US010289607B2

az United States Patent

Manzano

US 10,289,607 B2
*May 14, 2019

(10) Patent No.:
45) Date of Patent:

(54) ARCHITECTURE FOR MANAGEMENT OF (58) Field of Classification Search
DIGITAL FILES ACROSS DISTRIBUTED CPC ... GOGF 17/30082; GOG6F 17/30067; GOGF
NETWORK 17/3023; GO6F 17/30194; GO6F
17/30174;
(71) Applicant: TOPIA TECHNOLOGY, INC., (Continued)
Tacoma, WA (US)
(56) References Cited
(72) Inventor: lg{ljisc;mel R. Manzano, Seattle, WA U.S. PATENT DOCUMENTS
5,600,834 A 2/1997 Howard
(73) Assignee: TOPIA TECHNOLOGY, INC., 5,675,802 A * 10/1997 Allen ..o GO6F 8/71
Tacoma, WA (US) 707/999.202
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 0 days. EP 1130 511 A2 9/2001
This patent is subject to a terminal dis- wo WO 98/56149 AL 12/1998
claimer. WO WO 2007/047302 A2 4/2007
(21) Appl. No.: 16/017,348 OTHER PUBLICATIONS
. FolderShare—Secure Remote Access VPN Solution; Document
(22) Filed: Jun. 25, 2018 Management & Real-time File Mirroring Solution; < https://web.
archive.org/web/20040804020435/http://www.foldershare.com:
(65) Prior Publication Data 80/>; Aug. 4, 2004.
US 2018/0307698 A1 Oct. 25, 2018 (Continued)
Primary Examiner — Srirama Channavajjala
.. (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
Related U.S. Application Data Pittman LLP
(63) Continuation of application No. 14/860,289, filed on
Sep. 21, 2015, now Pat. No. 10,067,942, which is a (7 ABSTRACT
(Continued) In certain embodiments, automatic modification-triggered
transfer of a file among two or more computer systems
(51) Int. Cl associated with a user. In some embodiments, a copy of a
GOQ-$F I 6/00 2019.01 first file may be received, via a first application at a first
GOGF 16/11 (2019‘01) computer system, from a second application at a second
~(-01) computer system associated with a user. The first file copy
(Continued) may be automatically received from the second application
S. CL responsive to the user moditying a content of the first file,
52) U.S. Cl ponsi h difying f the first fil
CPC GO6F 16/122 (2019.01); GOGF 15/16 where the first file copy is a version of the first file that is
(2013.01); GOGF 16/00 (2019.01); GO6F generated from the user modifying the content of the first
16/128 (2019.01); file. Responsive to receiving the first file copy from the
(Continued) (Continued)
i | o |
| Y 7 |
DATABASE SERVER L COMPUTER SYSTEM t} r '3 315\’
a0 | | L]
@ | 370 | 320
I 370\/_ | 370
| i D\"\am | .E
| = ‘ |
- USER DEVICE USER DEVICE USERZI;SVICE | | ussﬁzgqgwcg
w [280 210 | 'S:;\ | STORAGE |
| “ |
I I

