photoreception, however, are lacking.

The aim of this study was to test the hypothesis that
the three cone system which supports photopic (daytime)
vision is the primary input for pineal melatonin suppression
in humans with normal, healthy eyes. The peak wavelength
sensitivity of the photopic visual system is generally
believed to be near 555 nm (19). If melatonin regulation is
mediated primarily by the three cone photopic visual
system, then 555 nm light would be the most potent
wavelength for regulating melatonin secretion. Our data
show that 505 nm is approximately four times stronger than
555 nm in suppressing melatonin. These results
demonstrate that the ocular photoreceptor primarily
responsible for pineal melatonin reguiation in humans, is
not the cone system that is believed to mediate photopic
vision. This study is the first test of a specific
photoreceptor system for melatonin regulation in humans
with healthy, intact eyes.

Subjects, Materials and Methods
Subjects. The healthy females (N=6) and males (N=10) in
this study had a mean + SEM age of 25.7 + 0.8 yrs, demonstrated
normal color vision as measured by the Ishihara and Farnsworth



Munsell D-100 tests (mean FM score: 64.2 £ 11.5), had a stable
sleeping pattern (mean wake-up time 7:30 AM t 12 min), and
signed an approved IRB consent document before participating.

Light exposure protocol. Each experiment began at
midnight when subjects entered a dimly lit room (10 lux). One
drop of 0.5% Cyclopentolate HCl was placed in each eye to
dilate the pupils, and blindfolds were placed over subjects’ eyes.
Subjects remained sitting upright in darkness for 120 min.
While still blindfolded and just prior to 2:00 AM, a blood
sample was taken by venipuncture. During light exposure, each
subject's head rested in an ophthalmologic head holder facing a
Ganzfeld apparatus that provided a concave, patternless, white
reflecting surface encompassing the subject's entire visual field.
The subjects were exposed to the light stimulus from 2:00 to
3:30 AM. During this 90 min exposure, subjects sat quietly,
kept their eyes open and gazed at a fixed target dot in the center
of the Ganzfeld dome. Subject compliance for keeping their
eyes open and the subjects’ pupil size were monitored by a
miniature video camera. At 3:30 AM, a second blood sample
was taken. Each subject was exposed to complete darkness from
2:00 to 3:30 AM on their control night and was tested with at
least 6 days between each nighttime exposure. Plasma samples
were assayed for melatonin by RIA (20). The minimum
detection limit of the assay was 0.5 - 2.0 pg/mL. Control
samples had 8% and 14% intra-assay coefficients of variation.

Light production and measurement. Experimental light
stimuli were produced by xenon arc lamps (Photon Technology
Int'l, Inc., Princeton, NJ) enclosed in a light-proof chamber and
cooled by high-speed fans and water circulation. An exit beam
of light from each source was directed by a parabolic reflector,
and excess heat in this beam was reduced by a water filter.
Monochromatic wavelengths (10-11 nm half-peak bandwidth)
were produced by a grating monochromator and light irradiance-
was controlled by a manual diaphragm. The resulting light
beam was directed into the top area of a Ganzfeld dome and
reflected evenly off the wails into volunteers' eyes. The entire
reflecting surface of the dome was coated with a white surface
with a 95-99% reflectance efficiency over the 400 to 760 nm
range. Routine measurement of the light irradiance (uW/cmz)
was done with a J16 Meter with a J6512 irradiance probe
(Tektronix, Beaverton, OR). Experimental light stimuli
reflected from the Ganzfeld domes were measured at volunteers'
eye level immediately before and after the 90 min exposure.
Additional measures were taken each half hour of the exposure to
insure stimulus stability and enable intensity readjustment.
Subjects in the 505 nm series were exposed to intensities
ranging from 0.011 to 97 uW/cmZ (a 3 log unit photon density
range of 1010 o 1013 photonslcmz). Subjects exposed to 555
nm received control or a 15 u‘)Wcm2 @2x 1013 pho(ons/cmz)
exposure.

