
(19) United States
US 2004O153644A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0153644 A1
McCorkendale et al. (43) Pub. Date: Aug. 5, 2004

(54) PREVENTING EXECUTION OF
POTENTIALLY MALICIOUS SOFTWARE

(76) Inventors: Bruce McCorkendale, Los Angeles,
CA (US); Carey S. Nachenberg,
Northridge, CA (US)

Correspondence Address:
FENWCK & WEST LLP
SILICON VALLEY CENTER
801 CALFORNIA STREET
MOUNTAIN VIEW, CA 94041 (US)

(21) Appl. No.: 10/359,422

(22) Filed: Feb. 5, 2003

Publication Classification

(51) Int. Cl." ... G06F 11/30

BLOCK
SOFTWARE

OBTANCERTIFICATION
FOR SOFTWARE

DSTRBUTE SOFTWARE
TO CLIENT DEVICES

ATEMPT TO
EXECUTE SOFTWARE

DETERMINE WHETHER
SOFTWARES

POTENTIALLY MALICOUS

DENY1 SOFTWARE
STATUS

UNKNOWN

SEND SOFTWARE TO
ANALYSIS AUTHORITY

(52) U.S. Cl. .. 713/156; 713/200

(57) ABSTRACT

Potentially malicious software is detected and prevented
from installing and/or executing on client devices (122). A
Software developer sends Software to a certifying authority
(114) in order to obtain (710) a certification for the software.
The certification uniquely identifies the software and allows
any tampering to be detected. The Software developer dis
tributes (712) the software to the client devices (122). A
client device (122) asks an execution authority (118)
whether the Software is malicious. The execution authority
(118) maintains a database (514) specifying the status of
certain Software. If the status of the Software at the client
device (122) is in the database, the execution authority (118)
reports it to the client device. The execution authority (118)
can also analyze (716) the frequency of Software execution
requests from client devices (122) to determine whether the
Software is malicious.

710

712

714.

716

EXECUTE
SOFTWARE

720

724

IPR2023-00289
CrowdStrike EX1017 Page 1

Patent Application Publication Aug. 5, 2004 Sheet 1 of 6

IPR2023-00289
CrowdStrike EX1017 Page 2

US 2004/0153644 A1 Patent Application Publication Aug. 5, 2004 Sheet 2 of 6

IPR2023-00289
CrowdStrike EX1017 Page 3

US 2004/0153644 A1 Patent Application Publication Aug. 5, 2004 Sheet 3 of 6

LSET ÖDERH Å LINJOH LTV7

IPR2023-00289
CrowdStrike EX1017 Page 4

IPR2023-00289
CrowdStrike EX1017 Page 5

9 "SOI

US 2004/0153644 A1

HOIABO LNBITO

Patent Application Publication Aug. 5, 2004 Sheet 5 of 6

IPR2023-00289
CrowdStrike EX1017 Page 6

Patent Application Publication Aug. 5, 2004 Sheet 6 of 6 US 2004/0153644 A1

710
OBTAIN CERTIFICATION

FOR SOFTWARE

712
DISTRIBUTE SOFTWARE
TO CLIENT DEVICES

714.
ATEMPT TO

EXECUTE SOFTWARE

716 DETERMINE WHETHER
SOFTWARES

POTENTIALLY MALICOUS

718

BLOCK DENY-1SOFTWARENALLOW EXECUTE 720
STATUS SOFTWARE SOFTWARE

722 UNKNOWN

724
SEND SOFTWARE TO
ANALYSSAUTHORITY

FIG. 7

IPR2023-00289
CrowdStrike EX1017 Page 7

US 2004/0153644 A1

PREVENTING EXECUTION OF POTENTIALLY
MALICIOUS SOFTWARE

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention pertains in general to computer
Security and in particular to preventing a Software worm or
other malicious and/or unauthorized code from executing on
a computer System.

0003 2. Background Art
0004. A “worm' is a computer program that attempts to
infect multiple computer Systems. There are a number of
ways a worm can initially execute on a computer System.
For example, a computer user might unintentionally down
load the worm from the Internet as a parasitic virus attached
to a program. Alternatively, a worm might infect the com
puter System using transmission media Such as email Scripts,
buffer overflow attacks, password cracking, etc.
0005 Typically, the primary purpose of a worm is to
Spread to other computer Systems. However, a worm can
also include functionality to infect files on the computer
System, destroy data on the computer System, and/or per
form other malicious actions. A Successful worm spreads
rapidly and can quickly damage many computer Systems.
0006. One technique for preventing worm attacks and
Virus infections is to install anti-Virus Software on the
computer System in order to detect the presence of Worms,
Viruses, and other malicious Software. However, it is Some
times not practical to execute anti-Virus Software on certain
hardware platforms. Moreover, anti-virus software utilizes
various tools, Such as String Scanning and emulation, that
might fail to detect previously-unknown malicious Software.
In addition, certain types of Worms use programming tech
niques, Such as polymorphic or metamorphic code, that
hamper the effectiveness of anti-Virus Software.
0007 Accordingly, there is a need in the art for a way to
detect Software worms and other malicious code and prevent
it from Spreading. A Solution meeting this need should detect
unknown, as well as known, worms.