J

200

Box & Dropbox Exhibit 1003
Page 1

US 10,289,607 B2

Page 2
second computer system, the first file copy may be auto- 7,290,244 B2 10/2007 Peck et al.
matically transferred via the first application to a third 7,325,038 BL* 12008 Wang ..cccoooooviiinnnnnns (;83793/9537
computer system associated with the user to replace an older 7340.534 B2 32008 Cameron of al.
version of the first file stored on the third computer system. 7398327 B2 7/2008 Lee
7,415,588 B2 8/2008 Hong et al.
21 Claims, 3 Drawing Sheets 7,415,615 B2 8/2008 Skygebjer
7,457,631 B2 11/2008 Yach et al.
7,467,353 B2 12/2008 Kurlander et al.
7,483,925 B2 1/2009 Koskimies et al.
7,526,575 B2 4/2009 Rabbers et al.
Related U.S. Application Data 7,574,711 B2 8/2009 Zondervan et al.
continuation of application No. 12/267,852, filed on ;:gg?:ﬁg g% ggggg gﬁ;ﬁf te? 12'1'
Nov. 10, 2008, now Pat. No. 9,143,561. 7,613,773 B2 11/2009 Watt
7,639,116 B2 12/2009 Saunders
(60) Provisional application No. 60/986,896, filed on Nov. 7,657,271 B2 2/2010 Kim
9, 2007. 7,680,885 B2 3/2010 Schauser et al.
7,752,166 B2 7/2010 Quinlan et al.
(51 Int. CL 7786303 B2 £2010 Mikesell et al
GOGF 15/16 (2006.01) 7.895334 Bl 2/2011 Tu et al.
GO6F 16/13 (2019.01) 7,987,420 Bl 7/2011 Kloba et al.
GO6F 16/14 (2019.01) 8,009,966 B2 8/2011 Bloom et al.
GoGl 167176 (2019.01) S2408%8 B2 $2012 Chipehase
,244, ipchase
GO6l 16/178 (2019.01) 8,321,534 Bl 11/2012 Roslladnd et al.
HO4L 29/08 (2006.01) 8,370,423 B2 2/2013 Ozzie et al.
(52) US. CL 8,386,558 B2 2/2013 Schleifer et al.
CPC .. GOGF 16/13 (2019.01); GOGF 16/14 8,565,729 B2 ~ 10/2013 Moseler et al.
(2019.01); GO6F 16/176 (2019.01); GO6F 8,595,182 B1* 11/2013 Nelson HO04L 33/71/232
16/178 (2019.01); HO4L 67/1095 (2013.01) 9,143,561 B2* 9/2015 Manzano GOG6F 17/30174
(58) Field of Classification Search 10,067,942 B2* 9/2018 Manzano GOGF 17/30082
CPC .. GO6F 17/30362; GO6F 16/122; GO6F 16/10; %88%88%22;5 2} ggggg ?;%ger; et al.
. 14 cCurdy
?60/?581'6(/}1()66’FG]066/P1‘7166'/E‘13061PA“.’1g/(l)gg 2002/0055942 Al* 5/2002 Reynolds GOGF 21/64
L. ’ ’ A 2002/0087588 Al 7/2002 McBride et al.
See application file for complete search history. 2002/0143795 Al* 10/2002 Fletcher GOGF 8/61
2003/0028514 Al 2/2003 Lord
(56) References Cited 2003/0028542 Al 2/2003 Muttik et al.
2003/0038842 Al 2/2003 Peck et al.
U.S. PATENT DOCUMENTS 2003/0078946 Al 4/2003 Costello
2003/0125057 Al 7/2003 Pesola
5,806,078 A 9/1998 Hug 2003/0135565 Al 7/2003 Estrada
5900581 A 6/1999 Park 2003/0233241 A1* 122003 Marshcooccovcnn. GOGF 16/48
5,920,867 A * 7/1999 Van Huben GOGF 17/30362 725/14
6,026,414 A 2/2000 Anglin 2004/0049345 Al 3/2004 McDonough et al.
6,154,817 A 11/2000 Mohan et al. 2004/0093361 Al 5/2004 Therrien et al.
6,260,069 Bl 7/2001 Anglin 2004/0107225 Al 6/2004 Rudoff
6,449,624 B1 9/2002 Hammack et al. 2004/0133629 Al 7/2004 Reynolds
6,463,463 Bl 10/2002 Godfrey et al. 2004/0158817 Al 8/2004 Okachi
6,504,994 B2 1/2003 Kawamura et al. 2004/0172424 Al 9/2004 Edelstein et al.
6,505,200 Bl 1/2003 Ims et al. 2005/0027757 Al* 2/2005 Kiessig GOG6F 16/10
6,526,418 B1* 2/2003 Midgley GOGF 11/1451 2005/0091316 Al 4/2005 Ponce et al.
207/640 2005/0097225 Al 5/2005 Glatt et al.
6,606,646 B2 8/2003 Feigenbaum 2005/0165722 Al* 7/2005 Cannon GOG6F 11/1451
6,611,849 Bl 8/2003 Raff et al. 2005/0192966 Al* 9/2005 Hilbert HO04L 51/22
6,671,700 Bl 12/2003 Creemer et al. 2005/0220080 Al 10/2005 Ronkainen et al.
6,708,221 Bl 3/2004 Mendez et al. 2006/0004698 Al* 1/2006 Pyhalammi GOGF 16/44
6,757,696 B2 6/2004 Multer et al. 2006/0010150 Al 1/2006 Shaath et al.
6,757,893 B1* 6/2004 Haikin GOGF 8/71 2006/0058907 Al 3/2006 Suderman
N0 06019627 AL 62006 Philips
illips
6760759 BL 72004 Chan 2006/0136446 AL* 6/2006 Hughes GOGF 16/10
6829622 B2 122004 Beyda 2006/0143129 Al 6/2006 Holm
6874057 Bl 3/2005 Abram ef al. 2006/0168118 Al 7/2006 Godlin
6931454 B2 82005 Deshpande ef al. 2006/0189348 Al 82006 Montulli et al.
699052 B2 1/2006 Wu 2007/0014314 Al 1/2007 O’Neil
7:054:594 B2 5/2006 Bloch et al. 2007/0022158 Al* 1/2007 Vasa .coooevnnn. H04M 1/72522
7,065,658 Bl 6/2006 Baraban et al. _ 709/204
7,089,307 B2 8/2006 Zintel et al. 2007/0027936 Al 2/2007 Stakutis
7,136,934 B2 11/2006 Carter et al. 2007/0100913 Al 5/2007 Sumner et al.
7,155,488 Bl 12/2006 TLunsford et al. 2007/0180084 Al* 82007 Mohanty GOGF 11/1451
7,224,973 B2 5/2007 Tsutazawa et al. 709/223
7,243,163 Bl 7/2007 Friend et al. 2007/0191057 Al 8/2007 Kamada
7,260,646 Bl 8/2007 Stefanik et al. 2007/0238440 Al 10/2007 Sengupta et al.
7,269,433 B2 9/2007 Vargas et al. 2008/0005114 Al 1/2008 Li

Box & Dropbox Exhibit 1003
Page 2

US 10,289,607 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0005280 Al
2008/0086494 Al
2008/0168526 Al
2008/0288578 Al
2009/0013009 Al
2009/0037718 Al*

1/2008 Adams

4/2008 Heller et al.

7/2008 Robbin et al.

11/2008 Silfverberg

1/2009 Nakayama

2/2009 Ganesh GOG6F 9/4416
713/2

2009/0063711 Al

2009/0282050 Al

2012/0192064 Al*

3/2009 Finkelstein
11/2009 Thomas et al.

7/2012 Antebi ... GOGF 17/2288

715/255

2013/0226871 Al 8/2013 Sarnowski
2013/0226872 Al* 8/2013 Barefoot GO6F 17/30575
707/638
2014/0053227 Al* 2/2014 Ruppin GOG6F 21/10
726/1

OTHER PUBLICATIONS

FolderShare; Your Files Anywhere; <https://web.archive.org/web/
20030808183932/http://www.foldershare.com:80/>; Aug. 8, 2003.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20040814015727/http://www.foldershare.com:80/>; Aug. 14, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20040820052105/http://www.foldershare.com:80/>; Aug. 20, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041211020957/http://foldershare.com:80/>; Dec. 11, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041217041726/http://foldershare.com:80/>; Dec. 17, 2004.
FolderShare; Your Smart File Transfer Solution; <https://web.archive.
org/web/20031220151508/http://www.foldershare.com:80/>; Dec. 20,
2003.

FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041230211050/http://www.foldershare.com:80/>; Dec. 30, 2004.
FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040701113739/http://foldershare.com:80/>; Jul.
1, 2004.

FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040711062548/http://www.foldershare.com:
80/>; Jul. 11, 2004.

FolderShare; Your Files Anywhere; <https://web.archive.org/web/
20030722054342/http://foldershare.corn:80/>; Jul. 22, 2003.
FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040730030655/http://www.foldershare.com:
80/>; Jul. 30, 2004.

FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040603205113/http://www.foldershare.com:
80/>; Jun. 3, 2004.

FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040613 16 1906/http://www.foldershare.com:
80/>; Jun. 13, 2004.

FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040629075057/http://www.foldershare.com:
80/>; Jun. 29, 2004.

FolderShare—Secure Remote Access VPN Solution; Your Smart
File Transfer & Real-time File Mirroring Solution; <https://web.
archive.org/web/200403 1623515 1/http://foldershare.com:80/>; Mar.
16, 2004.

FolderShare—Secure Remote Access VPN Solution; Your Smart
File Transfer & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040325034239/http://www.foldershare.com:
80/>; Mar. 25, 2004.

FolderShare—Secure Remote Access VPN Solution; Document
Management & Real-time File Mirroring Solution; <https://web.
archive.org/web/20040512211417/http://www.foldershare.com:
80/>; May 12, 2004.

FolderShare; Your Files Anywhere; <https://web.archive.org/web/
20030531180252/http://www.foldershare.com:80/>; May 31, 2003.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?: <https://web.archive.org/web/
2004110403 1510/http://www.foldershare.com:80/>; Nov. 4, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041117092357/http://www.foldershare.com:80/>; Nov. 17, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041123085254/http://www.foldershare.com:80/>; Nov. 23, 2004.
FolderShare; Your Files Anywhere; <https://web.archive.org/web/
20031128143634/http://foldershare.com:80/>; Nov. 28, 2003.
FolderShare; Your Files Anywhere; <https://web.archive.org/web/
2003100107163 1/http://foldershare.com:80/>; Oct. 1, 2003.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041012083 127 /http://www.foldershare.com:80/>; Oct. 12, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20041029085820/http://www.foldershare.com:80/>; Oct. 29, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20040901034646/http://www.foldershare.com:80/>; Sep. 1, 2004.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
200409090752 54/http://www.foldershare.com:80/>; Sep. 9, 2004.
FolderShare; Your Files Anywhere; <https://web.archive.org/web/
20030920051943/http://www.foldershare.com:80/>; Sep. 20, 2003.
FolderShare—Secure Remote Access VPN Solution; Need your
files on more than one computer?; <https://web.archive.org/web/
20040924032146/http://www.foldershare.com:80/>; Sep. 24, 2004.
Marshall, M., “The Y Combinator List,” Venture Beat, Aug. 2007,
Retrieved from the Internet: URL: <https://venturebeat.com/2007/
08/16/the-y-combinator-list’>, 4 pages.

Jarvis, A., “Dropbox pitch deck to raise seed capital investment, ”
Medium, Mar. 2018, Retrieved from the Internet: URL: <https://
medium.com/@adjblog/dropbox-pitch-deck-to-raise-seed-capital-
investment-6a6¢d6517e56>, 12 pages.

* cited by examiner

Box & Dropbox Exhibit 1003
Page 3

US 10,289,607 B2

Sheet 1 of 3

May 14, 2019

U.S. Patent

L 'OI4
5] SWVEI0Hd
NOLIY)TddY
J10W3Y
= | Il vl GFl Frl
ESI YivO STINaow SWYHO0Hd WILSAS
e WYHOHd | WYHDOHEEHIO | NOLIYOMIAAY | SNILYHd0
HILNdIN00 9 -7
TN PR
A -
N - Ll
~ -
[¢ S A
L ¢ S~ -
WHORLIN VARV 30V~ = — =~ — _ SR S (Y A —— S e
| L 0L M Y bl
LT N 7T SR SO bere
. | . 3N 1 11 I WYHO0Hd
| D oI 1N AHOWAW TOANON | | AHOW3W “TOANON
SHOMLIN Y3uY 1vooT V1 HasN F19YA0N3Y FTEYACIIY-NON
A] / 2N
I T A/ Lzh $ [| e sanaom
L T WYHI0Hd HAHL0
U s L b ¢
LBL ~__ SYIWYIS : C i Go| SWYHBOHd
{PuAvads NS " NOLYOIddY
| | 30w o
q THYHdINEd OVIIN T WAISAS
961 , 1Nd1N0 : ~1n INLIHIdO
_, <€ soig

1oy iwod

AHOWIIN W3ISAS

Box & Dropbox Exhibit 1003

Page 4

U.S. Patent May 14, 2019 Sheet 2 of 3 US 10,289,607 B2

(=
N

DISPLAY
5

()
N

O]
N

COMPUTER SYSTEM
6

USER DEVICE
1

()
(ol

STORAGE
210
SERVER
3

FIG. 2

O
N

USER DEVICE
8

DATABASE
4

(o)
[al!

DISPLAY
9

200

Box & Dropbox Exhibit 1003
Page 5

U.S. Patent May 14, 2019 Sheet 3 of 3 US 10,289,607 B2

A\
370

<

w
I S
gl >
w
/
© i
® g
2
o 5 g
[33] / /m
;) w
,,,,,,,,,, ‘ I O ™
< o)
o ~ O]
[e) (ot =
o]
[ol : » = b
(32 b=t I 1))
™ o

USER DEVICE
21

370
{
R
50

™
o
)
hakd o
=
™

Box & Dropbox Exhibit 1003
Page 6

US 10,289,607 B2

1

ARCHITECTURE FOR MANAGEMENT OF
DIGITAL FILES ACROSS DISTRIBUTED
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/860,289, filed Sep. 21, 2015, which is a
continuation of U.S. patent application Ser. No. 12/267,852,
filed Nov. 10, 2008, which claims priority to U.S. Provi-
sional Application No. 60/986,896 entitled “ARCHITEC-
TURE FOR MANAGEMENT OF DIGITAL FILES
ACROSS DISTRIBUTED NETWORK” and filed Nov. 9,
2007, the contents of which are hereby incorporated by
reference in their entirety.

FIELD OF THE INVENTION

This invention relates generally to computer-implemented
processes and, more specifically, to sharing of electronic
files among computer systems.

BACKGROUND OF THE INVENTION

Users of modern computing systems are increasingly
finding themselves in constantly-connected, high-speed net-
worked environments. The Web continues to be a killer
application, second only to email, on the Internet. Further,
customers are increasingly using more than one computing
device; a customer may have a desktop computer at home,
one at work, and a constantly connected “smart phone”. Due
to the confluence of these two trends, file management
across these devices has become a problem.

