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22 SEMICONDUCTOR MODELS 25

a system that is beyond the realm of everyday life. Yes, in “reality” the hole is just
another subatomic “particle.”

2.2.4 Material Classification

Changing the subject somewhat, we would like to conclude this section by citing a very
important tie between the band gap of a material, the number of carriers available for
transport in a material, and the overall nature of a material. As it turns out, although
specifically established for semiconductors, the energy band model of Fig. 2.6 can be
applied with only slight modification 10 all materials. The major difference between
materials lics not in the nature of the encrgy bands, but rather in the magnitude of the
energy band gap.

Insulators, as illustrated in Fig. 2.8(a), are characterized by very wide band gaps, with
E for the insulating materials diamond and Si0, being =5eV and =8 eV, respectively.
In these wide band gap materials the thermal energy available at room temperature excites
very few electrons from the valence band into the conduction band; thus very few carriers
exist inside the material and the material is therefore a poor conductor of current. The
band gap in metals, by way of comparison, is either very small, or no band gap exists
at all due to an overlap of the valence and conduction bands (see Fig. 2.8(c)). There is
always an abundance of carriers in metals, and hence metals are excellent conductors.
Semiconductors present an intermediate case between insulators and metals. At room
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Fig. 2.8 Explanation of the distinction between (a) insulatars, (b) semiconductors, and {c) metals
using the energy band model.
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26 CARRIER MODELING

temperature, Eg = 1.12 ¢V in Si and E; = 0.67 eV in Ge. Thermal energy, by exciting
electrons from the valence band into the conduction band, creates a moderate number of
carriers in these materials, giving rise in turn to a current-carrying capability intermediate
between poor and excellent. '

From what we have said, the band gap of a material is clearly an important parameter.
Actually, it is perhaps the most important material parameter; and the value of the silicon
band gap at room temperature (£ = 1.12 eV} should definitely be committed to memory.

2.3 CARRIER PROPERTIES

Having formally introduced the electron and the hole, we next seek to learn as much as
possible about the nature of these carriers. In this particular section we examine a collage
of carrier-related information, information of a general nature including general facts,
properties, and terminology.

2.3.1 Charge

Both electrons and holes are charged entities. Electrons are negatively charged, holes are
positively charged, and the magnitude of the carrier charge, g, is the same for the two
types of carriers. In MKS units, g = 1.6 X 107" coul. (Please note that, under the
convention adopted herein, the electron and hole charges are —¢ and +¢, respectively;
i.e., the sign of the charge is displayed explicitly.)

2.3.2 Effective Mass

Mass, like charge, is another very basic property of electrons and holes. Unlike charge,
however, the carrier mass is not a simple property and cannot be disposed of by simply
quoting a number. Indeed, the apparent or effective mass of electrons within a crystal is
a function of the semiconductor material (Si, Ge, etc.) and is different from the mass of
electrons within a vacuum.

Seeking to obtain insight into the effective mass concept, let us first consider the
motion of electrons in a vacuum. If, as illustrated in Fig. 2.9(a), an electron of rest mass
my is moving in a vacuum between two parallel plates under the influence of an electric
field €, then, according to Newton’s second law, the force F on the electron will be

dv
EF= g% =m— 2.2
g modr (2.2)

where v is the electron velocity and ¢ is time. Next consider electrons (conduction band
electrons) moving between the two parallel end faces of a semiconductor crystal under
the influence of an applied electric field, as envisioned in Fig. 2.9(b). Does Eq. (2.2) also
describe the overall motion of electrons within the semiconductar crystal? The answer
is clearly no . Electrons moving inside a semiconductor crystal will collide with semicon-
ductor atoms, thereby causing a periodic deceleration of the carriers. However, should
not Eq. (2.2) apply to the portion of the electronic motion occurring between-¢ollisions?
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23 CARRIER PROPERTIES 3

through a sea of S atoms and is characterized by an effective mass, Hence, in the donor
or pscudo-atom case, the permittivity of free space must be replaced by the permittivity
of Si and my must be replaced by m¥. We therefore conclude that the binding energy (£5)
of the fifth donor electron ig approximately

miqt m¥ 1

P R ST PN (2.5)
2(4WK580ﬁ)- g K_§ =

Eg ==

where K is the Si diclectric constant (K = 12). Actual donor-site binding energies in
Si are listed in Table 2.3. The observed binding energies are seen to be in good agreement
with the Bq. (2.5) estimate and, confirming the earlier speculation, are roughly == 1/20
the Si band gap energy.

