
USOO7448O84B1

(12) United States Patent (10) Patent No.: US 7,448,084 B1
Apapet al. (45) Date of Patent: Nov. 4, 2008

(54) SYSTEMAND METHODS FOR DETECTING 6,778,995 B1 8/2004 Gallivan
INTRUSIONS IN A COMPUTER SYSTEM BY 6,820,081 B1 1 1/2004 Kawai et al.
MONITORING OPERATING SYSTEM 6,888,548 B1 5/2005 Gallivan
REGISTRY ACCESSES 6,978,274 B1 12/2005 Gallivan et al.

7,035,876 B2 4/2006 Kawai et al.
7,080,076 B1 7/2006 Williamson et al.

(75) Inventors: Frank Applyalley Steam, NY (US), 2003/0070003 A1* 4/2003 Chong et al. TO9,330
Andrew Honig, East Windsor, NJ (US); 2006/01743 19 A1 8/2006 Kraemer et al. T26.1
Hershkop Shlomo, Brooklyn, NY (US);
Eleazar Eskin, Santa Monica, CA (US); OTHER PUBLICATIONS
Salvatore Stolf. Ridgewood, N(US) Eskin, E. M. Mierz D. Zhongyi, wAssands, stor,

Adaptive Model Generation for Intrusion Detection Systems. Work
(73) Assignee: The Trustees of Columbia University shop on INtrusion Detection and Prevention, 7th ACM Conferenece

st City of New York, New York, NY on Computer Security, Athens. Nov. 2000.*

(Continued)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Primary Examiner Christopher A Revak
U.S.C. 154(b) by 422 days. (74) Attorney, Agent, or Firm Baker Botts LLP

(21) Appl. No.: 10/352,343 (57) ABSTRACT

(22) Filed: Jan. 27, 2003 A method for detecting intrusions in the operation of a com
9 puter system is disclosed which comprises gathering features

Related U.S. Application Data from records of normal processes that access the files system
of the computer, such as the Windows registry, and generating

(60) Provisional application No. 60/351,857, filed on Jan. a probabilistic model of normal computer system usage based
25, 2002. on occurrences of said features. The features of a record of a

process that accesses the Windows registry are analyzed to
(51) Int. Cl. determine whether said access to the Windows registry is an

G06F 2L/22 (2006.01) anomaly. A system is disclosed, comprising a registry audit
G06F II/30 (2006.01) ing module configured to gather records regarding processes

(52) U.S. Cl. ... 726/24; 726/22 that access the Windows registry; a model generator config
(58) Field of Classification Search 726/23, ured to generate a probabilistic model of normal computer

726/22, 4 system usage based on records of a plurality of processes that
See application file for complete search history. access the Windows registry and that are indicative of normal

(56) References Cited computer system usage; and a model comparator configured

U.S. PATENT DOCUMENTS

6,647,400 B1 * 1 1/2003 Moran 707,205
6,742,124 B1* 5/2004 Kilpatricket al. T26/23

to determine whether the access of the Windows registry is an
anomaly.

28 Claims, 3 Drawing Sheets

12 22

10 Registry

18

Data
Warehouse

Auditing
Module

Model
Generator

Anomaly
Detector

IPR2023-00289
CrowdStrike EX1020 Page 1

US 7,448,084 B1
Page 2

OTHER PUBLICATIONS

Korba, Jonathan. Windows NT Attacks for the Evaluation of Intru
sion Detection Systems. May 2000.*
Lee et al., “A Framework for Constructing Features and Models for
Intrusion Detection Systems”, Nov. 2000, ACM Transactions on
Information and System Security, vol. 3, No. 4, pp. 22.*
U.S. Appl. No. 10/352.342, filed Jan. 27, 2003 claiming priority to
U.S. Appl. No. 60/351,913, filed Jan. 25, 2002, entitled “Data Ware
house Architecture For Adaptive Model Generation Capability In
Systems For Detecting Intrusion In Computer Systems,” of Salvatore
J. Stolfo, Eleazar Eskin, Matthew Miller, Juxin Zhang and Zhi-Da
Zhong. (AP34982).
U.S. Appl. No. 10/327,811, filed Dec. 19, 2002 claiming priority to
U.S. Appl. No. 60/342,872, filed Dec. 20, 2001, entitled “System and
Methods for Detecting A Denial-Of-Service Attack On A Computer
System” of Salvatore J. Stolfo, Shlomo Hershkop, Rahul Bhan,
Suhail Mohiuddin and Eleazar Eskin. (AP34898).
U.S. Appl. No. 10/320,259, filed Dec. 16, 2002 claiming priority to
U.S. Appl. No. 60/328,682, filed Oct. 11, 2001 and U.S. Appl. No.
60/352,894, filed Jan. 29, 2002, entitled “Methods of Unsupervised
Anomaly Detection Using A Geometric Framework” of Eleazar
skin, Salvatore J. Stolfo and Leonid Portnoy. (AP34888).
.S. Appl. No. 10/269,718, filed Oct. 11, 2002 claiming priority to
.S. Appl. No. 60/328,682, filed Oct. 11, 2001 and U.S. Appl. No.
0/340, 198, filed Dec. 14, 2001, entitled “Methods For Cost-Sensi
ive Modeling For Intrusion Detection” of Salvatore J. Stolfo, Wenke
Lee, Wei Fan and Matthew Miller. (AP34885).
U.S. Appl. No. 10/269,694, filed Oct. 11, 2002 claiming priority to
U.S. Appl. No. 60/328,682, filed Oct. 11, 2001 and U.S. Appl. No.
60/339,952, filed Dec. 13, 2001, entitled “System And Methods For
Anomaly Detection And Adaptive Learning” of Wei Fan, Salvatore J.
Stolfo. (AP34886).
U.S. Appl. No. 10/222,632, filed Aug. 16, 2002 claiming priority to
U.S. Appl. No. 60/312,703, filed Aug. 16, 2001 and U.S. Appl. No.
60/340,197, filed Dec. 14, 2001, entitled “System And Methods For
Detecting Malicious Email Transmission” of Salvatore J. Stolfo,
Eleazar Eskin, Manasi Bhattacharyya and Matthew G. Schultz.
(AP34887).
U.S. Appl. No. 10/208.432, filed Jul. 30, 2002 claiming priority to
U.S. Appl. No. 60/308,622, filed Jul 30, 2001 and U.S. Appl. No.
60/308,623, filed Jul 30, 2001, entitled “System And Methods For
Detection Of New Malicious Executables' of Matthew G. Schultz,
Eleazar Eskin, Erez Zadok and Salvatore J. Stolfo. (AP34542).

U.S. Appl. No. 10/208.402, filed Jul. 30, 2002 claiming priority to
U.S. Appl. No. 60/308,621, filed Jul. 30, 2001, entitled “System And
Methods For Intrusion Detection With Dynamic Windows Sizes” of
Eleazar Eskin and Salvatore J. Stolfo. (AP34541).
Honig A et al., (2002) "Adaptive model generation: An Architecture
for the deployment of data mining-based intrusion detection sys
tems.” In Data Mining for Security Applications. Kluwer.
Friedman N. et al., (1999) “Efficient bayesian parameter estimation
in large discrete domains.”
Javits HS et al., Mar. 7, 1994, “The nides statistical component:
Description and justification.” Techical report, SRI International.
D. E. Denning. An Intrusion Detection Model, IEEE Transactions. On
Sofiware Engineering, SE-13:222-232, 1987.
Wenke Lee, Sal Stolfo, and Kui Mok. “Mining in a Data-flow Envi
ronment: Experience in Network Intrusion Detection” In Proceed
ings of the 5th ACM SIGKDD International Conference on Knowl
edge Discovery & Data Mining (KDD '99), San Diego, CA, Aug.
1999.
Stephanie Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A Sense of Self for UNIX Processes.” IEEE Computer Society, pp.
120-128, 1996.
Christina Warrender, Stephanie Forrest, and Barak Pearlmutter,
"Detecting Intrusions Using System Calls: Alternative DataModels.”
IEEE Computer Society, pp. 133-145, 1999.
S. A. Hofmeyr, Stephanie Forrest, and A. Somayaji. “Intrusion Detect
Using Sequences of System Calls,” Journal of Computer Society,
6:151-180, 1998.
W. Lee, S.J. Stolfo, and P. K. Chan, “Learning Patterns from UNIX
Processes Execution Traces for Intrusion Detection.' AAAI Press,
pp. 50-56, 1997.
Eleazar Eskin, "Anomaly Detection Over Noisy Data Using Learned
Probability Distributions.” Proceedings of the Seventeenth Interna
tional Conference on Machine Learning (ICML-2000), 2000.
N. Friedman andY. Singer, “Efficient Bayesian Parameter Estimation
in Large Discrete Domains.” Advances in Neural Information Pro
cessing Systems II, MIT Press, 1999.
M. Mahoney and P. Chan, “Detecting Novel Attacks by Identifying
Anomalous Network Packet Headers.” Technical Report CS-2001-2,
Florida Institute of Technology, Melbourne, FL, 2001.
H. Debar et al., “Intrusion Detection Exchange Format DataModel.”
Internet Engineering Task Force, Jun. 15, 2000.

