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Genetic alterations and epigenetic dysregulation in cancer cells

create a vast array of neoepitopes potentially recognizable by

the immune system. Immune checkpoint blockade has the

capacity to enhance and sustain endogenous immunity against

non-mutated tumor-associated antigens as well as uniquely

mutant antigens, establishing durable tumor control. Recent

evidence from preclinical models highlights the pivotal role of

the Programmed Death-1 (PD-1) T cell co-receptor and its

ligands, B7-H1/PD-L1 and B7-DC/PD-L2, in maintaining an

immunosuppressive tumor microenvironment. Encouraging

early clinical results using blocking agents against components

of the PD-1 pathway have validated its importance as a target

for cancer immunotherapy.
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Introduction
Ever since it became clear that all cancer cells express

tumor-specific and tumor-selective antigens derived from

genetic alterations and epigenetic dysregulation, the

immunology community has embraced the potential for

immune-based therapies to induce targeted anti-tumor

responses. However, skepticism about the clinical value

of immunotherapies designed to specifically enhance T

cell-mediated immunity against preselected commonly

expressed tumor antigens, including cancer vaccines and

adoptive T cell transfer strategies, has escalated [1]. A

game changer for cancer immunotherapy has emerged in

the form of monoclonal antibodies (mAbs) that block
www.sciencedirect.com 
inhibitory receptors on immune effector cells or their

ligands on tumor cells and antigen presenting cells

(APCs) — so-called ‘immune checkpoints’. Immune

checkpoint blockade has the potential to enhance and

sustain endogenous immunity against non-mutated as

well as uniquely mutant antigens, establishing durable

tumor control. Recent evidence highlights the pivotal role

of the Programmed Death-1 (PD-1) T cell co-receptor

and its ligands B7-H1/PD-L1 and B7-DC/PD-L2 in

maintaining an immunosuppressive tumor microenviron-

ment. Encouraging early results from clinical blockade of

this pathway have validated its potential as a target for

cancer immunotherapy.

Receptor/ligand biology
The two checkpoint receptors that have been most

actively studied in the context of clinical cancer immu-

notherapy, CTLA-4 and PD-1 [2,3�,4–8], play distinct

roles in regulating immunity (Figure 1). CTLA-4, which

regulates the amplitude of early activation of naı̈ve and

memory T cells, is transported to the T cell surface at

levels that depend on the strength of the TCR signal. It

acts physiologically as a signal dampener. Its importance

in modulating T cell responses is demonstrated by the

rapidly lethal autoimmune/hyperimmune phenotype of

CTLA-4 knockout (KO) mice, which predicted the sig-

nificant immune toxicity associated with blockade of this

receptor.

In contrast to CTLA-4, the major role of PD-1 is to limit

the activity of T cells in the periphery during an inflam-

matory response to infection and to limit autoimmunity

[5–8,9��]. The basis for this physiology is that the ligands

for PD-1, B7-H1/PD-L1 [10�,11�] and B7-DC/PD-L2

[12�,13�], are upregulated in response to inflammation.

B7-H1/PD-L1 is upregulated on many cell types —

hematopoietic, endothelial and epithelial — in response

to proinflammatory cytokines, notably interferon-

gamma, while B7-DC/PD-L2 is upregulated on dendritic

cells and macrophages in response to different proin-

flammatory cytokines such as IL-4 [14,15]. PD-1 is

expressed to various degrees on activated T cells; thus,

the co-expression of ligand and receptor in inflamed

tissues mitigates against collateral tissue destruction

by T cells at these sites. In keeping with this biologic

role, PD-1 and B7-H1/PD-L1 KO mice do not develop

spontaneous autoimmune responses in the first year of

age, but do demonstrate exacerbated tissue responses to

infection or accelerated disease in autoimmune-prone

strains.
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PD-1 and CTLA-4 play distinct roles in regulating T cell immunity. CTLA-4 modulates the early phases of activation of naı̈ve or memory T cells in

response to TCR stimulation by MHC-peptide complexes displayed by antigen presenting cells (‘signal 1’). In contrast, PD-1 is expressed on antigen-

experienced T cells in the periphery, and serves to limit the activity of T cells at the time of an inflammatory response, thereby protecting normal tissues