DISCLOSURE OF INVENTION

0008. The above needs are met by a utilizing an execu
tion authority (118) that informs computer systems and other
client devices (122) whether it is safe to execute certain
Software. A Software developer develops the Software and
submits it to a certifying authority (114). The certifying
authority (114) certifies the software, which identifies the
Software and allows detection of any tampering with the
software. In one embodiment, the certifying authority (114)
calculates a hash of the Software and uses it to Sign the
Software.

0009. The software developer distributes the software to
client devices (122) using conventional channels. At Some
point, one or more of the client devices (122) attempts (714)
to execute (as used herein, "execute” also includes "install')
the Software. As part of this process, the client device (122)
determines (716) whether the software is potentially mali
cious. The client device (122) evaluates the software's
Signature to determine whether the Software has been
altered. If the Software has not been altered, the client device

Aug. 5, 2004

(122) determines whether status information for the soft
ware, Such as whether the Software should be allowed or
denied execution, is contained in an authority cache module
(618). If the status information is not in the cache (618), the
client device (122) contacts an execution authority (118).
0010 The execution authority (118) maintains a database
(514) holding status information (518) for software. In one
embodiment, each piece of Software identified by a Signature
has a status of “allow,”“deny,” or “unknown.” The execution
authority (118) provides this information to the requesting
client devices (122), which can then determine whether to
allow or deny execution. In one embodiment, the Status
information is provided in part by the certifying authority
(114). For example, the certifying authority (114) can pro
vide the Signatures of certified Software to the execution
authority (118) and the execution authority (118) can set the
initial status of the signatures to “allow” because the soft
ware is presumably non-malicious.
0011. In one embodiment, the execution authority (118)
includes a malicious software detection module (512) that
can detect malicious Software. In one embodiment, this
module (512) analyzes the frequency of client device
requests to execute certain Software. An abnormally high
frequency of client device requests to execute the same
Software may indicate that the Software is a worm or other
malicious Software.

0012) If the Software status is “unknown,” one embodi
ment of the execution authority (118) causes a copy of the
software to be sent to an analysis authority (120). The
analysis authority (120) determines whether the software is
malicious and reports this information to the execution
authority (118). Accordingly, the present invention stops
Worms and other malicious Software from executing on the
client devices (122) by providing a framework that prevents
the client devices from executing certain Software and
providing a way to detect potentially-malicious Software.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 is a high-level block diagram of a comput
ing environment 100 according to one embodiment of the
present invention;
0014 FIG. 2 is a high-level block diagram illustrating a
functional view of a typical computer system 200 for use by
one of the entities illustrated in the environment 100 of FIG.
1 according to an embodiment of the present invention;
0015 FIG. 3 is a high-level block diagram illustrating
functional modules in the software developer system 110
according to one embodiment of the present invention;
0016 FIG. 4 is a high-level block diagram illustrating
functional modules in the certifying authority 114 according
to an embodiment of the present invention;
0017 FIG. 5 is a high-level block diagram illustrating
functional modules in the execution authority 118 according
to an embodiment of the present invention;
0018 FIG. 6 is a high-level block diagram illustrating
functional modules in one embodiment of a client device
122; and
0019 FIG. 7 is a flow chart illustrating steps for blocking
malicious Software from executing according to one
embodiment of the present invention.

IPR2023-00289
CrowdStrike EX1017 Page 8

US 2004/0153644 A1

0020. The figures depict an embodiment of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following description that
alternative embodiments of the Structures and methods illus
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0021 FIG. 1 is a high-level block diagram of a comput
ing environment 100 according to one embodiment of the
present invention. FIG. 1 illustrates a software developer
system 110 connected to a network 112. The network 112
also connects a certifying authority 114, a key authority 116,
an execution authority 118, an analysis authority 120, and a
client device 122.

0022. The network 112 provides communications
between and among the other entities illustrated in the
computing environment 100 of FIG. 1. In one embodiment,
the network 112 is the Internet and uses wired and/or
wireless links. All or part of the network 112 may include a
cellular telephone network or other data network having a
peering point with the Internet: The network 112 can also
utilize dedicated or private communications links that are
not necessarily part of the Internet. The entities illustrated in
FIG. 1 use conventional communications technologies Such
as the transmission control protocol/Internet protocol (TCP/
IP) to communicate over the network. The entities of FIG.
1 also use conventional communications protocols Such as
the hypertext transport protocol (HTTP), the simple mail
transfer protocol (SMTP), the file transfer protocol (FTP),
etc. The entities can also engage in Secure communications
using technologies including the Secure Sockets layer (SSL),
Secure HTTP and/or virtual private networks (VPNs). The
communicated messages utilize conventional data encod
ings Such as hypertext markup language (HTML), extensible
markup language (XML), etc. In one embodiment, all or part
of the network 112 includes non-electronic links. For
example, the Software developer System 110 may commu
nicate with the certifying authority 114 via U.S. mail, voice
telephone, etc.
0023 The Software developer system 110 is used by a
Software developer to develop Software for execution on the
client device 122. This Software may include utilities, appli
cation programs, operating System components, etc. The
Software developer distributes the software to the client
device 122 using conventional techniques, Such as by Selling
boxed Software, making Software available for download
over the network 112, etc. Although only one software
developer system 110 is illustrated in FIG. 1, it will be
understood that embodiments of the present invention can
have hundreds or thousands of Such Systems.
0024. The client device 122 is typically utilized by an
end-user to execute Software developed on the Software
developer system 110. The client device 122 includes func
tionality enabling the client device 122 to communicate with
the execution authority 118 regarding Software on the client
device. This functionality can prevent the execution of
Software that the execution authority 118 identifies as pos
sibly malicious.
0.025 In one embodiment, the client device 122 is a
conventional computer System executing, for example, a

