
USOO841 8250B2

(12) United States Patent (10) Patent No.: US 8,418,250 B2
Morris et al. (45) Date of Patent: Apr. 9, 2013

(54) METHODS AND APPARATUS FOR DEALING 2003/0084323 A1* 5/2003 Gales T13/200
2003/0101381 A1 5/2003 Mateev

WITH MALWARE 2003/O135791 A1 7/2003 Natvig
2003/0177394 A1* 9, 2003 DOZOrtsev T13 201

(75) Inventors: Melvyn Morris, Turnditch (GB); Paul 2004/OOO6704 A1 1/2004 Dahlstrom
Stubbs, Wyboston (GB); Markus 2004/0039921 A1 2/2004 Chuang
Hartwig, Milton Keynes (GB); Darren 2004/0068,618 A1 4/2004 Hooker
Harter, Hucclecote (GB) 2004/0083408 A1 4, 2004 Spiegel

(Continued)
(73) Assignee: PrevX Limited (GB)

FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this EP 1280 040 1, 2003
patent is extended or adjusted under 35 EP 1315 066 5, 2003
U.S.C. 154(b) by 1111 days. (Continued)

(21) Appl. No.: 11/477,807 OTHER PUBLICATIONS

(22) Filed: Jun. 30, 2006 U.S Appl. No. 60/789,156.
(Continued)

(65) Prior Publication Data
Primary Examiner — Cordelia Zecher

US 2007/OO16953 A1 Jan. 18, 2007 (74) Attorney, Agent, or Firm — Sheridan Ross P.C.

(30) Foreign Application Priority Data (57) ABSTRACT

Jun. 30, 2005 (GB) O513375.6 In one aspect, a method of classifying a computer object as
malware includes receiving at a base computer data about a

(51) Int. Cl. computer object from each of plural remote computers on
G06F2L/00 (2006.01) which the object or similar objects are stored. The data about

(52) U.S. Cl. ... 726/24 the computer object received from the plural computers is
(58) Field of Classification Search 726/24 compared in the base computer. The computer object is clas

See application file for complete search history. sified as malware on the basis of said comparison. In one
embodiment, the data about the computer object includes one

(56) References Cited or more of executable instructions contained within or con
stituted by the object; the size of the object; the name of the

U.S. PATENT DOCUMENTS object; the logical storage location or path of the object on the
6,338,141 B1 1, 2002 Wells respective remote computers; the vendor of the object; the
6,772,346 B1 8, 2004 Chess Software product and version associated with the object; and,
9. R: 58. P.al events initiated by or involving the object when the object is
7,093.339 B1 8, 2006 VA Made created, configured or runs on the respective remote comput

2001/0052014 A1* 12/2001 Sheymov et al. 709/225 erS.
2002/0099952 A1* 7/2002 Lambert et al. T13/200
2003/0O23857 A1 1/2003 Hinchlife 30 Claims, 3 Drawing Sheets

3.

Allow
TORUN

MONITOR

A.O.
ORN

MONITOR

CREATE
iASK

ÉEHAVORN
ASK?

3.

3

IPR2023-00289
CrowdStrike EX1001 Page 1

US 8,418.250 B2
Page 2

U.S. PATENT DOCUMENTS WO 03/021402 3, 2003
2004/008381.0 A1 5, 2004 Racine WO WO 03/021402 A2 3, 2003

WO 2004/0976O2 11, 2004
2004.0153644 A1 8, 2004 McCorkendale WO WO 2004/0976O2 A2 11/2004
2004/O2551.65 A1 12, 2004 SZOr
2005/002 1994 A1 1/2005 Barton et al. T13/200 OTHER PUBLICATIONS
2005/0022014 A1 1/2005 Shipman

388-36 A1 338 SE U.S. Appl 1 1/694,261.
38885 A. ck 38. Real 707/10 “Ghostbuster 3”. Mihai Chirac, pp. 1-7. PrevX1 Sep. 2005.
2008/0209562 A1 8, 2008 SZOr . A. Stephan; "Defeating Polymorphism: Beyond Emuliation': Virus

2008/0320595 A1 12/2008 van der Made Bulletin Conference; Oct. 2005.
2009/0271867 A1 10/2009 Zhang Japanese Office Action issued in JP 2008-518975 on Sep. 13, 2011.

English Language Translation of Japanese Office Action issued in JP
FOREIGN PATENT DOCUMENTS 2008-518975 on Sep. 13, 2011.

EP 1549 O12 12/2003 English Language Abstract and Translation of JP6-1 10718 published
EP 1280 040 A3 3, 2004 Apr. 22, 1994.
EP 1549 O12 6, 2005 English Language Abstract of JP 3-233629 published Oct. 17, 1991.
EP 1549 O12 A1 6, 2005 English Language Abstract of JP 2003-1961 12 published Jul. 11,
EP 1536341 A2 6, 2005 2003.
JP 3-233629 10, 1991 International Search Report issued in PCT/GB2006/002439 issued
JP 6-1 10718 4f1994 Jan. 15, 2007.

E. 2006.R. ;38. Zenkin, D., “Fighting Against the Invisible Enemy Methods for
WO WO 65f12162 5, 1995 detecting an unknown virus' Computers & Security, Elsevier Science
WO WO96,3O829 10, 1996 Publishers; Amsterdam, NL; vol. 20; No. 4; Jul. 31, 2001; pp. 316
WO WO99, 15966 4f1999 321, XP00425.4268.
WO O2,33525 4/2002
WO WOO2,33525 A2 4, 2002 * cited by examiner

IPR2023-00289
CrowdStrike EX1001 Page 2

U.S. Patent Apr. 9, 2013 Sheet 1 of 3 US 8,418,250 B2

NERNE
?

IPR2023-00289
CrowdStrike EX1001 Page 3

U.S. Patent Apr. 9, 2013 Sheet 2 of 3 US 8,418,250 B2

REMOTE COMPER

23

NKNOWN

28
CREATE
SG

CO, NY DAAEASE

REQUES
COPY OF
FIE FROM
OCA PC

IPR2023-00289
CrowdStrike EX1001 Page 4

U.S. Patent Apr. 9, 2013 Sheet 3 of 3 US 8,418,250 B2

16EHAVIORY
* WHIN >

NMASK21
NO

YES

..

MASK

OCA
SECURY
PRODUCS
WERSIONS

ONLCAL SIGNARE ".
dra XXXX XXXX XXX-XXXX XXX XXXX-XXXXI X 42

XXX XXX XXX-XXXX XXX XXXX-XXXX XXX XXV ro SEARCH

COAUNTY
BCRBA

PROCESSES
toW ONEHA

vXXXXX XXXYYXXX XXX XXX XXXYYXXX XXX XXX XXX CORBNATON

DSPLAY
NOA

IPR2023-00289
CrowdStrike EX1001 Page 5

US 8,418,250 B2
1.

METHODS AND APPARATUS FOR DEALING
WITH MALWARE

The present invention relates generally to methods and
apparatus for dealing with malware. In one aspect, the present
invention relates to a method and apparatus for classifying a
computer object as malware. In another aspect, the present
invention relates to a method and apparatus for determining
the protection that a remote computer has from malware. In
another aspect, the present invention relates to a method and
apparatus for classifying a computer object as malware or as
safe. In another aspect, the present invention relates to a
method of installing Software on a computer.
The term “malware' is used herein to refer generally to any

executable computer file or, more generally “object', that is
or contains malicious code, and thus includes viruses, Tro
jans, worms, spyware, adware, etc. and the like.
A typical anti-malware product, Such as anti-virus scan

ning software, scans objects or the results of an algorithm
applied to the object or part thereof to look for signatures in
the object that are known to be indicative of the presence of a
virus. Generally, the method of dealing with malware is that
when new types of malware are released, for example via the
Internet, these are eventually detected. Once new items of
malware have been detected, then the service providers in the
field generate signatures that attempt to deal with these and
these signatures are then released as updates to their anti
malware programs. Heuristic methods have also been
employed.

These systems work well for protecting against known
malicious objects. However, since they rely on signature files
being generated and/or updated, there is inevitably a delay
between a new piece of malware coming into existence or
being released and the signatures for combating that malware
being generated or updated and Supplied to users. Thus, users
are at risk from new malware for a certain period of time
which might be up to a week or even more. Moreover, in order
to try to defeat anti-virus products, the malware writers use
obfuscation techniques in order to attempt to hide the signa
ture or signature base data of the virus code from detection.
Typically, the obfuscation involves encrypting or packing the
viral code.
WO-A-2004/097602 describes a system that analyses

computer files received or generated by a local computer and
compares these with a database of known files to determine
whether aparticular file is known and if so whetherit has been
known about long enough that it can be regarded as 'safe'.
However, in practice, on its own this is not likely to provide
for adequate protection because, for example, the active pay
load of a virus or Trojan may only be programmed to activate
at a particular date, or upon receiving a message or instruction
from a local or remote system or process, or on the occurrence
of a particular event that may be many months or even years
after the process has been first run or is released. Thus, just
looking at the age of a file is an unsatisfactory way of deter
mining whether it is properly safe and will remain So.

