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SYSTEMAND METHODS FOR DETECTING 
INTRUSIONS IN A COMPUTER SYSTEM BY 

MONITORING OPERATING SYSTEM 
REGISTRY ACCESSES 

CLAIM FOR PRIORITY TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. No. 60/351,857, filed on Jan. 25, 
2002, entitled “Behavior Based Anomaly Detection for Host 
Based Systems for Detection of Intrusion in Computer Sys 
tems.” which is hereby incorporated by reference in its 
entirety herein. 

STATEMENT OF GOVERNMENT RIGHT 

The present invention was made in part with Support from 
United States Defense Advanced Research Projects Agency 
(DARPA), grant nos. FAS-526617, SRTSC-CU019-7950-1, 
and F30602-00-1-0603. Accordingly, the United States Gov 
ernment may have certain rights to this invention. 

COMPUTER PROGRAM LISTING 

A computer program listing is Submitted in duplicate on 
CD. Each CD contains a routines listed in the Appendix, 
which CD was created on Jan. 27, 2002, and which is 22 MB 
in size. The files on this CD are incorporated by reference in 
their entirety herein. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con 
tains material which is Subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth 
erwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to systems and methods for detecting 

anomalies in a computer system, and more particularly to the 
use of probabilistic and statistical models to model the behav 
ior of processes which access the file system of the computer, 
such as the WindowsTM registry. 

2. Background 
WindowsTM is currently one of the most widely used oper 

ating systems, and consequently computer systems running 
the WindowsTM operating system are frequently subject to 
attacks. Malicious software is often used to perpetrate these 
attacks. Two conventional approaches to respond to mali 
cious Software include virus scanners, which attempt to detect 
the malicious Software, and security patches that are created 
to repair the security “hole' in the operating system that the 
malicious software has been found to exploit. Both of these 
methods for protecting hosts against malicious Software Suf 
fer from drawbacks. While they may be effective against 
known attacks, they are unable to detect and prevent new and 
previously unseen types of malicious Software. 
Many virus Scanners are signature-based, which generally 

means that they use byte sequences or embedded strings in 
Software to identify certain programs as malicious. If a virus 
scanner's signature database does not contain a signature for 
a malicious program, the virus scanner is unable to detect or 
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2 
protect against that malicious program. In general, virus scan 
ners require frequent updating of signature databases, other 
wise the Scanners become useless to detect new attacks. Simi 
larly, security patches protect systems only when they have 
been written, distributed and applied to host systems in 
response to known attacks. Until then, systems remain Vul 
nerable and attacks are potentially able to spread widely. 

Frequent updates of virus scanner signature databases and 
security patches are necessary to protect computer systems 
using these approaches to defend against attacks. If these 
updates do not occur on a timely basis, these systems remain 
Vulnerable to very damaging attacks caused by malicious 
Software. Even in environments where updates are frequent 
and timely, the systems are inherently vulnerable from the 
time new malicious software is created until the software is 
discovered, new signatures and patches are created, and ulti 
mately distributed to the Vulnerable systems. Since malicious 
Software may be propagated through email, the malicious 
software may reach the Vulnerable systems long before the 
updates are in place. 

Another approach is the use of intrusion detection systems 
(IDS). Host-based IDS systems monitor a host system and 
attempt to detect an intrusion. In an ideal case, an IDS can 
detect the effects or behavior of malicious software rather 
than distinct signatures of that Software. In practice, many of 
the commercial IDS systems that are in widespread use are 
signature-based algorithms, having the drawbacks discussed 
above. Typically, these algorithms match host activity to a 
database of signatures which correspond to known attacks. 
This approach, like virus detection algorithms, requires pre 
vious knowledge of an attack and is rarely effective on new 
attacks. However, recently there has been growing interest in 
the use of data mining techniques, such as anomaly detection, 
in IDS systems. Anomaly detection algorithms may build 
models of normal behavior in order to detect behavior that 
deviates from normal behavior and which may correspond to 
an attack. One important advantage of anomaly detection is 
that it may detect new attacks, and consequently may be an 
effective defense against new malicious Software. Anomaly 
detection algorithms have been applied to network intrusion 
detection (see, e.g., D. E. Denning, "An Intrusion Detection 
Model, IEEE Transactions on Software Engineering, SE-13: 
222-232, 1987; H. S. Javitz and A. Valdes, “The NIDES 
Statistical Component: Description and Justification, Techni 
cal report, SRI International, 1993; and W. Lee, S.J. Stolfo, 
and K. Mok, “Data Mining in Work Flow Environments: 
Experiences in Intrusion Detection.” Proceedings of the 1999 
Conference on Knowledge Discovery and Data Mining 
(KDD-99), 1999) and also to the analysis of system calls for 
host based intrusion detection (see, e.g., Stephanie Forrest, S. 
A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of 
Self for UNIX Processes.” IEEE Computer Society, pp. 120 
128, 1996; Christina Warrender, Stephanie Forrest, and Barak 
Pearlmutter, “Detecting Intrusions Using System Calls: 
Alternative Data Models.” IEEE Computer Society, pp. 133 
145, 1999; S. A. Hofineyr, Stephanie Forrest, and A. 
Somayaji. “Intrusion Detect Using Sequences of System 
Calls,” Journal of Computer Security, 6:151-180, 1998: W. 
Lee, S. J. Stolfo, and P. K. Chan, “Learning Patterns from 
UNIX Processes Execution Traces for Intrusion Detection.” 
AAAI Press, pp. 50-56, 1997; and Eleazar Eskin, “Anomaly 
Detection Over Noisy Data Using Learned Probability Dis 
tributions. Proceedings of the Seventeenth International 
Conference on Machine Learning (ICML-2000), 2000). 

There are drawbacks to the prior art approaches. For 
example, the system call approach to host-based intrusion 
detection has several disadvantages which inhibit its use in 
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actual deployments. A first is that the computational overhead 
of monitoring all system calls is potentially very high, which 
may degrade the performance of a system. A second is that 
system calls themselves are typically irregular by nature. 
Consequently, it is difficult to differentiate between normal 
and malicious behavior, and such difficulty to differentiate 
behavior may result in a high false positive rate. 

Accordingly, there is a need in the art for an intrusion 
detection system which overcomes these limitations of the 
prior art. 

SUMMARY OF THE INVENTION 

It is an object of the invention to provide techniques which 
are effective in detecting attacks while maintaining a low rate 
of false alarms. 

It is another object of the invention to generate a model of 
the normal access to the Windows registry, and to detect 
anomalous accesses to the registry that are indicative of 
attacks. 

These and other aspects of the invention are realized by a 
method for detecting intrusions in the operation of a computer 
system comprising the steps of gathering features from 
records of normal processes that access the Windows registry. 
Another step comprises generating a probabilistic model of 
normal computer system usage, e.g., free of attacks, based on 
occurrences of said features. The features of a record of a 
process that accesses the Windows registry are analyzed to 
determine whether said access to the Windows registry is an 
anomaly. 

According to an exemplary embodiment, the step of gath 
ering features from the records of normal processes that 
access the Windows registry may comprise gathering a fea 
ture corresponding to a name of a process that accesses the 
registry. Another feature may correspond to the type of query 
being sent to the registry. A further feature may correspond to 
an outcome of a query being sent to the registry. A still further 
feature may correspond to a name of a key being accessed in 
the registry. Yet another feature may correspond to a value of 
said key being accessed. In addition, any other features may 
be combined to detect anomalous behavior that may not be 
identified by analyzing a single feature. 
The step of generating a probabilistic model of normal 

computer system usage may comprise determining a likeli 
hood of observing a feature in the records of processes that 
access the Windows registry. This may comprise performing 
consistency checks. For example, a first order consistency 
check may comprise determining the probability of observa 
tion of a given feature. The step of determining a likelihood of 
observing a feature may comprise a second order consistency 
check, e.g., determining a conditional probability of observ 
ing a first feature in said records of processes that access the 
Windows registry given an occurrence of a second feature is 
said records. 