Aug. 5, 2004

Microsoft Windows-compatible operating system (OS),
Apple OS X, and/or a Linux-compatible OS. In another
embodiment, the client device 122 is another device having
computer functionality, Such as a personal digital assistant
(PDA), cellular telephone, Video game System, etc. Although
only one client device 122 is shown in FIG. 1, embodiments
of the present invention can have thousands or millions of
Such devices. Moreover, a client device 122 can be a
Software developer System 110 and Vice versa depending
upon the context.

0026. In one embodiment, the client device 122 and/or
the Software developer system 110 includes a trusted com
puting platform. This platform implements technologies and
protocols that allow third parties to “trust” the platform for
certain purposes. The platform can “prove' to third parties
that the platform is trustworthy and has not been altered in
a way that would betray the trust. In one embodiment, the
trusted computing platform is similar to a conventional
computer System, except that the trusted platform has a
Secure Storage that can Store data in a location that is
tamper-proof and inaccessible to non-trusted Software and
has a Secure execution environment that executes tamper
proof Software. Examples of trusted computing platforms
that can be utilized with the present invention include the
platform advocated by the Trusted Computing Platform
Alliance (TCPA) of Hillsboro, Oregon, and the “Palladium”
platform advocated by Microsoft Corp. of Redmond, Wash.,
for the Windows family of operating systems.

0027. The key authority 116 includes a computer system
and is utilized to provide private/public key pairs and
certificates to the other entities in the environment 100 of
FIG. 1. AS is known in the art, a key is a mathematical value,
Such as a long integer, that is usually generated according to
a random or pseudo-random technique. In public-key
encryption, the private/public key pair is related Such that a
message encrypted with the private key can be decrypted
with the public key and vice versa, but the public key and
message cannot be used (at least in a reasonable amount of
time) to calculate the private key. The key authority can use
conventional techniques to generate the key pairs, including,
for example, techniques utilizing the Diffie-Hellman, Knap
Sack, DSA, and/or RSA key-generation Schemes. The key
authority 116 has a well-known public key. A certificate is a
message encrypted by the key authority's private key that
can be decrypted using the key authority's public key. In one
embodiment, the functionality of the key authority 116 is
performed by one of the other authorities illustrated in FIG.
1, Such as the certifying authority 114 or the execution
authority 118.

0028. In one embodiment, the key authority 116 issues a
private key and digital certificate to the certifying authority
114. The certificate is encrypted using the key authority's
private key and typically includes an identification of the
certifying authority 114 and the public key corresponding to
the certifying authority's private key.

0029. The certifying authority 114 includes a computer
System and is utilized to certify Software developed on the
Software developer System. In general, the certifying author
ity 114 uses the certificate issued by the key authority 114 to
digitally sign the Software. The Signature Serves two pur
poses: 1) it identifies the signed Software; and 2) it allows
third parties to detect any alteration of the signed Software.

IPR2023-00289
CrowdStrike EX1017 Page 9

US 2004/0153644 A1

0.030. Other embodiments of the present invention use
less rigorous code-signing Schemes than the one described
herein. The certifying authority 114 can use a code Signing
Scheme that does not require a certificate from a key
authority 116 or other entity. Such embodiments may be
deemed more desirable due to the reduced overhead on the
Software developer system 110 and certifying authority 114.

0031. The execution authority 118 includes a computer
System and contains functionality and information utilized
by client devices 122 to prevent the execution of malicious
Software Such as worms. In one embodiment, the execution
authority 118 is adapted to communicate with the client
devices 122 to identify software being executed on the
devices. The execution authority 118 monitors the software
executions and utilizes execution frequency Statistics to
identify possible software worms. In one embodiment, the
execution authority 118 includes a list of software developed
by the software developer system 110 and certified by the
certifying authority 114. For each item of software in the list,
the execution authority 118 maintains Status information
indicating whether the Software is malicious or benign. If the
execution frequency Statistics and/or the list indicates that
Software on a client device 112 is possibly malicious, the
execution authority 118 instructs the client device 122 that
this is the case.

0.032 The analysis authority 120 includes a computer
System and contains functionality and information for per
forming analysis of certain Software identified by the execu
tion authority 118. For example, in one embodiment, the
execution authority 118 notifies the analysis authority 120
when the execution authority detects a possible Software
Worm. In response, the analysis authority 120 receives a
copy of the Software and analyzes it to determine whether
the Software is malicious. In one embodiment the analysis is
performed by Digital Immune System software available
from Symantec Corp. of Cupertino, Calif. The analysis
authority 120 reports the results of the analysis to the
execution authority 118, and the latter authority relays this
information to the client devices 122.