In the system of US-A-2004/0083408, a worm in a file is
detected by examining connection attempts made by the spe
cific file running on a computer.

U.S. Pat. No. 6,944,772, U.S. Pat. No. 6,772,346, EP-A-
1549012 and EP-A-1280040 all disclose “community
based' anti-malware systems in which a plurality of “local
computers all connect via a network (which may be a LAN or
the Internet, for example) to a central computer. On encoun
tering a file that is not already known to them, the local
computers send a request to the central computer for autho
risation to run the file. If the file is recognised at the central

5

10

15

25

30

35

40

45

50

55

60

65

2
computer, then the central computer can send permission for
the local computer to run the file if the file is known to be safe
or send a “deny’ command if the file is known to be mali
cious. However, in each of these prior art proposals, if the file
is not known at the central computer, then the whole file is
sent to the central computer where it can be analysed to
determine whether it should be regarded as safe or malware.
Such analysis is typically carried out manually or 'semi
manually’ by subjecting the file to detailed analysis, for
example by emulation or interpretation, which can still take
days given the human involvement that is typically required.
There is therefore still a considerable period of time before a
new file is classified as safe or as malware. In the case of these
prior art systems, the request for authorisation to run the file
that is sent by a local computer to the central computer may
comprise sending a checksum or 'signature' or "key that
uniquely represents the file.
A similar community-based anti-malware system is dis

closed in WO-A-02/33525. In this system, in the case that a
local computer is seeking clearance to run a file that is not
known by the central computer to be safe or malware, some
limited audit information about the prevalence of the file on
other local computers can be sent to a human system admin
istrator associated with the local computer that is seeking
permission to run the file. The human system administrator
can therefore make a better informed though still “manual
decision as to whether or not the file is safe to run.

In the system of US-A-2004/0073810, a metafile contain
ing data about an attachment or other transmitted file is sent to
a central computer. The data about that file is analysed to
determine a likelihood of the transmitted file being malware.
A specific example given is that if the transmitted file has been
transmitted via at least a certain number of servers, then it
should be treated as malware.

In the systems disclosed in US-A-2005/0021994 and
US-A-2004/0153644, pre-approved files, which may be cer
tified as safe by for example the software vendor associated
with the files, may be permitted always to run without further
checking. In one embodiment of the system of US-A-2004/
0153644, monitoring is carried out to decide that a file is
malicious if an abnormally high number of requests by that
file is received at a central authority from plural local com
puters in a time period or if an abnormally high number of
requests by that file on a single computer is received from the
single local computer in a time period.

In the system of US-A-2004/0006704, a comparison is
made between installed versions of software on a computer
with a database of software versions and their known Vulner
abilities. A user of the computer can therefore be informed of
specific risks and how to minimise those risks by updating
existing or installing new software.

In the system of WO-A-03/021402, a central database
holds a virtual image of all files stored on each of plural local
computers. If a threatin one local computeris identified, other
local computers with a similar configuration can be notified
of the risk.

Thus, the prior art systems either rely on deep analysis of a
new object in order to determine whether or not the object is
malicious, which introduces delay and therefore risk to users
during the period that the file is analysed and new anti-mal
ware signatures distributed, or limited analysis of the opera
tion of the particular object or its method of transmission to a
computer is carried out to decide a likelihood of the object
being malicious.

According to a first aspect of the present invention, there is
provided a method of classifying a computer object as mal
ware, the method comprising:

IPR2023-00289
CrowdStrike EX1001 Page 6

US 8,418,250 B2
3

at a base computer, receiving data about a computer object
from each of plural remote computers on which the object or
similar objects are stored;

comparing in the base computer the data about the com
puter object received from the plural computers; and,

classifying the computer object as malware on the basis of
said comparison.
Compared to the prior art that relies solely on signature

matching, this aspect allows a comparison to be made
between the objects and/or their effects on the different
remote computers to determine whether or not a particular
object should be classed as good or as malware. Sophisticated
pattern analysis can be carried out. This allows a rapid deter
mination of the nature of the object to be made, without
requiring detailed analysis of the object itself as such to
determine whether it malware and also avoids the need to
generate new signatures to be used for signature matching as
in the conventional prior art anti-virus Software.

In a preferred embodiment, the data about the computer
object that is sent from the plural remote computers to the
base computer and that is used in the comparison includes one
or more of executable instructions contained within or con
stituted by the object; the size of the object; the current name
of the object; the physical and folder location of the object on
disk; the original name of the object; the creation and modi
fication dates of the object; vendor, product and version and
any other information stored within the object; the object
header or header held by the remote computer; and, events
initiated by or involving the object when the object is created,
configured or runs on the respective remote computers.

Preferably, the comparing identifies relationships between
the object and other objects. In an example, this can be used
immediately and automatically to mark a child object as bad
(or good) if the or a parent or other related object is bad (or
good). Thus, if at least one other object to which said object is
related is classed as malware, then the method may comprise
classifying said object as malware. Said other objects include
the object or similar objects stored on at least some of the
remote computers. Said other objects may include other
objects that are parent objects or child objects or otherwise
process-related objects to said object.

In a most preferred embodiment, the data is sent in the form
of key that is obtained by a hashing process carried out in
respect of the objects on the respective remote computers. A
major advantage of using Such a key is that it keeps down the
Volume of data that needs to be transmitted to the base com
puter. Given that there may be thousands or even millions of
connected remote computers and further given that each may
send details about very many objects, this can be an important
advantage.
The key preferably has at least one component that repre

sents executable instructions contained within or constituted
by the object. This important preferred feature allows a com
parison to be made at the base computer of only the execut
able instructions of the object. This means for example that
differently named objects that basically have the same execut
able instructions, which is often an indicator that the objects
are malware, can nevertheless be regarded as the “same
object for this purpose. As another example, a new version of
a program may be released which has minor changes com
pared to a previous version already known to the base com
puter and which in Substance, at least in respect of the execut
able instructions, can be regarded as being the same as the
previous version. In that case, the minor differences can be
ignored and the objects regarded as being the same. Not only
is this useful in distinguishing between malware and for
example revised versions of previous Software, it also keeps

10

15

25

30

35

40

45

50

55

60

65

4
down the data transmission and storage requirements because
the base computer can inform the remote computers that an
apparently new object is for this purpose the same as a pre
viously known object, thus avoiding having the remote com
puters send full details about the object or the object itself to
the base computer.
The key preferably has at least one component that repre

sents data about said object. Said data about said object may
include at least one of the current name of the object; the
physical and folder location of the object on disk; the original
name of the object; the creation and modification dates of the
object; vendor, product and version and any other information
stored within the object; the object header or header held by
the remote computer, and, events initiated by or involving the
object when the object is created, configured or runs on the
respective remote computers.
The key preferably has at least one component that repre

sents the physical size of the object.
Where more than one of these components are present in

the key, the plural components are preferably severable.
The method may comprise initially classifying an object as

not malware, generating a mask for said object that defines
acceptable behaviour for the object, and comprising monitor
ing operation of the object on at least one of the remote
computers and reclassifying the object as malware if the
actual monitored behaviour extends beyond that permitted by
the mask. This provides an efficient and effective way of
monitoring the behaviour of an object that has been classified
or regarded as good and allows the object to be reclassified
quickly as malware if the behaviour of the object warrants it.

According to a second aspect of the present invention, there
is provided apparatus for classifying a computer object as
malware, the apparatus comprising:

a base computer constructed and arranged to receive data
about a computer object from each of plural remote comput
ers on which the object or similar objects are stored;

the base computer being constructed and arranged to com
pare the data about the computer object received from said
plural computers; and,

the base computer being constructed and arranged to clas
Sify the computer object as malware on the basis of said
comparison.

According to a third aspect of the present invention, there is
provided a method of providing data about a computer object
from a remote computer to a base computer so that a com
parison can be made at the base computer with similar data
received from other remote computers, the method compris
ing:

providing from a remote computer to a base computer data
about a computer object that is stored on the remote com
puter;

the data including one or more of executable instructions
contained within or constituted by the object; the size of the
object; the current name of the object; the physical and folder
location of the object on disk; the original name of the object;
the creation and modification dates of the object; vendor,
product and version and any other information stored within
the object; the object header or header held by the remote
computer, and, events initiated by or involving the object
when the object is created, configured or runs on the respec
tive remote computers;

the data being sent in the form of key that is obtained by a
hashing process carried out in respect of the object on the
remote computer.