In the preferred embodiment, the step of analyzing a record 
of a process that accesses the Windows registry may com 
prise, for each feature, determining if a value of the feature 
has been previously observed for the feature. If the value of 
the feature has not been observed, then a score may be deter 
mined based on a probability of observing said value of the 
feature. If the score is greater than a predetermined threshold, 
the method comprises labeling the access to the Windows 
registry as anomalous and labeling the process that accessed 
the Windows registry as malicious. 
A system for detecting intrusions in the operation of a 

computer system has an architecture which may comprise a 
registry auditing module, e.g., a sensor, configured to gather 
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4 
records regarding processes that access the Windows registry. 
A model generator is also provided which is configured to 
generate a probabilistic model of normal computer system 
usage based on records of a plurality of processes that access 
the Windows registry and that are indicative of normal com 
puter system usage, e.g., free of attacks. A model comparator, 
e.g., anomaly detector, is configured to receive said probabi 
listic model of normal computer system usage and to receive 
records regarding processes that access the Windows registry 
and to determine whether the access of the Windows registry 
is an anomaly. 
The system may also comprise a database configured to 

receive records regarding processes that access the Windows 
registry from said registry auditing module. The model gen 
erator may be configured to receive the records regarding 
processes that access the Windows registry from the database. 
The model generator may be configured to determine a 

conditional probability of observing a first feature in records 
regarding processes that access the Windows registry given 
an occurrence of a second feature is said record. The model 
comparator may be configured to determine a score based on 
the likelihood of observing a feature in a record regarding a 
process that accesses the Windows registry. The model com 
parator may also be configured to determine whether an 
access to the Windows registry is anomalous based on 
whether the score exceeds a predetermined threshold. 

In accordance with the invention, the objects as described 
above have been met, and the need in the art for detecting 
intrusions based on registry accesses has been satisfied. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Further objects, features, and advantages of the invention 
will become apparent from the following detailed description 
taken in conjunction with the accompanying figures showing 
illustrative embodiments of the invention, in which: 

FIG. 1 is a block diagram illustrating the architecture of the 
system in accordance with the present invention. 

FIG. 2 is an exemplary user interface in accordance with 
the present invention. 

FIG. 3 is a plot illustrating the result of an embodiment of 
the present invention. 

Throughout the figures, the same reference numerals and 
characters, unless otherwise Stated, are used to denote like 
features, elements, components, or portions of the illustrated 
embodiments. Moreover, while the subject invention will 
now be described in detail with reference to the figures, it is 
done so in connection with the illustrative embodiments with 
out departing from the true scope and spirit of the invention as 
defined by the appended claims. 

DETAILED DESCRIPTION OF THE 
EXEMPLARY EMBODIMENTS 

A novel intrusion detection system 10 is disclosed herein 
and illustrated in FIG. 1. System 10 monitors a programs 
access of the file system of the computer, e.g., MicrosoftTM 
WindowsTM registry (hereinafter referred to as the “Win 
dowsTM registry” or the “registry’) and determines whether 
the program is malicious. The system and methods described 
herein incorporate a novel technique referred to herein as 
“RAD' (Registry Anomaly Detection), which monitors the 
accesses to the registry, preferably in real time, and detects the 
actions of malicious Software. 
As is known in the art, the registry is an important compo 

nent of the WindowsTM operating system and is implemented 
very widely. Accordingly, a Substantial amount of data 
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regarding activity associated with the registry is available. 
The novel technique includes building a sensor, e.g., registry 
auditing module, on the registry and applying the information 
gathered by this sensor to an anomaly detector. Consequently, 
registry activity that corresponds to malicious Software may 
be detected. Several advantages of monitoring the registry 
include the fact that registry activity is regular by nature, that 
the registry can be monitored with low computational over 
head, and that almost all system activities query the registry. 
An exemplary embodiment of the novel system, e.g., sys 

tem 10, comprises several components: a registry auditing 
module 12, a model generator 14, and an anomaly detector 
16. Generally, the sensor 12 serves to output data for each 
registry activity to a database 18 where it is stored fortraining. 
The model generator 14 reads data from the database 18, and 
creates a model of normal behavior. The model is then used by 
the anomaly detector 16 to decide whether each new registry 
access should be considered anomalous. The above compo 
nents can reside on the host system itself, or on a remote 
network connected to the host. 
A description of the WindowsTM registry is provided 

herein. As is known in the art, the registry is a database of 
information about a computer's configuration. The registry 
contains information that is continually referenced by many 
different programs during the operation of the computer sys 
tem. The registry may store information concerning the hard 
ware installed on the system, the ports that are being used, 
profiles for each user, configuration settings for programs, 
and many other parameters of the system. The registry is the 
main storage location for all configuration information for 
almost all programs. The registry is also the storage location 
for all security information such as security policies, user 
names, and passwords. The registry also stores much of the 
important configuration information that are needed by pro 
grams in order to run. 
The registry is organized hierarchically as a tree. Each 

entry in the registry is called a “key' and has an associated 
value. One example of a registry key is: 

HKCU\Software\America Online\AOL Instant Messen 
gerTM \CurrentVersion\Users\aimuser\Login\Password 

This example represents a key used by the AOLTM Instant 
MessengerTM program. This key stores an encrypted version 
of the password for the user name “aimuser. Upon execution, 
the AOLTM Instant MessengerTM program access the registry. 
In particular, the program queries this key in the registry in 
order to retrieve the stored password for the local user. Infor 
mation is accessed from the registry by individual registry 
accesses or queries. The information associated with a regis 
try query may include the key, the type of query, the result, the 
process that generated the query, and whether the query was 
Successful. One example of a query is a read for the key, 
shown above. For example, the record of the query is: 

Process: aim.exe 
Query: QueryValue 
Key: HKCU\Software\America Online\AOL Instant 

MessengerTM\CurrentVersion\Users\aimuser\Login\ 
Password 

Response: SUCCESS 
ResultValue: BCOFHIHBBAHF 
The registry serves as an effective data source to monitor 

for attacks because it has been found that many attacks are 
manifested as anomalous registry behavior. For example, cer 
tain attacks have been found to take advantage of Win 
dowsTM reliance on the registry. Indeed, many attacks them 
selves rely on the registry in order to function properly. Many 
programs store important information in the registry, despite 
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6 
the fact that any other program can likewise access data 
anywhere inside the registry. Consequently, Some attackStar 
get the registry to take advantage of this access. In order to 
address this concern, security permissions are included in 
some versions of WindowsTM. However, such permissions are 
not included in all versions of WindowsTM, and even when 
they are included, many common applications do not make 
use of this security feature. 

“Normal’ computer usage with respect to the registry is 
described herein. Most typical WindowsTM programs access a 
certain set of keys during execution. Furthermore, each user 
typically uses a certain set of programs routinely while run 
ning their machine. This set of programs may be a set of all 
programs installed on the machine, or a small Subset of these 
programs. 

Another important characteristic of normal registry activ 
ity is that it has been found to be substantially regular over 
time. Most programs may either (1) access the registry only 
on startup and shutdown, or (2) access the registry at specific 
intervals. Since this access to the registry appears to be Sub 
stantially regular, monitoring the registry for anomalous 
activity provides useful results because a program which 
substantially deviates from this normal activity may be easily 
detected as anomalous. 

Other normal registry activity occurs only when the oper 
ating system is installed by the manufacturer. Some attacks 
involve launching programs that have not been launched 
before and/or changing keys that have not been changed since 
the operating system was first installed by the manufacturer. 

If a model of the normal registry behavior is trained over 
clean data, then these kinds of registry operations will not 
appear in the model, and can be detected when they occur. 
Furthermore, malicious programs may need to query parts of 
the registry to get information about Vulnerabilities. A mali 
cious program can also introduce new keys that will help 
create Vulnerabilities in the machine. 
Some examples of malicious programs and how they pro 

duce anomalous registry activity are as follows: 
Setup Trojan: This program, when launched, adds full 

read/write sharing access on the file system of the host 
machine. It makes use of the registry by creating a registry 
structure in the networking section of the WindowsTM keys. 
The structure stems from HKLM\Software\Microsoft\ 
Windows\CurrentVersion\Network\LanMan. It then makes 
several, e.g., eight, new keys for its use. It also accesses 
HKLM\Security\Provider in order to find information about 
the security of the machine to help determine Vulnerabilities. 
This key is not accessed by any normal programs during 
training or testing in our experiments, and therefore its use is 
clearly Suspicious in nature. 
Back Oriffice 2000: This program opens a vulnerability on 

a host machine, which may grant anyone with the back orif 
fice client program complete control over the host machine. 
This program makes extensive use of the registry. In doing so, 
it does access a key that is very rarely accessed on the Win 
dow STM system. This key, 
HKLM\Software\Microsoft\VBAAMonitors, WaS not 
accessed by any normal programs in either the training or test 
data. Accordingly, the detection algorithm was able to deter 
mine it as anomalous. This program also launches many other 
programs (e.g., LoadWC.exe, Patch.exe, runonce.exe, 
bo2k i o intl.e) as part of the attack, in which all of these 
programs made anomalous accesses to the registry. 