0.033 FIG. 2 is a high-level block diagram illustrating a
functional view of a typical computer system 200 for use as
one of the entities illustrated in the environment 100 of FIG.
1 according to an embodiment of the present invention.
Illustrated are at least one processor 202 coupled to a bus
204. Also coupled to the bus 204 are a memory 206, a
Storage device 208, a keyboard 210, a graphics adapter 212,
a pointing device 214, and a network adapter 216. A display
218 is coupled to the graphics adapter 212.
0034. The processor 202 may be any general-purpose
processor such as an INTEL x86, SUN MICROSYSTEMS
SPARC, or POWERPC compatible-CPU. The storage
device 208 is, in one embodiment, a hard disk drive but can
also be any other device capable of Storing data, Such as a
writeable compact disk (CD) or DVD, or a solid-state
memory device. The memory 206 may be, for example,
firmware, read-only memory (ROM), non-volatile random
access memory (NVRAM), and/or RAM, and holds instruc
tions and data used by the processor 202. The pointing
device 214 may be a mouse, track ball, or other type of
pointing device, and is used in combination with the key
board 210 to input data into the computer system 200. The
graphics adapter 212 displays images and other information

Aug. 5, 2004

on the display 218. The network adapter 216 couples the
computer system 200 to the network 112.

0035 AS is known in the art, the computer system 200 is
adapted to execute computer program modules for providing
functionality described herein. AS used herein, the term
"module” refers to computer program logic for providing the
Specified functionality. A module can be implemented in
hardware, firmware, and/or Software. In one embodiment,
the modules are stored on the storage device 208, loaded into
the memory 206, and executed by the processor 202. As
described above, a computer System implementing a trusted
computer architecture differS Slightly from the one illus
trated in FIG. 2.

0036 FIG. 3 is a high-level block diagram illustrating
functional modules in the software developer system 110
according to one embodiment of the present invention.
Those of skill in the art will recognize that the functionality
attributed to the modules in the description of FIG.3 and the
other figures can be performed by other or different modules
in other embodiments. The software developer system 110
includes a certifying authority client module 310 for Sup
porting communications with the certifying authority 114.
This module 310 allows the software developer to securely
transmit an application program or other piece of Software to
the certifying authority 114 as part of a request to certify the
Software. Moreover, the module 310 allows the Software
developer to receive a certified copy of the Software back
from the certifying authority 114. The certifying authority
client 310 also allows the developer to respond to requests
for information or other input from the certifying authority
114. In one embodiment, the certifying authority client 310
does not explicitly identify the Software developer System
110 to the certifying authority 114. In another embodiment,
the certifying authority client 310 provides information to
the certifying authority 114 allowing the authority to identify
the software developer.
0037 FIG. 4 is a high-level block diagram illustrating
functional modules in the certifying authority 114 according
to an embodiment of the present invention. The certifying
authority 114 includes a request validation module 410 for
validating a certification request received from a Software
developer system 110 or other entity on the network 112.
The request validation module 410 validates the requests in
order to Screen out requests from unknown entities and/or
automated processes. For example, malicious Software, Such
as a polymorphic virus, could be configured to Send variants
of itself to the certifying authority 114 in order to obtain
certification of the variant. The request validation module
410 detects and deletes these sorts of malicious certification
requests.

0038. In one embodiment, the request validation module
410 utilizes a challenge-response mechanism to Screen
requests. In response to receiving a request, the module 410
Sends a challenge to the requestor. If the requestor does not
respond with the correct response, the request is deleted. In
one embodiment, the challenge is presented in a form that is
computationally expensive to programmatically decipher
and answer. For example, the challenge can be a graphic
containing a human-readable question Such as “what is five
plus five obscured by Some random data. A human can
quickly read the question and Submit the appropriate
response, but a Software program will have great difficulty in

IPR2023-00289
CrowdStrike EX1017 Page 10

US 2004/0153644 A1

parsing the question and generating the answer. In another
embodiment, the question is audible rather than legible. In
one embodiment, the challenges (e.g., questions) are held in
a database (not shown) and the request validation module
410 randomly Selects a challenge in response to a certifica
tion request.
0039. In another embodiment, the request validation
module 410 requires the requestor to provide additional
information in order to pass through the validation proce
dure. The module 410 can require the requestor to provide
identifying information, Such as an email address, name,
company, etc. and then use this information to determine
whether to validate the request. For example, the module
410 can email an access code to the provided address and
then require that the requestor use the acceSS code when
making the request.
0040. An authority generation module 412 in the certi
fying authority 114 certifies Software in response to Vali
dated requests. In one embodiment, the authority generation
module 412 uses code Signing techniques to certify the
Software. The module 412 uses a hash function to compute
a hash of the Software. AS is known in the art, a “hash
function' is a function, mathematical or otherwise, that takes
an input String and converts it to a fixed-size output String.
In one embodiment, the authority generation module 412
uses the Software as the input to the hash function and
obtains a much smaller output string (the “hash”). The hash
function is Selected So that any change to the Software will
produce a change in the hash. Therefore, the hash acts as a
Sort of fingerprint of the Software. Examples of hash func
tions that can be used by embodiments of the present
invention include MD5 and SHA.

