
c12) United States Patent
Brown et al.

(54) SERVER FOR SYNCHRONIZATION OF
FILES

(75) Inventors: David K. Brown, Carmel Valley, CA
(US); Thomas A. Rolander, Pacific
Grove, CA (US); Robert D.
Silberstein, Monterey, CA (US); Josef
Wein, Yokohama (JP)

(73) Assignee: Novell, Inc., Provo, UT (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 524 days.

(21) Appl. No.: 10/098,985

(22) Filed:

(65)

Mar. 15, 2002

Prior Publication Data

US 2002/0194205 Al Dec. 19, 2002

Related U.S. Application Data

(60) Provisional application No. 60/276,369, filed on Mar.
16, 2001.

(51) Int. Cl.
G06F 17130 (2006.01)

(52) U.S. Cl. 707/4; 707/102; 707/203
(58) Field of Classification Search 707/1-10,

(56)

707/101, 102,103,104, 200-203, 104.1;
709/214, 223,227,313; 711/152; 364/300;

395/600; 713/201; 714/4
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,432,057 A
5,410,697 A *
5,446,888 A
5,452,448 A

130\..,,(

2/ 1984 Daniell et al. 364/300
4/1995 Baird et al. 711/152
8/1995 Pyne 707/10
9/1995 Sakuraba et al. 395/600

405r

<== 410r

415

SSI

I 1111111111111111 11111 1111111111 lllll 111111111111111 111111111111111 IIII IIII
US007035847B2

(IO) Patent No.: US 7,035,847 B2
Apr. 25, 2006 (45) Date of Patent:

WO

5,586,310 A
5,721,907 A
5,884,325 A
5,978,805 A
6,052,724 A *
6,158,008 A
6,163,856 A
6,192,365 Bl
6,202,085 Bl
6,233,589 Bl
6,308,201 Bl*
6,321,236 Bl
6,345,308 Bl
6,412,017 Bl
6,516,337 Bl
6,581,074 Bl*

12/1996 Sharman 395/600
2/ 1998 Pyne . 707 / 10
3/1999 Bauer et al.

ll/ 1999 Carson . 707 / 10
4/2000 Willie et al. 709/223

12/2000 Maria et al 713/201
12/2000 Dion et al. 714/4
2/2001 Draper et al. 707/101
3/2001 Benson et al.
5/2001 Balcha et al. 707 /203

10/2001 Pivowar et al. 709/214
11/2001 Zollinger et al.
2/2002 Abe
6/2002 Straube et al 709/313
2/2003 Tripp et al.
6/2003 Wong et al 707/201

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2002/075539 A3 9/2002

OTHER PUBLICATIONS

Satyanarayanan M et al: "Coda: A Highly Available File
System for a Distributed Workstation Environment," IEEE
Transactions on Computers, vol. 39, No. 4, Apr. 1990, pp.
447-459.

(Continued)

Primary Examiner-Jeffrey Gaffin
Assistant Examiner-Yicun Wu
(74) Attorney, Agent, or Firm-Marger
McCollom, P.C.

(57) ABSTRACT

Johnson &

A server stores files. Distributed clients access the server, to
learn about changes made to the files on the server, and to
push local changes of the files onto the server. A synchro­
nization application is used to synchronize the clients and
server, synchronizing metadata and selected files.

CSI

SSI

or
SSD:

39 Claims, 29 Drawing Sheets

Are client and server
synchronized?

105

Xmit/
Recv.

<== SIDs of changed directories
SIDs of all items in changed
directories
metadata of chan ed items

Box & Dropbox Exhibit 1025
Page 1

US 7,035,847 B2
Page 2

U.S. PATENT DOCUMENTS

6,681,252 Bl* 1/2004 Schuster et al. 709/227
2002/0010807 Al 1/2002 Multer et al.