Aimrecover: This program obtains passwords from AOLTM 
users without authorization. It is a simple program that reads 
the keys from the registry where the AOLTM Instant Messen 
gerTM program stores the user names and passwords. These 
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accesses are considered anomalous because Aimrecover is 
accessing a key that usually is accessed and was created by a 
different program. 

Disable Norton: This is a simple exploitation of the registry 
that disables NortonTM Antivirus. This attack toggles one 5 
record in the registry, in particular, the key 
HKLMASOFTWAREVINTELVLANDesk\Virus.Protect(6\ 
CurrentVersion \Storages\ Files\System\RealTimeScan\ 
OnOff. If this value is set to 0, then NortonTM Antivirus 
real-time system monitoring is turned off. Again, this is con- 10 
sidered anomalous because of its access to a key that was 
created by a different program. 

LOphtCrack: This program is a widely used password 
cracking program for WindowsTM machines. It obtains the 
hashed SAM file containing the passwords for all users, and 15 
then uses either a dictionary or a brute force approach to find 
the passwords. This program also uses flaws in the Win 
dowsTM encryption scheme in order to try to find some of the 
characters in a password in order to obtain a password faster. 
This program uses the registry by creating its own section in 20 
the registry. This new section may include many create key 
and set value queries, all of which will be on keys that did not 
exist previously on the host machine and therefore have not 
been seen before. 
An additional aspect of normal computer usage of the 25 

registry is described herein. During testing (as will be 
described below) all of the programs observed in the data set 
cause ExplorerTM to access a key specifically for that appli 
cation. This key has the following format: 

HKLM\Software\Microsoft\WindowsNT 30 
\CurrentVersion\Image File Execution Options\pro 
cessName 

where “processName” is the name of the process being run. 
(It is believed that all programs in general have this behavior.) 
This key is accessed by ExplorerTM each time an application 
is run. Given this information, a detection system may be able 
to determine when new applications are run, which will be a 
starting point to determine malicious activity. In addition, 
many programs add themselves in the auto-run section of the 
registry under the following key: 

HKLM\Software\Microsoft\Windows\CurrentVersion\Run. 

35 

40 

While this activity is not malicious in nature, it is nevertheless 
an uncommon event that may suggest that a system is being 
attacked. Trojans such as Back Orifice utilize this part of the 45 
registry to auto load themselves on each boot. 
Anomaly detectors, such as anomaly detector 16, do not 

operate by looking for malicious activity directly. Rather, 
they look for deviations from normal activity. Consequently, 
Such deviations, which represent normal operation, may nev- 50 
ertheless be declared an attack by the system. For example, 
the installation of a new program on a system may be viewed 
as anomalous activity by the anomaly detector, in which new 
sections of the registry and many new keys may be created. 
This activity may interpreted as malicious (since this activity 55 
was not in the training data) and a false alarm may be trig 
gered, much like the process of adding a new machine to a 
network may cause an alarm on an anomaly detector that 
analyzes network traffic. 

There are a few possible solutions to avoid this problem. 60 
Malicious programs often install quietly so that the user does 
not know the program is being installed. This is not the case 
with most installations. For example, in an exemplary 
embodiment, the algorithm is programmed to ignore alarms 
while the install shield program is running, because the user 65 
would be aware that a new program is being installed (as 
opposed to malicious activity occurring without the users 

8 
knowledge and permission). In another embodiment, the user 
is prompted when a detection occurs, which provides the user 
with the option of informing the algorithm that the detected 
program is not malicious and therefore grants permission for 
Such program to be added to the training set of data to update 
the anomaly detector for permissible software. 

In order to detect anomalous registry accesses, model gen 
erator 14 of system 10 generates a model of normal registry 
activity. A set of five basic features are extracted from each 
registry access. (An additional five features may be added, 
which are combinations of the five basic features, as 
described below.) Statistics of the values of these features 
over normal data are used to create the probabilistic model of 
normal registry behavior. This model of normal registry 
behavior may include a set of consistency checks applied to 
the features, as will be described below. When detecting 
anomalies, the model of normal behavior is used to determine 
whether the values of the features of the new registry accesses 
are consistent with the normal data. If such values are not 
consistent, the algorithm labels the registry access as anoma 
lous, and the processes that accessed the registry as malicious. 

In the exemplary embodiment, the data model consists of 
five basic features gathered by the registry auditing module 
12 from an audit stream. (It is contemplated that additional 
features may also provide significant results.) In the exem 
plary embodiment, the features are as follows: 

Process: The name of the process accessing the registry. 
This allows the tracking of new processes that did not appear 
in the training data. 

Query: The type of query being sent to the registry, for 
example, Query Value, CreateKey, and SetValue are valid 
query types. This allows the identification of query types that 
have not been seen before. There are many query types but 
only a few are used under normal circumstances. 

Key: The actual key being accessed. Including this feature 
allows the algorithm to locate keys that are never accessed in 
the training data. Many keys are used only once for special 
situations like system installation. Some of these keys can be 
used by attacks to create Vulnerabilities. 

Response: A feature which describes the outcome of the 
query, for example, Success, not found, no more, buffer over 
flow, and access denied. 

Result Value: The value of the key being accessed. Includ 
ing this feature allows the algorithm to detect abnormal val 
ues being used to create abnormal behavior in the system. 

Composite features may also be used, which are a combi 
nation of two basic features, such as those discussed above. 
These composite features are useful in detecting anomalies 
since they allow the system to give more detail to its normal 
usage model where the existence of the basic features in 
isolation would not necessary be detected as anomalous. The 
following is a list of exemplary composite fields that may be 
used by system 10: 

Process/Query: This key is a combination of the process 
and query fields, and may provide information to determine if 
a particular process is executing queries that are not typically 
executed by this process. 

Key/Process: This key is a combination of the key and 
process fields, and may allow the algorithm to detect whether 
or not a process accesses portions of the registry it typically 
doesn’t access. Also it detects when a key is being accessed by 
a process that normally doesn’t access it. This analysis is very 
useful because many processes access keys belonging to 
other programs, and this field would allow the detection of 
Such an event. 

Query/Key: This key is a combination of the query and key 
fields, and may determine if a key is being accessed in a 
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different way than usual. For example, there are many key 
values in the registry that are written once at the time of their 
creation, and then are subsequently read from the registry 
without change. Some of these keys store crucial information 
for the execution of certain programs. If a malicious process 
were to write to one of these keys, after the time of their 
creation, this field would enable the algorithm to detect such 
an event, and the record would appearanomalous. 

Response/Key: This key is a combination of the key and 

10 
Exemplary embodiments of intrusion detection algorithms 

which may be used by the system 10 will now be described, 
although it is understood that other anomaly detection algo 
rithms may also be used in connection with the present inven 
tion. Since a significant amount of data is monitored in real 
time, the algorithm that is selected must be very efficient. 
According to a first exemplary embodiment, the features that 
were monitored from each registry access are used to train a 
model over features extracted from normal data. That model 

response fields. Many keys are found to be used in the same 10 allows for the classification of registry accesses as either 
manner each time they are used. Consequently, they will normal or malicious, as will be described herein. 
always return the same response. Since a different response to In general, a principled probabilistic approach to anomaly 
a key may be indicative of abnormal or malicious system d - etection can be reduced to density estimation. If a density activity, the algorithm which utilizes this combination key 
would be able to detect such abnormal or malicious activity. 15 function p(X) can be estimated over the normal data, aOa 