* cited by examiner

IPR2023-00289
CrowdStrike EX1020 Page 2

U.S. Patent Nov. 4, 2008 Sheet 1 of 3 US 7,448,084 B1

18

Data
Warehouse

Anomaly
Detector

Model
Generator

FIG. 1

IPR2023-00289
CrowdStrike EX1020 Page 3

U.S. Patent Nov. 4, 2008 Sheet 2 of 3 US 7,448,084 B1

SSS SSS SSSSSSS
$5.09.48

Yarter-rrrrrrrrrrrrrrrr Yarr 52G945" 2,075583 18284.853E
0.080792O52235?

re-resse-relessesserer

a- l.3208892.98.1549 O53E-5
5299.45 $0.0585533.2539938.25

wr-ex^xss-rexYarraxYsser-War-researrare-rrerrarowers area arres-wres worwaywrywrew

Process Query 6144 is%Tiszsgas "iss 3.49092.17165522s26E-4
sur-was---was------------Wavalass-wer---as-a-\s-a--- ---------------------------

$52OOOO 036 o.o.470.066751slgo9815
120.000 illsG 52.99.45 0.044589.45892600378

as arris-as-it-------- www.www.waw-worwww.var-www. foodo 23S 529.946 ossigsila
seaserrareweesaweaharrassraeswrwra-saw-wearswearsaw. w waaaaawasawers

5299.45 0.1044765825299.1814

V S S SS

FIG. 2

IPR2023-00289
CrowdStrike EX1020 Page 4

U.S. Patent Nov. 4, 2008 Sheet 3 of 3 US 7.448,084 B1

ROC Curves for Registry Record DataSet

O 0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rats

S 54

FIG. 3

IPR2023-00289
CrowdStrike EX1020 Page 5

US 7,448,084 B1
1.

SYSTEMAND METHODS FOR DETECTING
INTRUSIONS IN A COMPUTER SYSTEM BY

MONITORING OPERATING SYSTEM
REGISTRY ACCESSES

CLAIM FOR PRIORITY TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/351,857, filed on Jan. 25,
2002, entitled “Behavior Based Anomaly Detection for Host
Based Systems for Detection of Intrusion in Computer Sys
tems.” which is hereby incorporated by reference in its
entirety herein.

STATEMENT OF GOVERNMENT RIGHT

The present invention was made in part with Support from
United States Defense Advanced Research Projects Agency
(DARPA), grant nos. FAS-526617, SRTSC-CU019-7950-1,
and F30602-00-1-0603. Accordingly, the United States Gov
ernment may have certain rights to this invention.

COMPUTER PROGRAM LISTING

A computer program listing is Submitted in duplicate on
CD. Each CD contains a routines listed in the Appendix,
which CD was created on Jan. 27, 2002, and which is 22 MB
in size. The files on this CD are incorporated by reference in
their entirety herein.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by any one of the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but oth
erwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to systems and methods for detecting

anomalies in a computer system, and more particularly to the
use of probabilistic and statistical models to model the behav
ior of processes which access the file system of the computer,
such as the WindowsTM registry.

2. Background
WindowsTM is currently one of the most widely used oper

ating systems, and consequently computer systems running
the WindowsTM operating system are frequently subject to
attacks. Malicious software is often used to perpetrate these
attacks. Two conventional approaches to respond to mali
cious Software include virus scanners, which attempt to detect
the malicious Software, and security patches that are created
to repair the security “hole' in the operating system that the
malicious software has been found to exploit. Both of these
methods for protecting hosts against malicious Software Suf
fer from drawbacks. While they may be effective against
known attacks, they are unable to detect and prevent new and
previously unseen types of malicious Software.
Many virus Scanners are signature-based, which generally

means that they use byte sequences or embedded strings in
Software to identify certain programs as malicious. If a virus
scanner's signature database does not contain a signature for
a malicious program, the virus scanner is unable to detect or

10

15

25

30

35

40

45

50

55

60

65

2
protect against that malicious program. In general, virus scan
ners require frequent updating of signature databases, other
wise the Scanners become useless to detect new attacks. Simi
larly, security patches protect systems only when they have
been written, distributed and applied to host systems in
response to known attacks. Until then, systems remain Vul
nerable and attacks are potentially able to spread widely.

Frequent updates of virus scanner signature databases and
security patches are necessary to protect computer systems
using these approaches to defend against attacks. If these
updates do not occur on a timely basis, these systems remain
Vulnerable to very damaging attacks caused by malicious
Software. Even in environments where updates are frequent
and timely, the systems are inherently vulnerable from the
time new malicious software is created until the software is
discovered, new signatures and patches are created, and ulti
mately distributed to the Vulnerable systems. Since malicious
Software may be propagated through email, the malicious
software may reach the Vulnerable systems long before the
updates are in place.

Another approach is the use of intrusion detection systems
(IDS). Host-based IDS systems monitor a host system and
attempt to detect an intrusion. In an ideal case, an IDS can
detect the effects or behavior of malicious software rather
than distinct signatures of that Software. In practice, many of
the commercial IDS systems that are in widespread use are
signature-based algorithms, having the drawbacks discussed
above. Typically, these algorithms match host activity to a
database of signatures which correspond to known attacks.
This approach, like virus detection algorithms, requires pre
vious knowledge of an attack and is rarely effective on new
attacks. However, recently there has been growing interest in
the use of data mining techniques, such as anomaly detection,
in IDS systems. Anomaly detection algorithms may build
models of normal behavior in order to detect behavior that
deviates from normal behavior and which may correspond to
an attack. One important advantage of anomaly detection is
that it may detect new attacks, and consequently may be an
effective defense against new malicious Software. Anomaly
detection algorithms have been applied to network intrusion
detection (see, e.g., D. E. Denning, "An Intrusion Detection
Model, IEEE Transactions on Software Engineering, SE-13:
222-232, 1987; H. S. Javitz and A. Valdes, “The NIDES
Statistical Component: Description and Justification, Techni
cal report, SRI International, 1993; and W. Lee, S.J. Stolfo,
and K. Mok, “Data Mining in Work Flow Environments:
Experiences in Intrusion Detection.” Proceedings of the 1999
Conference on Knowledge Discovery and Data Mining
(KDD-99), 1999) and also to the analysis of system calls for
host based intrusion detection (see, e.g., Stephanie Forrest, S.
A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of
Self for UNIX Processes.” IEEE Computer Society, pp. 120
128, 1996; Christina Warrender, Stephanie Forrest, and Barak
Pearlmutter, “Detecting Intrusions Using System Calls:
Alternative Data Models.” IEEE Computer Society, pp. 133
145, 1999; S. A. Hofineyr, Stephanie Forrest, and A.
Somayaji. “Intrusion Detect Using Sequences of System
Calls,” Journal of Computer Security, 6:151-180, 1998: W.
Lee, S. J. Stolfo, and P. K. Chan, “Learning Patterns from
UNIX Processes Execution Traces for Intrusion Detection.”
AAAI Press, pp. 50-56, 1997; and Eleazar Eskin, “Anomaly
Detection Over Noisy Data Using Learned Probability Dis
tributions. Proceedings of the Seventeenth International
Conference on Machine Learning (ICML-2000), 2000).

There are drawbacks to the prior art approaches. For
example, the system call approach to host-based intrusion
detection has several disadvantages which inhibit its use in

IPR2023-00289
CrowdStrike EX1020 Page 6

US 7,448,084 B1
3

actual deployments. A first is that the computational overhead
of monitoring all system calls is potentially very high, which
may degrade the performance of a system. A second is that
system calls themselves are typically irregular by nature.
Consequently, it is difficult to differentiate between normal
and malicious behavior, and such difficulty to differentiate
behavior may result in a high false positive rate.

Accordingly, there is a need in the art for an intrusion
detection system which overcomes these limitations of the
prior art.

SUMMARY OF THE INVENTION

It is an object of the invention to provide techniques which
are effective in detecting attacks while maintaining a low rate
of false alarms.

It is another object of the invention to generate a model of
the normal access to the Windows registry, and to detect
anomalous accesses to the registry that are indicative of
attacks.

These and other aspects of the invention are realized by a
method for detecting intrusions in the operation of a computer
system comprising the steps of gathering features from
records of normal processes that access the Windows registry.
Another step comprises generating a probabilistic model of
normal computer system usage, e.g., free of attacks, based on
occurrences of said features. The features of a record of a
process that accesses the Windows registry are analyzed to
determine whether said access to the Windows registry is an
anomaly.

According to an exemplary embodiment, the step of gath
ering features from the records of normal processes that
access the Windows registry may comprise gathering a fea
ture corresponding to a name of a process that accesses the
registry. Another feature may correspond to the type of query
being sent to the registry. A further feature may correspond to
an outcome of a query being sent to the registry. A still further
feature may correspond to a name of a key being accessed in
the registry. Yet another feature may correspond to a value of
said key being accessed. In addition, any other features may
be combined to detect anomalous behavior that may not be
identified by analyzing a single feature.
The step of generating a probabilistic model of normal

computer system usage may comprise determining a likeli
hood of observing a feature in the records of processes that
access the Windows registry. This may comprise performing
consistency checks. For example, a first order consistency
check may comprise determining the probability of observa
tion of a given feature. The step of determining a likelihood of
observing a feature may comprise a second order consistency
check, e.g., determining a conditional probability of observ
ing a first feature in said records of processes that access the
Windows registry given an occurrence of a second feature is
said records.