Although modern devices are easily connected, they do
not provide the customer a seamless environment; the cus-
tomer must manually handle many aspects of that connec-
tion. With regards to file management, customers must
manually move files between their devices using some
protocol like email, ftp, or by posting them on the Web.
These practices lead to problems that include:

The proliferation of redundant file copies. This prolifera-
tion creates a confusing environment where the cus-
tomer is unclear where the “official” or newest version
of a file exists.

The creation of an error-prone environment. Some docu-
ments, such as those associated with word processing
and desktop publishing, externally reference other files.
Copying such a document can break these references
causing errors that the customer has to handle manu-
ally. An example of such a document is a desktop
publishing document that contains a reference to an
image. If that image file is not transferred along with
the desktop publishing file, the image will appear as a
broken link.

Unnecessary complexity. Because devices tend to have
their own filing system, customers must manage a
different filing model on each of his devices. For
example, instead of having a single “Movies” folder, he
may have to deal with many “Movies” folders, which
may be in different locations on each of his devices.
Each device may also have its own security model,
further complicating the matter.

That a customer has to manually move files around to
ensure their accessibility on his devices is unnecessary, and
is an indicator of a lack of customer-focused design in
modern file systems. File systems in use today are direct

20

25

30

35

40

45

50

55

60

65

2

offspring of systems used when graphical customer inter-
faces were nonexistent. Modern file system customer inter-
faces, such as Windows® Explorer and Mac OS X’s Finder
are just now starting to provide experiences that are more in
line to a customer’s workflow. Whereas, before, these inter-
faces were concerned with representing files with abstracted
icons, the file’s actual contents are becoming paramount in
how files are organized and presented.

Problems still exist with how these newer customer
interfaces are implemented. They are not completely inte-
grated with applications, suffer from performance problems,
and do not generally work well outside of a device’s local
file system.

There are several solutions to this problem that are in one
way or another inadequate to the task:

Remote Desktop software allows a customer to remotely
“see” his desktop. Remote desktop software screen-scrapes
a remote machine’s screen (a “server”) and displays it on a
screen local to the customer (a “client”). Remote desktop
gives a customer access to not only his files, but also to his
applications. However, this approach requires that the host
machine be turned on and connected to the internet at all
times. Consequently, this approach would not be appropriate
for mobile hosts such as laptops. Remote desktop does not
use the resources of a local machine. For full accessibility,
the customer would have to keep all files and application on
the host machine as any files stored on a client are not
guaranteed to be accessible.

Distributed File Systems, like remote desktop software,
place data on an always-connected host machine. Unlike
remote desktop software, the host machine is not one on
which the customer performs computing tasks. The host
machine is used as a storage mechanism, and any compu-
tation performed on that machine serves to supports its use
as such. Distributed file systems generally provide the right
functionality for customers to share files between their
devices. However, distributed file systems are usually
deployed as a shared resource; that is, other customers have
access to it. Because of this sharing, a customer’s files may
be buried deep in a filing structure, and it may not always be
immediately evident to customers what kind of access they
have to a particular file. Further, to use a distributed file
system, the customer must always be connected to it. Files
stored on a distributed file system are generally inaccessible
if the customer’s machine is not connected to it, unless the
customer has copied or moved the files to his machine’s
local hard drive. However, doing so immediately creates the
problem of having two filing systems for the same file,
creating a mental burden on the customer.

Additionally, accessing a file located on a distributed file
system tends to be slower than accessing files on the local
hard drive. Modern applications are usually written to
assume that the files they access are located locally, and thus
are not optimized to access remote files. When these appli-
cations are used with remote files, they can lose performance
by an order of magnitude. This problem can be fixed by
automatically caching often-used files on the local file
system, and only synchronizing them when they have been
changed. However, this separate synchronization step intro-
duces another problem: because the synchronization process
can be lengthy, the customer is never entirely sure if the file
he is remotely accessing is the latest version of the file,
versus an earlier one that has been marked to be updated.
Further, the directory may not reflect the existence of the file
at all until synchronization finishes.

FTP is similar to a distributed file system with regards to
files being hosted on a remote server. However FTP gener-

Box & Dropbox Exhibit 1003
Page 7

US 10,289,607 B2

3

ally does manifest as a “disk drive” on the customer’s
desktop; the customer must use special FTP client software
to access an FTP server. It shares the same problem as
distributed file systems, with the additional problem of weak
integration with applications. Applications can generally
write and read files directly to and from a distributed file
system. This is not the case with FTP, as the customer has
to manually use the client software to perform these opera-
tions as a separate task.

Email was originally invented for messaging. From the
beginning, the model it employs to make files accessible
remotely is necessarily inefficient. Email’s model for mak-
ing files accessible is in the form of an email “attachment™.
Attachments are so named because they piggy-back on a
message sent from one customer to another. A customer can
make a file remotely available using email by attaching the
file to an email and sending it to himself. He can then
retrieve the file from a remote location by accessing the
message on the email server. Email used in this way is even
worse than FTP as the process is even more manual: a
customer must find the message containing the file before he
can even access it. Further, the location in which the
attachment lives is read only. If the customer, for example,
were to open the file, change it, then save it back out, the
results would be ambiguous to the user because the email
application, not the user, specified its location. Usually, the
saved file would end up buried in an email file cache in an
undisclosed area of the file system.

Flash Drives and External Disk Drives, although seem-
ingly the most “primitive” way to ensure file availability,
avoid all the problems related to network latency. However,
these devices must be physically connected to the computer
on which the files will be accessed. These restrictions
preclude the customer from employing several effective
work-flows including: using more than one computer to
complete a single task (the files can only be accessed on one
computer) and setting up an automated backup (the com-
puter running the backup can’t guarantee that the storage
device will be connected come backup time). Further, to
ensure full availability of the files, the customer must carry
the device with them at all times, and must follow the
associated protocols for mounting and dismounting the
device.