OTHER PUBLICATIONS

Satyanarayanan M: "A Survey of Distributed File Systems,"
Annual Review of Computer Science, vol. 4, Feb. 1989, pp.
73-104.
Balasubramaniam S et al: "What is a File Synchronizer?",
Mobicom '98, Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and Net­
working. Dallas, TX, Oct. 25-30, 1998, Annual ACM/IEEE
International Conference on Mobile Computing and Net­
working, New York, NY: ACM Oct. 25, 1998, pp. 98-108.
Andrew Tridell et al: "The Rsync Algorithm," Nov. 9, 1998,
pp. 1-10, Retrieved from the Internet: <URL:http://samba.
anu.edu.au/rsync/tech_re, retrieved on May 23, 2002.
Zadok E: "Stackable File Systems as a Security Tool," Dec.
1999, pp. 1-19, Retrieved from the Internet: <URL:http://

www.cs.columbia.edu/lezk/resea, retrieved on Jan. 21,
2003, p. 4.
Braam P. J; Nelson P.A.: "Removing Bottlenecks in Dis­
tributed Filesystems: Coda & InterMezzo as examples,"
Proceedings of Linux Expo 1999, Online May 1999, pp.
1-11, Retrieved from Internet: <URL:http://www-2.cs.cmu.
edu/afs/cs/projec, retrived on Nov. 28, 2003, pp. 3-4 and 9.
Tichy W. F.: "RCS-A System for Version Control," Software
Practice & Experience, John Wiley & Sons Ltd., Chichester,
GB, vol. 15, No. 7, Jul. 1985, pp. 637-654.
Bedoll R. et al: "The Importance of Meta-Data in Mass­
Storage Systems," Crisis in Mass Storage. Monterey, May
7-10, 1990, Proceedings of the Symposium on Mass Stor­
age, New York, IEEE, vol. SYMP. 10, May 7, 1990, pp.
111-116.
"The rsync algorithm," http://samba.anu.edu.au/rsync/
tech_report/node2.html, 1 page (1998).

* cited by examiner

Box & Dropbox Exhibit 1025
Page 2

U
.S. P

aten
t

N
 I

r---
..­..-

A
pr. 25, 2006

..-I
LO

\
..-

:0..-
I

C'?
,-.'..
..­......

S
heet 1 o

f 29

N
 ' LO

\
......

:0

I (f)
IL

(f)

C
'? I

LO

\
.-

:0.-
I

U
S 7,035,847 B

2

• co
..c

+
­

+
-

co
~

o

C
)

-u.

Box & Dropbox Exhibit 1025
Page 3

105.

235,

SID OSI I

1
0x01 37 I

I
0x16 35 I

'\

I
I
I

\ \ I

245.

Name
SID: 0x16
FSI: 10
Change Time
'\ \ I I

240.

1 Name
I SID: 0x2A

1
1 FSI: 35

220
I / PFID: 0x24

1 / / Length: 64Kb

230 SSI ~ \ \ 1
~ \ \

'\ \ I I
20s. '- \ /;