Result value/Key: This key is a combination of the key and lies are defined as data elements that occur with low prob 
result value. During operation of the computer system, many ability. In practice, estimating densities is a very complex, 
keys will always contain a value from a certain set or range of non-trivial problem. In detecting intrusions into the registry, a 
values. When the value is outside that range, that could be an complication is that each of the features have many possible 
indicator of a malicious program taking advantage of a vul- 2O values. For example, the key feature, defined above, may have 

ability. - 0 over 30,000 values in the training set. Since there are so many 
As an illustration, an exemplary registry access is dis- possible feature values, it is relatively rare that the same exact 

played in Table 1. The sec ond column is normal access by the record occurs more than once in the data. Data sets of this type 
process aim.exe (which is used with AOLTM Instant Messen- ferred t & G 99 
gerTM) to access the key where passwords are stored. The third are reIerred to as sparse. 
column of Table 1 is a malicious access by a process aimre- 25 Since probability density estimation is a very complex 
cover.exe to the same key. The final column of Table 1 shows problem over sparse data, the method of the present invention 
which fields register by the anomaly detector as anomalous. defines a set of consistency checks over the normal data for 
As seen in the table, all of the basic features, e.g., process, determining which records from a sparse data set are anoma 
query, key, response, and result value, do not appear anoma- lous. Each consistency check is applied to an observed record 
lous for the normal process aim.exe. When compared with the 30 by the anomaly detector. If the record fails any consistency 
malicious process aimrecoverexe. However, the composite check, the record is labeled as anomalous. 
keys are useful for detecting the anomalous behavior of aim 
recover.exe. For example, the fact that the process aimrecov- In the exemplary embodiment, two kinds of consistency 
er.exe is accessing a key that is usually associated with checks are applied. The first consistency check evaluates 
another process, i.e., aim.exe, is detected as an anomaly. This is whether or not a feature value is consistent with observed 
conclusion is made because under normal circumstances only values of that feature in the normal data set. This type of 
aim.exe accesses the key that stores the AOLTM Instant Mes- consistency check is referred to as a first order consistency 
sengerTM password. The occurrence of another process check, e.g., each registry record may be viewed as the out 
accessing this key is considered suspicious. By examining the come of five random variables, one for each feature, X, X2, 
combination of two basic features, the algorithm can detect X, X, Xs. The consistency checks compute the likelihood of 
this anomaly. an observation of a given feature denoted as PCX). 

TABLE 1. 

Feature aim.exe aimreoover.exe Anomalous 

Process aim.exe aim recover.exe O 
Query Query Value Query Value O 
Key HKCU.Software\America HKCU.Software\America O 

Online\AOL Instant Messenger Online\AOL Instant Messenger 
(TM)\CurrentVersion\Users\ (TM)\CurrentVersion\Users\ 
aimuserLoginVPassword aimuserLoginVPassword 

Response SUCCESS SUCCESS O 
Result Valle BCOFHIHBBAHF BCOFHIHBBAHF O 
Process/Query aim.exe:QueryValue aim recover:QueryValue O 
Query/Key Query Value:HKCU\Software\ Query Value:HKCU\Software\ O 

America OnlineX America OnlineXAOL Instant 
AOL Instant Messenger (TM)\ Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuserLoginVPassword aimuserLoginVPassword 

Response/Key SUCCESS:HKCU\Software\ SUCCESS:HKCUXSoftware, O 
America OnlineX America OnlineX 
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuserLoginVPassword aimuserLoginVPassword 

Process Key aim.exe:HKCUXSoftwarex aim recover.exe:HKCU\Software\ yes 
America OnlineX America OnlineX 
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuserLoginVPassword aimuserLoginVPassword 
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The second consistency checkhandles pairs of features, as 
discussed in the example in Table 1. For each pair of features, 
the conditional probability of a feature value given another 
feature value is considered. These consistency checks are 
referred to as second order consistency checks. These likeli 
hoods are denoted as POX,X). For each value of X, there may 
be a different probability distribution over X, 

In the exemplary embodiment, since there are five basic 
feature values, for each record, there are five first order con 
sistency checks and 20 second order consistency checks of 
which five examples are given above. If the likelihood of any 
of the consistency checks is below a threshold, the record is 
labeled as anomalous. The determination of the threshold is 
described in greater detail below. 
The manner in which the likelihoods for the first order 

(PCX)) consistency checks and the second order (POX,X)) 
consistency checks are computed is described herein. From 
the normal data, there is a set of observed counts from a 
discrete alphabet, e.g., a finite number of distinct symbols or 
feature values, for each of the consistency checks. Computing 
the above likelihoods reduces to estimating a multinomial 
expression. In theory, the maximum likelihood estimate may 
be used, which computes the ratio of the counts of a particular 
element to the total counts. However, the maximum likeli 
hood estimate has been found to be biased when relatively 
Small amounts of data, e.g., "sparse data are available. The 
distribution may be smoothed by adding a virtual count to 
each possible element. For anomaly detection, it is often 
desirable to take into account how likely it is to observe a 
previously unobserved element. Thus, if many different ele 
ments have been seen in the training data, it is therefore more 
likely to see additional, unobserved elements, as opposed to 
the case where very few elements have been seen, in which 
additional, unobserved elements would be unlikely. (The 
term "element here refers to feature values, or a vector of 
feature values.) 

To estimate the likelihoods, an estimator is used, which 
gives the following prediction for element i: 

a + N; 
koa + N 

C (1) 

if element i was observed in the training data. If elementi was 
not previously observed, then the following prediction is 
used: 

(2) Px = i = 1 (1 - C) 

In these equations, the term C. is a prior count for each ele 
ment. The term N, is the number of times element i was 
observed: N is the total number of observations, k" is the 
number of different elements observed, and L is the total 
number of possible elements or the alphabet size. The param 
eters are either observed or computed (e.g., N and k are 
determined by storing values and computing frequency 
counts) while L is defined by the particular system being 
modeled, i.e., the type of variables (e.g., 32 bit integers) 
defines a range of possible values. Thus, L is predefined by the 
implementation details of the system. Here, the system is 
modeling the WindowsTM registry, which has a predefined 
range of possible values (as defined by the programmers of 
the registry.) The Scaling factor C takes into account how 
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12 
likely it is to observe a previously observed element versus an 
unobserved element. C is computed by the following equa 
tion: 

(3) 

where 

k T(ka) 
m = PS =k) of N. 

and P(S=k) is a prior probability associated with the size of 
the subset of elements in the alphabet that have non-zero 
probability. Although the computation of C is expensive, it 
only needs to be done once for each consistency check at the 
end of training. Second order consistency checks are done in 
like fashion, except the particular values being measured are 
not distinct features values, but pairs of feature values, con 
sidering these pairs as a distinct element. 
The prediction of the probability estimator is derived using 

a mixture of Dirichlet estimators, as are known in the art, see, 
e.g., the estimator presented in N. Friedman and Y. Singer, 
“Efficient Bayesian Parameter Estimation in Large Discrete 
Domains. Advances in Neural Information Processing Sys 
tems 11, MIT Press, which is incorporated by reference in its 
entirety herein.) The scores computed in the attached soft 
ware code correspond to the estimates provided by the con 
sistency checks in equations (1) and (2) above. 

This exemplary embodiment of the algorithm labels every 
registry access as either normal or anomalous. Programs can 
have anywhere from just a few registry accesses to several 
thousand. This means that many attacks will be represented 
by large numbers of records where many of those records will 
be considered anomalous. 
A second exemplary embodiment of the algorithm is 

described herein. Using the features that are monitored from 
each registry access, a score is computed to classify each 
access as either normal or malicious. A set of normal registry 
accesses are analyzed as a model of normal usage of the 
registry. Then using this model, new registry records are 
analyzed to determine whether or not they are malicious. 
As the data is being collected, several important statistics 

are collected about each feature and the values that occur for 
each feature. For each feature, which values occurred for that 
feature and how many distinct values occurred for the feature, 
r, are recorded. Accordingly, r is a measure of how likely it is 
to see a new value for the feature. If many distinct values for 
a feature have been previously observed, i.e., a high value for 
r, and Subsequently a never-observed value is encountered, 
Such new value would be expected and considered normal. In 
contrast, if only a few distinct values have been observed, i.e., 
a low value for r, the observation of a new value is unlikely 
and possibly anomalous. The total number of registry differ 
ent elements, e.g., training records, that are observed during 
training, n, is also recorded. 