from collateral destruction. DC, dendritic cell.
Further complexity to the PD-1/PD-1ligand system was

appreciated with the surprising discovery that B7-H1/PD-

L1 binds B7.1 in addition to PD-1 [16]. The binding sites

appear to be adjacent but not overlapping, allowing for

anti-B7-H1/PD-L1 mAbs that block one or both of these

interactions. Application of these mAbs in various se-

lective KO models suggests that interactions between

B7-H1/PD-L1 and B7.1 on T cells inhibit T cell activity

independent of interactions with PD-1 [17,18]. These

findings suggest that there are three distinct inhibitory

interactions within this pathway and that anti-PD-1 and

anti-B7-H1/PD-L1 antibodies might behave differently

owing to their ability to block distinct sets of interactions

(Figure 2).

The finding that B7-H1/PD-L1 is commonly upregulated

on many different tumor types, where it inhibits local

anti-tumor T cell responses [19��,20], and that PD-1 is

expressed on the majority of tumor infiltrating lympho-

cytes [21,22] creates an important rationale for mAb

blockade of this pathway for cancer immunotherapy, as

validated by multiple murine tumor studies [23,24].

The clinical development of PD-1 pathway blockers

requires an understanding of the signals that induce

expression of its ligands within the tumor. In the case

of the PD-1 ligands, constitutive oncogene-driven expres-

sion of B7-H1/PD-L1 has been suggested. However,

recent findings support an alternative model, that B7-

H1/PD-L1 upregulation on tumor cells reflects their
Current Opinion in Immunology 2012, 24:207–212 
adaptation to endogenous immune responses directed

at tumor antigens–a process we term adaptive resistance

(J Taube et al., unpublished). In adaptive resistance, the

tumor co-opts the natural physiology of the PD-1 pathway

for tissue protection in the face of inflammation, to protect

itself from an anti-tumor response. Expression of B7-H1/

PD-L1 as an adaptive response to anti-tumor immunity

likely occurs because this ligand is induced on most

epithelial cancers in response to interferon-gamma, sim-

ilarly to epithelial and stromal cells in normal tissues

[25,26]. In lymphoid malignancies, B7-DC/PD-L2 is

more commonly upregulated [27], likely in response to

different set of proinflammatory cytokine signals. The

adaptive resistance mechanism directly implies that any

treatment that induces anti-tumor immunity (e.g., vacci-

nation) will provide therapeutic synergy with PD-1 path-

way blockade.

Preclinical models
Preclinical evidence for PD-1’s inhibitory role comes

from several sources. Knockout mice develop late-onset,

strain-specific autoimmunity; on a C57BL/6 background

this manifests as sporadic glomerulonephritis [28], on a

Balb/c background as an antibody-mediated cardiomyo-

pathy [29]. These findings extend to models of organ-

specific autoimmunity; on the non-obese diabetic (NOD)

background, PD-1 KO mice develop accelerated insulitis

as well as increased T cell production of effector cyto-

kines [30]. Taken together, these data suggest that the

PD-1/B7-H1(PD-L1) axis maintains T cell tolerance to
www.sciencedirect.com
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Figure 2
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Anti-PD-1 and anti-B7-H1/PD-L1 antibodies (mAbs) might behave

differently owing to their ability to block distinct sets of inhibitory

interactions. Anti-PD-1 mAbs can block its binding to both B7-H1/PD-L1

and B7-DC/PD-L2, abrogating an inhibitory PD-1-mediated signal in T

cells; however, the inhibitory interaction of B7-H1/PD-L1 with B7.1 on T

cells is not affected. Conversely, anti-B7-H1/PD-L1 mAbs can block its

interactions with both B7.1 and PD-1, but will not block the inhibitory

interaction of B7-DC/PD-L2 with PD-1. Both anti-PD-1 and anti-B7-H1/

PD-L1 mAbs could potentially block transmission of a retrograde pro-

survival signal through B7-H1/PD-L1 into tumor cells [43]. APC, antigen

presenting cell.
persistently expressed antigens. A similar immunological

picture emerges in models of chronic infection, where

persistent pathogen exposure results in a population of

‘exhausted’ antigen-specific CD8 T cells that express

PD-1. In a chronic infection setting, the importance of

this axis was elegantly demonstrated by studies in which

blockade of PD-1/B7-H1(PD-L1) interactions restored

the function of non-functional virus-specific CD8 T cells

[31].