----. _____ ~Change Time
"- MDA

"­ " n~T~ 225

37 ~ \ I ~---1---V~

"- ~ --6--, "-~ \ \~
'- ~ '\ \ \ 115-1

110, '-.. , \ \\

!-
~~~~~~~ 
DDDDDDD 

SFS 
Ir> ~ , • 1 1 

-• ) ., 

115-2 

S) ,, 
f1 ) 

'V 

210 // Name 
/ <- .--- SID: 0x36 
.--- FSI: 37 

1......._ 

l ......._ PFID: 0x12 
215 \ \ ......._ Length: 88Kb 

50 

\ I / ..-

'~ 15-3 

\ Change Time 
\ MDA 
\ 1 

FIG. 2 

e . 
00 . 
~ 
~ 
~ 
~ = ~ 

> "e 
:-: 
N 

"'Ul 
N 
0 
0 
O'I 

rJJ 
=­('D 
('D ..... 
N 
0 .... 
N 
1,0 

d 
r.,;_ 

'-"--...l 
= w 
UI 
00 
~ 
--...l 

= N 

Box & Dropbox Exhibit 1025 
Page 4



e . 
340,,...... 

00 . 
~ 

CSI 345 ~ 
~ 
~ 

37 I CS□ : = I ~ 

I SIDs for all directories 
320 \I 1 1 / 

1

s10s for all files in 

I 

> "e 
:-: each directory 

/ N / 
"'Ul / - .-- -- -- N - ----- 0 
0 
O'I 

325 I 
.305 I d~i-~~-r ~ tt~6sP$~::::: - ---

330- -- -- rJJ 
\ " Name =-

" 
('D 

\ ('D 

" CID: 0x62 
..... 

335 1 I \ ~ 

" 0 
310 I L I I I "- SID: 0x2A .... 

N 

FSI: 35 
1,0 

\~I '$' Length 
\ Change Time 302 

\ 
315 I \ Flags I d 

r.,;_ 

-....l 

~130 "' = w 
FIG. 3 UI 

00 
~ 
-....l 

= N 

Box & Dropbox Exhibit 1025 
Page 5



130~ 

Xmit/ 
Recv. 

40[ 
CSI 

410 

<== r SSI 1 

415. 

<== 

or 
SSD: 

SSI 
SIDs of changed directories 
SIDs of all items in changed 
di rectories 
metadata of chanaed items 

FIG. 4A 
(continued on FIG. 48) 

Are client and server 
synchronized? 

==> 
105. 

1~1 
~~~~~~~ 
onooooo

e .
00 .
~
~
~
~ = ~

> "e
:-:
N

"'Ul
N
0
0
O'I

rJJ
=­('D
('D
.i;...

0
N
1,0

d
r.,;_

'-"--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 6

130~

Xmit/
Recv.

<==

<==

<==

<==

420~

SID in SSD but not CSD:
download file to/create

directory on client

425 ~ or

SID in CSD but not SSD:
delete file/directory on client

430½ or
SID in different directories
in SSD and CSD: move/
rename file/directory on

client
435½ or

SID in same directory in
SSD and CSD: check for
file/directory rename on

server

FIG. 4B
(continued on FIG. 4C)

Retrieve any changes
from the server

105

I
I

=

~~~~~~~ 

e . 
00 . 
~ 
~ 
~ 
~ = ~ 

> "e 
:-: 
N 

"'Ul 
N 
0 
0 
O'I 

rJJ 
=­('D 
('D ..... 
Ul 

0 .... 
N 
1,0 

d 
r.,;_ 

'-"--...l 
= w 
UI 
00 
~ 
--...l 

= N 

Box & Dropbox Exhibit 1025 
Page 7



130~ 

402 

Xmit/ 
Recv. 

<== 
440» 

File upload/directory create: 
data and MDA to server, 

SID to client 

445>-c:, or 

Move/rename/delete: type 
of operation and SID to 

server 

450 <== r NewSSI 

FIG. 4C 

Transmit any changes to 
the server 

==> 105. 

==> i -a-
--

~~~~~~~ 
0000000

e .
00 .
~
~
~
~ = ~

> "e
:-:
N

"'Ul
N
0
0
O'I

rJJ
=­('D
('D
O'I
0
N
1,0

d
r.,;_

"'--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 8

130~ I fcsil-v340
~L~
~~,~ --<----

I
I

CSD:

\ '\ '\

SIDs for all directories:
0x01,0x16
SIDs for all files in
each directory~ - __

I '--
I '--

520 SID

0x01

0x16

515

Child SIDs

0x11 0x16

0x07 0x2A

505~

SSD:
SSI: 38
SIDs of changed
directories: 0x16

' '

--
S10s of all items in cha:gel 1
directories: 0x07, 0x37 ;
changed items metadataf!'\' I