In the preferred embodiment, the step of analyzing a record
of a process that accesses the Windows registry may com
prise, for each feature, determining if a value of the feature
has been previously observed for the feature. If the value of
the feature has not been observed, then a score may be deter
mined based on a probability of observing said value of the
feature. If the score is greater than a predetermined threshold,
the method comprises labeling the access to the Windows
registry as anomalous and labeling the process that accessed
the Windows registry as malicious.
A system for detecting intrusions in the operation of a

computer system has an architecture which may comprise a
registry auditing module, e.g., a sensor, configured to gather

10

15

25

30

35

40

45

50

55

60

65

4
records regarding processes that access the Windows registry.
A model generator is also provided which is configured to
generate a probabilistic model of normal computer system
usage based on records of a plurality of processes that access
the Windows registry and that are indicative of normal com
puter system usage, e.g., free of attacks. A model comparator,
e.g., anomaly detector, is configured to receive said probabi
listic model of normal computer system usage and to receive
records regarding processes that access the Windows registry
and to determine whether the access of the Windows registry
is an anomaly.
The system may also comprise a database configured to

receive records regarding processes that access the Windows
registry from said registry auditing module. The model gen
erator may be configured to receive the records regarding
processes that access the Windows registry from the database.
The model generator may be configured to determine a

conditional probability of observing a first feature in records
regarding processes that access the Windows registry given
an occurrence of a second feature is said record. The model
comparator may be configured to determine a score based on
the likelihood of observing a feature in a record regarding a
process that accesses the Windows registry. The model com
parator may also be configured to determine whether an
access to the Windows registry is anomalous based on
whether the score exceeds a predetermined threshold.

In accordance with the invention, the objects as described
above have been met, and the need in the art for detecting
intrusions based on registry accesses has been satisfied.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features, and advantages of the invention
will become apparent from the following detailed description
taken in conjunction with the accompanying figures showing
illustrative embodiments of the invention, in which:

FIG. 1 is a block diagram illustrating the architecture of the
system in accordance with the present invention.

FIG. 2 is an exemplary user interface in accordance with
the present invention.

FIG. 3 is a plot illustrating the result of an embodiment of
the present invention.

Throughout the figures, the same reference numerals and
characters, unless otherwise Stated, are used to denote like
features, elements, components, or portions of the illustrated
embodiments. Moreover, while the subject invention will
now be described in detail with reference to the figures, it is
done so in connection with the illustrative embodiments with
out departing from the true scope and spirit of the invention as
defined by the appended claims.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

A novel intrusion detection system 10 is disclosed herein
and illustrated in FIG. 1. System 10 monitors a programs
access of the file system of the computer, e.g., MicrosoftTM
WindowsTM registry (hereinafter referred to as the “Win
dowsTM registry” or the “registry’) and determines whether
the program is malicious. The system and methods described
herein incorporate a novel technique referred to herein as
“RAD' (Registry Anomaly Detection), which monitors the
accesses to the registry, preferably in real time, and detects the
actions of malicious Software.
As is known in the art, the registry is an important compo

nent of the WindowsTM operating system and is implemented
very widely. Accordingly, a Substantial amount of data

IPR2023-00289
CrowdStrike EX1020 Page 7

US 7,448,084 B1
5

regarding activity associated with the registry is available.
The novel technique includes building a sensor, e.g., registry
auditing module, on the registry and applying the information
gathered by this sensor to an anomaly detector. Consequently,
registry activity that corresponds to malicious Software may
be detected. Several advantages of monitoring the registry
include the fact that registry activity is regular by nature, that
the registry can be monitored with low computational over
head, and that almost all system activities query the registry.
An exemplary embodiment of the novel system, e.g., sys

tem 10, comprises several components: a registry auditing
module 12, a model generator 14, and an anomaly detector
16. Generally, the sensor 12 serves to output data for each
registry activity to a database 18 where it is stored fortraining.
The model generator 14 reads data from the database 18, and
creates a model of normal behavior. The model is then used by
the anomaly detector 16 to decide whether each new registry
access should be considered anomalous. The above compo
nents can reside on the host system itself, or on a remote
network connected to the host.
A description of the WindowsTM registry is provided

herein. As is known in the art, the registry is a database of
information about a computer's configuration. The registry
contains information that is continually referenced by many
different programs during the operation of the computer sys
tem. The registry may store information concerning the hard
ware installed on the system, the ports that are being used,
profiles for each user, configuration settings for programs,
and many other parameters of the system. The registry is the
main storage location for all configuration information for
almost all programs. The registry is also the storage location
for all security information such as security policies, user
names, and passwords. The registry also stores much of the
important configuration information that are needed by pro
grams in order to run.
The registry is organized hierarchically as a tree. Each

entry in the registry is called a “key' and has an associated
value. One example of a registry key is:

HKCU\Software\America Online\AOL Instant Messen
gerTM \CurrentVersion\Users\aimuser\Login\Password

This example represents a key used by the AOLTM Instant
MessengerTM program. This key stores an encrypted version
of the password for the user name “aimuser. Upon execution,
the AOLTM Instant MessengerTM program access the registry.
In particular, the program queries this key in the registry in
order to retrieve the stored password for the local user. Infor
mation is accessed from the registry by individual registry
accesses or queries. The information associated with a regis
try query may include the key, the type of query, the result, the
process that generated the query, and whether the query was
Successful. One example of a query is a read for the key,
shown above. For example, the record of the query is:

Process: aim.exe
Query: QueryValue
Key: HKCU\Software\America Online\AOL Instant

MessengerTM\CurrentVersion\Users\aimuser\Login\
Password

Response: SUCCESS
ResultValue: BCOFHIHBBAHF
The registry serves as an effective data source to monitor

for attacks because it has been found that many attacks are
manifested as anomalous registry behavior. For example, cer
tain attacks have been found to take advantage of Win
dowsTM reliance on the registry. Indeed, many attacks them
selves rely on the registry in order to function properly. Many
programs store important information in the registry, despite

10

15

25

30

35

40

45

50

55

60

65

6
the fact that any other program can likewise access data
anywhere inside the registry. Consequently, Some attackStar
get the registry to take advantage of this access. In order to
address this concern, security permissions are included in
some versions of WindowsTM. However, such permissions are
not included in all versions of WindowsTM, and even when
they are included, many common applications do not make
use of this security feature.

“Normal’ computer usage with respect to the registry is
described herein. Most typical WindowsTM programs access a
certain set of keys during execution. Furthermore, each user
typically uses a certain set of programs routinely while run
ning their machine. This set of programs may be a set of all
programs installed on the machine, or a small Subset of these
programs.

Another important characteristic of normal registry activ
ity is that it has been found to be substantially regular over
time. Most programs may either (1) access the registry only
on startup and shutdown, or (2) access the registry at specific
intervals. Since this access to the registry appears to be Sub
stantially regular, monitoring the registry for anomalous
activity provides useful results because a program which
substantially deviates from this normal activity may be easily
detected as anomalous.

Other normal registry activity occurs only when the oper
ating system is installed by the manufacturer. Some attacks
involve launching programs that have not been launched
before and/or changing keys that have not been changed since
the operating system was first installed by the manufacturer.

If a model of the normal registry behavior is trained over
clean data, then these kinds of registry operations will not
appear in the model, and can be detected when they occur.
Furthermore, malicious programs may need to query parts of
the registry to get information about Vulnerabilities. A mali
cious program can also introduce new keys that will help
create Vulnerabilities in the machine.
Some examples of malicious programs and how they pro

duce anomalous registry activity are as follows:
Setup Trojan: This program, when launched, adds full

read/write sharing access on the file system of the host
machine. It makes use of the registry by creating a registry
structure in the networking section of the WindowsTM keys.
The structure stems from HKLM\Software\Microsoft\
Windows\CurrentVersion\Network\LanMan. It then makes
several, e.g., eight, new keys for its use. It also accesses
HKLM\Security\Provider in order to find information about
the security of the machine to help determine Vulnerabilities.
This key is not accessed by any normal programs during
training or testing in our experiments, and therefore its use is
clearly Suspicious in nature.
Back Oriffice 2000: This program opens a vulnerability on

a host machine, which may grant anyone with the back orif
fice client program complete control over the host machine.
This program makes extensive use of the registry. In doing so,
it does access a key that is very rarely accessed on the Win
dow STM system. This key,
HKLM\Software\Microsoft\VBAAMonitors, WaS not
accessed by any normal programs in either the training or test
data. Accordingly, the detection algorithm was able to deter
mine it as anomalous. This program also launches many other
programs (e.g., LoadWC.exe, Patch.exe, runonce.exe,
bo2k i o intl.e) as part of the attack, in which all of these
programs made anomalous accesses to the registry.

Aimrecover: This program obtains passwords from AOLTM
users without authorization. It is a simple program that reads
the keys from the registry where the AOLTM Instant Messen
gerTM program stores the user names and passwords. These

IPR2023-00289
CrowdStrike EX1020 Page 8

US 7,448,084 B1
7

accesses are considered anomalous because Aimrecover is
accessing a key that usually is accessed and was created by a
different program.

Disable Norton: This is a simple exploitation of the registry
that disables NortonTM Antivirus. This attack toggles one 5
record in the registry, in particular, the key
HKLMASOFTWAREVINTELVLANDesk\Virus.Protect(6\
CurrentVersion \Storages\ Files\System\RealTimeScan\
OnOff. If this value is set to 0, then NortonTM Antivirus
real-time system monitoring is turned off. Again, this is con- 10
sidered anomalous because of its access to a key that was
created by a different program.