While much of this work has focused on CD8+ T cells,

recent studies have highlighted a role for PD-1 on other

cell types as well. One interesting set of experiments

examined the acute B cell depletion that occurs during

HIV infection, using a primate model. Here, PD-1 was

shown to mediate the depletion of activated memory B

cells and PD-1 blockade ameliorated this effect, restoring

antibody titers [32]. While expression of PD-1 on B cells

has been previously described, these recent data support

a potential role for PD-1 in B cell immunity — the

relative importance of this mechanism in cancer patients

has yet to be explored. Expression of PD-1 on CD4+ T

cells may also play a role in their dysfunction; a recent

study used MHC class II tetramers to study HCV-specific

CD4 T cell function in patients with either chronic or

resolved infection. Similar to the case for CD8+ T cells,

PD-1 blockade partially restored specific CD4 function in
www.sciencedirect.com 
chronically infected patients, but TH1 cytokine pro-

duction was most effectively restored when PD-1 block-

ade was combined with TGF-b and/or IL-10 blockade.

Finally, PD-1 is highly expressed on induced regulatory

T cells (iTregs), and PD-1: PD-L1 interactions appear to

promote the induction/conversion and maintenance of

Tregs, suggesting an additional mechanism for immuno-

suppression in a tumor microenvironment rich in PD-1

ligands [33�,34]. These studies reinforce the notion that

PD-1 blockade may affect multiple cell types, a critical

observation in understanding the mechanism of action of

antibody-mediated blockade.

Perhaps even more interesting are accumulating data

that non-functional CD8+ cells coordinately express

multiple immune checkpoint molecules with PD-1,

and that blockade of several checkpoints may augment

anti-tumor (as well as anti-viral) immunity. This notion

was first demonstrated in the chronic LCMV model,

where PD-1 was co-expressed with 2B4 and lymphocyte

activating gene-3 (LAG-3) [35]. Recent studies extended

this concept to cancer; PD-1/LAG-3 co-expression was

documented on tumor antigen-specific CD8+ T cells in

women with ovarian cancer, and dual (but not single)

blockade was shown to restore CD8+ T cell function in
vitro [36�]. Indeed, PD-1 and LAG-3 may mediate non-

overlapping tolerance-maintaining pathways; an import-

ant recent study showed that PD-1/LAG-3 double KO

mice developed an accelerated autoimmune phenotype

not present in either single KO strain [37�]. Another cell

surface molecule that may work with PD-1 to maintain

tolerance is Tim-3, which is co-expressed with PD-1 in

multiple preclinical models. Indeed, in an animal model

of acute myelogenous leukemia (AML), blockade of PD-

1 or Tim-3 alone was insufficient to rescue mice from

cancer progression, while blockade of both pathways

resulted in additive disease protection [38]. Similarly,

PD-1/Tim-3 co-expression has been reported on NY-

ESO-1 specific CD8+ T cells from melanoma patients

[39], reinforcing the notion that other checkpoints likely

cooperate with PD-1 to control anti-tumor immunity.

Determining the relative expression of relevant check-

point molecules in the tumor microenvironment, or in

tumor draining lymph nodes, should provide key insights

into combinatorial treatment strategies for clinical

exploration.

Clinical translation
An understanding of PD-1 pathway biology and the

preclinical demonstration of its pivotal role in immuno-

suppression have fueled the clinical development of PD-

1 pathway blockade for cancer therapy. There are cur-

rently four anti-PD-1 agents in the clinic: MDX-1106/

BMS-936558/ONO-4538, CT-011, MK-3475, and AMP-

224. The first three are reported to be PD-1 blocking

mAbs, while the last is a B7-DC/IgG1 fusion protein

(Table 1).
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Table 1

PD-1 and B7-H1/PD-L1 blocking agents currently in clinical testing.a

Source Target molecule

PD-1 B7-H1/PD-L1

Amplimmune Inc./GlaxoSmithKline AMP-224 (B7-DC/IgG1 fusion protein) N/A

Bristol-Myers Squibb MDX-1106/BMS-936558/ONO-4538

(fully human IgG4 mAb)

MDX-1105/BMS-936559

(fully human IgG4 mAb)