/\

0x36

FIG. 5

/ I \ --..., '-

Name
SID: 0x37
FSI: 35
PFID: 0x2A

~ !Length: 64Kb
~ Change Time

510

~
I □ I
I -----1

~
7iu

e .
00 .
~
~
~
~ = ~

> "e
:-:
N

"'Ul
N
0
0
O'I

rJJ
=­('D
('D
-....J
0
N
1,0

d
r.,;_

'-"--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 9

615.
Ur\

610
4K

8K

12K

16K

■

■

■

605'-r\

Hash
Function

FIG. 6

625,

41640684

91654767

90504375

06860156

90763275
•
•
•

620

e .
00 .
~
~
~
~ = ~

t
:-:
N

"'Ul
N
0
0
O'I

rJJ
=-('D
('D
QO

0
N
1,0

d
r.,;_

'-"--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 10

337

SA
/

41640684 /~

4K /I/
91654767 I;

8K
/(X 730 90504375

12K
06860156 Update block 16K

(and messaQe 715 16802075
■

I
digest

■ I •
725

FIG. 7

" '::::\ OK "- . I I
~

\" 4K
\\ 91654767

8K
\ 90504375 735

12K
06860156

16K
90763275 720

I •
•
•

e .
00 .
~
~
~
~ = ~

> "e
:-:
N

"'Ul
N
0
0
O'I

rJJ
=­('D
('D
1,0

0
N
1,0

d
r.,;_

'-"--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 11

U.S. Patent Apr. 25, 2006

805

810

Start

Send CSI to the
server

Receive SSI from
the server

Sheet 10 of 29 US 7,035,847 B2

815

Compare CSI and
SSI

820

Is the client in
sync with the

server?

Yes

No

FIG. BA

Box & Dropbox Exhibit 1025
Page 12

U.S. Patent Apr. 25, 2006 Sheet 11 of 29 US 7,035,847 B2

825

Receive SSD from
the server

Any changes to No
send to server?

830

Compare CSD with
SSD to identify Yes
changes on the

server 850

Send the changes to
840 the server (see

Update client to FIGs. 11A-11C)
synchronize with
server (see FI Gs.

9A-9D)
End

FIG. 8B

Box & Dropbox Exhibit 1025
Page 13

U.S. Patent Apr. 25, 2006

90

905

F

Start

Compute set of SSD
and CSD SIDs

Get first SID in the
SSD and CSD set

910

SID in SSD but
not CSD?

No

Sheet 12 of 29 US 7,035,847 B2

915

Download the file or
create the directory
identified by the SID
(see FIGs. 1 OA-1 OB)

B FIG. 9A

Box & Dropbox Exhibit 1025
Page 14

U.S. Patent Apr. 25, 2006 Sheet 13 of 29 US 7,035,847 B2

925

930

SID in CSD but No ------~
not in SSD?

Yes

Delete the file/
directory on the

client

Remove metadata
item for the SID from
the client metadata

935

FIG. 98

Remove the SID
from the CSD

Box & Dropbox Exhibit 1025
Page 15

U.S. Patent Apr. 25, 2006

945

950

C

different
directories in

SSD and
CSD?

Yes

Move the file/
directory on the

client to the directory
specified in the SSD

Update the
metadata item for

the SID in the client
metadata

Sheet 14 of 29 US 7,035,847 B2

No

955

Move the SID in the
CSD

FIG. 9C

Box & Dropbox Exhibit 1025
Page 16

U.S. Patent Apr. 25, 2006

D

960

Does the
SSD include a Yes

metadata item
for SID?

No

FIG. 9D

Sheet 15 of 29 US 7,035,847 B2

SSD
etadata item

name differ from
client metadat

item?

item change time
more recent?

Yes

Yes

Box & Dropbox Exhibit 1025
Page 17

U.S. Patent Apr. 25, 2006

975

980

990

E

Rename file/
directory on the

client

Update metadata
item on client to

match SSD
metadata item name

Get next SID in SSD
and CSD set

F

Sheet 16 of 29 US 7,035,847 B2

995

A

All S10s in
SSD and CSD

No

Set CSI to SSI

End

FIG. 9E

Box & Dropbox Exhibit 1025
Page 18

U.S. Patent Apr. 25, 2006

1005

1012

Start

Locate SSD
metadata item for

the SID

Is metadata item
a file?