LOphtCrack: This program is a widely used password
cracking program for WindowsTM machines. It obtains the
hashed SAM file containing the passwords for all users, and 15
then uses either a dictionary or a brute force approach to find
the passwords. This program also uses flaws in the Win
dowsTM encryption scheme in order to try to find some of the
characters in a password in order to obtain a password faster.
This program uses the registry by creating its own section in 20
the registry. This new section may include many create key
and set value queries, all of which will be on keys that did not
exist previously on the host machine and therefore have not
been seen before.
An additional aspect of normal computer usage of the 25

registry is described herein. During testing (as will be
described below) all of the programs observed in the data set
cause ExplorerTM to access a key specifically for that appli
cation. This key has the following format:

HKLM\Software\Microsoft\WindowsNT 30
\CurrentVersion\Image File Execution Options\pro
cessName

where “processName” is the name of the process being run.
(It is believed that all programs in general have this behavior.)
This key is accessed by ExplorerTM each time an application
is run. Given this information, a detection system may be able
to determine when new applications are run, which will be a
starting point to determine malicious activity. In addition,
many programs add themselves in the auto-run section of the
registry under the following key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run.

35

40

While this activity is not malicious in nature, it is nevertheless
an uncommon event that may suggest that a system is being
attacked. Trojans such as Back Orifice utilize this part of the 45
registry to auto load themselves on each boot.
Anomaly detectors, such as anomaly detector 16, do not

operate by looking for malicious activity directly. Rather,
they look for deviations from normal activity. Consequently,
Such deviations, which represent normal operation, may nev- 50
ertheless be declared an attack by the system. For example,
the installation of a new program on a system may be viewed
as anomalous activity by the anomaly detector, in which new
sections of the registry and many new keys may be created.
This activity may interpreted as malicious (since this activity 55
was not in the training data) and a false alarm may be trig
gered, much like the process of adding a new machine to a
network may cause an alarm on an anomaly detector that
analyzes network traffic.

There are a few possible solutions to avoid this problem. 60
Malicious programs often install quietly so that the user does
not know the program is being installed. This is not the case
with most installations. For example, in an exemplary
embodiment, the algorithm is programmed to ignore alarms
while the install shield program is running, because the user 65
would be aware that a new program is being installed (as
opposed to malicious activity occurring without the users

8
knowledge and permission). In another embodiment, the user
is prompted when a detection occurs, which provides the user
with the option of informing the algorithm that the detected
program is not malicious and therefore grants permission for
Such program to be added to the training set of data to update
the anomaly detector for permissible software.

In order to detect anomalous registry accesses, model gen
erator 14 of system 10 generates a model of normal registry
activity. A set of five basic features are extracted from each
registry access. (An additional five features may be added,
which are combinations of the five basic features, as
described below.) Statistics of the values of these features
over normal data are used to create the probabilistic model of
normal registry behavior. This model of normal registry
behavior may include a set of consistency checks applied to
the features, as will be described below. When detecting
anomalies, the model of normal behavior is used to determine
whether the values of the features of the new registry accesses
are consistent with the normal data. If such values are not
consistent, the algorithm labels the registry access as anoma
lous, and the processes that accessed the registry as malicious.

In the exemplary embodiment, the data model consists of
five basic features gathered by the registry auditing module
12 from an audit stream. (It is contemplated that additional
features may also provide significant results.) In the exem
plary embodiment, the features are as follows:

Process: The name of the process accessing the registry.
This allows the tracking of new processes that did not appear
in the training data.

Query: The type of query being sent to the registry, for
example, Query Value, CreateKey, and SetValue are valid
query types. This allows the identification of query types that
have not been seen before. There are many query types but
only a few are used under normal circumstances.

Key: The actual key being accessed. Including this feature
allows the algorithm to locate keys that are never accessed in
the training data. Many keys are used only once for special
situations like system installation. Some of these keys can be
used by attacks to create Vulnerabilities.

Response: A feature which describes the outcome of the
query, for example, Success, not found, no more, buffer over
flow, and access denied.

Result Value: The value of the key being accessed. Includ
ing this feature allows the algorithm to detect abnormal val
ues being used to create abnormal behavior in the system.

Composite features may also be used, which are a combi
nation of two basic features, such as those discussed above.
These composite features are useful in detecting anomalies
since they allow the system to give more detail to its normal
usage model where the existence of the basic features in
isolation would not necessary be detected as anomalous. The
following is a list of exemplary composite fields that may be
used by system 10:

Process/Query: This key is a combination of the process
and query fields, and may provide information to determine if
a particular process is executing queries that are not typically
executed by this process.

Key/Process: This key is a combination of the key and
process fields, and may allow the algorithm to detect whether
or not a process accesses portions of the registry it typically
doesn’t access. Also it detects when a key is being accessed by
a process that normally doesn’t access it. This analysis is very
useful because many processes access keys belonging to
other programs, and this field would allow the detection of
Such an event.

Query/Key: This key is a combination of the query and key
fields, and may determine if a key is being accessed in a

IPR2023-00289
CrowdStrike EX1020 Page 9

US 7,448,084 B1
9

different way than usual. For example, there are many key
values in the registry that are written once at the time of their
creation, and then are subsequently read from the registry
without change. Some of these keys store crucial information
for the execution of certain programs. If a malicious process
were to write to one of these keys, after the time of their
creation, this field would enable the algorithm to detect such
an event, and the record would appearanomalous.

Response/Key: This key is a combination of the key and

10
Exemplary embodiments of intrusion detection algorithms

which may be used by the system 10 will now be described,
although it is understood that other anomaly detection algo
rithms may also be used in connection with the present inven
tion. Since a significant amount of data is monitored in real
time, the algorithm that is selected must be very efficient.
According to a first exemplary embodiment, the features that
were monitored from each registry access are used to train a
model over features extracted from normal data. That model

response fields. Many keys are found to be used in the same 10 allows for the classification of registry accesses as either
manner each time they are used. Consequently, they will normal or malicious, as will be described herein.
always return the same response. Since a different response to In general, a principled probabilistic approach to anomaly
a key may be indicative of abnormal or malicious system d - etection can be reduced to density estimation. If a density activity, the algorithm which utilizes this combination key
would be able to detect such abnormal or malicious activity. 15 function p(X) can be estimated over the normal data, aOa

Result value/Key: This key is a combination of the key and lies are defined as data elements that occur with low prob
result value. During operation of the computer system, many ability. In practice, estimating densities is a very complex,
keys will always contain a value from a certain set or range of non-trivial problem. In detecting intrusions into the registry, a
values. When the value is outside that range, that could be an complication is that each of the features have many possible
indicator of a malicious program taking advantage of a vul- 2O values. For example, the key feature, defined above, may have

ability. - 0 over 30,000 values in the training set. Since there are so many
As an illustration, an exemplary registry access is dis- possible feature values, it is relatively rare that the same exact

played in Table 1. The sec ond column is normal access by the record occurs more than once in the data. Data sets of this type
process aim.exe (which is used with AOLTM Instant Messen- ferred t & G 99
gerTM) to access the key where passwords are stored. The third are reIerred to as sparse.
column of Table 1 is a malicious access by a process aimre- 25 Since probability density estimation is a very complex
cover.exe to the same key. The final column of Table 1 shows problem over sparse data, the method of the present invention
which fields register by the anomaly detector as anomalous. defines a set of consistency checks over the normal data for
As seen in the table, all of the basic features, e.g., process, determining which records from a sparse data set are anoma
query, key, response, and result value, do not appear anoma- lous. Each consistency check is applied to an observed record
lous for the normal process aim.exe. When compared with the 30 by the anomaly detector. If the record fails any consistency
malicious process aimrecoverexe. However, the composite check, the record is labeled as anomalous.
keys are useful for detecting the anomalous behavior of aim
recover.exe. For example, the fact that the process aimrecov- In the exemplary embodiment, two kinds of consistency
er.exe is accessing a key that is usually associated with checks are applied. The first consistency check evaluates
another process, i.e., aim.exe, is detected as an anomaly. This is whether or not a feature value is consistent with observed
conclusion is made because under normal circumstances only values of that feature in the normal data set. This type of
aim.exe accesses the key that stores the AOLTM Instant Mes- consistency check is referred to as a first order consistency
sengerTM password. The occurrence of another process check, e.g., each registry record may be viewed as the out
accessing this key is considered suspicious. By examining the come of five random variables, one for each feature, X, X2,
combination of two basic features, the algorithm can detect X, X, Xs. The consistency checks compute the likelihood of
this anomaly. an observation of a given feature denoted as PCX).

TABLE 1.