Statistics. Two-tailed, Students' t tests were used to assess
significance of raw melatonin change from 2:00 to 3:30 AM.
These data were then converted to % control-adjusted melatonin
change scores as described elsewhere (21). For the 505 nm data,
sets of pre-exposure melatonin values and % control-adjusted
melatonin change scores were analyzed with one-way, repeated
measures ANOVA. Significant differences between groups were
assessed with post-hoc Scheffe F-tests; alpha was set at 0.05.
For the 505 nm mean % control-adjusted melatonin suppression
data, the computer program Origin 6.0 (Microcal, Northampton,
MA) was used to fit a fluence-response curve to a 4 parameter
model as described elsewhere (22), and to test for goodness-of-
fit of the data by coefficient of correlation.

Results

The full 505 nm data complement, from raw melatonin
values to a final fluence-response curve, is illustrated in
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Figures 1-3. Across all nights of testing, there were no
significant differences (F=0.85) between sets of pre-exposure
melatonin values indicating that plasma levels were
consistent across the different study nights. Figure | shows
the mean + SEM pre- and post-exposure melatonin values.
One-way, repeated measures ANOVA showed a significant
effect of light intensity on plasma melatonin % change
scores (F=17.17, P<0.0001). Paired t tests demonstrated

that compared to the 0 uW/cm2 control night, all intensities

at or above 5.5 },LW/cm2 significantly suppressed melatonin
(P<0.05 or less). In contrast, irradiances of 2.8, 1.4 and

0.011 uW/c:m2 did not suppress melatonin compared to the
control night (Scheffe F values: 0.97, 0.01 and 0.02,
respectively). As illustrated in Figure 2, all melatonin data
were converted to control-adjusted % change scores. As with
the melatonin % change scores, ANOVA showed a
significant effect of light intensity on plasma melatonin %
control-adjusted change scores (F=13.59, P<0.0001).

g L4 B pPre * p«<0.01

g O Post  t peo.os

£ «
é {f: .
g » . -l

o 0.01 1.4 2.8 55 11 18 22 27 33 38

Intensity (uW/cm2)

Figure 1: In this graph the bars represent group mean +
SEM plasma melatonin values (N=8) before and after
monochromatic light exposure at 505 nm. There were
no significant variations across mean melatonin pre-
light exposure values (F=0.85). Paired, two-tailed
Students' t tests demonstrated which light intensities
elicited a significant melatonin suppression.

JE

Control Ad"usted

Plasma Melatonin

% Change Scores
s

~En I
<.
et 0.0¢ 1.4 2.8 55 11 16 22 27 33 238
Intensity (uW/cm?2)

Figure 2: This graph illustrates group mean + SEM %
control-adjusted melatonin change values (N=8) at 505
nm monochromatic light exposure. The figure shows
that progressively higher light irradiance exposure
produces increasingly greater melatonin suppression.

Figure 3 illustrates a best fit, sigmoidal fluence-
response curve which plots melatonin % control-adjusted



scores against stimulus photon density. The specific formula
for this curve is included in the figure.

‘“} 505 nm (R%= 0.97)
Lo 0.59 - 68.4

J Yrze——— _+684
60 1+ (X9.33)'*
504

404
304
20
10+

04

-10

Plasma Melatonin
% Change Control-Adjusted

001 0.1 1 10 100 1000
Photon Density (photons/cm?/sec x 1012)

Figure 3: This figure demonstrates the fitted fluence-
response curve for photon density and % control-
adjusted melatonin suppression (N=8). Each data point
represents one group mean + SEM.