During training, for each of the features, all of the distinct 
observed values of the feature are stored, as well as the num 
ber of distinct observed values r. The total number of training 
records n is computed. For each feature, the algorithm com 
putes prin, which is an approximation of the probability of 
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observing an unseen value for that feature in the normal data. 
To minimize storage requirements, instead of storing all dis 
tinct values, the algorithm hashes all of the values and stores 
the hashes of the values in a bit vector. More details on this 
technique is described in the implementation of PHAD 
(Packet Header Anomaly Detection), an anomaly detection 
algorithm known in the art, which was developed to detect 
anomalies in packet headers (see, e.g., M. Mahoney and P. 
Chan, “Detecting Novel Attacks by Identifying Anomalous 
Network Packet Headers.” Technical Report CS-2001-2, 
Florida Institute of Technology, Melbourne, Fla., 2001). 
Once the model has been trained, new registry accesses can 

be evaluated and a score computed to determine whether or 
not the registry accesses are abnormal. For a new registry 
access, we first extract the features for the registry access. For 
each of these features, a check is performed to see if the value 
of the feature has been observed for the feature. If the value 
has not been observed, a heuristic score is computed which 
determines the level of anomaly for that feature. The score is 
determined as 1/p for each feature. Intuitively this score will 
be higher for features where fewer distinct values have been 
observed. The final score for a registry access is the sum of the 
scores for each feature that observed a previously unobserved 
value. If this value is greater than a threshold, we label the 
registry access anomalous and declare the process that gen 
erated it as malicious. The results from this experiment are 
described below. 
The basic architecture of the system 10 will now be dis 

cussed in greater detail herein. With continued reference to 
FIG. 1, the registry auditing module 12 monitors accesses to 
the registry. In the exemplary embodiment, the registry audit 
ing module 12 is a “Basic Auditing Module” (BAM). In 
general, BAMs are known in the art, and implement an archi 
tecture and interface which provide a consistent data repre 
sentation for a sensor. As indicated by arrow 22, they include 
a “hook' into the audit stream (in this case the registry) and 
various communication and data-buffering components. 
BAMs use an XML data representation substantially identi 
cal to the IETF standard for IDS systems (See, e.g., Internet 
Engineering Task Force. Intrusion detection exchange for 
mat. On-line publication, http://www.ietforg/html.charters/ 
idwg-charter.html, 2000.), minor syntatical differences. The 
registry auditing module 12 runs in the background on a 
WindowsTM machine, where it gathers information on regis 
try reads and writes, e.g., the 5 features discussed above. 
Registry auditing module 12 uses Win32 hooks to tap into the 
registry and log all reads and writes to the registry. The 
software uses an architecture substantially identical to Sys 
Internal's Regmon (See, e.g., SysInternals. Regmon for Win 
dowsTMNT/9X. Online publication, 2000. http://www.sysin 
ternals.com/ntw2k/source/regmon.shtml), and extracts a 
Subset of data available to Regmon. After gathering the reg 
istry data, registry auditing module 12 can be configured for 
two distinct uses. One use is to act as the data source for model 
generation. When registry auditing module 12 is used as the 
data source for model generation, its output is sent to a data 
base 18 (as indicated by arrow 24) where it is stored and later 
used by the model generator 16 described herein. The second 
use of registry auditing module 12 is to act as the data source 
for the real-time anomaly detector 14 described herein. While 
in this mode, the output of registry auditing module 12 is sent 
directly to the anomaly detector 14 (indicated by arrow 26) 
where it is processed in real time. 

The model generation infrastructure consists of two com 
ponents. A database 18 is used to store all of the collected 
registry accesses from the training data. A model generator 14 
then uses this collected data to create a model of normal 
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usage. The model generator 14 uses one of the two exemplary 
algorithms discussed above (or other similar algorithm) to 
build a model that will represent normal usage. It utilizes the 
data stored in the database 18 which was generated by registry 
auditing module 12. The database 18 is described in greater 
detail is concurrently filed U.S. application Ser. No. 10/352. 
342, entitled “System and Methods for Adaptive Model Gen 
eration for Detecting Intrusion in Computer Systems.” to 
Andrew Honig, et al., which is incorporated by reference in its 
entirety herein. (Arrow 28 indicates the flow of data from the 
data warehouse 18 to the model generator 14.) The model 
itself is comprised of serialized Java objects. This allows for 
a single model to be generated and to easily be distributed to 
additional machines. Having the model easily deployed to 
new machines is a desirable feature since in a typical network, 
many WindowsTM machines have similar usage patterns 
which allow for the same model to be used for multiple 
machines. The GUI 30 for the model generator using the 
second embodiment of the algorithm is shown in FIG. 2. 
Column 32 indicates the feature name, column 34 indicates 
the n-value, column 36 indicates the r-value, and column 38 
indicates the p-value. Additional details for generating a 
model are described in U.S. application Ser. No. 10/208.432 
filed Jul. 30, 2002 entitled “System and Methods for Detec 
tion of New Malicious Executables, to Matthew G. Schulzet 
al., which is incorporated by reference in its entirety herein. 
The anomaly detector 16 will load the normal usage model 

created by the model generator 14 (as indicated by arrow 29) 
and begin reading each record from the output data stream of 
registry auditing module 12 (arrow 26). One of the algo 
rithms, as discussed above, is then applied against each record 
of registry activity. The score generated by the anomaly 
detection algorithm is then compared by a user configurable 
threshold to determine if the record should be considered 
anomalous. A list of anomalous registry accesses are stored 
and displayed as part of the detector. 
The system described herein is a statistical model of 

expected registry queries and results. If an attacker wanted to 
usurp a host-based detector, they cana) turn off the detector at 
the host (and hope no alarms go offelsewhere) or b) they can 
attack the host based detector by changing its rules or chang 
ing its statistical model So it won't alarm. 

Accordingly, in order to protect the statistical model of the 
system, from being attacked, it is put it in the registry. The 
registry is essentially a data base, and the statistical model 
comprises query values and probabilities. The evaluation of 
the model first accesses values and probability estimates. This 
information can be stored in the registry. Hence, any process 
that attempts to touch the model (for example, to change some 
values in the model) will be abnormal registry accesses and 
set off the alarm. Consequently, the system would be pro 
tected from having its own model being attacked since it will 
notice when it is under attack. 

In order to evaluate the system, data was gathered by run 
ning a registry auditing module 12 on a host machine. During 
training, several programs were run in order to generate nor 
mal background traffic. In order to generate normal data for 
building an accurate and complete training model, it was 
important to run various applications in various ways. By 
examining registry traffic, it was discovered that it is not just 
which programs that are run, but also how they are run that 
affect registry activity. For example, running ping.exe from 
the command prompt does not generate registry activity. 
However, running ping.exe directly from the run dialog box 
does generate registry activity: By understanding such details 
of the registry, a more complete training model was built. 
Beyond the normal execution of standard programs. Such as 
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MicrosoftTM Word, Internet Explorer, and Winzip, the train 
ing also included performing tasks such as emptying the 
Recycling Bin and using Control Panel. 
The training data collected for the experiment was col 

lected on WindowsTMNT 4.0 over two days of normal usage. 
“Normal usage is defined to mean what is believed to be 
typical use of a WindowsTM platform in a home setting. For 
example, it was assumed that users would login, check some 
internet sites, read some mail, use word processing, then log 
off. This type of session was taken to be relatively typical of 
computer users. Normal programs are those which are 
bundled with the operating systems, or are in use by most 
WindowsTM users. 

The simulated home use of WindowsTM generated a clean 
(attack-free) dataset of approximately 500,000 records. The 
system was tested on a full day of test data with embedded 
attacks executed. This data was comprised of approximately 
300,000 records, most of which were normal program execu 
tions interspersed with attacks among normal process execu 
tions. The normal programs run between attacks were 
intended to simulate an ordinary WindowsTM session. The 
programs used were, for example, MicrosoftTM Word, Out 
look ExpressTM, Internet ExplorerTM, NetscapeTM, AOLTM 
Instant MessengerTM. 
The attacks run include publicly available attacks such as 

aimrecover, browslist, bok2ss (back orifice), install.exextxp 
and exe (both for backdoor.XTCP), 10phtcrack, runttack, 
whackmole, and setuptrojan. Attacks were only run during 
the one day of testing throughout the day. Among the twelve 
attacks that were run, four instances were repetitions of the 
same attack. Since some attacks generated multiple processes 
there are a total of seventeen distinct processes for each 
attack. All of the processes (either attack or normal) as well as 
the number of registry access records in the test data is shown 
in Table 3 and described in greater detail herein. 
The training and testing environments were set up to rep 

licate a simple yet realistic model of usage of WindowsTM 
systems. The system load and the applications that were run 
were meant to resemble what one may deem typical in normal 
private settings. 
The first exemplary anomaly detection algorithm dis 

cussed above in equations (1)–(3) were trained over the nor 
mal data. Each record in the testing set was evaluated against 
this training data. The results were evaluated by computing 
two statistics: the detection rate and the false positive rate. 
The performance of the system was evaluated by measuring 
detection performance over processes labeled as either nor 
mal or malicious. 