Other problems with the prior art not described above can
also be overcome using the teachings of embodiments of the
present invention, as would be readily apparent to one of
ordinary skill in the art after reading this disclosure.

SUMMARY OF THE INVENTION

In certain embodiments, automatic modification-triggered
transfer of a file among two or more computer systems
associated with a user. In some embodiments, a copy of a
first file may be received, via a first application at a first
computer system, from a second application at a second
computer system associated with a user. The first file copy
may be automatically received from the second application
responsive to the user modifying a content of the first file,
where the first file copy is a version of the first file that is
generated from the user modifying the content of the first
file. Responsive to receiving the first file copy from the
second computer system, the first file copy may be auto-
matically transferred via the first application to a third
computer system associated with the user to replace an older
version of the first file stored on the third computer system.

20

25

40

45

50

60

65

4
BRIEF DESCRIPTION OF THE DRAWING

Preferred and alternative embodiments of the present
invention are described in detail below with reference to the
following drawings.

FIG. 1 is a schematic view of an exemplary operating
environment in which an embodiment of the invention can
be implemented;

FIG. 2 is a functional block diagram of an exemplary
operating environment in which an embodiment of the
invention can be implemented; and

FIG. 3 is a functional block diagram illustrating file
sharing and/or synchronization according to an embodiment
of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

An embodiment of the invention leverages remote pro-
gramming concepts by utilizing processes called mobile
agents (sometimes referred to as mobile objects or agent
objects). Generally speaking, these concepts provide the
ability for an object (the mobile agent object) existing on a
first (“host”) computer system to transplant itself to a second
(“remote host”) computer system while preserving its cur-
rent execution state. The operation of a mobile agent object
is described briefly below.

The instructions of the mobile agent object, its preserved
execution state, and other objects owned by the mobile agent
object are packaged, or “encoded,” to generate a string of
data that is configured so that the string of data can be
transported by all standard means of communication over a
computer network. Once transported to the remote host, the
string of data is decoded to generate a computer process, still
called the mobile agent object, within the remote host
system. The decoded mobile agent object includes those
objects encoded as described above and remains in its
preserved execution state. The remote host computer system
resumes execution of the mobile agent object which is now
operating in the remote host environment.

While now operating in the new environment, the instruc-
tions of the mobile agent object are executed by the remote
host to perform operations of any complexity, including
defining, creating, and manipulating data objects and inter-
acting with other remote host computer objects.

File transfer and/or synchronization, according to an
embodiment, may be accomplished using some or all of the
concepts described in commonly owned U.S. patent appli-
cation Ser. No. 11/739,083, entitled “Electronic File Shar-
ing,” the entirety of which is incorporated by reference as if
fully set forth herein.

FIG. 1 illustrates an example of a suitable computing
system environment 100 in which one or more embodiments
of the invention may be implemented. The computing sys-
tem environment 100 is only one example of a suitable
computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the
invention. Neither should the computing environment 100
be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.

Embodiments of the invention are operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well known computing systems, environments, and/or con-
figurations that may be suitable for use with the invention
include, but are not limited to, personal computers, server

Box & Dropbox Exhibit 1003
Page 8

US 10,289,607 B2

5

computers, hand-held or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puters, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

Embodiments of the invention may be described in the
general context of computer-executable instructions, such as
program modules, being executed by a computer and/or by
computer-readable media on which such instructions or
modules can be stored. Generally, program modules include
routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
abstract data types. The invention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located in both local
and remote computer storage media including memory
storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing
device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a pro-
cessing unit 120, a system memory 130, and a system bus
121 that couples various system components including the
system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 110.
Communication media typically embodies computer read-
able instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of the any of the above should also be included within
the scope of computer readable media.

—_

0

20

25

40

W

0

W

5

60

6

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during
start-up, is typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 illustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to a removable, nonvolatile magnetic disk 152, and
an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM
or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is
typically connected to the system bus 121 through a non-
removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 is illustrated as storing oper-
ating system 144, application programs 145, other program
modules 146, and program data 147. Note that these com-
ponents can either be the same as or different from operating
system 134, application programs 135, other program mod-
ules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and
program data 147 are given different numbers here to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 20
through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160
that is coupled to the system bus, but may be connected by
other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or
other type of display device is also connected to the system
bus 121 via an interface, such as a video interface 190. In
addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral
interface 190.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 110, although only a memory

Box & Dropbox Exhibit 1003
Page 9

US 10,289,607 B2

7

storage device 181 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments
are commonplace in offices, enterprise-wide computer net-
works, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

Referring now to FIG. 2, an embodiment of the present
invention can be described in the context of an exemplary
computer network system 200 as illustrated. System 200
includes electronic user devices 210, 280, such as personal
computers or workstations, that are linked via a communi-
cation medium, such as a network 220 (e.g., the Internet), to
an electronic device or system, such as a server 230. The
server 230 may further be coupled, or otherwise have access,
to a database 240, electronic storage 270 and a computer
system 260. Although the embodiment illustrated in FIG. 2
includes one server 230 coupled to two user devices 210,
280 via the network 220, it should be recognized that
embodiments of the invention may be implemented using
two or more such user devices coupled to one or more such
servers.

In an embodiment, each of the user devices 210, 280 and
server 230 may include all or fewer than all of the features
associated with the computer 110 illustrated in and discussed
with reference to FIG. 1. User devices 210, 280 include or
are otherwise coupled to a computer screen or display 250,
290, respectively. User devices 210, 280 can be used for
various purposes including both network- and local-com-
puting processes.

The user devices 210, 280 are linked via the network 220
to server 230 so that computer programs, such as, for
example, a browser or other applications, running on one or
more of the user devices 210, 280 can cooperate in two-way
communication with server 230 and one or more applica-
tions running on server 230. Server 230 may be coupled to
database 240 and/or electronic storage 270 to retrieve infor-
mation therefrom and to store information thereto. Addi-
tionally, the server 230 may be coupled to the computer
system 260 in a manner allowing the server to delegate
certain processing functions to the computer system.