CureTech/Teva CT-011 (humanized IgG1 mAb) N/A

Merck MK-3475 (humanized IgG4 mAb) N/A

a Information about clinical trials can be found at ClinicalTrials.gov, http://www.clinicaltrials.gov.
To date, most clinical experience with PD-1 blockade

has been gained with MDX-1106. The first-in-human

phase I trial of this fully human IgG4 mAb employed

intermittent dosing in patients with treatment-refrac-

tory metastatic solid tumors, allowing detailed analysis

of pharmacokinetics (PK) and pharmacodynamics over a

wide dose range [40��]. Clinical activity was observed in

patients with melanoma, renal cell carcinoma, colorectal

cancer and non-small cell lung cancer (NSCLC). Tumor

cell surface expression of B7-H1/PD-L1 in pretreatment

biopsies emerged as a potential biomarker of response,

consistent with pathway biology. Unexpectedly, the

pharmacodynamic effects of PD-1 receptor occupancy

by MDX-1106 were prolonged well beyond the

measured half-life of 12–20 days, indicating the bio-

logical durability of this high-affinity mAb. An ongoing

follow-up trial of biweekly MDX-1106 administration

has already shown durable complete or partial tumor

regressions in approximately one-third of patients with

advanced melanoma and kidney cancer, with confirmed

activity against NSCLC (Sznol M, et al., abstract 2506 in

J Clin Oncol 2010, 28:Suppl. 15s). The activity of anti-

PD-1 against NSCLC, long thought to be a ‘non-immu-

nogenic’ tumor, suggests the potential for PD-1 block-

ade to reactivate endogenous anti-tumor immunity in a

wide spectrum of malignancies. Grade �3 adverse

clinical events occurred in approximately 12% of

patients, and included immune-related phenomena

similar to those encountered with anti-CTLA-4 therapy

(McDermott DF, et al., abstract 331 in J Clin Oncol
2011,29:Suppl. 7).

Another PD-1 blocking mAb, MK-3475, recently entered

phase I clinical evaluation for cancer therapy. In contrast

to the fully human MDX-1106, MK-3475 is a humanized

mAb. However, similar to MDX-1106, its engineered

IgG4 isotype is designed to obviate antibody-dependent

cellular cytotoxicity (ADCC) and complement-mediated

cytotoxicity (CMC).

Two anti-PD-1 agents with IgG1 isotypes may coordi-

nately activate T cell-mediated and innate anti-tumor

immunity. CT-011, a humanized mAb, was first tested in

a single-dose regimen in 17 patients with advanced
Current Opinion in Immunology 2012, 24:207–212 
hematologic malignancies [41], and was generally well

tolerated. A complete response in a previously untreated

patient with follicular B cell lymphoma and a minor

response in a patient with refractory AML were reported.

CT-011 is currently undergoing further testing in next-

generation clinical trials for patients with advanced hema-

tologic malignancies and a variety of solid tumors. In vitro
studies have demonstrated its capacity to activate human

NK cells against multiple myeloma, suggesting engage-

ment of the innate immune system [42]. Finally, AMP-

224, a recombinant protein fusing the extracellular

domain of human B7-DC/PD-L2 to IgG1, also com-

menced phase I clinical testing in 2011 for patients with

treatment-refractory metastatic cancers. On the basis of

its composition, AMP-224 has the potential to block the

inhibitory B7-DC:PD-1 interaction while engaging NK

cells.

A blocking antibody against the ligand B7-H1/PD-L1

(MDX-1105/BMS-936559) is also currently in phase I

clinical testing in patients with advanced solid tumors,

and it has shown preliminary evidence of activity against

melanoma, kidney cancer and NSCLC. These comp-

lementary results further validate the PD-1 pathway as

a target for immunotherapy.

Conclusions
Despite early successes with monotherapies blocking

PD-1 pathways, preclinical models indicate that combi-

natorial therapies will deliver maximum clinical impact.

Several clinical trials are already planned or in progress,

combining anti-PD-1 mAbs with cancer vaccines (mela-

noma, prostate cancer, renal cell carcinoma, AML), anti-

tumor mAbs (lymphoma), or chemotherapies (pancreatic

cancer, NSCLC). These synergistic treatment strategies

will provide a foundation for the next generation of

clinical investigations.
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