The detection rate reported below is the percentage of 
records generated by the malicious programs which are 
labeled correctly as anomalous by the model. The false posi 
tive rate is the percentage of normal records which are mis 
labeled anomalous. Each attack or normal process has many 
records associated with it. Therefore, it is possible that some 
records generated by a malicious program will be mislabeled 
even when some of the records generated by the attack are 
accurately detected. This will occur in the event that some of 
the records associated with one attack are labeled normal. 
Each record is given an anomaly score, S, that is compared to 
a user defined threshold. If the score is greater than the thresh 
old, then that particular record is considered malicious. FIG. 
3 shows how varying the threshold affects the output of detec 
tor. The actual recorded scores plotted in the figure are dis 
played in Table 2. 
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TABLE 2 

Threshold Score False Positive Rate Detection Rate 

6.847393 O.OO1192. O.OOS870 
6.165698 O.OO2826 O.O27215 
5.97 1925 O.OO31.59 O.O3O416 
5.432488 O.OO4294 O.O64034 
4.828566 O.OOS613 O.O992S3 
4.56SO11 O.OO6506 O.177161 
3.812SO6 O.OO9343 O.288687 
3.774119 O.OO9738 O314301 
3.SO2904 O.O11392 O.S33O84 
3.231236 O.O12790 O.S3S219 
3.158004 O.O14740 0.577908 
2.91.5094 O.O19998 O.S78442 
2.899837 O.O2O087 O.627001 
2.753176 O.O33658 O.6291.36 
2.584921 O.O34744 O.808431 
2.531572 O.O38.042 O.869797 
2.3844O2 O.OSO4S4 1.OOOOOO 

Table 3 is sorted in order to show the results for classifying 
processes. Information about all processes in testing data 
including the number of registry accesses and the maximum 
and minimum score for each record as well as the classifica 
tion. The top part of the table shows this information for all of 
the attack processes and the bottom part of the table shows 
this information for the normal processes. The reference 
number (by the attack processes) give the source for the 
attack. Processes that have the same reference number are 
part of the same attack. 1 AIMCrack. 2 Back Orifice. 3 
Backdoor.xtcp. 4 Browse List. 5 Happy 99.6 IPCrack. 
7 LOpht Crack. 8 Setup Trojan. 

TABLE 3 

Maximum Minimum 
Number of Record Record 

Program Name Records Value Value Classification 

LOADWC.EXE2) 1 8.497072 8.497072 ATTACK 
ipccrack.exe6 1 8.497072 8.497072 ATTACK 
mistinit.exe2 11 7.253.687 6.7053.13 ATTACK 
bo2kss.exe2 12 7.253.687 6.62527 ATTACK 
runonce.exe2 8 7.253384 6.99.2995 ATTACK 
browselist.exe4 32 6.807137 S-693712 ATTACK 
install.exe3 18 6.5.1945S 6.24578 ATTACK 
SetupTrojan.exe.8 30 6.444089 S.756.232 ATTACK 
AimRecover.exe1) 61 6.444089 S.O63O85 ATTACK 
happy.99.exe5 29 S.918383 5.78.9022 ATTACK 
bo2k.1.0..intl.e2 78 5.432488 4.82O771 ATTACK 
..INSO432.MP2 443 S.284697 3.094395 ATTACK 
Xtcp.exe3 240 S.265434 3.7OS422 ATTACK 
bo2kcfg.exe2 289 4.879232 3.52O338 ATTACK 
1Ophtcrack.exe.7 100 4.688.737 4.57SO99 ATTACK 
Patch.exe2 174 4.661701 4.O2S433 ATTACK 
bo2k.exe2 883 4.386SO4 2.405762 ATTACK 
systray.exe 17 7.253.687 6.299848 NORMAL 
CSRSS.EXE 63 7.253.687 S.O31336 NORMAL 
SPOOLSS.EXE 72 7.070537 S.1331 61 NORMAL 
tash.exe 12 6.62527 6.62527 NORMAL 
winmine.exe 21 6.56054 6.099.177 NORMAL 
el...(X(C.EXE 29 6.3.37396 S.789.022 NORMAL 
winampa.exe 547 6.11399 2.88394.4 NORMAL 
PINBALL.EXE 240 5.8984.64 3.7OS422 NORMAL 
LSASS.EXE 2299 5.432488 1.4.4955S NORMAL 
PING.EXE 50 S.34S477 S.258.394 NORMAL 
EXCELEXE 1782 S.284697 1704167 NORMAL 
WINLOGON.EXE 399 5.191326 3.1987SS NORMAL 
rundl132.exe 142 S.OS779S 4.22737S NORMAL 
explore.exe 108 4.96O194 4.498.871 NORMAL 
netscape.exe 11252 4.828566 -0.138171 NORMAL 
java.exe 42 4.828,566 3.774119 NORMAL 
aim.exe 1702 4.828,566 1.7SOO73 NORMAL 
findfast.exe 176 4.679733 4.014O7 NORMAL 
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TABLE 3-continued 

Maximum Minimum 
Number of Record Record 

Program Name Records Value Value Classification 

TASKMGR.EXE 99 4.6SO997 4.585049 NORMAL 
MSACCESS.EXE 2825 4.6294.94 1.2436O2 NORMAL 
IEXPLORE.EXE 194274 4.628.190 -3419214 NORMAL 
NTVDM.EXE 271 4.59.155 3.584417 NORMAL 
CMD.EXE 116 4.579538 4428O4S NORMAL 
WINWORD.EXE 1541. 4.457119 17081 NORMAL 
EXPLORER.EXE 53894 4.31774 -1.704574 NORMAL 
mSmsgs.exe 7016 4.177SO9 O.334128 NORMAL 
OSA9.EXE 7OS 4.163361 2.584921 NORMAL 
MYCOME 1.EXE 1193 4.035649 2.105.1 SS NORMAL 
wScript.exe 527 3.883216 2.921 123 NORMAL 
WINZIP32.EXE 3O43 3.883216 O.S93845 NORMAL 
notepad.exe 2673 3.883216 1.264,339 NORMAL 
POWERPNT.EXE 617 3.5O1078 -0.145078 NORMAL 
AcroRd32.exe 1598 3.412895 O.393729 NORMAL 
MDM.EXE 182S 3.231236 1680336 NORMAL 
termpro.exe 1639 2.899837 1.787768 NORMAL 
SERVICES.EXE 1070 2.5761.96 2.213871 NORMAL 
REGMON.EXE 259 2.SS6836 12O5416 NORMAL 
RPCSS.EXE 4349 2.2SO997 O.812288 NORMAL 

The process of setting the threshold is described herein. If 
the threshold is set at 8.497072, the processes LOAD 
WC.EXE and ipccrack.exe are labeled as malicious and 
would detect the Back Orifice and IPCrack attacks. Since 
none of the normal processes have scores that high, we would 
have no false positives. If we lower the threshold to 6.444089, 
we would have detected several more processes from Back 
Orifice and the BrowseList, BackDoor.xtcp. SetupTrojanand 
AimRecover attacks. However, at this level of threshold, the 
following processes would be labeled as false positives: 
systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and 
winmine.exe. 
By varying the threshold for the inconsistency scores on 

records, we were able to demonstrate the variability of the 
detection rate and false positive rate. The false positive rate 
versus the detection rate was plotted in an ROC (Receiver 
Operator Characteristic) curve 52 shown in Table 2 and the 
plot 50 in FIG.3, in which the false positive rate 54 is plotted 
against the detection rate 56. 

Another exemplary embodiment is described herein. The 
systems and method described above, uses WindowsTM reg 
istry accesses, which is an example of a general means of 
detecting malicious uses of a host computer. However, other 
systems, such as Linux/Unix, do not use a registry. In those 
cases, a file system sensor would be used. Accesses to the file 
system provides an audit Source of data (i.e., whenever an 
application is run, any and all things accessed are files, e.g., 
the main executable files are accessed, and the project files are 
accessed). This audit source can be observed, and a “normal 
baseline model built, and then used for detecting abnormal 
file system accesses. 

It will be understood that the foregoing is only illustrative 
of the principles of the invention, and that various modifica 
tions can be made by those skilled in the art without departing 
from the scope and spirit of the invention. 