This method, which may be carried out by so-called agent
Software running on the remote computer, allows for efficient
sending of data to the base computer, which minimises data

IPR2023-00289
CrowdStrike EX1001 Page 7

US 8,418,250 B2
5

transmission and storage requirements and also permits rapid
analysis to be made at the base computer.
The key preferably has at least one component that repre

sents executable instructions contained within or constituted
by the object.

The key preferably has at least one component that repre
sents data about said object. Said data about said object may
include at least one of the current name of the object; the
physical and folder location of the object on disk; the original
name of the object; the creation and modification dates of the
object; vendor, product and version and any other information
stored within the object; the object header or header held by
the remote computer; and, events initiated by or involving the
object when the object is created, configured or runs on the
respective remote computers.
The key preferably has at least one component that repre

sents the physical size of the object.
According to a fourth aspect of the present invention, there

is provided a method of determining the protection that a
remote computer has from malware, the method comprising:

receiving at a base computer details of all or selected Secu
rity products operating at a point in time on said remote
computer;

receiving similar information from other remote comput
ers connected to the base computer; and,

identifying any malware processes that were not identified
by said other remote computers having that particular com
bination of security products.

In this way, the base computer can be used to obtain infor
mation as to whether for example a particular, specific com
bination of operating system and various security products,
including settings and signature files existing at a point in
time, renders a particular computer having those products and
settings Susceptible or Vulnerable to any particular malware
object. The user can be advised accordingly and for example
provided with recommendations for remedying the situation.
The method may therefore comprise providing informa

tion to the user of said remote computer that said remote
computer may be susceptible to attack by said malware pro
cesses on the basis of said identifying.
The details of all or selected security products preferably

includes the name of the security products, versions, and
loaded signature files.

According to a fifth aspect of the present invention, there is
provided apparatus for determining the protection that a
remote computer has from malware, the apparatus compris
ing:

a base computer constructed and arranged to receive com
puter details of all or selected Security products operating at a
point in time on said remote computer;

the base computer being constructed and arranged to
receive similar information from other remote computers
connected to the base computer; and,

the base computer being constructed and arranged to iden
tify any malware processes that were not identified by said
other remote computers having that particular combination of
security products.

According to a sixth aspect of the present invention, there
is provided a method of classifying a computer object as
malware or as safe, wherein said computer object is a descen
dant or otherwise related object of a first computer object, the
method comprising:

classifying a first computer object as malware or as safe;
identifying in a key relating to said first computer object a

component that uniquely identifies the first computer object

10

15

25

30

35

40

45

50

55

60

65

6
and that is inherited or otherwise present in the key of a
descendant or other related computer object of the first com
puter object; and,

classifying said computer object as malware or as safe as
the case may be on the basis of the unique identifier compo
nent being present in the key of said computer object.

This aspect uses the concept of ancestry to enable objects to
be marked as malware. For example, any particular process
may spawn child processes which are therefore related. The
key relating to the first object may be inspected to identify a
component that uniquely identifies the first object and that is
inherited or otherwise present in the key of a descendant or
other related object of the first object.
The method may comprise monitoring activities of said

first computer object and reclassifying the first computer
object as malware in the case that it was initially classified as
safe and Subsequently determined to be malware, the method
further comprising automatically classifying as malware any
computer object that has a key in which said unique identifier
component is present.

According to a seventh aspect of the present invention,
there is provided apparatus for classifying a computer object
as malware or as safe, wherein said computer object is a
descendant or otherwise related object of a first computer
object, the apparatus comprising:

a computer constructed and arranged to classify a first
computer object as malware or as safe;

the computer being constructed and arranged to identify in
a key relating to said first computer object a component that
uniquely identifies the first computer object and that is inher
ited or otherwise present in the key of a descendant or other
related computer object of the first computer object; and,

the computer being constructed and arranged to classify
said computer object as malware or as safe as the case may be
on the basis of the unique identifier component being present
in the key of said computer object.

According to an eighth aspect of the present invention,
there is provided a method of installing Software on a com
puter, the method comprising:

on initiation of installation of Software on a computer,
providing a computer-generated prompt on the computer to a
user to ascertain whether the user authorises the installation;
and,

ceasing the installation if a user authorisation is not
received, else:

receiving at the computer the user's authorisation to pro
ceed with the installation;

proceeding with the installation;
obtaining data about computer objects that are created or

used during the installation;
storing said data at the local computer.
This provides for security when a user is installing new

Software and is not for example connected to a base computer
having a community database of the type mentioned above. In
that case, the method, which may be implemented in agent
Software running on the local computer, allows the user to
permit the installation to proceed whilst at the same time
gathering data about the objects (such as processes, new files,
etc.) that are created during the installation.

Preferably, the locally stored data is referred to during the
installation to ensure that all objects created or used during
the installation are part of the installation process, and, if it is
found that objects created or used during the installation are
not part of the installation process, either or both of: (i)
ceasing the installation and (ii) providing a computer-gener
ated prompt on the computer to the user accordingly. This
allows the method to ensure that only those objects that are

IPR2023-00289
CrowdStrike EX1001 Page 8

US 8,418,250 B2
7

required for the installation are permitted to be created or used
and thus avoids unwittingly allowing malware to install
(given that malware often creates objects that are not expected
as part of a normal installation of new software).

In a preferred embodiment, the method comprises connect
ing the computer to a community database that is connectable
to a plurality of computers, and uploading the stored data to
the community database for comparison with similar data
provided by other computers.
The method may comprise downloading data about trusted

installers to the computer, said data about trusted installers
being referred to during the installation Such that any objects
relating to or created by the trusted installer are automatically
authorised to proceed. This facilitates installation of software
that is known a priori to be trustworthy.

Said data about trusted installers may be referred to only
for a predetermined time period following receipt at the com
puter of the user's authorisation to proceed with the installa
tion.

The present invention also includes computer programs
comprising program instructions for causing a computer to
perform any of the methods described above.

Although the embodiments of the invention described with
reference to the drawings comprise computer processes per
formed in computer apparatus and computer apparatus itself.
the invention also extends to computer programs, particularly
computer programs on or in a carrier, adapted for putting the
invention into practice. The program may be in the form of
Source code, object code, a code intermediate source and
object code such as in partially compiled form, or in any other
form suitable for use in the implementation of the processes
according to the invention. The carrier be any entity or device
capable of carrying the program. For example, the carrier may
comprise a storage medium, Such as a ROM, for example a
CD ROM or a semiconductor ROM, or a magnetic recording
medium, for example a floppy disk or hard disk. Further, the
carrier may be a transmissible carrier Such as an electrical or
optical signal which may be conveyed via electrical or optical
cable or by radio or other means.

Embodiments of the present invention will now be
described by way of example with reference to the accompa
nying drawings, in which:

FIG. 1 shows schematically apparatus in which an embodi
ment of the present invention may be implemented;

FIG. 2 is a flowchart showing schematically the operation
of an example of a method according to an embodiment of the
present invention;

FIG. 3 is a flowchart showing schematically the operation
of another example of a method according to an embodiment
of the present invention; and,

FIG. 4 is a flowchart showing schematically an information
obtaining stage.

Referring to FIG. 1, a computer network is generally
shown as being based around a distributed network Such as
the Internet 1. The present invention may however be imple
mented across or use other types of network, Such as a LAN.
Plural local or “remote' computers 2 are connected via the
Internet 1 to a “central' or “base' computer 3. The computers
2 may each be variously a personal computer, a server of any
type, a PDA, mobile phone, an interactive television, or any
other device capable of loading and operating computer
objects. An object in this sense may be a computer file, part of
a file or a Sub-program, macro, web page or any other piece of
code to be operated by or on the computer, or any other event
whether executed, emulated, simulated or interpreted. An
object 4 is shown schematically in the figure and may for

10

15

25

30

35

40

45

50

55

60

65

8
example be downloaded to a remote computer 2 via the Inter
net 1 as shown by lines 5 or applied directly as shown by line
6.

In one preferred embodiment, the base computer 3 holds a
database 7 with which the remote computers 2 can interact
when the remote computers 2 run an object 4 to determine
whether the object 4 is safe or unsafe. The community data
base 7 is populated, over time, with information relating to
each object run on all of the connected remote computers 2.
As will be discussed further below, data representative of
each object 4 preferably takes the form of a so-called signa
ture or key relating to the object and its effects. As will also be
discussed further below, the database 7 may further include a
mask for the object 4 that sets out the parameters of the
object’s performance and operation.