No

Create directory on
the client

E

Sheet 17 of 29 US 7,035,847 B2

1015

Using PFID, parent
directory SID, and

metadata item
name, locate file

1020

vious version Yes
f file found?

No

FIG. 10A

Box & Dropbox Exhibit 1025
Page 19

U.S. Patent Apr. 25, 2006 Sheet 18 of 29 US 7,035,847 B2

A

1025

Copy previous
version of file to 1045

temp. file using filter
of equal

driver read function message digests
Yes

> threshold?
1030

Compute MDA for No
temporary file

1050

Download the entire
1035

file

Download MDA for
SID from server

1040

Compare MDAs

FIG. 108

Box & Dropbox Exhibit 1025
Page 20

U.S. Patent Apr. 25, 2006

1055

1060

1065

D

Download changed
blocks from the

server

Construct download
file from temporary

file and downloaded
blocks

Move download file
to target location on

the client

Sheet 19 of 29 US 7,035,847 B2

1075

1080

E

Create new
metadata item on
client from SSD
metadata item

Add SID to the CSD

End

FIG. 10C

Box & Dropbox Exhibit 1025
Page 21

U.S. Patent Apr. 25, 2006

1105

Start

Get first change to
push to the server

1107

File to upload to
the server?

No

Sheet 20 of 29 US 7,035,847 B2

1110

1112

1115

Copy client file to a
temporary file using

filter driver read
function

Compute MDA for
temporary file

Send SID, parent
directory SID, and
file name to server

FIG. 11A

Box & Dropbox Exhibit 1025
Page 22

U.S. Patent Apr. 25, 2006

previous version
of file?

No

1120

Upload the entire
file, MDA, and client

metadata item to
server

B

Sheet 21 of 29 US 7,035,847 B2

1122

1125

Request/receive
previous version

MDA from the server

Compare MDAs

1127

No
of equal

message digests
> threshold?

Yes

FIG. 11B

Box & Dropbox Exhibit 1025
Page 23

U.S. Patent Apr. 25, 2006

1130

113

1135

C

Upload changed
blocks and message

digest values to
server

Upload client
metadata item to

server

Server constructs
upload file from

previous version and
uploaded data

Sheet 22 of 29 US 7,035,847 B2

1137

1140

1142

B

Server inserts
uploaded file, MDA,
and metadata item

Server updates SSI

Server assigns SID
and sync index to

file

FIG. 11C

Box & Dropbox Exhibit 1025
Page 24

U.S. Patent Apr. 25, 2006

E

1145

1147

1150

Directory to
create on
server?

Yes

Client sends create
directory request

and client metadata
item to server

Server creates
directory

Sheet 23 of 29 US 7,035,847 B2

No

115

1155

Server updates SS I

Server assigns SID
and sync index to

directory

FIG. 11D

Box & Dropbox Exhibit 1025
Page 25

U.S. Patent Apr. 25, 2006

1157

1160

Client receives SSI
and SID of file/

directory

Client inserts SID
into client metadata

item

Sheet 24 of 29 US 7,035,847 B2

1162

1165

1167

Client sends move/
rename/delete file/
directory request to

server

Server updates SSI

Client receives SS I

FIG. 11E

Box & Dropbox Exhibit 1025
Page 26

U.S. Patent Apr. 25, 2006

117

1175

New SSI =CSI +
1?

Yes

Assign new SSI to
CSI

Update CSD to
reflect the change

Sheet 25 of 29 US 7,035,847 B2

1177

1180

Further
changes to push

to the server?

No

End

Get next change to
push to the server

FIG. 11F

Box & Dropbox Exhibit 1025
Page 27

1205.