0041. The authority generation module 412 utilizes its
private key (obtained from the key authority 116) to encrypt
the hash. In another embodiment, the private key is utilized
by the hash function itself to produce the hash, thereby
eliminating the need to perform a discrete encryption of the
hash. The module 412 signs the software by storing the
encrypted hash and the certificate issued by the key authority
116 with the software. The signature identifies the Software
and allows any alteration of the Software to be detected. The
certifying authority 114 Sends the Signed Software to the
Software developer system 110.
0042. In one embodiment, certifying authority 114
includes trust level information with the signed Software.
This information indicates a confidence level that the Soft
ware is not malicious. In one embodiment, requesters that
provide identifying information, Such as the name and
address of the Software developer, are granted a higher trust
level than requesters that remain anonymous. This trust level
information can be utilized by the client devices 122 when
the devices determine whether to execute the Software.

0.043 FIG. 5 is a high-level block diagram illustrating
functional modules in the execution authority 118 according
to an embodiment of the present invention. A client device
interface module 510 facilitates communications between
the execution authority 118 and the client devices 122. In
general, the interface module 510 receives messages from
client devices 122 identifying software (via the software's
Signature) that the devices have been instructed to execute.
The interface module 510 also sends messages to the client
devices 122 indicating whether the identified software or
other Software on the client devices is possibly malicious.

Aug. 5, 2004

0044) The execution authority 118 also includes a mali
cious Software detection module 512 and a database module
514. A Software signatures module 516 in the database
module 514 stores the signatures of software “known to the
execution authority 118. In one embodiment, these signa
tures are compiled from the Signatures received from the
client devices 122. In another embodiment, all or Some of
the Signatures are Supplied to the execution authority by the
Software developers, certifying authority 114, and/or another
Source. A signature status module 518 in the database 514
holds data describing the Status of each piece of Software
identified by a Signature. In one embodiment, the possible
statuses are “allow,”“deny,” and “unknown.” The “allow”
Status indicates that the associated Software is not known to
be malicious. The “deny’ Status indicates that the associated
Software is possibly malicious. The “unknown” status indi
cates that the execution authority 118 has no information
regarding the maliciousness of the Software. In one embodi
ment, the initial Statuses for the Software are determined
from information received from the certifying authority 114.
0045. Other embodiments can have different statuses
depending upon the operation of the execution authority
118. For example, in one embodiment the database utilizes
a range of values (e.g., 1-10) to describe the likelihood that
Software is malicious. The appropriate value/status for the
Software can be determined from trust level information
included with the signed software or received from the
certifying authority 114.
0046) The malicious software detection module 512
determines whether Software is malicious based, in part, on
the information held in the database module 514. In normal
operation, the malicious Software detection module 512
looks up the Statuses of Signatures received from the client
devices 122 in the database module 514 and reports the
Statuses back to the client devices 122. Accordingly, if a
client device 122 requests to execute Software marked as
“deny' in the database module 514, the detection module
512 will report this status back to the client device 122,
thereby preventing the Software from being executed.
0047. If the database module 514 does not contain a
Signature received from the client device 122 (i.e., the
Software is unknown), the malicious Software detection
module 512 creates an entry in the database for the Signature
and marks it with a default Status. In one embodiment, the
default status is “allow” because the software is certified by
the certifying authority and presumably Safe. In another
embodiment, the default value is “unknown.” The execution
authority 118 reports the default value to the client device
122. Depending upon its configuration, the client device 122
can refuse to execute Software having an “unknown' Status.
0048. When the malicious software detection module 512
receives a signature that is not in the database module 514,
one embodiment uses the client device interface module 510
to request that the client device 122 to Send a copy of the
Software to the execution authority 118. Upon receipt of the
Software, the execution authority 118 sends a copy of the
Software to the analysis authority 120 for subsequent analy
Sis. The execution authority 118 updates the Signature Status
518 in the database module 514 in response to the results of
the analysis. In another embodiment, the malicious Software
detection module 512 requests that the client device 122
Send a copy of the Software directly to the analysis authority
120.

IPR2023-00289
CrowdStrike EX1017 Page 11

US 2004/0153644 A1

0049. In one embodiment, the malicious Software detec
tion module 512 also uses heuristics held in a heuristics
module 520 to recognize potentially malicious software. In
general, detection module 512 uses the heuristics module
520 to analyze the software signatures received from the
client devices 122 to identify characteristics of the software
that are indicative of malicious Software. If the heuristics
indicate that Software is malicious, the malicious Software
detection module 512 updates the Software's status in the
database module to “deny.”
0050. In one embodiment, the heuristics module 520
includes a frequency monitoring module 522 that detects
potentially malicious Software based on the frequency of
Software execution requests received from the client devices
122. This module 522 is adapted to declare that software is
potentially malicious upon the occurrence of an abnormally
high frequency of requests from different client devices 122
to execute the same Software within a relatively short time
period. This high frequency of requests is indicative of a
Software worm trying to spread among the client devices
122 and thus Suggests that the Software is malicious. Simi
larly, an abnormally high frequency of requests from a single
client device 122 to execute the Same Software may also
indicate that the Software is malicious.

0051. In one embodiment, the frequency monitoring
module 522 trackS Software execution frequencies over
sliding time windows. For example, the module 522 can
track the number of execution requests for a particular piece
of Software in any given hour. If the number of executions
exceeds a predetermined threshold, the module 522 deter
mines that the Software is malicious. In one embodiment, the
module 522 holds separate thresholds for different software,
thereby allowing the thresholds to be specified with a high
degree of granularity. For example, the thresholds can be Set
based on trust level information included with the Software.