Referring now to FIG. 2, at the start point 21, a computer
object 4 such as a process is run at a remote computer 2. At
step 22, by operation of local "agent” software running on the
remote computer 2, the operation of the process is hooked so
that the agent Software can search a local database stored at
the remote computer 2 to search for a signature or key repre
senting that particular process, its related objects and/or the
event. If the local signature is present, it will indicate either
that the process is considered to be safe or will indicate that
that process is considered unsafe. An unsafe process might be
one that has been found to be malware or to have unforeseen
or known unsafe or malevolent results arising from its run
ning. If the signature indicates that the process is safe, then
that process or event is allowed by the local agent Software on
the remote computer 2 to run at step 23. If the signature
indicates that the process is not safe, then the process or event
is stopped at Step 24.

It will be understood that there may be more than two states
than “safe' or “not-safe' and choices may be given to the user.
For example, if an object is considered locally to be not safe,
the user may be presented with an option to allow the related
process to run nevertheless. It is also possible for different
states to be presented to each remote computer 2. The state
can be varied by the central system to take account of the
location, status or ownership of the remote computer or time
frame.

If the object is unknown locally, then details of the object
are passed over the Internet 1 or other network to the base
computer 3 for storing in the community database 7 and
preferably for further analysis at the base computer 3. In that
case, the community database 7 is then searched at step 25 for
a signature for that object that has already been stored in the
community database 7. The community database 7 is Sup
plied with signatures representative of objects, such as pro
grams or processes, run by each monitored remote computer
2. In a typical implementation in the field, there may be
several thousands or even millions of remote computers 2
connected or connectable to the base computer 3 and so any
objects that are newly released upon the Internet 1 or that
otherwise are found on any of these remote computers 2 will
Soon be found and signatures created and sent to the base
computer 3 by the respective remote computers 2.
When the community database 7 is searched for the signa

ture of the object that was not previously known at the remote
computer 2 concerned, then if the signature is found and
indicates that that object is safe, then a copy of the signature
or at least a message that the object is safe is sent to the local
database of the remote computer 2 concerned at step 26 to
populate the local database. In this way, the remote computer
2 has this information immediately to hand the next time the

IPR2023-00289
CrowdStrike EX1001 Page 9

US 8,418,250 B2

object 4 is encountered. A separate message is also passed
back to the remote computer 2 to allow the object to run in the
current instance.

If the signature is found in the community database 7 and
this indicates for some reason that the object is unsafe, then
again the signature is copied back to the local database and
marked "unsafe' at Step 27, and/or a message is sent to the
remote computer 2 so that running of the object is stopped (or
it is not allowed to run) and/or the user given an informed
choice whether to run it or not.

If after the entire community database 7 has been searched
the object is still unknown, then it is assumed that this is an
entirely new object which has never been seen before in the
field. A signature is therefore created representative of the
object at step 28, or a signature sent by the remote computer
2 is used for this purpose, and this signature is initially marked
as bad or unsafe community database 7 at step 29. The sig
nature is copied to the local database of the remote computer
2 that first ran the object at step 30. A message may then be
passed to the remote computer 2 to instruct the remote com
puter 2 not to run the object or alternatively the user may be
given informed consent as to whether to allow the object to
run or not. In addition, a copy of the object itself may be
requested at step 31 by the community database 7 from the
remote computer 2.

If the user at the remote computer 2 chooses to run a
process that is considered unsafe because it is too new, then
that process may be monitored by the remote computer 2
and/or community database 7 and, if no ill effect occurs or is
exhibited after a period of time of n days for example, it may
then be considered to be safe. Alternatively, the community
database 7 may keep a log of each instance of the process
which is found by the many remote computers 2 forming part
of the network and after a particular number of instances have
been recorded, possibly with another particular number of
instances or the process being allowed to run and running
safely, the signature in the community database 7 may then be
marked as safe rather than unsafe. Many other variations of
monitoring safety may be done within this concept.
The details of an object 4 that are passed to the base com

puter 3 are preferably in the form of a signature or “key” that
uniquely identifies the object 4. This is mainly to keep down
the data storage and transmission requirements. This key may
beformed by a hashing function operating on the object at the
remote computer 2.
The key in the preferred embodiment is specially arranged

to have at least three severable components, a first of said
components representing executable instructions contained
within or constituted by the object, a second of said compo
nents representing data about said object, and a third of said
components representing the physical size of the object. The
data about the object in the second component may be any or
all of the other forms of identity such as the file's name, its
physical and folder location on disk, its original file name, its
creation and modification dates, Vendor, product and version
and any other information stored within the object, its file
header or header held by the remote computer 2 about it; and,
events initiated by or involving the object when the object is
created, configured or runs on the respective remote comput
ers. In general, the information provided in the key may
include at least one of these elements or any two or more of
these elements in any combination.

In one preferred embodiment, a checksum is created for all
executable files, such as (but not limited to).exe and .dll files,
which are of the type PE (Portable Executable file as defined
by Microsoft). Three types of checksums are generated
depending on the nature of the file:

5

10

15

25

30

35

40

45

50

55

60

65

10
Type 1: five different sections of the file are check summed.

These include the import table, a section at the beginning and
a section at the end of the code section, and a section at the
beginning and a section at the end of the entire file. This type
applies to the vast majority of files that are analysed;
Type 2: for old DOS or 16 bit executable files, the entire file

is check Summed;
Type 3: for files over a certain predefined size, the file is

sampled into chunks which are then check summed. For files
less than a certain predefined size, the whole file is check
Summed.

For the check Summing process, in principle any technique
is possible. The MD5 (Message-Digest algorithm 5) is a
widely-used cryptographic hash function that may be used for
this purpose.

This allows a core checksum to be generated by viewing
only the executable elements of the checksum and making a
comparison between two executables that share common
executable code.

For the type 1 checksum mentioned above, three signature
processes may be used. The first defines the entire file and will
change with almost any change to the file's content. The
second attempts to define only the processing instructions of
the process which changes much less. The third utilises the
file's size, which massively reduces the potential of collisions
for objects of differing sizes. By tracking the occurrences of
all signatures individually appearing with different counter
parts, it is possible to identify processes that have been
changed or have been created from a common point but that
have been edited to perform new, possibly malevolent func
tionality.

This “metadata enables current and newly devised heu
ristics to be run on the data in the community database 7.
The data stored in the community database 7 provides an

extensive corollary of an object's creation, configuration,
execution, behaviour, identities and relationships to other
objects that either act upon it or are acted upon by it.
The preferred central heuristics use five distinct processes

to establish if an object is safe, unsafe or Suspicious.
The first of the said processes utilises the singularity or

plurality of names, locations, vendor, product and version
information captured and correlated from all of the remote
computers 2 that have seen the object. By considering the
plurality of this information for a single object, a score can be
determined which can be used as a measure of the authenticity
and/or credibility of the object. Most safe objects tend not to
use a large plurality of identifying information or locations.
Rules can be established to consider this information in
respect of the type of object and its location. For example,
temporary files often utilise a plurality of system generated
file names which may differ on each remote computer for the
same object. Where an object has little plurality, then it pro
vides a reference point to consider its behaviour in compari
son to the known behaviours of other objects that have pre
viously used that identifying information. For example, a new
object that purports to be a version of notepad.exe can have its
behaviour compared with the behaviour of one or more other
objects that are also known as notepad.exe. This comparison
may be against a single other object or multiple other objects
that use the same or even similar identifying information. In
this way, new patterns of behaviour can be identified for the
new object. Also it allows the preferred embodiment to police
an object’s behaviour over time to identify new behavioural
patterns that may cause an object that was previously consid
ered safe to have its status reconsidered. Alternatively, the
score based on identities may be considered along with scores