\ I
Back
~
Forward Q

Address:

Folder
Ji'"'-11215

1220\.,r-,_

~ Sub-Folder 1 Options:

tFi~ ~1211
Download
Upload File 2

Sub-Folder 2
Rename
Delete

LFile3 Move

FIG. 12

[Kl

00

- 1225-1 ~

- 1225-2 ~

- 1225-3 --.,

- 1225-4 ~

- 1225-5 ~

1210

e .
00 .
~
~
~
~ = ~

> "e
:-:
N

"'Ul
N
0
0
O'I

rJJ
=­('D
('D
N
O'I
0
N
1,0

d
r.,;_

'-"--...l
= w
UI
00
~
--...l

= N

Box & Dropbox Exhibit 1025
Page 28

U.S. Patent Apr. 25, 2006

1305

1310

1315

Start

Receive a user ID
and password

Encrypt the user ID
and password

Send the encrypted
user ID and

password to the
server

Sheet 27 of 29 US 7,035,847 B2

1320

1325

Forward the
encrypted user ID
and password to a
3rd party service

Compare the
received user ID/
pwd with a stored

user 1D/pwd

FIG. 13A

Box & Dropbox Exhibit 1025
Page 29

U.S. Patent Apr. 25, 2006 Sheet 28 of 29 US 7,035,847 B2

1335

1330

Is the user
authenticated?

Inform the server
that the user is

allowed access to
the folder

1340

End

FIG. 138

Inform the server
that the user is

denied access to the
folder

Box & Dropbox Exhibit 1025
Page 30

U.S. Patent

T"""
I ,.._

T"""

T"""

Apr. 25, 2006 Sheet 29 of 29

T"""
I

t.n
\ ..-

:<_B.T"""
I

C'?
I ,.._

T"""

T"""

C'\I
I

L!)

\
:<_B. T"""

I

(/)
LL.
(/)

('I)
I

L!)

\ T"""

:<_B. T"""

I

US 7,035,847 B2

~
>. 0
Q) I...

~ ~
w

(!) -LL

Box & Dropbox Exhibit 1025
Page 31

US 7,035,847 B2
1

SERVER FOR SYNCHRONIZATION OF
FILES

RELATED APPLICATION DATA

This application claims priority from U.S. Provisional
Application No. 60/276,369, filed Mar. 16, 2001, which is
hereby incorporated by reference This application is related
to U.S. patent application Ser. No. 10/099,522, titled "Cli­
ent-Server Model for Synchronization of Files," filed . Mar. 10

15, 2002.

FIELD OF THE INVENTION

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a server with several clients accessing files
stored on a server Synchronization File System on the
server, according to an embodiment of the invention.

FIG. 2 shows an example of the data structures used in the
server Synchronization File System of FIG. 1 to maintain a
user's account, according to an embodiment of the inven­
tion.

FIG. 3 shows an example of the data structures used in the
client Synchronization Application of FIG. 1 to maintain a
user's account, according to an embodiment of the inven­
tion.

FIGS. 4A-4C show the transfer of information between
the client and server of FIG. 1, according to an embodiment
of the invention.

This invention pertains to distributed file access, and more 15

particularly to accessing files remotely from multiple com­
puters and retaining changes. FIG. 5 shows the client of FIG. 1 comparing the server

synchronization data with the client synchronization data, in
order to determine which file(s) have changed, according to

20 an embodiment of the invention.

BACKGROUND OF THE INVENTION

When computers first made their way into society, few
people could afford a machine for themselves. At best,
individuals had a single machine at work on which they
could work. But as computers have become more affordable,
people find themselves working with several machines. It is 25
increasingly common for people to find themselves working
on one machine at the office, a second machine at home, and
having use of a portable computer when they need to have
computer access while traveling.

The Internet has also effected a change on society. With 30
the availability of low cost connections and public access
points, people can access information across networks of
varying sizes (local, national, global) almost anywhere they
might want to.

But with the increasing number of machines a person 35

might find himself using comes an added complexity. Since
a person typically accesses the same files from the various
computers, the user needs to be certain that the files he is
accessing are current.

Originally, people carried files on floppy disks from one 40

machine to the next. But the increases in file size sometimes
make floppy disks impractical. And if the user forgets to
bring the files with him as he moves around, or forgets to
move the latest versions of the files off the computer he most
recently used, the user can find himself with several versions 45

of the files, each of which contain desired portions.