Referring now to FIG. 3, illustrated is functionality of an
embodiment of the invention allowing a user (not shown)
who owns or otherwise controls devices 210, 280 to auto-
matically maintain file synchronization between at least
devices 210, 280, or any other user devices on which
principles of the present invention are implemented. In an
embodiment, an administrator (not shown) of the server 230
or other appropriate electronic device transfers a file-transfer
and/or synchronization application to the user devices 210,
280 for installation thereon. Once installed on the user
devices 210, 280, the file-transfer application provides file-

20

25

40

45

60

65

8

transfer clients 310, 320 executable by the user devices 210,
280, respectively. Each of the file-transfer clients 310, 320
may, but need not, include a respective mobile-agent run-
time environment 330, 340. The mobile-agent runtime envi-
ronment 330, 340 include portions of memory of the user
devices 210, 280 dedicated to allowing a mobile object the
ability to perform operations that the mobile object is
programmed to carry out. Also included in the file-transfer
application are user interfaces 350, 360 that are displayable
on the displays 250, 290, respectively. In an embodiment,
the interfaces 350, 360 allow a user to view, access and/or
organize files to be synched among the various user devices.

Generally, all files that the user desires to be synched or
shared may at some point be uploaded by one or more of the
user devices 210, 280 and stored in storage 270. Upon
receiving the files to be synched, the server 230 can store
such files in the storage 270 and/or transfer the files to one
or more of the respective hard drives of the user devices 210,
280, thereby enabling each respective user device to access
such files. In this manner, the server 230 is operable to treat
each hard drive of the respective user devices 210, 280 as a
local document cache for files received by the server.
Typically, the server 230 will store one or more of the
received files to the storage 270 only if the destination user
device is offline or otherwise temporarily not in communi-
cation with the server 230. Upon resuming communication
with the destination user device, the server 230 will transfer
the temporarily stored files to the destination device.

In operation, according to an embodiment, the user may
open and modify a file 370, such as a word-processing
document or other electronic file. Alternatively, the user may
create a first instance of the file 370. The user may have
previously have associated, or may now associate, the file
370 with the transfer client 310. Upon a predetermined and
user-configurable triggering event, the transfer client 310
transfers the modified file 370, or a copy of the modified file,
to the server 230. Such a triggering event may include, but
be not limited to, the user saving the file, the elapsing of a
predetermined amount of time during which the file has been
opened, or the re-initiation of a communication session
between the device 210 and the server 230.

The file 370 is transferred to the server 230 on which is
executing a synchronization application 380, which may
include a mobile-agent runtime environment. Through user
configuration, the synch application 380 monitors a set of
user devices to which the file 370 should be transferred to
effect file synchronization. In the illustrated embodiment,
this set of user devices includes the user device 280. The
synch application 380 polls the device 280 to determine
whether the device 280 is in communication with the server
230. If the device 280 is in communication with the server
230, the synch application 380 transfers the file 370 to the
device 280, whereupon the transfer client 320 resident on the
device 280 replaces the previous version of the file 370,
previously cached on the device 280, with the latest version
of the file 370 modified on the user device 210. If the device
280 is not currently in communication with the server 230,
the synch application 380 may store the file 370 in the
storage 270 until such time as communication between the
device 280 and server 230 is reestablished. As illustrated in
FIG. 3, a similar reverse-direction synchronization process
may be performed by the synch application 380 and the
transfer clients 310, 320 with regard to a file 315 modified
on device 280 and synchronized to device 210.

In an embodiment, the user interfaces 350, 360 may
include a list of the customer’s documents and related
metadata, as well as any one-to-one or one-to-many rela-

Box & Dropbox Exhibit 1003
Page 10

US 10,289,607 B2

9

tionships between the documents and metadata. An embodi-
ment can always provide customers with an accurate “pic-
ture” of their document collection, regardless of whether
their devices physically contain the documents. As alluded
to earlier, a problem with distributed file systems and FTP is
the latency between a file being put onto a file system and
it showing up on a remote machine. To prevent this problem,
an embodiment directory is decoupled from the movement
of files. An embodiment’s directory update system updates
at a higher priority than the documents to be synchronized.
This feature ensures that when a customer browses or
searches through his set of documents, they appear even if
they have not yet been cached locally on the user device. An
indicator signifying a document’s availability may be promi-
nently displayed adjacent to the document’s representation
so that customers are aware of the document’s availability.

An embodiment may include a stand-alone application
that allows customers to find and manage documents asso-
ciated with transfer clients 310, 320 by visualizing relation-
ships between documents and their metadata. It allows
customers to tag documents with any number of identifiers.
Customers can relate both documents and tags with each
other in any number of user-specified one-to-one and one-
to-many relationships, and an embodiment provides a user
interface to browse and search on these relationships. To
mitigate the customers’ learning curve, an embodiment can
implement relationships common to contemporary file sys-
tems, including a folder hierarchy. In addition to this, an
embodiment provides direct support for methods that the
customer uses to organize documents by manifesting them
as user interface idioms. This is unlike conventional docu-
ment filing systems which require the customer to work
within a strict folder metaphor for organization.

Some alternate methods that an embodiment supports for
organizing documents include:

Allow customers to organize their documents by appli-
cation. Many times customers remember the applica-
tion used to create a document instead of the docu-
ment’s name or its location in a hierarchy.

Allow customers to organize their documents by most
recent access. Customers are likely to access a docu-
ment they’ve accessed in the near past. Usually, such
documents are part of a task that the customer is
actively working.

Allow customers to organize their documents by project
or subproject.

Allow customers to organize their documents by people.
Many times, especially in the context of a collabora-
tion, a document is directly related to one or more
people other than the customer.

Allow the customer to organize their document by process
stage. Documents may represent one or more stages of
a process. Customers need a method for organizing
documents by process stage, and a mechanism for
moving the document through a set of predefined
stages.

Allow customers to organize their documents by any of
the aforementioned methods concurrently. These orga-
nization methods are not mutually exclusive.