APPENDIX 

The software listed herein is provided in an attached CD 
Rom. The contents of the CD-Rom are incorporated by ref 
erence in their entirety herein. 
A portion of the disclosure of this patent document contains 
material which is subject to copyright protection. The copy 
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18 
right owner has no objection to the facsimile reproduction by 
any one of the patent disclosure, as it appears in the Patent and 
Trademark Office patent files or records, but otherwise 
reserves all copyright rights whatsoever. 
PAD (Probabilistic Anomaly Detection) is a package that 

detects anomalies in fixed length records of discrete values. 
The basic idea behind PAD is that it trains over a data set 

and then checks to see if new observed records are “consis 
tent with the data set. There are two types of consistency 
checks. First order consistency checks evaluate whether or 
not a single feature is consistent with other features in the 
dataset. Second order consistency checks evaluate if a pair of 
features is consistent with the data set. All consistency checks 
are evaluated by computing a predictive probability. This is 
done by estimating a multinomial using counts observed from 
the data set and then estimating the probability of seeing the 
observation. 

Let us assume records of length n are being observed. That 
is, each record can be written as a set of random variables 
(X_1,X_2, ..., X n). Each first order consistency check can 
be denoted as computing PCX i). This probability is trained 
over a data set, and then used to predict elements in another 
dataset. These two datasets can be in fact the same. To train 
the probability distribution, the counts of the observed sym 
bols in the data set are collected. The second order consis 
tency checks are POX i, X). In this case, the counts of X i 
are collected when X j is observed. Note that there is a 
separate set of counts for each X j. Accordingly, second order 
consistency checks take a significant amount of memory rela 
tive to first order consistency checks. 

All of these probability estimates are obtained using the 
multinomial estimator presented in Friedman, Singer 1999 
(incorporated by reference, above). The basic idea of the 
estimator is that it explicitly takes into account the probability 
of seeing an unobserved symbol. 
The term c is the probability of observing an already 

observed symbol. Thus (1-C) is the probability of observing 
an unobserved symbol. For the observed symbols, a Dirichlet 
is used to estimate the probabilities for the counts. If N is the 
total number of observations, and N i is the observations of 
symboli, if alpha is the “pseudo count” which is added to the 
count of each observed symbol, and k0 is the number of 
observed symbols and L is the total number of symbols, the 
probability is as follows: 

For an observed symbol i, the probability is: C ((N i+ 
alpha)/(k0*alpha+N)) For an unobserved symbol, the prob 
ability is: (1-C)*(1/(L-k0)). See equations (1) and (2) 
above, and the routine “updateC in Classifier.c. In the second 
case, the probability is spread among possible unobserved 
symbols. 

Since each feature in the record may have a different set of 
possible outcomes, if P is the probability estimated from the 
consistency check, the following term is reported: log(P/(1/ 
L)). This normalizes the consistency check to take into 
account the number of possible outcomes L. In general, c 
should be set as described in Friedman, Singer 1999. 

However, this causes some overflow/underflow problems 
in the general case. Instead, the current version of the algo 
rithm uses a heuristic to setc. This is done after observing the 
counts. This is called SIMPLE MODE in the implementa 
tion. In SIMPLE MODE, C is set to C=N/(N+L-k0). In 
addition, in SIMPLE MODE, there is a variable 
OBSERVED BIAS which adjusts the value of c toward 
observed or unobserved symbols. When OBSERVED 
BIAS=0.0, there is no bias. Positive values increase the prob 
ability mass of observed symbols while negative values 
decrease the probability mass of unobserved symbols. For 
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non-zero OBSERVED BIAS, the value of c is adjusted so 
that the new value of c, c* is given as follows C*-C/ (C+((1- 
C)*exp(-OBSERVED BIAS))). 

Package Installation and Quick Start: To install the pack 
age, the following steps should be performed: 
1. Unpack the files. 
2. cd into the src? subdirectory. 
3. type make 

To test the package, the following steps should be per 
formed: 

4. cd into data/Subdirectory 
5. type . ./Src/pad -e -g globalsFile.txt -p sampleInput.txt 
sampleInput.txt 

Subsequently, the following output should be provided: 
a aa aaa ZZZZ: 0.031253 1386.294 O.4902O6 O.693147 
OOOOOOO O.O31253 OOOOOOOOOOOOOOOOOOOOO 1386.294 
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147 
OOOOOOO O.693147 O.875.469 O.875469: test 

b aa fiff diddd: 0.436718 1.386.294 0.202524 0.000000 
O619039 O.436718 OOOOOOOOOOOOOO O.632523 1.386.294 
O.632523 O.OOOOOOOOOOOOO O.2O2524 O.47OOO4 OOOOOOO 
-OOOOOOOOOOOOOOOOOOOOOOOOOOOO! test1 

caafffttitt: O.031253 1.386.294 O.2O2524 OOOOOOOOOOOOOO 
O.031253 OOOOOOOOOOOOOOOOOOOOO 1386.294 O.632523 
OOOOOOOOOOOOOOO.2O2524 O.47OOO4 OOOOOOOOOOOOOO 
OOOOOOO-OOOOOOOOOOOOOO: test2 

g aa aaa ZZZZ: 0.031253 1.386294 0.490206 0.693147 
OOOOOOO O.O31253 OOOOOOOOOOOOOOOOOOOOO 1386.294 
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147 
OOOOOOO O.693147 O.875.469 O.875469: test3 

b aa aaa ZZZZ: 0.436718 1.386.294 0.490206 0.693147 
O619039 O.436718 OOOOOOOOOOOOOO O.632523 1.386.294 
O.980829 O.980829 OOOOOOO O.4902O6 O.693147 O.693147 
-OOOOOOO O.693147 0.875.469 O.875469: test4 
The next steps are then performed: 

6. Type ../Src/pad -e-gglobalsFile.txt-W temp.cla sampleIn 
put.txt 

This should create a file called temp.cla which is the trained 
model (classifier) from the sample input. 
7. Type ../Src/pad -r-p sampleInput.txt temp...cla 
This should provide the same output as above. 

Usage Instructions: The executable has two modes: 
“examples' mode (using the -e option) which reads in 
examples from a file and trains the model using that data, and 
“read mode (using the -r option) which reads in a model from 
a file. The executable requires one argument, which is either 
the file or examples. The globals file (specified with the -g 
option) defines all of the global variables. These include the 
number of columns, the file names containing the column 
symbol definitions. Note that when reading in a model, the 
column symbol files must be in the current directory. 

Options: Command line options: In addition to -r and -e 
which set the mode, the following are options that can be used 
from the command line: 

-g FILE set globals file 
-w toggle verbose output 
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-continued 

-S toggle use of second order predictors 
-w FILE write classifier to file. 
-p FILE predict files 

Globals File Options: Below is the globals file included in 
the distribution. All lines starting with “if” are comments. 
# Globals Definition 

#The inputSymbols. 
NUM COLUMNS 4 

#Set Simple Mode 
SIMPLE MODE TRUE 

#Set Use Second Order Consistency Checks 
USE SECOND ORDER TRUE 
HSet Verbose mode 

VERBOSE FALSE 

#Allow unknown symbols in testing 
ALLOW UNKNOWN SYMBOLS TRUE 
#Set Initial Count for Predictors. This is the virtual count 

it that is added to all observed symbols. 
INITIAL PREDICTION COUNT 1 

#Set the bias to observed symbols 
OBSERVED BIAS 0.0 

#Set the Column Symbol Files 
COLUMN SYMBOL FILENAME 1:C1.txt 

COLUMN SYMBOL FILENAME 2:C2.txt 
COLUMN SYMBOL FILENAME 3:C3.txt 
COLUMN SYMBOL FILENAME 4:C4.txt 

#Sets the number of symbols in a column 
COLUMN NUM SYMBOLS 1:40 

#Sets the classifier to ignore a column 
IGNORE COLUMN 2 
#Sets the symbol that represents an ignored symbol 
IGNORE SYMBOL ** 
#Sets the symbol to represent an unknown symbol 
UNKNOWN SYMBOL UKS 

Input file description: Each line of the input file corre 
sponds to a record. Each record consists of the features in a 
record separated by a space. This is followed by a tab after 
which there is an optional comment. This comment is pre 
served in prediction and can be used in experiments to keep 
track of the type of a record and where it came from. Below is 
the sample input: 

test 
test1 
test2 
test3 
testA 

88 

88 

88 

88 

88 

888 

fif 
fif 
888 

888 

ZZZZ 

dddd 

ZZZZ 

ZZZZ 
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A symbol file defines all of the possible symbols. Each 
symbol is on a separate line in the file. A sample symbol file 
is below: 

aaa 

CCC 

fiff 

999 

There are several options related to symbol files. The 
IGNORE COLUMN can set the classifier to ignore a column 
completely. In this case, each element of the column gets 
mapped to a special symbol which is ignored in the model. In 
a single record, some of the fields can be set to a special 
symbol (by default"**) which tells the classifier to ignore its 
value. A special symbol (by default “UKS) denotes an 
unknown symbol. In training, unknown symbols are not 
allowed and will cause the program to exit. In testing, the 
unknown symbols are treated as if it is a symbol that has 
observed count of 0. The option ALLOW UNKNOWN 
SYMBOLS toggles the automatic mapping of unseen sym 
bols to the special unknown symbol during testing. This 
makes running experiments easier because it is not necessary 
to have the symbol files contain the data in the test set. 