FIG. 6 shows a hash function used by the client of FIG.
1 to reduce the amount of information transmitted between
the client and server Synchronization File System, according
to an embodiment of the invention.

FIG. 7 shows an example of the client of FIG. 1 pulling
a specific block from the server Synchronization File Sys­
tem, according to an embodiment of the invention.

FIGS. SA-SB show a flowchart of the procedure for
synchronizing the clients and server of FIG. 1, according to
an embodiment of the invention.

FIG. 9A-9E show a flowchart of the procedure used to
pull changes from the server to a client of FIG. 1, according
to an embodiment of the invention.

FIGS. l0A-lOC show a flowchart of the procedure used
to download files from the server to a client of FIG. 1,
according to an embodiment of the invention.

FIGS. llA-llF show a flowchart of the procedure used to
push changes to the server from a client of FIG. 1, according
to an embodiment of the invention.

FIG. 12 shows an example of a browser running an applet
displayed on a client of FIG. 1 used for downloading and
uploading of files, and for directory maintenance, according
to an embodiment of the invention.

FIGS. 13A-13B show a flowchart for permitting or deny­
ing the clients of FIG. 1 access to the files on the server
Synchronization File System of FIG. 1, according to an
embodiment of the invention.

Accordingly, a need remains for a way to maintain
distributed files across multiple clients, maintaining cur­
rency at each client as changes are made, to address these
and other problems associated with the prior art.

FIG. 14 shows the clients and server of FIG. 1, the server

50 using a key escrow server, according to an embodiment of
the invention.

SUMMARY OF THE INVENTION

The invention is a method and apparatus for synchroniz­
ing data on multiple client machines. The structure of the 55

invention is a client/server application where the server
component is a Synchronization File System (SFS) with a
functional interface and metadata organization that enables
efficient and reliable synchronization by the clients. The
client component is a Synchronization Application (SA) that 60

uses the server SFS to synchronize the local client data with
the server. Client machines synchronize with each other by
synchronizing to a common server account.

The foregoing and other features, objects, and advantages
of the invention will become more readily apparent from the 65

following detailed description, which proceeds with refer­
ence to the accompanying drawings.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Overview of Client/Server Synchronization
An embodiment of the invention is a client/server appli­

cation that allows users to synchronize data on multiple
machines. The server component is a server Synchronization
File System (SFS) with a functional interface and metadata
organization that enables efficient and reliable synchroniza­
tion by the clients. (A glossary of acronyms can be found at
the end of this document.) The client component is a client
Synchronization Application (SA) that uses the server SFS
to synchronize its local client data with the server. Client
machines synchronize with each other by synchronizing to
a common server account.

Box & Dropbox Exhibit 1025
Page 32

US 7,035,847 B2
3 4

directories (cumulatively called directory entries) within the
folder. For example, folder 115-1 is shown with three files
117-1, 117-2, and 117-3. Again, a person skilled in the art
will recognize that there can be more or fewer files in each
folder, and that there can be a directory structure associated
with each folder.

Server 105 is connected to a network, such as network
120. Network 120 can be a local area network (LAN), a wide
area network (WAN), a global network such as the Internet,

The client SA connnunicates with the server SFS via
TCP/IP. Preferably, the client SA communicates with the
server SFS using a proprietary protocol tunneled within the
hypertext transport protocol (HTTP), but a person skilled in
the art will recognize that other protocols can be used.
Connnunication between the client SA and the server SFS is
initiated by the client SA and responded to by the server
SFS. An embodiment of the invention can maintain the
security of the data by using encrypted accounts. User data
is encrypted on the client by the client SA and stored
encrypted on the server. The user can select whatever
encryption protocol is desired. And since the data is
encrypted on the client before transmission, the use of the
Secure Sockets Layer (SSL) to protect the data during
transmission across a potentially vulnerable network is not
required.