Having established the strength of dopant-site bonding, we are now in a position to
tackle the problem of how one visualizes dopant action using the energy band model.
Working on the problem, we note first of all that when anelectron is released from a donor
site it becomes a conduction band electron. If the energy absorbed at the doner site is
precisely equal to the electron binding energy, the released electron will moreover have
the lowest possible energy in the conduction band — namely, £.. Adding an energy JE,|
to the bound donor-site electron, in other words, raises the electron’s encrgy 1o £,. Hence,

energy |Eg| below the conduction band edge, or, as visualized in Fig. 2.12, donor sites
can be incorporated into the cnergy band scheme by adding allowed electronic levels at
an energy £, = E, — [Esf. Note that the donor-site energy level is represented by a set
of dashes, instead of & continuous line, because an electron bound to a donor site is
focalized in space; i.e., a bound electron does not leave the general Ax vicinity of the
donor site, The relative closeness of £, to £, of course reflects the fact that £, — £, =
|Eg| = (1/20)E(Si).

The actual visualization of dopant action using the energy band model is pictured in
Fig. 2.13. Examining the Ieft-hand side of Fig. 2.13(a), one finds all of the donor sites
filled with bound electrons at temperatures T —> 0°K. This is true because very little
thermal energy is available to excite electrons from the donor sites into the conduction
band at these very low temperatures. The situation changes, of course, as the temperature
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Fig. 2.12  Addition of the £ = Ep, donor levels to the energy band diagram. Dashes of width Ar
emphasize the localized nature of the bound donor-site stares.




32 CARRIER MODELING

Table 2.3. Dopant-site Binding Energies.

Donors | Ew| Acceptors | Ep |
Sk 0.039 eV B 0.045 eV
p 0.044 eV Al 0.057 eV
As 0.049 eV Ga 0.065 eV

In 0.16 eV

is increased, with more and more of the weakly bound electrons being donated to the
conduction band. At room temperature the ionization of the donor sites is all but total,
giving rise to the situation pictured at the extreme right of Fig. 2.13(a). Although we have
concentrated on donors, the situation for acceptors is completely analogous. As visualized
in Fig. 2.13(b), acceptors introduce allowed electronic levels into the forbidden gap at
an energy slightly above the valence band edge. At low temperatures, all of these sties
will be empty — thete is insufficient energy at temperatures 7 — 0°K for a valence band
electron to make the transition to an acceptor site. Increasing temperature, implying an
increased store of thermal energy, facilitates electrons jumping from the valence band onto
the acceptor levels. The removal of electrons from the valence band of course creates
holes. At room temperature, essentially all of the acceptor sites are filled with an excess
electron and an increased hole concentration is effected in the material.
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Fig. 2.13  Visualization of (a) donor and (b) acceptor action using the cnergy band model.
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24 STATE AND CARRIER DISTRIBUTIONS 35
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Fig. 2.14 General energy dependence of g££) and g.(£) near the band edges. gf5) and g (£)
are the density of statcs in the conduction and valence bands, respectively.

2.4.2 The Fermi Function

Whereas the density of states tells one how many states exist at a given energy E, the
Fermi function f(E) specifies how many of the existing states at the energy E will be filled
with an electron, or equivalently,

FE) specifies, under equilibrium conditions, the probability that an available
state at an energy £ will be occupied by an electron.

Mathematically speaking, the Fermi function is simply a probability density function. In
mathematical symbols,

1
fE) =T e (2.7)

where

Ex = Fermi energy or Fermi level

k& = Boltzmann constant (k = 8.62 X 10%V/°K)
T = temperature in °K

Seeking insight into the nature of the newly introduced function, let us begin by
investigating the Fermi function’s energy dependence. Consider first temperatures where
T — 0°K. AsT — 0°K, (E — Ep)/kT — —2= for all energies £ < Ep and (E — Ep)/
kT — o for all energies E > Ep. Hence f(E < E.)} — /11 + exp(—=)} = | and
FE > Eg) — 1/{1 + exp(+=)} = 0. This result is plotted in Fig. 2.15(a) and is simply
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Fig. 2.15 Energy dependence of the Fermi function. (a) T — 0°K; (b) generalized T > 0°K plot
with the energy coordinate expressed in A7 units.
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" interpreted as meaning that all States at energies below Ep will be filled and all states at
energies above Er will be empty for temperatures T — 0°K. In other words, there is a
sharp cutoff in the filling of allowed energy states at the Fermi energy Er when the system

\__ temperature approaches absolute ZOTOL, coommumssnoms sommomsmms s s
™ Let us next consider temperatures T > 0°K. Examining the Fermi function we make

the following pertinent observations.