Package Description: The Software package contains the 
following: 

isrc; directory consisting of all of the source files 
folata directory consisting of a small sample input 
fregistry directory consisting of data and scripts to do the 

registry experiments. 
?papers directory containing relevant papers to pad. 

In the /src/ directory there are the following files: 

Classifier.c File that defines the Classifier (model) 
Classifier.h Header file for Classifier.c 
Column.c File that defines a single consistency check 
Column.h Header file for Column.c 
Globals.c Defines the global variables 
Globals.h Header file for Globals.c 
HashTable.c Hashtable implementation 
HashTable.h Header file for Hashtable.c 
includes.h include file for all files 
Input.c mplementation of I/O 
Input.h Header file for Input.c 
Makefile Makefile 
memwatch.c Package to detect memory leaks 
memwatch.h Package to detect memory leaks 
pad.c Main executable file 
pad.h Header file for pad.c 
SymbolTable.c Symbol Table implementation for mapping Symbols to 

integers 
SymbolTable.h Header file for SymbolTable.c 

Registry Experiments: The following steps should be per 
formed: 

1. cd registry/ 
2. type ../Src/pad-e -g regGlobs.txt -w model.claregistry.txt 
This creates a file called model.cla which is the model that is 
trained on 800k registry records. It should take about 190MB 
of memory to train the model. 
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3. type ../Src/pad -r-p registry.txt model.cla >predictions.txt 
This reads in the model and evaluates all of the records. The 
file predictions.txt contains the values for all of the consis 
tency checks. 
4. Type /computeResults..pl predictions.txt >final-predic 
tions.txt 

This determines the minimum value for a consistency check 
for each record and puts on each line this value and the 
COmment. 

5. Typesort -n final-predictions.txt >sorted-final-predic 
tions.txt 

This sorts the records in order of least consistent. This is the 
final output of the experiments. 
6. Type 
>rOC..tXt 

This computes ROC points for the experiments. 
We claim: 
1. A method for detecting intrusions in the operation of a 

computer system comprising: 
(a) gathering features from records of normal processes 

that access the operating system registry; 
(b) generating a probabilistic model of normal computer 

system usage based on the features and determining the 
likelihood of observing an event that was not observed 
during the gathering of features from the records of 
normal processes; and 

(c) analyzing features from a record of a process that 
accesses the operating system registry to detect devia 
tions from normal computer system usage to determine 
whether the access to the operating system registry is an 
anomaly. 

2. The method according to claim 1, further comprising 
storing the probabilistic model of normal computer usage on 
the operating system registry. 

3. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 
operating system comprises gathering a feature correspond 
ing to a name of a process accessing the operating system 
registry. 

4. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 
operating system registry comprises gathering a feature cor 
responding to a type of query being sent to the operating 
system registry. 

5. The method according to claim 4, wherein gathering 
features from records of normal processes that access the 
operating system registry comprises gathering a feature cor 
responding to an outcome of a query being sent to the oper 
ating System registry. 

6. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 
operating system registry comprises gathering a feature cor 
responding to a name of a key being accessed in the operating 
system registry. 

7. The method according to claim 6, wherein gathering 
features from records of normal processes that access the 
operating system registry comprises gathering a feature cor 
responding to a value of the key being accessed. 

8. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 
operating system registry comprises gathering two features 
selected from the group of features consisting of a name of a 
process accessing the operating system registry, a type of 
query being sent to the operating system registry, an outcome 

./computeROC.pl sorted-final-predictions.txt 
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of a query being sent to the operating system registry, a name 
of a key being accessed in the operating system registry, and 
a value of the key being accessed. 

9. The method according to claim 1, wherein generating a 
probabilistic model of normal computer system usage com 
prises determining a likelihood of observing a feature in the 
records of processes that access the operating system registry. 

10. The method according to claim 9, wherein determining 
a likelihood of observing a feature comprises determining a 
conditional probability of observing a first feature in the 
records of processes that access the operating system registry 
given an occurrence of a second feature in the records. 

11. The method according to claim 1, wherein analyzing a 
record of a process that accesses the operating system registry 
comprises, for each feature, performing a check to determine 
if a value of the feature has been previously observed for the 
feature. 

12. The method according to claim 11, further comprising, 
if the value of the feature has not been observed, computing a 
score based on a probability of observing the value of the 
feature. 

13. The method according to claim 12, further comprising, 
if the score is greater than a predetermined threshold, labeling 
the access to the operating system registry as anomalous and 
labeling the process that accessed the operating system reg 
istry as malicious. 

14. A system for detecting intrusions in the operation of a 
computer system comprising: 

(a) an operting system registry; 
(b) a registry auditing module configured to gather records 

regarding processes that access the operating system 
registry; 

(c) a model generator configured to generate a probabilistic 
model of normal computer system usage based on 
records of a plurality of processes that access the oper 
ating system registry and that are indicative of normal 
computer system usage and to determine the likelihood 
of observing a process that was not observed in the 
records of the plurality of processes that access the oper 
ating system registry and that are indicative of normal 
computer usage; and 

(d) a model comparator configured to receive the probabi 
listic model of normal computer system usage and to 
receive records regarding processes that access the oper 
ating system registry and to detect deviations from nor 
mal computer system usage to determine whether the 
access of the operating system registry is an anomaly. 

15. The system according to claim 14, wherein the proba 
bilistic model of normal computer usage is stored in the 
operating system registry. 

10 

15 

25 

30 

35 

40 

45 

50 

24 
16. The system according to claim 14, further comprising a 

database configured to receive records regarding processes 
that access the operating system registry from the registry 
auditing module. 

17. The system according to claim 14, wherein the model 
generator is configured to receive the records regarding pro 
cesses that access the operating system registry from the 
database. 

18. The system according to claim 14, wherein the records 
regarding processes that access the operating system registry 
comprise a feature of the access to the operating system 
registry. 

19. The system according to claim 18, wherein the feature 
corresponds to a name of a process accessing the operating 
system registry. 

20. The system according to claim 18, wherein the feature 
corresponds to a type of query being sent to the operating 
system registry. 

21. The system according to claim 18, wherein the feature 
corresponds to an outcome of a query being sent to the oper 
ating System registry. 

22. The system according to claim 18, wherein the feature 
corresponds to a name of a key being accessed in the operat 
ing System registry. 

23. The system according to claim 18, wherein the feature 
corresponds to a value of the key being accessed. 

24. The system according to claim 18, wherein the features 
corresponds to a combination of two features selected from 
the group of features consisting of a name of a process access 
ing the operating system registry, a type of query being sent to 
the operating system registry, an outcome of a query being 
sent to the operating system registry, a name of a key being 
accessed in the operating system registry, and a value of the 
key being accessed. 

25. The system according to claim 14, wherein the model 
generatoris configured to determine alikelihood of observing 
a feature in the records regarding processes that access the 
operating system registry. 

26. The system according to claim 25, wherein the model 
generator is configured to determine a conditional probability 
of observing a first feature in records regarding processes that 
access the operating system registry given an occurrence of a 
second feature is the record. 

27. The system according to claim 25, wherein the model 
comparator determines a score based on the likelihood of 
observing a feature in a record regarding a process that 
accesses the operating system registry. 

28. The system according to claim 25, wherein the model 
comparator is configured to determine an access to the oper 
ating system registry is anomalous based on whether the score 
exceeds a predetermined threshold. 

k k k k k 
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