An embodiment presents an interface that allows a cus-
tomer to locate one or more documents associated with the
transfer clients 310, 320 and open such document into a
separate software application. Since this interface is
intended to be used from within the separate application, that
application may need to know how to invoke such interface.
Advantageously, this invocation behavior can be provided to
the application using the application’s plug-in API

—_

0

—_

5

25

35

40

50

10

An embodiment presents an interface that allows a cus-
tomer to synchronize a currently opened document accord-
ing to processes described elsewhere herein. This interface
can be invoked within an application and can be made
available to the application in the manner described above in
connection with the application’s plug-in API.

Some files associated with the transfer clients 310, 320 are
dependent on other files associated with the transfer clients
310, 320. For example, a desktop publishing document may
include images that are stored in files separate from the main
document. Previous file-synching solutions treat these files
as separate. Because of this, for example, a document
synchronized from the device 210 to the device 280 may be
opened by the user of the device 280 before the image files
have been fully transferred to the device 280. This causes the
document to fail to open, or break, since the image files
don’t exist or are incomplete. An embodiment prevents this
by: (1) always ensuring the file catalog (e.g., the stand-alone
application that allows customers to find and manage docu-
ments associated with transfer clients 310, 320, as discussed
above herein) is synchronized before any file data is syn-
chronized, and (2) pausing any file access by any program
until the file contents have been fully synchronized. In such
an embodiment, if a user attempts, using a software pro-
gram, to open a file whose related files haven’t yet finished
transferring to the local (hard drive) cache, if that software
attempts to open the related files, the software program is
blocked by an embodiment until the requested files are
downloaded and ready to access.

Other file sending and synchronizing software requires
the user to upload their data to a storage device owned by the
operator of the service. An embodiment treats storage as a
participant in the synchronization process; this means that
the user can choose the service or device where their files
will be stored. The file transfer/synching is abstracted from
the storage system allowing any storage to be used. An
embodiment treats storage like any other synch target, such
as a desktop computer, or a cell phone. As such, any device
owned or otherwise controlled by the user and running a
synch application, such as synch application 380, as pro-
vided in an embodiment of the invention can perform the
storage and/or synching functions described elsewhere
herein. That is, the user device 280 or user device 210, rather
than the server 230, may perform such functions.

While a preferred embodiment of the invention has been
illustrated and described, as noted above, many changes can
be made without departing from the spirit and scope of the
invention. For example, as an alternative to the approach
described with reference to FIG. 3, wherein the transfer
clients 310, 320 function to “push” modified or created files
to the synch application 380, the synch application 380 may
instead function to periodically “pull” or otherwise actively
retrieve such files from the transfer clients 310, 320 Instead,
the invention should be determined entirely by reference to
the claims that follow.

What is claimed is:

1. A system comprising:

a server system comprising one or more processors pro-
grammed with computer program instructions that,
when executed, cause the server system to:
receive, over a network, a copy of a first file from a first

client device associated with a user, wherein the
copy of the first file is automatically received from
the first client device responsive to the user modi-
fying a content of the first file stored on the first
client device, the copy of the first file being a version

Box & Dropbox Exhibit 1003
Page 11

US 10,289,607 B2

11

of the first file that is generated from the user
modifying the content of the first file;
receive, from the first client device, first metadata
associated with the version of the first file that is
generated from the user modifying the content of the
first file, the first metadata being assigned a first
priority greater than a second priority assigned to the
copy of the first file;
determine that the server system is not in communica-
tion with a second client device associated with the
user;
store the copy of the first file on the server system;
automatically transfer the first metadata to the second
client device based on the first priority being greater
than the second priority such that the first metadata
is transferred to the second client device prior to the
copy of the first file being transferred to the second
client device; and
automatically transfer, over a network, the copy of the
first file to the second client device associated with
the user to replace an older version of the first file
stored on the second client device, responsive to (i)
resuming communication with the second client
device and (ii) receiving the copy of the first file from
the first client device.
2. The system of claim 1, wherein the computer program
instructions, when executed, cause the server system to:
store the copy of the first file to a memory device
associated with the server system, wherein the copy of
the first file is stored on the memory device associated
with the server system responsive to determining that
the server system is not in communication with the
second client device.
3. The system of claim 1, wherein at least one of the server
system or the first client device comprises a priority assign-
ment configuration to assign greater priority to metadata
associated with files than priority assigned to the files such
that at least one of the server system or the first client device
assigns the first priority to the first metadata and the second
priority to the copy of the first file based on the priority
assignment configuration.
4. The system of claim 1, wherein availability of the
version of the first file is presented at the second client
device based on the first metadata.
5. The system of claim 1, wherein the server system is
caused to:
receive a copy of a second file from the second client
device associated with the user, wherein the copy of the
second file is automatically received from the second
client device responsive to the user modifying a content
of the second file stored on the second client device, the
copy of the second file being a version of the second file
that is generated from the user modifying the content of
the second file;
determine that the server system is in communication with
the first client device associated with the user; and

automatically transfer the copy of the second file to the
first client device associated with the user to replace an
older version of the second file stored on the first client
device, responsive to (i) determining that the server
system is in communication with the first client device
and (ii) receiving the copy of the second file from the
second client device.

6. The system of claim 1, wherein the computer program
instructions, when executed, cause the server system to:

periodically perform a pull request, wherein the copy of

the first file is automatically received from the first

20

25

40

45

60

65

12

client device responsive to (i) the pull request and (ii)
the user modifying the content of the first file stored on
the first client device.

7. The system of claim 1, wherein the copy of the first file
is automatically received from the first client device respon-
sive to (i) a push request of the first client device and (ii) the
user modifying the content of the first file stored on the first
client device.

8. The system of claim 1, wherein the copy of the first file
is automatically received from a first application at the first
client device, and wherein the first application comprises a
runtime environment for one or more mobile-agent objects.

9. The system of claim 8, wherein the first application is
configured to create a first mobile object, and wherein the
first mobile object is configured to create a proxy object at
the server system.

10. The system of claim 9, wherein the first mobile object
is configured to provide the copy of the first file to the proxy
object.

11. The system of claim 10, wherein the proxy object is
configured to store the copy of the first file on a memory
device associated with the server system.