1} £ E = Eg, fiEg) = 1/2.
n) If £ = Ex + 3T, expl(E—Ep/kT1 3 1 and JE) = exp|—(E —Ep)/kT]. Con-
sequently, above Er + 3T the Fermi function or filled-state probability decays

exponentially to zero with increasing energy. Moreover, most states at energies 3T
or more above Er will be empty.

i) f £ = Ex — 3kT, expl[(E—Ep)/kT]1 <€ 1 and f(E) = | — exp[(E —Eg)/kT]. Be-
low Ep — 3kT, therefore, [1 - f(E)], the probability that a given state will be
empty , decays exponentially to zero with decreasing energy. Most states at energies
3kT or more below E: will be filled.

iv) At room temperature (T = 300°K), kT = 0.026 eV and 3k7 = 0.078 eV

<€ Eg(Si). Compared to the Si band gap, the 34T energy interval that appears
prommently in the T > 0°K formalism is typically quite small.

The properties cited above are reflected and summarized in the T > 0°K Fermi function
plot displayed in Fig. 2.15(b).

Before concluding the discussion here, it is perhaps worthwhile to reemphasize that
the Fermi function applies only under equilibrium conditions. The Fermi function,
however, is universal in the sense it applies with equal validity to all materials
— msulators, semiconductors, and metals. Although introduced in relationship to semi-
conductors, the Fermi function is not dependent in any way on the special nature of
semiconductors, but is simply a statistical function associated with electrons in general.
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EQUILIBRIUM CARRIER CONCENTRATIONS 39
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I representation of carrier energy distributions,

signifies that the semiconductor is p-type. Note finally that the dashed £; line also typically
appears on the energy band diagrams characterizing extrinsic semiconductors. The E; line
in such cases represents the expected positioning of the Fermi level if the material were
intrinsic, and serves as a reference energy level dividing the upper and lower halves of
the band gap.

25 EQUILIBRIUM CARRIER CONCENTRATIONS

We have arrived at a somewhat critical point in the carrier modeling process. For the most
part, this section simply embodies the culmination of our modeling efforts, with working
relationships for the equilibrium carrier concentrations being established to reinforce the
qualitative carder information presented in previous sections. Unfortunately, the empha-
sis on the development of mathematical relationships makes the final assauit on the carrier
modeling summit the most difficult part of the journey —the reader cannot relax. A
comment is also in order concerning the presentation herein of alternative forms for the
carrier relationships. The alternative forms can be likened to the different kinds of
wrenches used, for example, in home and automobile repairs. The open-end wrench, the
box wrench, and the ratchet wrench all serve the same general purpose. In some appli-
cations one can use any of the wrenches. In other applications, however, a special situation
restricts the type of wrench employed or favors the use of one wrench over another. The
same is true of the alternative carrier relationships. Finally, expressions that are widely
quoted or find widespread usage have been enciosed in brackets. A single set of brackets
signifies a moderately important tesult; a double set of brackets, a very important resuft.

e £, R )
e
—————————— E Brame s, ]
1 X
£,
. EV Ev Ev
Intrinsic n-type p-type

Fig. 2.18 “At a glance” representation of intrinsic (left), n-type (middle), and p-type (right)
semiconductor materials using the energy band diagram,




25 EQUILIBRIUM CARRIER €

at or iear room temperature, .

p = Na (2.34a)
Thus, making use of Eq. {2.19b),
g BEAT = Ny (2.42)
and
[Ei — Ep = kT ln(%)] p-type material {2.43)

From Egs. (2.41) and (2.43) it is obvious that the Fermi level moves systematically
upward in energy from E; with increasing donor doping and systematically downward in
energy from E; with increasing acceptor doping. The exact Fermi level positioning in Si
at room temperature, nicely reinforcing the foregoing statement, 1s displayed inFig. 2.21.
Also note that for a given semiconductor material and ambient temperature there
exist maximum nondegenerate donor and acceptor concentrations, doping concen-
trations above which the material becomes degenerate. In Si at room temperature the
maximum nondegencrate doping concentrations are Np = 1.6 x 10"/em’ and
N, = 7.7 % 10""/cm’. The large Si doping values required for degeneracy, we should
interject, have led to the common usage of “highly doped” (or n*-material/p *-material)
and “degenerate” as inierchangeable terms. Finally, the question may arise, “What
procedure should be followed in computing Eg when one is not sure whether a material

Eyes

¥~ Acceptor g
Ope
Pod T
E, ) 1 L i I ———ia |
1012 1ot 1015 1016 107 * 10% 10!? 1020

N, or Ny (em™?) .