IPR2023-00289
CrowdStrike EX1001 Page 10

US 8,418,250 B2
11

for other objects or scores created by other processes on this
object to be considered in combinations.
The second of the said processes utilises an object's rela

tionship to other objects that act upon it or upon which it acts.
For example, analysis can be made of which object created
this object, which objects this object created, which objects
created a registry key to run or configure this object, which
objects were configured by or had registry keys created by
this object, etc. In this regard an object is considered to have
a relationship based on the event performed by it upon
another object, or upon it by another object. This simple
1-to-1 relationship chain provides a complex series of corre
lation points, allowing ancestral relationships to be consid
ered for any object and its predecessors by event or its issue
(i.e. child and sub-child processes) by event. This allows a
score to be developed that describes its relationships and
associations with known, unknown, known safe or known bad
objects or a combination thereof. Objects that have specific
relationships, Volumes of relationships or mixes of relation
ships to one type or another may be judged safe or unsafe
accordingly. Alternatively, the relationship-based score may
be considered along with other scores to arrive at a determi
nation of safe or unsafe. This data can also be used to deduce
a number of factors about objects related directly or via other
objects and their behaviours. For example it is possible to
deduce how one object’s behaviour can be influenced or
changed by its association or linkage to another. Consider for
example notepad.exe as supplied by Microsoft with the Win
dows series of operating systems. It has a limited range of
functionality and would not be expected therefore to perform
a wide variety of events, such as transmitting data to another
computer or running other programs etc. However, the behav
iour of notepad.exe could be modified by injecting new code
into it. Such as via dynamic link library injection (DLL injec
tion). In this case notepad.exe would now have new capabili
ties derived by the code injection or linkage to another object.
Using the data that defines the relationships between objects
it is possible to deduce that the new behaviours of a program
can be attributed to the association with another object. If that
new behaviour is malevolent, then it is possible to markeither
or all processes as unsafe as appropriate.
The combination of behaviours captured provide a basis to

determine if the object is safe or unsafe. Malware typically
exhibit certain behaviour and characteristics. For example,
malware frequently has a need to self-persist. This manifests
itself in the need to automatically restart on system restarts or
upon certain events. Creating objects in specific locations to
auto restart or trigger execution is a typical characteristic of
malware. Replacing core objects of the Windows system
environment are another example of typical characteristics of
malware. By providing a pattern of behaviour, the determi
nation of objects to be unsafe or safe can be automated. The
centralisation of the community data in the community data
base 7 provides the ability to rapidly assimilate object behav
iours, allowing for the rapid identification and determination
of malware. Objects may also perform events upon them
selves which can be considered in deriving a score.
The third said process involves time and volumes. Relevant

data includes when the object was first seen, when it was last
seen, how many times it has been seen, how many times it has
been seen in a given interval of time, and the increase or
decrease of acceleration in it being seen. This information is
highly relevant in determining the prevalence of an object in
the community of remote computers. A score is developed
based on these metrics which can be used to determine if an
object is safe, unsafe or too prevalent to allow it to execute or
propagate without very thorough examination. In this case,

10

15

25

30

35

40

45

50

55

60

65

12
the object can be temporarily held or blocked from executing
pending further information about its behaviour or relation
ships. This score may also be used in combination with scores
from other processes. Time is also highly relevant in combi
nation with other information, including but not limited to
behaviours and identities. For example in the case of poly
morphic or randomly named objects, time is a powerful quali
fier. (A polymorphic virus changes its encryption algorithm
and the corresponding encryption keys each time it replicates
from one computer to another and so can be difficult to detect
by conventional measures.) A program that creates other pro
grams can often be considered normal or abnormal based on
its activity over time.
The fourth said process considers the behaviour of an

object. This allows a score to be developed based on the types
of events performed by an object or events performed on it by
itself or other objects. The centralised system of the commu
nity database 7 allows for an unlimited number of event types
and can consider the object performing the event or the object
having the event performed upon it, or both. Some event types
also relate to external information other than objects, for
example a program performing an event to connect with an
Internet Chat Relay site, or a program modifying a non
executable file such as the Windows hosts file. The behav
ioural events of an object, be they as “actor” (i.e. the object
doing something to another object) or as “victim' (i.e. the
object has something done to it by another object) of any
event can be considered in many ways, such as in combina
tion, in sequence, in Volume, in presence or absence, or in any
combination thereof. The behavioural events in the preferred
embodiment may have been provided by a remote computer 2
or from other external sources. The process can consider these
in isolation or in combination. Furthermore it is a feature of
the preferred embodiment that the behavioural events can be
considered in combination with the status of other objects
upon which the object acts or that act upon the object. For
example, creating a program may have a different score if the
program being created is safe, unsafe, new, unknown or Sus
picious. Similarly, a program that is created by a known bad
program will likely have a different score attributed to its
creation event depending on the status of the object creating
it.
The fifth process considers the behaviour of a web page or

Script. In this respect, the web page and url combination is
assigned a unique identity which allows its behaviour to be
tracked as if it were an object like any other executable file. In
this example, the web page may perform events that would
normally be seen as events performed by the web browser
(e.g. IExplore.exe or Firefox.exe). The preferred embodiment
substitutes the identifying details and signatures of the web
browser for the “pseudo’ object identity associated with the
web page being displayed or executing within the browser. In
this respect, the status of the web page and/or web site to
which it relates may be determined as safe, unsafe, unknown
or Suspicious in the same way as any other object. The web
page’s “pseudo’ object identity also allows the preferred
embodiment to block, interject or limit the functionality of
that web page or web site to prevent some or all of its poten
tially unsafe behaviour or to provide the remote user with
qualifying information to guide them about the safety of the
web site, web page or their content.
Amongst other types, the types of metadata captured might

be:
“Events': these define the actions or behaviours of an

object acting upon another object or some other entity. The
event has three principal components: the key of the object
performing the act (the Actor”), the act being performed (the

IPR2023-00289
CrowdStrike EX1001 Page 11

US 8,418,250 B2
13

“EventType’), and the key of the objector identity of another
entity upon which the act is being performed (the “Victim').
While simple, this structure allows a limitless series of behav
iours and relationships to be defined. Examples of the three
components of an event might be:

Actor Event Type Victim

Object 1 Creates Program Object 2
Object 1 Sends data IPAddress 3
Object 1 Deletes Program Object 4
Object 1 Executes Object 2
Object 2 Creates registry key Object 4

“Identities': these define the attributes of an object. They
include items such as the file’s name, its physical location on
the disk or in memory, its logical location on the disk within
the file system (its path), the file’s header details which
include when the file was created, when it was last accessed,
when it was last modified, the information stored as the ven
dor, the product it is part of and the version number of the file
and it contents, its original file name, and its file size.

"Genesisactor' the key of an object that is not the direct
Actor of an event but which is the ultimate parent of the event
being performed. For example in the case of a software instal
lation, this would be the key of the object that the user or
system first executed and that initiated the software installa
tion process, e.g. Setup.exe.

Ancillary data”: many events may require ancillary data,
for example an event such as that used to record the creation
of a registry run key. In this situation the "event” would
identify the Actor object creating the registry run key, the
event type itself (e.g. “regrunkey'), and the Victim or subject
of the registry runkey. The ancillary data in this case would
define the runkey entry itself; the Hive, Key name and Value.

“Event Checksums: because the event data can be quite
large extending to several hundred bytes of information for a
single event, its identities for the Actor and Victim and any
ancillary data, the system allows for this data itself to be
summarised by the Event Checksums. Two event checksums
are used utilising a variety of algorithms, such as CRC and
Adler. The checksums are of the core data for an event. This
allows the remote computer 2 to send the checksums of the
data to the central computer 3 which may already have the
data relating to those checksums stored. In this case, it does
not require further information from the remote computer 2.
Only if the central computer 3 has never received the check
Sums will it request the associated data from the remote
computer 2. This affords a considerable improvement in per
formance for both the remote and central computers 2, 3
allowing much more effective scaling.

Thus, the meta data derived from the remote computers 2
can be used at the community database 7 to define the behav
iour of a process across the community. As mentioned, the
data may include at least one of the elements mentioned
above (file size, location, etc.) or two or three or four or five or
six or all seven (or more elements not specifically mentioned
here). This may be used accordingly to model, test and create
new automated rules for use in the community database 7 and
as rules that may be added to those held and used in the local
database of the remote computers 2 to identify and determine
the response of the remote computers 2 to new or unknown
processes and process activity.

Moreover, it is possible to monitor a processalong with any
optional Sub-processes as an homogenous entity and then
compare the activities of the top level process throughout the

5

10

15

25

30

35

40

45

50

55

60

65

14
community and deduce that certain, potentially malevolent
practices only occur when one or more specific Sub-processes
are also loaded. This allows effective monitoring (without
unnecessary blocking) of programs, such as Internet Explorer
or other browsers, whose functionality may be easily altered
by downloadable optional code that users acquire from the
Internet, which is of course the principal source of malevolent
code today.
The potentially high Volume of active users gives a high

probability of at least one of them being infected by new
malware. The speed of propagation can be detected and
recorded so that the propagation of malware can be detected
and malware designated as bad on the basis of the speed of
propagation, optionally in combination with the other factors
discussed above. Such as file size, location and name. The
simple Volume of infection can also be used as a trigger. In a
further embodiment, difference of naming of an otherwise
identical piece of code combined with acceleration of first
attempts to execute the code within the community allows
pattern matching that will show up an otherwise identically
signatured piece of code as bad.