0.052 One embodiment of the execution authority 118
also includes a broadcast module 524. This module 524
sends “malicious Software” alerts to the client devices 122
via the client device interface module 510. These broadcasts
allow the client devices 122 to identify malicious Software
in advance of the client devices being asked to execute the
Software. In addition, these broadcasts allow the client
devices 122 to recognize malicious Software that the execu
tion authority 118 previously reported as “allow' or
“unknown.”

0053. In one embodiment, the broadcast module 524
Sends broadcasts to the client devices 122 upon the detection
of malicious Software by the malicious Software detection
module 512. The broadcast module 524 can also send the
broadcasts to only Selected groups of client devices 122,
Such as only devices that have previously requested the
Status of certain Software, upon detection of malicious
Software. In one embodiment, the broadcast module 524
Spools the broadcasts and distributes them to client devices
122 at regular intervals and/or rates in order to avoid
Saturating the network 112.
0.054 The execution authority 118 can also include a
status response module 526. This module 526 responds to
Status update messages from the client devices 122. In one
embodiment, the client devices 122 periodically resubmit
the Signatures of Software on the client devices 122 to the
execution authority 118 in order to receive any updated

Aug. 5, 2004

status information. The status response module 526 utilizes
the client device interface module 510 to receive these
update requests, reads the Signature Statuses from the data
base module 514, and sends the updated statuses to the
requesting client devices 122.
0055 FIG. 6 is a high-level block diagram illustrating
functional modules in one embodiment of a client device
122. In one embodiment, the functionality of some or all of
the modules described herein is incorporated into an oper
ating System executing on the client device 122. In another
embodiment, the functions of Some or all of the modules are
performed by software executed by the client device 122
Separately from the operating System. The client device 122
includes an input/output (I/O) module 610 for communicat
ing with the other entities on the network 112.
0056. A gatekeeper module 612 in the client device 122
controls the installation and/or execution of Software by the
client device. In one embodiment, the gatekeeper module
612 must be invoked by the client device 122 whenever
certain Software is installed and/or executed on the client
device 122. Thus, the gatekeeper module 612 acts as a
"gatekeeper' for the client device because Software cannot
be installed and/or executed without permission from it.
0057. In one embodiment, gatekeeper module 612 is
embodied in a dedicated routine that must be executed by the
client device 122 in order to make new software available
for execution. For example, the client device 122 can be
configured to only execute Software that is installed by a
given installation routine. In this embodiment, the gate
keeper module 612 allows the installation routine to install
only approved Software. In another embodiment, the gate
keeper module 612 is embodied in a dedicated routine that
must be executed by the client device 122 in order to execute
installed software. For example, the client device 122 may
be configured So that a specific loader routine must be used
to load Software into an executable area of memory. In this
embodiment, the gatekeeper module 612 allows the loader
routine to load only approved Software.
0058 Embodiments of the gatekeeper module 612 can
utilize one or both of these techniques in order to Stop the
installation and/or execution of certain Software. For pur
poses of Simplicity and clarity, this description uses the term
“execute' to mean “execute and/or install.” Therefore, the
present invention includes client devices 122 that perform
the gatekeeping function during (or prior to) installation of
Software and client devices that perform the gatekeeping
function during (or prior to) execution of Software. In a
Similar manner, the frequency monitoring module 522 in the
execution authority 118 can utilize installation and/or execu
tion frequency Statistics to detect malicious Software.
0059. The gatekeeper module 612 utilizes a signature
verification module 614 and status information provided by
the execution authority 118 via an execution authority client
module 616 to determine whether to permit or deny the
execution of Software. The Signature verification module
614 determines whether the Software attempting to execute
includes a valid Signature. In one embodiment, the Verifi
cation module 614 performs this test by using the key
authority's public key to decrypt the certificate to obtain the
certifying authority's public key. The verification module
614 uses the certifying authority's public key to decrypt the
hash of the software. The verification module 614 indepen

IPR2023-00289
CrowdStrike EX1017 Page 12

US 2004/0153644 A1

dently generates a hash of the Software using the same
technique utilized by the certifying authority 116 and com
pares the generated hash with the encrypted hash. If the
hashes match, the Signature is valid.
0060) If the signature is invalid, the Software is not
signed, or another error arises during the Signature verifi
cation process, one embodiment of the gatekeeper module
612 does not allow the Software to be executed. If the
Signature is valid, the gatekeeper module 612 utilizes the
execution authority client module 616 to determine the
Software's Status. In one embodiment, the gatekeeper mod
ule 612 analyzes trust level information in the software to
determine whether to utilize the execution authority client
module 616. Software can have trust level information
indicating that it is Safe for the gatekeeper module 612 to
execute the Software without performing other Security
checkS.