Fig. 2.21 Fermi level positioning in 51 at room femperature as a function of the doping concen-
tration. The solid Er lines were established using Eq. (2.41) for donor doped material and
Eq. (2.43) for acceptor doped material (k7 = 0.026 eV, and n: = 10™/cm™).




56 CARRIER ACTION

(a) () {c)

Fig. 3.1 Visualization of carrier drift: (a} motion of carriers within a biased semiconductor bar;
(b} drifting hole on a microscopic or atomic scale; (¢} carrier drift on a macroscopic scale.,

frequently interrupted (the carriers are said to be scattered). The net result, pictured in
Fig. 3.1(b}, is carrier motion generaily along the direction of the electric field, but
in a disjointed fashion involving repeated periods of acceleration and subsequent
decelerating collisions.

The microscopic drifting motion of a single carrier is obviously complex and quite
difficult to analyze quantitatively in any detail. Fortunately, measurable quantities are
macroscopic observables which reflect the average or overall motion of the carriers,
Averaging over all electrons or holes at any given time, we find that the resultant motion
of each carrier type can be described in terms of a constant drift velocity, v,. In other
words, on a macroscopic scale, drift may be visualized (see Fig. 3.1(c)) as nothing more
than all carriers of a given type moving along at a constant velocity in a direction parallel
or antiparallel to the applied electric field.

By way of clarification, it is important to point out that the drifting rmeotion of the
carriers arising in response to an applied electric field is actually superimposed upon the
always-present thermal motion of the carriers. Electrons in the conduction band and
holes in the valence band gain and lose energy via collisions with the semiconductor
lattice and are nowhere near stationary even under equilibrium conditions. In fact, under
equilibrium conditions the thermally related carrier velocities average ~1/1000
the speed of light at room temperature! As pictured in Fig. 3.2, however, the thermai
motion of the carriers is completely random. Thermal motion therefore averages out
to zero on a macroscopic scale, does not contribute to current transport, and can be
conceptually neglected.

3.1.2 Drift Current

Let us next turn to the task of determining the current flowing within a semiconductor
as a result of carrier drift. By definition

[ (current) = the charge per unit time crossing an arbitrarily chosen plane of
observation oriented normal to the direction of current flow .
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(@) (b)

Fig. 3.13 Nonuniformly doped semiconductor: {a) assumed doping variation with position;
{b) corresponding equilibrium energy band diagram.

fied, more complex, forms of Eqgs. (3.23) result when the argument is extended to
degenerate materials. We should also comnment that the intermediate results concerning
the positional invariance of the equilibrium Fermi level, and the existence of a nonzero
electric field inside a nonuniformly doped semiconductor under equilibrium conditions,
are important in themselves. Relative to numerical values, it is worthwhile noting
that kT'/q is a voltage, and at room temperature is approximately equal to 0.026 V. *
Hence, for a Ny = 10%/em? §j sample maintained at room temperature,
Dy = (kT/ ), = (0.026 V(1360 cm?/V-gec) = 35 cm’/sec. Finally, the Einstein
relationship is one of the easiest equations to remember because it rhymes
internally — Dee over mu equals kTee over g. The rhyme holds even if the equation is
inverted-—mu over Dee equals ¢ over kTee.

3.3 RECOMBINATION - GENERATION
3.3.1 Definition —Visualization

Recombination — generation is perhaps the most interesting of the three primary types of
carrier action and at the same time the most challenging to totally master. Formally,
recombination — generation can be defined as follows:

Generation is a process whereby electrons and holes {carriers) are created.

Recombination is a process whereby electrons and holes are annihilated or destroyed.

*Al toom temperature kT = (0,026 eV = (1.6 > 107 "%(0.026) joule. Thus AT/g = (1.6 X 107"")0.026)
/(1.6 x 107" Jjoule/coul = 0.026 V.