12. A method being implemented by a server system
comprising one or more processors executing computer
program instructions that, when executed, perform the
method, the method comprising:

receiving, by the server system, over a network, a copy of

a first file from a first client device associated with a
user, wherein the copy of the first file is automatically
received from the first client device responsive to the
user modifying a content of the first file stored on the
first client device, the copy of the first file being a
version of the first file that is generated from the user
modifying the content of the first file;

receiving, by the server system, from the first client

device, first metadata associated with the version of the
first file that is generated from the user modifying the
content of the first file, the first metadata being assigned
a first priority greater than a second priority assigned to
the copy of the first file;

determining, by the server system, that the server system

is not in communication with a second client device
associated with the user;

store the copy of the first file on the server system;

automatically transferring, by the server system, the first

metadata to the second client device based on the first
priority being greater than the second priority such that
the first metadata is transferred to the second client
device prior to the copy of the first file being transferred
to the second client device; and

automatically transferring, by the server system, over a

network, the copy of the first file to the second client
device associated with the user to replace an older
version of the first file stored on the second client
device, responsive to (i) resuming communication with
the second client device and (ii) receiving the copy of
the first file from the first client device.

13. The method of claim 12, further comprising:

storing, by the server system, the copy of the first file to

a memory device associated with the server system,
wherein the copy of the first file is stored on the
memory device associated with the server system
responsive to determining that the server system is not
in communication with the second client device.

14. The method of claim 12, wherein at least one of the
server system or the first client device comprises a priority
assignment configuration to assign greater priority to meta-

Box & Dropbox Exhibit 1003
Page 12

US 10,289,607 B2

13

data associated with files than priority assigned to the files
such that at least one of the server system or the first client
device assigns the first priority to the first metadata and the
second priority to the copy of the first file based on the
priority assignment configuration.
15. The method of claim 12, wherein the copy of the first
file is automatically received from a first application at the
first client device, wherein the first application comprises a
runtime environment for one or more mobile-agent objects,
and wherein the first application is configured to create a first
mobile object, and the first mobile object is configured to
create a proxy object at the server system and to provide the
copy of the first file to the proxy object.
16. The method of claim 15, wherein the proxy object is
configured to store the copy of the first file on a memory
device associated with the server system.
17. A system comprising:
a server system comprising one or more processors pro-
grammed with computer program instructions that,
when executed, cause the server system to:
receive, over a network, a copy of a first file from a first
client device associated with a user, wherein the
copy of the first file is automatically received from
the first client device responsive to the user modi-
fying a content of the first file stored on the first
client device, the copy of the first file being a version
of the first file that is generated from the user
modifying the content of the first file;

receive, from the first client device, first metadata
associated with the version of the first file that is
generated from the user modifying the content of the
first file, the first metadata being assigned a first
priority greater than a second priority assigned to the
copy of the first file, wherein at least one of the server
system or the first client device comprises a priority
assignment configuration to assign greater priority to
metadata associated with files than priority assigned
to the files such that at least one of the server system
or the first client device assigns the first priority to
the first metadata and the second priority to the copy
of the first file based on the priority assignment
configuration;

determine that the server system is not in communica-
tion with a second client device associated with the
user;

store the copy of the first file on the server system;

automatically transfer the first metadata to the second
client device based on the first priority being greater
than the second priority such that the first metadata
is transferred to the second client device prior to the
copy of the first file being transferred to the second
client device; and

automatically transfer, over a network, the copy of the
first file to the second client device associated with
the user, responsive to (i) resuming communication
with the second client device and (ii) receiving the
copy of the first file from the first client device,

wherein, responsive to transferring the copy of the first
file to the second client device, an older version of
the first file stored on the second client device is
automatically caused to be replaced with the copy of
the first file such that the copy of the first file is stored
on the second client device in lieu of the older
version of the first file.

18. The system of claim 17, wherein the copy of the first
file is automatically received from a first application at the

20

25

40

60

65

14

first client device, wherein the first application comprises a
runtime environment for one or more mobile-agent objects,
and wherein the first application is configured to create a first
mobile object, the first mobile object is configured to create
a proxy object at the server system and to provide the copy
of the first file to the proxy object, and the proxy object is
configured to store the copy of the first file on a memory
device associated with the server system.

19. One or more non-transitory machine-readable media
storing instructions that, when executed by one or more
processors of a server system, cause operations comprising:

receiving, by the server system, over a network, a copy of

a first file from a first client device associated with a
user, wherein the copy of the first file is automatically
received from the first client device responsive to the
user modifying a content of the first file stored on the
first client device, the copy of the first file being a
version of the first file that is generated from the user
modifying the content of the first file;

receiving, by the server system, from the first client

device, first metadata associated with the version of the
first file that is generated from the user modifying the
content of the first file, the first metadata being assigned
a first priority greater than a second priority assigned to
the copy of the first file;

determining, by the server system, that the server system

is not in communication with a second client device
associated with the user;

storing, by the server system, the copy of the first file on

the server system;

automatically transferring, by the server system, the first

metadata to the second client device based on the first
priority being greater than the second priority such that
the first metadata is transferred to the second client
device prior to the copy of the first file being transferred
to the second client device; and

automatically transferring, by the server system, over a

network, the copy of the first file to the second client
device associated with the user to replace an older
version of the first file stored on the second client
device, responsive to (i) resuming communication with
the second client device and (ii) receiving the copy of
the first file from the first client device.

20. The one or more non-transitory machine-readable
media of claim 19, wherein at least one of the server system
or the first client device comprises a priority assignment
configuration to assign greater priority to metadata associ-
ated with files than priority assigned to the files such that at
least one of the server system or the first client device
assigns the first priority to the first metadata and the second
priority to the copy of the first file based on the priority
assignment configuration.

21. The one or more non-transitory machine-readable
media of claim 19, wherein the copy of the first file is
automatically received from a first application at the first
client device, wherein the first application comprises a
runtime environment for one or more mobile-agent objects,
and wherein the first application is configured to create a first
mobile object, the first mobile object is configured to create
a proxy object at the server system and to provide the copy
of the first file to the proxy object, and the proxy object is
configured to store the copy of the first file on a memory
device associated with the server system.

* * * * *

Box & Dropbox Exhibit 1003
Page 13