This feature allows the statement in some embodiments
that “nothing will propagate in our community faster than X
without being locked down, so that if any process or event
propagates more quickly over a given duration, it is marked as
bad. This is for reasons of safety given that if for example an
object is propagating quickly enough, then it might infect
computers before it can be analysed to determine whether or
not it is malware.

This process can be automated by the identification of the
vector of propagation in the community (i.e. the source of
type of propagation), from timestamp data held in the com
munity database and the marking of a piece of code that has
these attributes as bad. By comparison, it is believed that all
other anti-malware providers rely on a simplistic known bad
model and therefore are reliant primarily on malware infec
tion actually occurring on terminals and being reported.

Thus, the community database 7 can be used to make early
diagnosis, or simply to take precautionary measures, and thus
stop potentially fast propagating worms and other malware
very, very early in their life cycle. Given that it is possible to
create a worm that can infect every computer connected to the
Internet within a matter of a few minutes, this feature is highly
desirable.

Even faster determination may be made by combining data
defining the speed of propagation of a new piece of software
with metadata collected by the agent software from the
remote computers 2 and fed to the community database 7.
This includes monitoring processes that attempt to conceal
themselves from the user by randomly changing name and/or
location on the remote computers 2. It also includes a pro
cess's attempt to create an identical copy (i.e. with identical
code contents) on the computer but with a different name.
This is a classic attribute of a worm.
The signature of an object may comprise or be associated

with a mask which can be built up with use of that object and
which indicates the particular types of behaviour to be
expected from the object. If an object is allowed to run on a
remote computer 2, even if the initial signature search 22
indicates that the object is safe, then operation of that object
may be monitored within the parameters of the mask. The
mask might indicate for example, the expected behaviour of
the object; any external requests or Internet connections that
that object might legitimately have to make or call upon the
remote computer 2 to make, including details of any ports or
interfaces that might be required to be opened to allow such
communication; any databases, either local or over a local

IPR2023-00289
CrowdStrike EX1001 Page 12

US 8,418,250 B2
15

area network or wide area network or Internet, that may be
expected to be interrogated by that object; and so on. Thus, the
mask can give an overall picture of the expected “normal
behaviour of that object.

In practice, therefore, in one embodiment the behaviour of
the object is continually monitored at the remote computer(s)
2 and information relating to that object continually sent to
and from the community database 7 to determine whether the
object is running within its expected mask. Any behaviour
that extends beyond the mask is identified and can be used to
continually assess whether the object continues to be safe or
not. Thus, if for example the object, on a regular basis (say
monthly or yearly) opens a new port to update itself or to
obtain regular data, then this information is flagged. If it is
found that the object has done this on other remote computers
and has had no ill effects, or this behaviour is known from
other objects and known to be safe, then this behaviour might
be considered as safe behaviour and the mask is then modified
to allow for this. If it has been found previously that this new
behaviour in fact causes unsafe or malevolent results, then the
object can then be marked as unsafe even if previously it was
considered safe. Similarly, if the object attempts to connect to
a known unsafe website, database or to take action that is
known as generally being action only taken by unsafe pro
grams, then again the object may be considered to be unsafe.

This is shown schematically in FIG. 3. FIG.3 also shows
the concept that any object can be pre-authorised by, for
example a trusted partner, such as a major software company,
a verification authority, a Government department, and so on.
Pre-authorisation enables a supplier of a new object, which
has not been released before, to get pre-authorisation for that
object, and optionally includes the provision by that supplier
of a mask detailing the expected and allowable behaviour of
that object.

Referring to FIG.3 for example, when a process is run, the
local and/or community databases are searched as before at
step 31. If the process is not a pre-authorised one, then the
steps of FIG.2 may be taken and the process might be allowed
to run or not at step 32. If the process is pre-authorised, as
determined at step 33, then it is immediately allowed to run,
step 34. This may terminate the operation of the method.
However, in a preferred variation, the process is then moni
tored whilst running, and is monitored each time it is run in
the future in a monitoring state step 35 to determine whether
its behaviour falls within its pre-authorised mask 36. If the
behaviour falls within the pre-authorised behaviour, then the
process is allowed to continue to run. If the behaviour extends
beyond the allowed mask, such as by trying to instigate fur
ther processes or connections that have not been pre-autho
rised, then this behaviour is flagged at an alert step 37. Various
actions could be taken at this stage. The process might simply
not be allowed to run. Alternatively, the trusted authority that
initially enabled pre-authorisation might be contacted, who
may be able to confirm that this behaviour is acceptable or
not. If it is acceptable, then the mask could be modified
accordingly. If not acceptable, then the process might be
marked as unsafe. Many other actions may be taken upon the
noting of Such an alert State.

If the process has been found not to be pre-authorised at
step 33 but is nevertheless allowed to run, then the process is
monitored at step 38 in order to generate a mask 39 represen
tative of the normal behaviour of that process. Data represen
tative of this mask might be sent to the community database 7
for scanning when other computers run that process. By con
tinually monitoring a process each time it is run or during
running of the process, any behaviour that differs from pre
vious behaviour of the process can be noted and the mask can

5

10

15

25

30

35

40

45

50

55

60

65

16
be modified, or this behaviour might be used to determine that
a process that was once considered safe should now be con
sidered to be unsafe.

In another embodiment, a computer 2 may have agent
software installed that periodically or on-demand provides
information to the community database 7 that is representa
tive of all or selected ones of the software products loaded on
or available the computer 2. In particular, this may be infor
mation on one or more of all the locally-loaded security
products (such as anti-malware systems including anti-virus
Software, anti-spyware, anti-adware and so on), firewall prod
ucts, specific settings and details of which signature files are
currently loaded, version details for the operating system and
other software, and also information Such as which files are
operating and the particular version and software settings at
any time. (It will be understood from the following that audit
ing and testing for a match for more of these criteria increases
the likelihood of computers being very similarly arranged and
thus reduces the rate of false negatives and positives during
the match search.)
The information relating to these software products, etc.

may be provided individually to the community database.
Preferably however, again for reasons of data quantity for
storage and transmission, the information is provided as a
signature or key representative of the information (e.g. by a
hashing or compression function at the computer 2). FIG. 4
shows schematically how the details of all local security
products, versions, signature files, firewall settings, etc. 40
are used to create a key 41. The key is transmitted to the
community database 7. Since the community database 7 is
provided with Such information from many, possibly mil
lions, of users’ computers 2, it is likely to hold corresponding
information for other computers 2 that have the same or a
similar configuration of security products, etc. Thus, the com
munity database 7 can be searched at step 42 for other com
puters 2 having the same or a similar combination of security
products including the same setting, signature files loaded
and so on.
The community database 7 in this embodiment is also

provided by the agent software with details of processes run
by every computer 2 and thus knows whether or not a process
has been detected by each computer 2.

In this way, the community database 7 can be used to obtain
information as to whether for example a particular, specific
combination of operating system and various security prod
ucts, including settings and signature files existing at a point
in time, renders a particular computer 2 having those products
and settings susceptible or Vulnerable to any particular mal
ware object.

In a simple example, if for example the database knows that
a computer in the past has version A of anti-virus product B
with downloaded signature update C, and also has a firewall D
with particular settings E, and perhaps anti-spyware software
F with signature updates G, but that a particular malware
process P was not detected by this combination of programs
at that point in time, then this information can be provided to
a computer 2 that is known as having that combination of
security programs/settings, and can be used to indicate that
that computer 2 is vulnerable in the short term to attack by that
particular malware process. This information can be pre
sented to the user either by displaying a window 43 on the
screen display of the computer 2 or by directing the user to a
particular website which explains the position in more detail.
The user might be informed for example that their particular
combination of security products, etc., exposes their com
puter to a risk of being infected by the Sobigvirus as that virus
is not detectable by their computer. The user might be offered

IPR2023-00289
CrowdStrike EX1001 Page 13

US 8,418,250 B2
17

specific advice (e.g. to update a particular anti-virus program
with a particular signature file) or Software to download and
install to remove the risk.