Feature aim.exe aimreoover.exe Anomalous

Process aim.exe aim recover.exe O
Query Query Value Query Value O
Key HKCU.Software\America HKCU.Software\America O

Online\AOL Instant Messenger Online\AOL Instant Messenger
(TM)\CurrentVersion\Users\ (TM)\CurrentVersion\Users\
aimuserLoginVPassword aimuserLoginVPassword

Response SUCCESS SUCCESS O
Result Valle BCOFHIHBBAHF BCOFHIHBBAHF O
Process/Query aim.exe:QueryValue aim recover:QueryValue O
Query/Key Query Value:HKCU\Software\ Query Value:HKCU\Software\ O

America OnlineX America OnlineXAOL Instant
AOL Instant Messenger (TM)\ Messenger (TM)\
CurrentVersion\Users\ CurrentVersion\Users\
aimuserLoginVPassword aimuserLoginVPassword

Response/Key SUCCESS:HKCU\Software\ SUCCESS:HKCUXSoftware, O
America OnlineX America OnlineX
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\
CurrentVersion\Users\ CurrentVersion\Users\
aimuserLoginVPassword aimuserLoginVPassword

Process Key aim.exe:HKCUXSoftwarex aim recover.exe:HKCU\Software\ yes
America OnlineX America OnlineX
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\
CurrentVersion\Users\ CurrentVersion\Users\
aimuserLoginVPassword aimuserLoginVPassword

IPR2023-00289
CrowdStrike EX1020 Page 10

US 7,448,084 B1
11

The second consistency checkhandles pairs of features, as
discussed in the example in Table 1. For each pair of features,
the conditional probability of a feature value given another
feature value is considered. These consistency checks are
referred to as second order consistency checks. These likeli
hoods are denoted as POX,X). For each value of X, there may
be a different probability distribution over X,

In the exemplary embodiment, since there are five basic
feature values, for each record, there are five first order con
sistency checks and 20 second order consistency checks of
which five examples are given above. If the likelihood of any
of the consistency checks is below a threshold, the record is
labeled as anomalous. The determination of the threshold is
described in greater detail below.
The manner in which the likelihoods for the first order

(PCX)) consistency checks and the second order (POX,X))
consistency checks are computed is described herein. From
the normal data, there is a set of observed counts from a
discrete alphabet, e.g., a finite number of distinct symbols or
feature values, for each of the consistency checks. Computing
the above likelihoods reduces to estimating a multinomial
expression. In theory, the maximum likelihood estimate may
be used, which computes the ratio of the counts of a particular
element to the total counts. However, the maximum likeli
hood estimate has been found to be biased when relatively
Small amounts of data, e.g., "sparse data are available. The
distribution may be smoothed by adding a virtual count to
each possible element. For anomaly detection, it is often
desirable to take into account how likely it is to observe a
previously unobserved element. Thus, if many different ele
ments have been seen in the training data, it is therefore more
likely to see additional, unobserved elements, as opposed to
the case where very few elements have been seen, in which
additional, unobserved elements would be unlikely. (The
term "element here refers to feature values, or a vector of
feature values.)

To estimate the likelihoods, an estimator is used, which
gives the following prediction for element i:

a + N;
koa + N

C (1)

if element i was observed in the training data. If elementi was
not previously observed, then the following prediction is
used:

(2) Px = i = 1 (1 - C)

In these equations, the term C. is a prior count for each ele
ment. The term N, is the number of times element i was
observed: N is the total number of observations, k" is the
number of different elements observed, and L is the total
number of possible elements or the alphabet size. The param
eters are either observed or computed (e.g., N and k are
determined by storing values and computing frequency
counts) while L is defined by the particular system being
modeled, i.e., the type of variables (e.g., 32 bit integers)
defines a range of possible values. Thus, L is predefined by the
implementation details of the system. Here, the system is
modeling the WindowsTM registry, which has a predefined
range of possible values (as defined by the programmers of
the registry.) The Scaling factor C takes into account how

10

15

25

30

35

40

45

50

55

60

65

12
likely it is to observe a previously observed element versus an
unobserved element. C is computed by the following equa
tion:

(3)

where

k T(ka)
m = PS =k) of N.

and P(S=k) is a prior probability associated with the size of
the subset of elements in the alphabet that have non-zero
probability. Although the computation of C is expensive, it
only needs to be done once for each consistency check at the
end of training. Second order consistency checks are done in
like fashion, except the particular values being measured are
not distinct features values, but pairs of feature values, con
sidering these pairs as a distinct element.
The prediction of the probability estimator is derived using

a mixture of Dirichlet estimators, as are known in the art, see,
e.g., the estimator presented in N. Friedman and Y. Singer,
“Efficient Bayesian Parameter Estimation in Large Discrete
Domains. Advances in Neural Information Processing Sys
tems 11, MIT Press, which is incorporated by reference in its
entirety herein.) The scores computed in the attached soft
ware code correspond to the estimates provided by the con
sistency checks in equations (1) and (2) above.

This exemplary embodiment of the algorithm labels every
registry access as either normal or anomalous. Programs can
have anywhere from just a few registry accesses to several
thousand. This means that many attacks will be represented
by large numbers of records where many of those records will
be considered anomalous.
A second exemplary embodiment of the algorithm is

described herein. Using the features that are monitored from
each registry access, a score is computed to classify each
access as either normal or malicious. A set of normal registry
accesses are analyzed as a model of normal usage of the
registry. Then using this model, new registry records are
analyzed to determine whether or not they are malicious.
As the data is being collected, several important statistics

are collected about each feature and the values that occur for
each feature. For each feature, which values occurred for that
feature and how many distinct values occurred for the feature,
r, are recorded. Accordingly, r is a measure of how likely it is
to see a new value for the feature. If many distinct values for
a feature have been previously observed, i.e., a high value for
r, and Subsequently a never-observed value is encountered,
Such new value would be expected and considered normal. In
contrast, if only a few distinct values have been observed, i.e.,
a low value for r, the observation of a new value is unlikely
and possibly anomalous. The total number of registry differ
ent elements, e.g., training records, that are observed during
training, n, is also recorded.

During training, for each of the features, all of the distinct
observed values of the feature are stored, as well as the num
ber of distinct observed values r. The total number of training
records n is computed. For each feature, the algorithm com
putes prin, which is an approximation of the probability of

IPR2023-00289
CrowdStrike EX1020 Page 11

US 7,448,084 B1
13

observing an unseen value for that feature in the normal data.
To minimize storage requirements, instead of storing all dis
tinct values, the algorithm hashes all of the values and stores
the hashes of the values in a bit vector. More details on this
technique is described in the implementation of PHAD
(Packet Header Anomaly Detection), an anomaly detection
algorithm known in the art, which was developed to detect
anomalies in packet headers (see, e.g., M. Mahoney and P.
Chan, “Detecting Novel Attacks by Identifying Anomalous
Network Packet Headers.” Technical Report CS-2001-2,
Florida Institute of Technology, Melbourne, Fla., 2001).
Once the model has been trained, new registry accesses can

be evaluated and a score computed to determine whether or
not the registry accesses are abnormal. For a new registry
access, we first extract the features for the registry access. For
each of these features, a check is performed to see if the value
of the feature has been observed for the feature. If the value
has not been observed, a heuristic score is computed which
determines the level of anomaly for that feature. The score is
determined as 1/p for each feature. Intuitively this score will
be higher for features where fewer distinct values have been
observed. The final score for a registry access is the sum of the
scores for each feature that observed a previously unobserved
value. If this value is greater than a threshold, we label the
registry access anomalous and declare the process that gen
erated it as malicious. The results from this experiment are
described below.
The basic architecture of the system 10 will now be dis

cussed in greater detail herein. With continued reference to
FIG. 1, the registry auditing module 12 monitors accesses to
the registry. In the exemplary embodiment, the registry audit
ing module 12 is a “Basic Auditing Module” (BAM). In
general, BAMs are known in the art, and implement an archi
tecture and interface which provide a consistent data repre
sentation for a sensor. As indicated by arrow 22, they include
a “hook' into the audit stream (in this case the registry) and
various communication and data-buffering components.
BAMs use an XML data representation substantially identi
cal to the IETF standard for IDS systems (See, e.g., Internet
Engineering Task Force. Intrusion detection exchange for
mat. On-line publication, http://www.ietforg/html.charters/
idwg-charter.html, 2000.), minor syntatical differences. The
registry auditing module 12 runs in the background on a
WindowsTM machine, where it gathers information on regis
try reads and writes, e.g., the 5 features discussed above.
Registry auditing module 12 uses Win32 hooks to tap into the
registry and log all reads and writes to the registry. The
software uses an architecture substantially identical to Sys
Internal's Regmon (See, e.g., SysInternals. Regmon for Win
dowsTMNT/9X. Online publication, 2000. http://www.sysin
ternals.com/ntw2k/source/regmon.shtml), and extracts a
Subset of data available to Regmon. After gathering the reg
istry data, registry auditing module 12 can be configured for
two distinct uses. One use is to act as the data source for model
generation. When registry auditing module 12 is used as the
data source for model generation, its output is sent to a data
base 18 (as indicated by arrow 24) where it is stored and later
used by the model generator 16 described herein. The second
use of registry auditing module 12 is to act as the data source
for the real-time anomaly detector 14 described herein. While
in this mode, the output of registry auditing module 12 is sent
directly to the anomaly detector 14 (indicated by arrow 26)
where it is processed in real time.

The model generation infrastructure consists of two com
ponents. A database 18 is used to store all of the collected
registry accesses from the training data. A model generator 14
then uses this collected data to create a model of normal

10

15

25

30

35

40

45

50

55

60

65

14
usage. The model generator 14 uses one of the two exemplary
algorithms discussed above (or other similar algorithm) to
build a model that will represent normal usage. It utilizes the
data stored in the database 18 which was generated by registry
auditing module 12. The database 18 is described in greater
detail is concurrently filed U.S. application Ser. No. 10/352.
342, entitled “System and Methods for Adaptive Model Gen
eration for Detecting Intrusion in Computer Systems.” to
Andrew Honig, et al., which is incorporated by reference in its
entirety herein. (Arrow 28 indicates the flow of data from the
data warehouse 18 to the model generator 14.) The model
itself is comprised of serialized Java objects. This allows for
a single model to be generated and to easily be distributed to
additional machines. Having the model easily deployed to
new machines is a desirable feature since in a typical network,
many WindowsTM machines have similar usage patterns
which allow for the same model to be used for multiple
machines. The GUI 30 for the model generator using the
second embodiment of the algorithm is shown in FIG. 2.
Column 32 indicates the feature name, column 34 indicates
the n-value, column 36 indicates the r-value, and column 38
indicates the p-value. Additional details for generating a
model are described in U.S. application Ser. No. 10/208.432
filed Jul. 30, 2002 entitled “System and Methods for Detec
tion of New Malicious Executables, to Matthew G. Schulzet
al., which is incorporated by reference in its entirety herein.
The anomaly detector 16 will load the normal usage model

created by the model generator 14 (as indicated by arrow 29)
and begin reading each record from the output data stream of
registry auditing module 12 (arrow 26). One of the algo
rithms, as discussed above, is then applied against each record
of registry activity. The score generated by the anomaly
detection algorithm is then compared by a user configurable
threshold to determine if the record should be considered
anomalous. A list of anomalous registry accesses are stored
and displayed as part of the detector.
The system described herein is a statistical model of

expected registry queries and results. If an attacker wanted to
usurp a host-based detector, they cana) turn off the detector at
the host (and hope no alarms go offelsewhere) or b) they can
attack the host based detector by changing its rules or chang
ing its statistical model So it won't alarm.