0061 The execution authority client module 616 uses the
I/O module 610 to contact the execution authority 118 and
obtain the status information. The client module reports this
information to the gatekeeper module 612, which then
determines whether to allow the Software to execute. The
execution authority client module 616 can also Send the
Software to the execution authority 118 and/or analysis
authority 120 if requested to do so.
0062) The client device 122 includes an authority cache
module 618 for caching Software signatures and correspond
ing status information received from the execution authority
118. In one embodiment, the authority cache module 618
stores a list of all Software that the client device 122 has
executed and attempted to execute and the corresponding
Status information. In another embodiment, the authority
cache module 618 occasionally purges old information,
thereby causing the client device 122 to check the Status of
rarely-utilized software. Other embodiments of the authority
cache module 618 can use different caching Schemes to
determine when and how to cache information. The execu
tion authority client module 616 checks the authority cache
module 618 for status information before sending a request
to the execution authority 118.
0.063 As illustrated in FIG. 6, the execution authority
client module 616 also includes a status update module 620
and a broadcast receipt module 622. The Status update
module 620 periodically checks with the execution authority
118 and updates the status of software identified in the
authority cache module 618. If the response to a status
update message indicates that the Status of Software that
previously attempted to execute or did execute has changed,
one embodiment of the execution authority client module
616 notifies the gatekeeper module 612 of the change. The
gatekeeper module 612 can then allow or Stop the Software
from executing. In one embodiment, the frequency of the
update requests Sent to the execution authority 118 can vary.
For example, it may desirable to check for updates to the
status of “unknown” software more frequently than for other
types of Software.
0064. The broadcast receipt module 622 receives broad
cast messages received from the execution authority 118 and
updates the corresponding Status entry in the authority cache
module 618. If the broadcast message indicates that the
Status Software that previously attempted to execute or did
execute, one embodiment of the execution authority client

Aug. 5, 2004

module 616 notifies the gatekeeper module 612 of the
change. The gatekeeper module 612 can then allow or Stop
the Software from executing. In addition, the broadcast
receipt module 622 creates a new entry for the Software in
the authority cache module 618 if an entry did not previously
exist, thereby allowing the client device 122 to recognize
malicious Software without having to contact the execution
authority 118.
0065 FIG. 7 is a flow chart illustrating steps for blocking
malicious Software from executing according to one
embodiment of the present invention. It should be under
stood that these Steps are illustrative only, and that other
embodiments of the present invention may perform different
and/or additional Steps than those described herein in order
to perform different and/or additional tasks. Furthermore,
the Steps can be performed in different orders than the one
described herein.

0066. The software developer sends Software to the cer
tifying authority 114 in order to obtain 710 a certification for
the Software. The certification includes a hash, digital Sig
nature, certificate, trust level information, and/or other infor
mation used to identify the Software and detect tampering.
The certified Software is distributed 712 to the client devices
122 through standard distribution channels. The software
developer and/or certifying authority 114 can also provide
the software's signature to the execution authority 118.
0067. At some point, one or more of the client devices
122 attempts 714 to execute the Software. As part of this
process, the client device 122 determines 716 whether the
Software is potentially malicious by Verifying the Software's
Signature, checking for the Software's Status in the authority
cache module 618, and/or contacting the execution authority
118.

0068. The execution authority 118 determines 716
whether the Software is potentially malicious by checking
for the Software's signature in its database module 514 to see
if the Software's status has previously been determined by,
for example, the certifying authority and/or the analysis
authority 120. In addition, the execution authority 118
utilizes heuristics to determine 716 whether the Software is
potentially malicious. An abnormally high number of execu
tion requests within a certain window of time may indicate
that the Software is a worm or otherwise malicious.

0069. Once the client device 122 determines the status of
the Software, it determines 718 the appropriate action to take
in response to the attempt to execute the Software. If the
Software is not potentially malicious, i.e., its Status is “allow
execution,” the client device 122 executes the Software. If
the Software is potentially malicious, i.e., its status is “deny
execution,” the client device 122 blocks execution 722 of the
Software. If the client device 122 cannot determine whether
the Software is potentially malicious, i.e., its Status is
“unknown,” the client device 122 typically blocks execution
of the software and optionally sends 724 a copy of the
Software to the analysis authority 120 for evaluation.
Accordingly, the present invention Stops worms and other
malicious Software from executing on the client devices 122
by providing a framework that prevents the client devices
from executing certain Software and providing a way to
detect potentially-malicious Software.
0070 The above description is included to illustrate the
operation of the preferred embodiments and is not meant to

IPR2023-00289
CrowdStrike EX1017 Page 13

US 2004/0153644 A1

limit the scope of the invention. The scope of the invention
is to be limited only by the following claims. From the above
discussion, many variations will be apparent to one skilled
in the relevant art that would yet be encompassed by the
Spirit and Scope of the invention.

We claim:
1. A System for preventing client devices from executing

potentially malicious Software, comprising:
a certifying authority for creating a certification for Soft

ware, the certification including an identification of the
Software; and

an execution authority remote from the client devices and
in communication with a database containing Status
information indicating whether the Software is poten
tially malicious, the execution authority adapted to
receive from a client device the identification of the
Software and provide the status information for the
Software to the client device.

2. The System of claim 1, wherein the certifying authority
comprises:

an authority generation module adapted to use code
Signing to create the certification for the Software.

3. The system of claim 1, wherein the certifying authority
comprises:

a request validation module adapted to validate a request
to certify Software and reject invalid requests.

4. The system of claim 3, wherein the request validation
module provides a requestor with a challenge and requestors
that fail the challenge are invalid.