Thus, the community database 7, when provided with
information relating to all the security products, etc. on a
particular computerata particular time, is searched for events
for processes marked as “bad” that occurred on computers
with that particular mix of security products and that were not
locally detected. This information can then be fed back to the
user of the particular computer, for example directly or by
directing the user to a website. This information can be pro
vided virtually in real-time, allowing a new user or a user of a
new computer to be able to increase the computer's effective
security very quickly.
The preferred method also tracks which objects are related

to each other and uses the concept of ancestry to enable
objects to be marked as malware. For example, any particular
process may spawn child processes which are therefore
related. The key relating to the first object may be inspected to
identify a component that uniquely identifies the first object
and that is inherited or otherwise present in the key of a
descendant or other related object of the first object. This
component is referred to herein as a 'gene'. This general
technique may be used in a number of ways:

a) A known and trusted parent process is afforded the
ability to create child processes which may be automatically
marked as safe to run on the local computer. It is also possible
that this “inherited' property may be passed down to grand
children processes and so on. This safe status is passed to the
parent's child processes and possibly, through them, further
child processes (referred to here as "issue'). Such signatures
for the issue can all automatically be recorded in the local
database as good. This allows the issue processes to be
quickly marked as good, even if a connection to the commu
nity database 7 is not available.

b) By monitoring activity of the parent process, if it is later
found that the parent process is malware, then all of the issue
processes can all automatically be recorded in the local data
base as bad.

c) Similarly, by monitoring activity of the issue processes,
if it is later found that one of the issue processes is malware,
then one or more of the parent process and all of the other
issue processes (i.e. all of the related processes in this context)
can all automatically be recorded in the local database as bad.

d) Parental creation of a signature for a child or children
including the ability for these to be automatically marked as
either good or bad depending on the parents behaviour and
determination. Note that in some embodiments the product
can “watch' or monitor the birth of a child process and auto
matically create the signature upon arrival. This provides the
ability to monitor the creation of a bad program by another
bad program. It is possible therefore to monitor the ancestry
of a program So if for example the grandfather creates a
program (the father) and this in turn creates a bad program
(the son), it is possible automatically to determine the father
as a bad program.

e) A feature may be included that allows for automatic
forfeiture of a child's inherited ability to trigger the automatic
creation of signatures on any further births because the child,
as parent, has already produced bad offspring. Preferably, a
rule is that if a file has one bad offspring then the inherited
ability can be automatically removed.

f) An ability to watch clones or identical twins of objects
(e.g. the same process running on other systems in the com
munity) to compare the pattern of their issue and to make
decisions as to whether or not to treat any particular process as
malware.

5

10

15

25

30

35

40

45

50

55

60

65

18
One or more of these features a) to f) can be used to provide

a solution to the problem of producing a security product that
can be used effectively without 100% reliance on being per
manently connected to the Internet, which is often impracti
cal. Examples of this are Windows Update and other pro
cesses used more and more by vendors who wish to be able to
roll out product updates automatically across the worldwide
web.

Possible benefits of these types of features above conven
tional software are as follows. Antivirus software tends to
have a cache of known bad signatures. The problem is keep
ing this up to date. Take the simple example of someone
buying a new computer. The computer comes with an antivi
rus product preloaded with a signature cache. Between the
time when the PC was built, shipped to the store and bought
by the user several days or weeks will have passed. The user
starts the PC and is exposed to any new virus or malware
which was created after the PC was built. Full protection
requires the user to connect to the internet and download
updates. This cannot be guaranteed to occur ahead of other
activities by the user on the internet (almost physically impos
sible to guarantee). With a local cache of known good pro
cesses, as in the embodiments of the present invention, it is
possible to ship the computer/terminal preloaded with a pre
generated cache of signatures for all of the good (clean)
software preloaded by the computer manufacturer. In this
case the user can connect to the internet knowing that any new
or updated programs will be immediately detected and Veri
fied. Also any auto-updating Software can function forcing
signatures to be automatically built for its children and more
remote off-spring (i.e. grandchildren, great-grandchildren,
etc).

Reference is now made to “Defeating Polymorphism:
Beyond Emulation” by Adrian Stepan of Microsoft Corpora
tion published in “Virus Bulletin Conference October 2005”
and also to U.S. 60/789,156 filed on 5 Apr. 2006, the entire
content of which are hereby incorporated by reference. In that
paper and patent application, there are disclosed methods of
decrypting files to allow the files to be analysed to determine
whether or not the file actually is malware. In U.S. 60/789,156
in particular, there is disclosed a method of unpacking/de
crypting an executable computer file using a host computer,
the method comprising: partitioning the executable computer
file into plural basic blocks of code; translating at least some
of the basic blocks of code into translated basic blocks of code
that can be executed by the host computer, linking at least
some of the translated basic blocks of code in memory of the
host computer, and, executing at least some of the translated
basic blocks of code on the host computer so as to enable the
executable computer file to be unpacked or decrypted, where
upon the unpacked or decrypted executable computer file can
be analyzed to determine whether the executable computer
file is or should be classed as malware. There is also disclosed
in U.S. 60/789,156 a method of unpacking/decrypting an
executable computer file, the method comprising: partition
ing the executable computer file into plural basic blocks of
code; creating at least a read page of cache memory for at least
Some of the basic blocks, the read page of cache memory
storing a read cached real address corresponding to a read
cached virtual memory address for the respective basic block,
and creating at least a write page of cache memory for at least
Some of the basic blocks, the write page of cache memory
storing a write cached real address corresponding to a write
cached virtual memory address for the respective basic block;
and, emulating the executable file by executing at least some
of the basic blocks of code so as to enable the executable
computer file to be unpacked or decrypted, whereupon the

IPR2023-00289
CrowdStrike EX1001 Page 14

US 8,418,250 B2
19

unpacked or decrypted executable computer file can be ana
lyzed to determine whether the executable computer file is or
should be classed as malware; wherein during the execution
of a basic block, at least one of the read page and the write
page of cache memory is checked for a cached real address
corresponding to the virtual address that is being accessed for
said basic block.
The techniques disclosed in these documents can be used

in the present context when it is desired to analyse a file in
detail. More generally however, the techniques disclosed in
these papers, and particularly the enhanced techniques dis
closed in U.S. 60/789,156, can be used to provide information
about the activity of a file when it is run on a computer
because the techniques disclosed in these papers emulate the
running of the file and therefore allow the file's activity to be
interpreted.
A further situation arises when users wish to install soft

ware while offline. In a preferred embodiment, when a user
attempts to install new software while offline, agent software
running on the user's computer 2 prompts the user for autho
risation to allow the installation process to proceed Such that
the execution of the installation can itself be “authorised by
the user. This authorisation by the user is treated as a "Gen
esis' event and will be so termed hereinafter. However there
are some processes commonly used in installation of software
that communicate with other existing programs on the instal
lation machine, e.g. Microsoft’s MSIEXEC.
The Genesis approach involves a process that generates

signatures as a result of the user's authorisation on the user's
computer 2. Those signatures are stored in the local database
on the user's computer 2. In one embodiment, those locally
stored signatures are referred to as necessary by the agent
Software during the installation process So that the installation
can proceed. Alternatively, the security checks made by the
agent Software can be Switched off during the installation
process. The switching offmay only be for a limited duration,
such as a few minutes which should be sufficient to allow
most software to be installed, the off time optionally being
user-configurable.

In any event, once the installation has been completed and
the user's computer 2 connected to the community database
7, the agent Software on the user's computer 2 can upload the
signatures relating to the installation from the user's local
database to the community database 7. With corresponding
data from other users computers 2, the community database
7 can then be used to make a rapid determination that the
installation of this particular software is benign.
As a variant to this embodiment, when a user's computer 2

is at Some point in time on-line, the agent software on the
user's computer 2 may download signatures of a so-called
“trusted installer” or “licensed installer'. This allows the
operation of a method such that a “licensed installer” and any
child processes of the licensed installer are permitted to
execute while a Genesis event is “current', e.g. within a
period of minutes after an authorisation from the user. Pref
erably signatures of licensed installers are always down
loaded, as and when added to the community database 7, to a
remote computer 2 while online.

There may be further refinements to this method, such as to
prevent licensed installers executing if a media change has
occurred during the currency of a Genesis event. However,
any unknown processes, which may be malware, may still be
detected and blocked. Having a small number of licensed
installers facilitates download, as minimal data is required,
especially compared to downloading virus signature files. As
another example, Super-trusted installers. Such as for example

10

15

25

30

35

40

45

50

55

60

65

20
“Windows Update, may be employed whereby all new pro
cesses created by the Super-trusted installer are marked
immediately as safe.

In the case of an installation occurring when the remote
computer 2 is connected to the community database 7.
another option is that if the software that is about to be
installed is not known to the community database 7, then the
system will block the installation or alert the user. For
example, a message may be displayed at the user's computer
2 to the effect that “You are about to install some software.
This software is not known to the community. Are you sure
you wish to proceed?'.