Accordingly, in order to protect the statistical model of the
system, from being attacked, it is put it in the registry. The
registry is essentially a data base, and the statistical model
comprises query values and probabilities. The evaluation of
the model first accesses values and probability estimates. This
information can be stored in the registry. Hence, any process
that attempts to touch the model (for example, to change some
values in the model) will be abnormal registry accesses and
set off the alarm. Consequently, the system would be pro
tected from having its own model being attacked since it will
notice when it is under attack.

In order to evaluate the system, data was gathered by run
ning a registry auditing module 12 on a host machine. During
training, several programs were run in order to generate nor
mal background traffic. In order to generate normal data for
building an accurate and complete training model, it was
important to run various applications in various ways. By
examining registry traffic, it was discovered that it is not just
which programs that are run, but also how they are run that
affect registry activity. For example, running ping.exe from
the command prompt does not generate registry activity.
However, running ping.exe directly from the run dialog box
does generate registry activity: By understanding such details
of the registry, a more complete training model was built.
Beyond the normal execution of standard programs. Such as

IPR2023-00289
CrowdStrike EX1020 Page 12

US 7,448,084 B1
15

MicrosoftTM Word, Internet Explorer, and Winzip, the train
ing also included performing tasks such as emptying the
Recycling Bin and using Control Panel.
The training data collected for the experiment was col

lected on WindowsTMNT 4.0 over two days of normal usage.
“Normal usage is defined to mean what is believed to be
typical use of a WindowsTM platform in a home setting. For
example, it was assumed that users would login, check some
internet sites, read some mail, use word processing, then log
off. This type of session was taken to be relatively typical of
computer users. Normal programs are those which are
bundled with the operating systems, or are in use by most
WindowsTM users.

The simulated home use of WindowsTM generated a clean
(attack-free) dataset of approximately 500,000 records. The
system was tested on a full day of test data with embedded
attacks executed. This data was comprised of approximately
300,000 records, most of which were normal program execu
tions interspersed with attacks among normal process execu
tions. The normal programs run between attacks were
intended to simulate an ordinary WindowsTM session. The
programs used were, for example, MicrosoftTM Word, Out
look ExpressTM, Internet ExplorerTM, NetscapeTM, AOLTM
Instant MessengerTM.
The attacks run include publicly available attacks such as

aimrecover, browslist, bok2ss (back orifice), install.exextxp
and exe (both for backdoor.XTCP), 10phtcrack, runttack,
whackmole, and setuptrojan. Attacks were only run during
the one day of testing throughout the day. Among the twelve
attacks that were run, four instances were repetitions of the
same attack. Since some attacks generated multiple processes
there are a total of seventeen distinct processes for each
attack. All of the processes (either attack or normal) as well as
the number of registry access records in the test data is shown
in Table 3 and described in greater detail herein.
The training and testing environments were set up to rep

licate a simple yet realistic model of usage of WindowsTM
systems. The system load and the applications that were run
were meant to resemble what one may deem typical in normal
private settings.
The first exemplary anomaly detection algorithm dis

cussed above in equations (1)–(3) were trained over the nor
mal data. Each record in the testing set was evaluated against
this training data. The results were evaluated by computing
two statistics: the detection rate and the false positive rate.
The performance of the system was evaluated by measuring
detection performance over processes labeled as either nor
mal or malicious.

The detection rate reported below is the percentage of
records generated by the malicious programs which are
labeled correctly as anomalous by the model. The false posi
tive rate is the percentage of normal records which are mis
labeled anomalous. Each attack or normal process has many
records associated with it. Therefore, it is possible that some
records generated by a malicious program will be mislabeled
even when some of the records generated by the attack are
accurately detected. This will occur in the event that some of
the records associated with one attack are labeled normal.
Each record is given an anomaly score, S, that is compared to
a user defined threshold. If the score is greater than the thresh
old, then that particular record is considered malicious. FIG.
3 shows how varying the threshold affects the output of detec
tor. The actual recorded scores plotted in the figure are dis
played in Table 2.

10

15

25

30

35

40

45

50

55

60

65

16

TABLE 2

Threshold Score False Positive Rate Detection Rate

6.847393 O.OO1192. O.OOS870
6.165698 O.OO2826 O.O27215
5.97 1925 O.OO31.59 O.O3O416
5.432488 O.OO4294 O.O64034
4.828566 O.OOS613 O.O992S3
4.56SO11 O.OO6506 O.177161
3.812SO6 O.OO9343 O.288687
3.774119 O.OO9738 O314301
3.SO2904 O.O11392 O.S33O84
3.231236 O.O12790 O.S3S219
3.158004 O.O14740 0.577908
2.91.5094 O.O19998 O.S78442
2.899837 O.O2O087 O.627001
2.753176 O.O33658 O.6291.36
2.584921 O.O34744 O.808431
2.531572 O.O38.042 O.869797
2.3844O2 O.OSO4S4 1.OOOOOO

Table 3 is sorted in order to show the results for classifying
processes. Information about all processes in testing data
including the number of registry accesses and the maximum
and minimum score for each record as well as the classifica
tion. The top part of the table shows this information for all of
the attack processes and the bottom part of the table shows
this information for the normal processes. The reference
number (by the attack processes) give the source for the
attack. Processes that have the same reference number are
part of the same attack. 1 AIMCrack. 2 Back Orifice. 3
Backdoor.xtcp. 4 Browse List. 5 Happy 99.6 IPCrack.
7 LOpht Crack. 8 Setup Trojan.

TABLE 3

Maximum Minimum
Number of Record Record

Program Name Records Value Value Classification

LOADWC.EXE2) 1 8.497072 8.497072 ATTACK
ipccrack.exe6 1 8.497072 8.497072 ATTACK
mistinit.exe2 11 7.253.687 6.7053.13 ATTACK
bo2kss.exe2 12 7.253.687 6.62527 ATTACK
runonce.exe2 8 7.253384 6.99.2995 ATTACK
browselist.exe4 32 6.807137 S-693712 ATTACK
install.exe3 18 6.5.1945S 6.24578 ATTACK
SetupTrojan.exe.8 30 6.444089 S.756.232 ATTACK
AimRecover.exe1) 61 6.444089 S.O63O85 ATTACK
happy.99.exe5 29 S.918383 5.78.9022 ATTACK
bo2k.1.0..intl.e2 78 5.432488 4.82O771 ATTACK
..INSO432.MP2 443 S.284697 3.094395 ATTACK
Xtcp.exe3 240 S.265434 3.7OS422 ATTACK
bo2kcfg.exe2 289 4.879232 3.52O338 ATTACK
1Ophtcrack.exe.7 100 4.688.737 4.57SO99 ATTACK
Patch.exe2 174 4.661701 4.O2S433 ATTACK
bo2k.exe2 883 4.386SO4 2.405762 ATTACK
systray.exe 17 7.253.687 6.299848 NORMAL
CSRSS.EXE 63 7.253.687 S.O31336 NORMAL
SPOOLSS.EXE 72 7.070537 S.1331 61 NORMAL
tash.exe 12 6.62527 6.62527 NORMAL
winmine.exe 21 6.56054 6.099.177 NORMAL
el...(X(C.EXE 29 6.3.37396 S.789.022 NORMAL
winampa.exe 547 6.11399 2.88394.4 NORMAL
PINBALL.EXE 240 5.8984.64 3.7OS422 NORMAL
LSASS.EXE 2299 5.432488 1.4.4955S NORMAL
PING.EXE 50 S.34S477 S.258.394 NORMAL
EXCELEXE 1782 S.284697 1704167 NORMAL
WINLOGON.EXE 399 5.191326 3.1987SS NORMAL
rundl132.exe 142 S.OS779S 4.22737S NORMAL
explore.exe 108 4.96O194 4.498.871 NORMAL
netscape.exe 11252 4.828566 -0.138171 NORMAL
java.exe 42 4.828,566 3.774119 NORMAL
aim.exe 1702 4.828,566 1.7SOO73 NORMAL
findfast.exe 176 4.679733 4.014O7 NORMAL