5. The system of claim 1, wherein the execution authority
comprises:

a malicious Software detection module for determining
whether the Software identified by the client device is
potentially malicious.

6. The system of claim 5, wherein the malicious software
detection module comprises:

a heuristics module for analyzing identifications of Soft
ware received from client devices to identify charac
teristics that are indicative of malicious Software.

7. The system of claim 5, wherein the malicious software
detection module comprises:

a frequency monitoring module for detecting potentially
malicious Software responsive to a frequency of iden
tifications of Software received from the client devices.

8. The system of claim 7, wherein an abnormally high
frequency of identifications received for a Same Software
indicates that the Software is malicious.

9. The system of claim 1, further comprising:
an analysis authority for analyzing Software to determine

whether the Software is malicious, wherein results of
the analysis are Stored as Status information in the
database.

10. The system of claim 1, wherein the execution author
ity comprises:

a broadcast module for Sending unsolicited messages
including Status information for Software to the client
devices.

Aug. 5, 2004

11. A computer program product comprising:
a computer-readable medium having computer program

code modules embodied therein for providing client
devices with Software Status information, the computer
program code modules comprising:
a database module for holding information describing

Signatures identifying Software and for holding Sta
tuS information indicating whether Software identi
fied by the Signatures is potentially malicious,

an interface module for receiving messages from client
devices including Signatures identifying Software
and for Sending messages to the client devices
describing the statuses of the identified software
responsive to the Status information in the database;
and

a malicious Software detection module for monitoring
the messages from the client devices to determine
whether the Software identified therein is potentially
malicious and for updating the Status information in
the database responsive thereto.

12. The computer program product of claim 11, wherein
the malicious Software detection module comprises:

a heuristics module for utilizing heuristics to analyze the
Signatures received from client devices to identify
characteristics that are indicative of malicious Software.

13. The computer program product of claim 11, wherein
the malicious Software detection module comprises:

a frequency monitoring module for determining whether
identified Software is potentially malicious responsive
to a frequency of Signatures received from the client
devices.

14. The computer program product of claim 13, wherein
receiving an abnormally high frequency of Signatures iden
tifying a Same Software indicates that the Software is poten
tially malicious.

15. The computer program product of claim 11, further
comprising:

a broadcast module for Sending unsolicited messages
describing the Statuses of Software to the client devices.

16. A computer program product comprising:
a computer-readable medium having computer program

code modules embodied therein for preventing execu
tion of potentially malicious Software, the computer
program code modules comprising:
an execution authority client module adapted to provide

Signatures identifying Software to a remote execution
authority and receive Status information for the Soft
ware indicating whether the Software identified by
the Signatures is potentially malicious in response;
and

a gatekeeper module adapted to Selectively prevent the
execution of Software responsive to the Status infor
mation received from the execution authority.

17. The computer program product of claim 16, further
comprising:

an authority cache module adapted to cache the Status
information received from the execution authority,
wherein the gatekeeper module is adapted to Selectively

IPR2023-00289
CrowdStrike EX1017 Page 14

US 2004/0153644 A1

prevent the execution of Software responsive to the
Status information cached in the authority cache mod
ule.

18. The computer program product of claim 16, further
comprising:

a signature verification module adapted to determine
whether a signature for Software is valid, wherein the
gatekeeper module prevents the execution of Software
having an invalid Signature.

19. The computer program product of claim 16, further
comprising:

a status update module adapted to periodically request
Status updates for Software from the execution author
ity.

20. The computer program product of claim 16, further
comprising:

a broadcast receipt module adapted to receive from the
execution authority unsolicited messages containing
Software Signatures and Status information.

21. A method for preventing client devices from executing
potentially malicious Software, comprising:

providing a Signature identifying Software to a remote
execution authority;

receiving Status information for the Software from the
execution authority, the Status information indicating
whether the Software is potentially malicious, and

determining whether to execute the Software responsive to
the Status information.

22. The method of claim 21, further comprising the Step
of:

caching the Status information received from the execu
tion authority in a local cache.

23. The method of claim 21, further comprising:
checking whether the Signature for the Software is valid,

wherein the determining Step does not execute Software
having an invalid Signature.

Aug. 5, 2004

24. The method of claim 21, further comprising:
periodically requesting Status updates for Software from

the execution authority.
25. The method of claim 21, further comprising:

receiving from the execution authority an unsolicited
message containing Software signatures and corre
sponding Status information.

26. A method for preventing client devices from executing
potentially malicious Software, comprising:

receiving messages from client devices including Signa
tures identifying Software;

monitoring the messages from the client devices to deter
mine whether the identified software is potentially
malicious,

updating Status information for the Software in a database
responsive to the determination; and

Sending the Status information in the database for the
identified Software to the client devices.

27. The method of claim 26, wherein determining whether
the identified Software is potentially malicious comprises:

analyzing the Signatures received from client devices to
identify characteristics that are indicative of malicious
Software.

28. The method of claim 26, wherein determining whether
the identified Software is potentially malicious comprises:

determining whether identified Software is potentially
malicious responsive to a frequency of Signatures
received from the client devices.

29. The method of claim 28, wherein receiving an abnor
mally high frequency of Signatures identifying a same
Software in a time period indicates that the Software is
potentially malicious.

IPR2023-00289
CrowdStrike EX1017 Page 15