Embodiments of the present invention have been described
with particular reference to the examples illustrated. How
ever, it will be appreciated that variations and modifications
may be made to the examples described within the scope of
the present invention.
The invention claimed is:
1. A method of classifying a computer object as malware,

the method comprising:
at a base computer, receiving data about a computer object

from each of plural remote computers on which the
object or similar objects are stored, the data including
information about the behaviour of the object running on
one or more remote computers;

determining in the base computer whether the data about
the computer object received from the plural computers
indicates that the computer object is malware;

classifying the computer object as malware when the data
indicates that the computer object is malware;

when the determining does not indicate that the computer
object is malware, initially classifying the computer
object as not malware;

automatically generating a mask for the computer object
that defines acceptable behaviour for the computer
object, wherein the mask is generated in accordance
with normal behaviour of the object determined from
said received data;

running said object on at least one of the remote computers;
automatically monitoring operation of the object on the at

least one of the remote computers;
allowing the computer object to continue to run when

behaviour of the computer object is permitted by the
mask:

disallowing the computer object to run when the actual
monitored behaviour of the computer object extends
beyond that permitted by the mask; and,

reclassifying the computer object as malware when the
actual monitored behaviour extends beyond that permit
ted by the mask.

2. A method according to claim 1, wherein the data about
the computer object that is sent from the plural remote com
puters to the base computer includes one or more of execut
able instructions contained within or constituted by the
object; the size of the object; the current name of the object;
the physical and folder location of the object on disk; the
original name of the object; the creation and modification
dates of the object; vendor, product and version and any other
information stored within the object; the object header or
header held by the remote computer; and, events initiated by
or involving the object when the object is created, configured
or runs on the respective remote computers.

3. A method according to claim 1, wherein determining
identifies relationships between the object and other objects.

4. A method according to claim 3, wherein if at least one
other object to which said object is related is classed as
malware, then classifying said object as malware.

IPR2023-00289
CrowdStrike EX1001 Page 15

US 8,418,250 B2
21

5. A method according to claim 3, wherein said other
objects include the object or similar objects stored on at least
Some of the remote computers.

6. A method according to claim 3, wherein said other
objects include other objects that are parent objects or child
objects or otherwise process-related objects to said object.

7. A method according to claim 1, wherein the data is sent
in the form of key that is obtained by a hashing process carried
out in respect of the objects on the respective remote comput
CS.

8. A method according to claim 7, wherein the key has at
least one component that represents executable instructions
contained within or constituted by the object.

9. A method according to claim 7, wherein the key has at
least one component that represents data about said object.

10. A method according to claim 9, wherein said data about
said object includes at least one of the current name of the
object; the physical and folder location of the object on disk;
the original name of the object; the creation and modification
dates of the object; vendor, product and version and any other
information stored within the object; the object header or
header held by the remote computer; and, events initiated by
or involving the object when the object is created, configured
or runs on the respective remote computers.

11. A method according to claim 7, wherein the key has at
least one component that represents the physical size of the
object.

12. A method according to claim 1, comprising if the moni
tored behaviour of the object running on the remote computer
exhibits non-permitted behaviour that extends beyond that
permitted by the mask, comparing at the base computer the
non-permitted behaviour with the behaviour of other objects
and if said behaviour is known to be not malicious for said
other objects, allowing said behaviour for the object and
modifying the mask to allow that behaviour for that object in
future.

13. Apparatus for classifying a computer object as mal
ware, the apparatus comprising:

a base computer constructed and arranged to receive data
about a computer object from each of plural remote
computers on which the object or similar objects are
stored, the data including information about the behav
iour of the object running on one or more remote com
puters;

the base computer being constructed and arranged to deter
mine whether the data about the computer object
received from said plural computers indicates that the
computer object is malware; and,

the base computer being constructed and arranged to clas
sify the computer object as malware when the base com
puter determines that the data indicates that the com
puter object is malware,

wherein the base computer is constructed and arranged to
automatically generate a mask for an object that is ini
tially classed not as malware, said mask defining accept
able behaviour for the object built in accordance with
normal behaviour of the object determined from said
received data, wherein operation of the object is auto
matically monitored when the object is running on at
least one of the remote computers, the object being
allowed to continue to run when behaviour of the object
is permitted by the mask, the object not being permitted
to run when the actual monitored behaviour of the object
extends beyond that permitted by the mask, and the
object is reclassified as malware when the actual moni
tored behaviour extends beyond that permitted by the
mask.

5

10

15

25

30

35

40

45

50

55

60

65

22
14. Apparatus according to claim 13, the data includes one

or more of executable instructions contained within or con
stituted by the object; the size of the object; the current name
of the object; the physical and folder location of the object on
disk; the original name of the object; the creation and modi
fication dates of the object; vendor, product and version and
any other information stored within the object; the object
header or header held by the remote computer; and, events
initiated by or involving the object when the object is created,
configured or runs on the respective remote computers.

15. Apparatus according to claim 13, wherein the base
computer is constructed and arranged so that the determining
identifies relationships between the object and other objects.

16. Apparatus according to claim 15, the base computer is
constructed and arranged so that if at least one other object to
which said object is related is classed as malware, then said
object is classified as malware.

17. Apparatus according to claim 15, wherein the base
computer is constructed and arranged so that said other
objects include the object or similar objects stored on at least
Sonic of said remote computers.

18. Apparatus according to claim 15, wherein the base
computer is constructed and arranged so that said other
objects include other objects that are parent objects or child
objects or otherwise process-related objects to said object.

19. Apparatus according to claim 13, wherein the base
computer is constructed and arranged so as to be able to
process data that is sent in the form of key that is obtained by
ahashing process carried out in respect of the objects on said
respective remote computers.

20. Apparatus according to claim 19, wherein the key has at
least one component that represents executable instructions
contained within or constituted by the object.

21. Apparatus according to claim 19, wherein the key has at
least one component that represents data about said object.

22. Apparatus according to claim 21, wherein said data
about said object includes at least one of the current name of
the object; the physical and folder location of the object on
disk; the original name of the object; the creation and modi
fication dates of the object; vendor, product and version and
any other information stored within the object; the object
header or header held by the remote computer; and, events
initiated by or involving the object when the object is created,
configured or runs on the respective remote computers.

23. Apparatus according to claim 19, wherein the key has at
least one component that represents the physical size of the
object.

24. A method according to claim 13, wherein, if the moni
tored behaviour of the object running on the remote computer
exhibits non-permitted behaviour that extends beyond that
permitted by the mask, the base computer is arranged to
compare the non-permitted behaviour with the behaviour of
other objects and if said behaviour is known to be not mali
cious for said other objects the base computer is arranged to
allow said behaviour for the object and to modify the mask to
allow that behaviour for that object in future.

25. A method of providing data about a computer object
from a remote computer to a base computer so that a com
parison can be made at the base computer with similar data
received from other remote computers, the method compris
ing:

providing from a remote computer to a base computer data
about a computer object that is stored on the remote
computer;

the data including information about the behaviour of the
object running on one or more remote computers and
including one or more of executable instructions con

IPR2023-00289
CrowdStrike EX1001 Page 16

US 8,418,250 B2
23

tained within or constituted by the object; the size of the
object; the current name of the object; the physical and
folder location of the object on disk; the original name of
the object; the creation and modification dates of the
object; vendor, product and version and any other infor- 5
mation stored within the object; the object header or
header held by the remote computer; and, events initi
ated by or involving the object when the object is cre
ated, configured or runs on the respective remote com
puters; 10

the data being sent in the form of key that is obtained by a
hashing process carried out in respect of the object on the
remote computer,

automatically generating a mask for the computer object,
the mask defining acceptable behaviour for the object
built in accordance with normal behaviour of the object
determined from said received data;

executing the computer object at the remote computer;
automatically monitoring operation of the computer object

at the remote computer compared to the behaviour per
mitted by the mask:

allowing the object to continue to run when behaviour of
the computer object is permitted by the mask;

disallowing the object to run when the actual monitored
behaviour of the object extends beyond that permitted by
the mask; and,

reclassifying the object as malware when the actual moni
tored behaviour extends beyond hat permitted by the

15

25

24
mask, wherein the base computer is arranged to receive
information about the behaviour of the object running on
one or more remote computers, wherein the step of
generating a mask for that object comprises building the
mask with the base computer in accordance with normal
behaviour of the object determined from said received
information.

26. A method according to claim 25, wherein the key has at
least one component that represents executable instructions
contained within or constituted by the object.

27. A method according to claim 25, wherein the key has at
least one component that represents data about said object.

28. A method according to claim 27, wherein said data
about said object includes at least one of the current name of
the object; the physical and folder location of the object on
disk; the original name of the object; the creation and modi
fication dates of the object; vendor, product and version and
any other information stored within the object; the object
header or header held by the remote computer; and, events
initiated by or involving the object when the object is created,
configured or runs on the respective remote computers.

29. A method according to claim 25, wherein the key has at
least one component that represents the physical size of the
object.

30. A non-transitory storage medium storing a computer
program comprising program instructions for causing a com
puter to perform the method of claim 25.

k k k k k

IPR2023-00289
CrowdStrike EX1001 Page 17