IPR2023-00289
CrowdStrike EX1020 Page 13

US 7,448,084 B1
17

TABLE 3-continued

Maximum Minimum
Number of Record Record

Program Name Records Value Value Classification

TASKMGR.EXE 99 4.6SO997 4.585049 NORMAL
MSACCESS.EXE 2825 4.6294.94 1.2436O2 NORMAL
IEXPLORE.EXE 194274 4.628.190 -3419214 NORMAL
NTVDM.EXE 271 4.59.155 3.584417 NORMAL
CMD.EXE 116 4.579538 4428O4S NORMAL
WINWORD.EXE 1541. 4.457119 17081 NORMAL
EXPLORER.EXE 53894 4.31774 -1.704574 NORMAL
mSmsgs.exe 7016 4.177SO9 O.334128 NORMAL
OSA9.EXE 7OS 4.163361 2.584921 NORMAL
MYCOME 1.EXE 1193 4.035649 2.105.1 SS NORMAL
wScript.exe 527 3.883216 2.921 123 NORMAL
WINZIP32.EXE 3O43 3.883216 O.S93845 NORMAL
notepad.exe 2673 3.883216 1.264,339 NORMAL
POWERPNT.EXE 617 3.5O1078 -0.145078 NORMAL
AcroRd32.exe 1598 3.412895 O.393729 NORMAL
MDM.EXE 182S 3.231236 1680336 NORMAL
termpro.exe 1639 2.899837 1.787768 NORMAL
SERVICES.EXE 1070 2.5761.96 2.213871 NORMAL
REGMON.EXE 259 2.SS6836 12O5416 NORMAL
RPCSS.EXE 4349 2.2SO997 O.812288 NORMAL

The process of setting the threshold is described herein. If
the threshold is set at 8.497072, the processes LOAD
WC.EXE and ipccrack.exe are labeled as malicious and
would detect the Back Orifice and IPCrack attacks. Since
none of the normal processes have scores that high, we would
have no false positives. If we lower the threshold to 6.444089,
we would have detected several more processes from Back
Orifice and the BrowseList, BackDoor.xtcp. SetupTrojanand
AimRecover attacks. However, at this level of threshold, the
following processes would be labeled as false positives:
systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and
winmine.exe.
By varying the threshold for the inconsistency scores on

records, we were able to demonstrate the variability of the
detection rate and false positive rate. The false positive rate
versus the detection rate was plotted in an ROC (Receiver
Operator Characteristic) curve 52 shown in Table 2 and the
plot 50 in FIG.3, in which the false positive rate 54 is plotted
against the detection rate 56.

Another exemplary embodiment is described herein. The
systems and method described above, uses WindowsTM reg
istry accesses, which is an example of a general means of
detecting malicious uses of a host computer. However, other
systems, such as Linux/Unix, do not use a registry. In those
cases, a file system sensor would be used. Accesses to the file
system provides an audit Source of data (i.e., whenever an
application is run, any and all things accessed are files, e.g.,
the main executable files are accessed, and the project files are
accessed). This audit source can be observed, and a “normal
baseline model built, and then used for detecting abnormal
file system accesses.

It will be understood that the foregoing is only illustrative
of the principles of the invention, and that various modifica
tions can be made by those skilled in the art without departing
from the scope and spirit of the invention.

APPENDIX

The software listed herein is provided in an attached CD
Rom. The contents of the CD-Rom are incorporated by ref
erence in their entirety herein.
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copy

5

10

15

25

30

35

40

45

50

55

60

65

18
right owner has no objection to the facsimile reproduction by
any one of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise
reserves all copyright rights whatsoever.
PAD (Probabilistic Anomaly Detection) is a package that

detects anomalies in fixed length records of discrete values.
The basic idea behind PAD is that it trains over a data set

and then checks to see if new observed records are “consis
tent with the data set. There are two types of consistency
checks. First order consistency checks evaluate whether or
not a single feature is consistent with other features in the
dataset. Second order consistency checks evaluate if a pair of
features is consistent with the data set. All consistency checks
are evaluated by computing a predictive probability. This is
done by estimating a multinomial using counts observed from
the data set and then estimating the probability of seeing the
observation.

Let us assume records of length n are being observed. That
is, each record can be written as a set of random variables
(X_1,X_2, ..., X n). Each first order consistency check can
be denoted as computing PCX i). This probability is trained
over a data set, and then used to predict elements in another
dataset. These two datasets can be in fact the same. To train
the probability distribution, the counts of the observed sym
bols in the data set are collected. The second order consis
tency checks are POX i, X). In this case, the counts of X i
are collected when X j is observed. Note that there is a
separate set of counts for each X j. Accordingly, second order
consistency checks take a significant amount of memory rela
tive to first order consistency checks.

All of these probability estimates are obtained using the
multinomial estimator presented in Friedman, Singer 1999
(incorporated by reference, above). The basic idea of the
estimator is that it explicitly takes into account the probability
of seeing an unobserved symbol.
The term c is the probability of observing an already

observed symbol. Thus (1-C) is the probability of observing
an unobserved symbol. For the observed symbols, a Dirichlet
is used to estimate the probabilities for the counts. If N is the
total number of observations, and N i is the observations of
symboli, if alpha is the “pseudo count” which is added to the
count of each observed symbol, and k0 is the number of
observed symbols and L is the total number of symbols, the
probability is as follows:

For an observed symbol i, the probability is: C ((N i+
alpha)/(k0*alpha+N)) For an unobserved symbol, the prob
ability is: (1-C)*(1/(L-k0)). See equations (1) and (2)
above, and the routine “updateC in Classifier.c. In the second
case, the probability is spread among possible unobserved
symbols.

Since each feature in the record may have a different set of
possible outcomes, if P is the probability estimated from the
consistency check, the following term is reported: log(P/(1/
L)). This normalizes the consistency check to take into
account the number of possible outcomes L. In general, c
should be set as described in Friedman, Singer 1999.

However, this causes some overflow/underflow problems
in the general case. Instead, the current version of the algo
rithm uses a heuristic to setc. This is done after observing the
counts. This is called SIMPLE MODE in the implementa
tion. In SIMPLE MODE, C is set to C=N/(N+L-k0). In
addition, in SIMPLE MODE, there is a variable
OBSERVED BIAS which adjusts the value of c toward
observed or unobserved symbols. When OBSERVED
BIAS=0.0, there is no bias. Positive values increase the prob
ability mass of observed symbols while negative values
decrease the probability mass of unobserved symbols. For

IPR2023-00289
CrowdStrike EX1020 Page 14

US 7,448,084 B1
19

non-zero OBSERVED BIAS, the value of c is adjusted so
that the new value of c, c* is given as follows C*-C/ (C+((1-
C)*exp(-OBSERVED BIAS))).

Package Installation and Quick Start: To install the pack
age, the following steps should be performed:
1. Unpack the files.
2. cd into the src? subdirectory.
3. type make

To test the package, the following steps should be per
formed:

4. cd into data/Subdirectory
5. type . ./Src/pad -e -g globalsFile.txt -p sampleInput.txt
sampleInput.txt

Subsequently, the following output should be provided:
a aa aaa ZZZZ: 0.031253 1386.294 O.4902O6 O.693147
OOOOOOO O.O31253 OOOOOOOOOOOOOOOOOOOOO 1386.294
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147
OOOOOOO O.693147 O.875.469 O.875469: test

b aa fiff diddd: 0.436718 1.386.294 0.202524 0.000000
O619039 O.436718 OOOOOOOOOOOOOO O.632523 1.386.294
O.632523 O.OOOOOOOOOOOOO O.2O2524 O.47OOO4 OOOOOOO
-OOOOOOOOOOOOOOOOOOOOOOOOOOOO! test1

caafffttitt: O.031253 1.386.294 O.2O2524 OOOOOOOOOOOOOO
O.031253 OOOOOOOOOOOOOOOOOOOOO 1386.294 O.632523
OOOOOOOOOOOOOOO.2O2524 O.47OOO4 OOOOOOOOOOOOOO
OOOOOOO-OOOOOOOOOOOOOO: test2

g aa aaa ZZZZ: 0.031253 1.386294 0.490206 0.693147
OOOOOOO O.O31253 OOOOOOOOOOOOOOOOOOOOO 1386.294
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147
OOOOOOO O.693147 O.875.469 O.875469: test3

b aa aaa ZZZZ: 0.436718 1.386.294 0.490206 0.693147
O619039 O.436718 OOOOOOOOOOOOOO O.632523 1.386.294
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147
-OOOOOOO O.693147 0.875.469 O.875469: test4
The next steps are then performed:

6. Type ../Src/pad -e-gglobalsFile.txt-W temp.cla sampleIn
put.txt

This should create a file called temp.cla which is the trained
model (classifier) from the sample input.
7. Type ../Src/pad -r-p sampleInput.txt temp...cla
This should provide the same output as above.

Usage Instructions: The executable has two modes:
“examples' mode (using the -e option) which reads in
examples from a file and trains the model using that data, and
“read mode (using the -r option) which reads in a model from
a file. The executable requires one argument, which is either
the file or examples. The globals file (specified with the -g
option) defines all of the global variables. These include the
number of columns, the file names containing the column
symbol definitions. Note that when reading in a model, the
column symbol files must be in the current directory.