Subjects exposed to 555 nm received both control (0
uW/cm?2) and 15 pW/ecm? (4.2 x 1013 photons/cm?)
exposures. For the control and light exposure nights, the
mean pre-exposure raw melatonin scores were 64.4 £ 12.5
and 59.6 £ 6.2, while the mean post-exposure scores were
62.6 £ 10.5 and 49.1 £ 6.0, respectively. The modest drop
in melatonin over the 90 min 555 nm light exposure period
was not statistically significant (t=1.69, df=7, P=0.14). For
comparison of responses to 505 nm and 555 nm, Figure 4
illustrates % control-adjusted melatonin suppression relative
at equal photon densities across the two wavelengths. These
data reveal that 505 nm is significantly stronger than 555
nm in suppressing melatonin (t=-3.04, df=14, P<0.01).

£ 0
_.55 20 ‘_r—l
gga 40 t=-3.
Sz w L

505 NM- 555 NM

Figure 4: The bars represent group mean + SEM
values relative to an equal photon dose of 4.2 x 1013
photons/cm2, These data show that the 505 nm %
control-adjusted plasma melatonin suppression is
significantly stronger than that for 555 nm.

Discussion
The data presented here demonstrate that: 1) there is a
clear fluence-response relationship between graded light
intensities of 505 nm light and melatonin suppression, and
2) that 505 nm light is significantly stronger than 555 nm
light for suppressing melatonin in healthy, human subjects.
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Previous studies with animals and humans have illustrated
fluence-response relationships for melatonin suppression and
circadian phase-shifting with exposure to monochromatic
light (23-25) as well as white light (22, 26). A recent study
on human subjects suggests that a four parameter curve is
optimum for modeling light-induced melatonin suppression
and circadian phase shifting (27). That contention matches
our own earlier animal data (22) as well as the 505 nm data
reported here.

The demonstration that 505 nm light is more potent
than 555 nm light for controlling melatonin has important
basic science and clinical implications. In humans, it is
well-established that higher levels of ocular illumination are
required for stimulating the circadian system than for
supporting vision (6, 25, 30). Consequently, many
investigators have considered the three cone photopic visual
system to be responsible for stimulating circadian and
neuroendocring responses since this part of the visual system
is responsive to "bright" daytime levels of illumination.
Over the past 20 years most of the published literature on
human circadian responses to light reports light levels in
terms of illuminance (lux, lumens) which is a specific
measure based on the traditional sensitivity curve of the
photopic visual system. The peak wavelength sensitivity of
that curve is 555 nm (19). Indeed, some researchers have
argued that their data support the notion that the visual
cones are involved in circadian phase-shifting in humans
(28). If melatonin regulation is mediated primarily by the
three cone photopic visual system, then 555 nm light
should be the most potent wavelength for regulating
melatonin. Our data do not support this hypothesis. On the
contrary, 505 nm is significantly stronger, photon for
photon, than 555 nm in suppressing melatonin. The
clinical implication of this result is that it is not optimum
to use photometric values (lux) for quantifying light used
therapeutically in patients with certain sleep disorders or
circadian disruption due to shiftwork or intercontinental jet
travel as is the current standard practice (29).

Ideally, the best circadian measurement system would
match the action spectrum for human circadian regulation.
That action spectrum would not only elucidate the relative
circadian potencies of different wavelengths, but it should
help identify the photoreceptor that initiates signals from the
retina to the SCN. Unfortunately, an action spectrum has
yet to be established for any circadian response in humans.
It remains possible that one of the "classic" visual
photopigments such as rhodopsin or the short wavelength
sensitive (blue) cone opsin mediates circadian
phototransduction. Alternatively, one of the new opsin or
non-opsin molecules that have been proposed as circadian
photopigments (15-17) may prove to serve this function.
Until the action spectrum for circadian regulation in humans
has been clarified, it remains reasonable to continue using
photometric terminology and measurements for
characterizing light that regulates the circadian system.

In summary, monochromatic S05 nm light suppressed
melatonin in a fluence-response manner, and is
approximately four times stronger than a 555 nm stimulus
at an equal photon dose for melatonin suppression. These
data demonstrate that the three cone system that is believed
to mediate human photopic vision is not the primary



" photoreceptor system to transduce light stimuli for
melatonin regulation.
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