Options: Command line options: In addition to -r and -e
which set the mode, the following are options that can be used
from the command line:

-g FILE set globals file
-w toggle verbose output

10

15

25

30

35

40

45

50

55

60

65

-continued

-S toggle use of second order predictors
-w FILE write classifier to file.
-p FILE predict files

Globals File Options: Below is the globals file included in
the distribution. All lines starting with “if” are comments.
Globals Definition

#The inputSymbols.
NUM COLUMNS 4

#Set Simple Mode
SIMPLE MODE TRUE

#Set Use Second Order Consistency Checks
USE SECOND ORDER TRUE
HSet Verbose mode

VERBOSE FALSE

#Allow unknown symbols in testing
ALLOW UNKNOWN SYMBOLS TRUE
#Set Initial Count for Predictors. This is the virtual count

it that is added to all observed symbols.
INITIAL PREDICTION COUNT 1

#Set the bias to observed symbols
OBSERVED BIAS 0.0

#Set the Column Symbol Files
COLUMN SYMBOL FILENAME 1:C1.txt

COLUMN SYMBOL FILENAME 2:C2.txt
COLUMN SYMBOL FILENAME 3:C3.txt
COLUMN SYMBOL FILENAME 4:C4.txt

#Sets the number of symbols in a column
COLUMN NUM SYMBOLS 1:40

#Sets the classifier to ignore a column
IGNORE COLUMN 2
#Sets the symbol that represents an ignored symbol
IGNORE SYMBOL **
#Sets the symbol to represent an unknown symbol
UNKNOWN SYMBOL UKS

Input file description: Each line of the input file corre
sponds to a record. Each record consists of the features in a
record separated by a space. This is followed by a tab after
which there is an optional comment. This comment is pre
served in prediction and can be used in experiments to keep
track of the type of a record and where it came from. Below is
the sample input:

test
test1
test2
test3
testA

88

88

88

88

88

888

fif
fif
888

888

ZZZZ

dddd

ZZZZ

ZZZZ

IPR2023-00289
CrowdStrike EX1020 Page 15

US 7,448,084 B1
21

A symbol file defines all of the possible symbols. Each
symbol is on a separate line in the file. A sample symbol file
is below:

aaa

CCC

fiff

999

There are several options related to symbol files. The
IGNORE COLUMN can set the classifier to ignore a column
completely. In this case, each element of the column gets
mapped to a special symbol which is ignored in the model. In
a single record, some of the fields can be set to a special
symbol (by default"**) which tells the classifier to ignore its
value. A special symbol (by default “UKS) denotes an
unknown symbol. In training, unknown symbols are not
allowed and will cause the program to exit. In testing, the
unknown symbols are treated as if it is a symbol that has
observed count of 0. The option ALLOW UNKNOWN
SYMBOLS toggles the automatic mapping of unseen sym
bols to the special unknown symbol during testing. This
makes running experiments easier because it is not necessary
to have the symbol files contain the data in the test set.

Package Description: The Software package contains the
following:

isrc; directory consisting of all of the source files
folata directory consisting of a small sample input
fregistry directory consisting of data and scripts to do the

registry experiments.
?papers directory containing relevant papers to pad.

In the /src/ directory there are the following files:

Classifier.c File that defines the Classifier (model)
Classifier.h Header file for Classifier.c
Column.c File that defines a single consistency check
Column.h Header file for Column.c
Globals.c Defines the global variables
Globals.h Header file for Globals.c
HashTable.c Hashtable implementation
HashTable.h Header file for Hashtable.c
includes.h include file for all files
Input.c mplementation of I/O
Input.h Header file for Input.c
Makefile Makefile
memwatch.c Package to detect memory leaks
memwatch.h Package to detect memory leaks
pad.c Main executable file
pad.h Header file for pad.c
SymbolTable.c Symbol Table implementation for mapping Symbols to

integers
SymbolTable.h Header file for SymbolTable.c

Registry Experiments: The following steps should be per
formed:

1. cd registry/
2. type ../Src/pad-e -g regGlobs.txt -w model.claregistry.txt
This creates a file called model.cla which is the model that is
trained on 800k registry records. It should take about 190MB
of memory to train the model.

10

15

25

30

35

40

45

50

55

60

65

22
3. type ../Src/pad -r-p registry.txt model.cla >predictions.txt
This reads in the model and evaluates all of the records. The
file predictions.txt contains the values for all of the consis
tency checks.
4. Type /computeResults..pl predictions.txt >final-predic
tions.txt

This determines the minimum value for a consistency check
for each record and puts on each line this value and the
COmment.

5. Typesort -n final-predictions.txt >sorted-final-predic
tions.txt

This sorts the records in order of least consistent. This is the
final output of the experiments.
6. Type
>rOC..tXt

This computes ROC points for the experiments.
We claim:
1. A method for detecting intrusions in the operation of a

computer system comprising:
(a) gathering features from records of normal processes

that access the operating system registry;
(b) generating a probabilistic model of normal computer

system usage based on the features and determining the
likelihood of observing an event that was not observed
during the gathering of features from the records of
normal processes; and

(c) analyzing features from a record of a process that
accesses the operating system registry to detect devia
tions from normal computer system usage to determine
whether the access to the operating system registry is an
anomaly.

2. The method according to claim 1, further comprising
storing the probabilistic model of normal computer usage on
the operating system registry.

3. The method according to claim 1, wherein gathering
features from records of normal processes that access the
operating system comprises gathering a feature correspond
ing to a name of a process accessing the operating system
registry.

4. The method according to claim 1, wherein gathering
features from records of normal processes that access the
operating system registry comprises gathering a feature cor
responding to a type of query being sent to the operating
system registry.

5. The method according to claim 4, wherein gathering
features from records of normal processes that access the
operating system registry comprises gathering a feature cor
responding to an outcome of a query being sent to the oper
ating System registry.

6. The method according to claim 1, wherein gathering
features from records of normal processes that access the
operating system registry comprises gathering a feature cor
responding to a name of a key being accessed in the operating
system registry.

7. The method according to claim 6, wherein gathering
features from records of normal processes that access the
operating system registry comprises gathering a feature cor
responding to a value of the key being accessed.

8. The method according to claim 1, wherein gathering
features from records of normal processes that access the
operating system registry comprises gathering two features
selected from the group of features consisting of a name of a
process accessing the operating system registry, a type of
query being sent to the operating system registry, an outcome

./computeROC.pl sorted-final-predictions.txt

IPR2023-00289
CrowdStrike EX1020 Page 16

US 7,448,084 B1
23

of a query being sent to the operating system registry, a name
of a key being accessed in the operating system registry, and
a value of the key being accessed.

9. The method according to claim 1, wherein generating a
probabilistic model of normal computer system usage com
prises determining a likelihood of observing a feature in the
records of processes that access the operating system registry.

10. The method according to claim 9, wherein determining
a likelihood of observing a feature comprises determining a
conditional probability of observing a first feature in the
records of processes that access the operating system registry
given an occurrence of a second feature in the records.

11. The method according to claim 1, wherein analyzing a
record of a process that accesses the operating system registry
comprises, for each feature, performing a check to determine
if a value of the feature has been previously observed for the
feature.

12. The method according to claim 11, further comprising,
if the value of the feature has not been observed, computing a
score based on a probability of observing the value of the
feature.

13. The method according to claim 12, further comprising,
if the score is greater than a predetermined threshold, labeling
the access to the operating system registry as anomalous and
labeling the process that accessed the operating system reg
istry as malicious.

14. A system for detecting intrusions in the operation of a
computer system comprising:

(a) an operting system registry;
(b) a registry auditing module configured to gather records

regarding processes that access the operating system
registry;

(c) a model generator configured to generate a probabilistic
model of normal computer system usage based on
records of a plurality of processes that access the oper
ating system registry and that are indicative of normal
computer system usage and to determine the likelihood
of observing a process that was not observed in the
records of the plurality of processes that access the oper
ating system registry and that are indicative of normal
computer usage; and

(d) a model comparator configured to receive the probabi
listic model of normal computer system usage and to
receive records regarding processes that access the oper
ating system registry and to detect deviations from nor
mal computer system usage to determine whether the
access of the operating system registry is an anomaly.

15. The system according to claim 14, wherein the proba
bilistic model of normal computer usage is stored in the
operating system registry.

10

15

25

30

35

40

45

50

24
16. The system according to claim 14, further comprising a

database configured to receive records regarding processes
that access the operating system registry from the registry
auditing module.

17. The system according to claim 14, wherein the model
generator is configured to receive the records regarding pro
cesses that access the operating system registry from the
database.

18. The system according to claim 14, wherein the records
regarding processes that access the operating system registry
comprise a feature of the access to the operating system
registry.

19. The system according to claim 18, wherein the feature
corresponds to a name of a process accessing the operating
system registry.

20. The system according to claim 18, wherein the feature
corresponds to a type of query being sent to the operating
system registry.

21. The system according to claim 18, wherein the feature
corresponds to an outcome of a query being sent to the oper
ating System registry.

22. The system according to claim 18, wherein the feature
corresponds to a name of a key being accessed in the operat
ing System registry.

23. The system according to claim 18, wherein the feature
corresponds to a value of the key being accessed.

24. The system according to claim 18, wherein the features
corresponds to a combination of two features selected from
the group of features consisting of a name of a process access
ing the operating system registry, a type of query being sent to
the operating system registry, an outcome of a query being
sent to the operating system registry, a name of a key being
accessed in the operating system registry, and a value of the
key being accessed.

25. The system according to claim 14, wherein the model
generatoris configured to determine alikelihood of observing
a feature in the records regarding processes that access the
operating system registry.

26. The system according to claim 25, wherein the model
generator is configured to determine a conditional probability
of observing a first feature in records regarding processes that
access the operating system registry given an occurrence of a
second feature is the record.

27. The system according to claim 25, wherein the model
comparator determines a score based on the likelihood of
observing a feature in a record regarding a process that
accesses the operating system registry.

28. The system according to claim 25, wherein the model
comparator is configured to determine an access to the oper
ating system registry is anomalous based on whether the score
exceeds a predetermined threshold.

k k k k k

IPR2023-00289
CrowdStrike EX1020 Page 17