10 a wireless network, or any other type of network. Firewall
125 can be used to separate server 105 from network 120,
protecting server 105 against unauthorized access. As men­
tioned above, in an embodiment of the invention, connnu­
nication between the clients and server 105 is tunneled

15 within the hypertext transport protocol (HTTP). This allows
synchronization to occur even through firewalls, such as
firewall 125, which normally permit HTTP data to travel
relatively freely.

The client/server architecture is designed to minimize the
load on the server processor in order to maximize server
scalability. To that end, as many processor-intensive opera­
tions as possible, such as message digest computation and 20

comparison, data encryption and decryption, and synchro­
nization itself, are performed by the client SA. Also, the
polling mechanism used by the client SA to determine if the
client is synchronized with the server is designed to require
minimal processing on the server when the client and server 25

are in sync. This is significant because as a rule only a small
percentage of clients require synchronization activity at any
point in time.

The client/server architecture is also designed to minimize
the amount of data transmitted on the wire during the 30

synchronization process. Preferably, only the parts of files
that have changed are uploaded or downloaded when syn­
chronizing files. The architecture also includes algorithms to
minimize the amount of metadata exchanged between the
server and the client during synchronization. In the connnon 35

special case where the client and server are in sync, the
amount of data exchanged is just a few bytes. Minimizing
the amount of transmitted data is discussed further in the
section below entitled "Partial Downloads and Uploads."

From the user's perspective, the synchronization process 40

is automatic, runs in the background and requires minimal
monitoring or intervention. In an embodiment of the inven­
tion, the client SA initiates synchronization on a fixed time
interval. But a person skilled in the art will recognize that the
client SA can use any scheduling algorithm to initiate 45

synchronization. In addition, the user can also initiate syn­
chronization at any time manually. The client SA monitors
local file system activity within the directory (sometimes
called a folder) on the client so that it can efficiently locate
changes to send to the server SFS during synchronization. 50

The client SA also monitors client file system activity to
prevent synchronization from interfering with running appli­
cations on the client machine.

FIG. 1 shows a server with several clients accessing files
stored on a server SFS on the server, according to an 55

embodiment of the invention. In FIG. 1, server 105 includes
server SFS 110. Server 105 includes all the typical elements
of a server, such as a central processor, memory, bus, disk
space, etc. Typically, server SFS 110 is installed on a hard
disk drive within server 105, but a person skilled in the art 60

will recognize other forms of media usable by server 105:
for example, removable media or optical media. Stored on
server SFS 110 are folders 115-1, 115-2, and 115-3.
Although FIG. 1 shows only three such folders, a person
skilled in the art will recognize that there can be more or 65

fewer folders. Each of the folders is assigned to a user. Once
the user has logged in, the user can access the files and

The term client refers to various kinds of machines that
can be connected to a network. Client 130 represents an
ordinary desktop computer, as might be present at a user's
place of work or home. Portable computer 135 represents a
notebook or laptop computer, as a user might take with him
to a hotel room on business. To the extent that the client
software can be installed on other types of devices, these
other devices can be clients. For example, a user might use
a personal digital assistant (PDA) to synchronize with server
105, if the PDA can install the client SA.

As discussed below with reference to FIG. 12, another
type of client is a browser client running an applet. In a
preferred embodiment, the applet runs in Java and provides
direct access to a user's files in his server account, but does
not provide for synchronization. (Java is a registered trade­
mark of Sun Microsystems, Inc. in the United States and
other countries.)

Server Synchronization File System
The server SFS is similar to other file systems in that it

supports files and directories with familiar metadata such as
name, update and create time, and file length. There are,
however, significant differences. The most important differ­
ence is that the server SFS is not a "general purpose" file
system but a special purpose file system designed for
synchronization.

Access to the server SFS is restricted to file level opera­
tions via the protocol where new files can be uploaded,
existing files can be downloaded, replaced, renamed, moved,
or deleted, but an existing file cannot be modified directly.
The protocol also provides directory functions to create,
delete, rename, and move directories.

The server SFS supports encrypted accounts in which not
only file data is encrypted but directory and file names
within the server metadata are also encrypted. The server
SFS metadata also contains several special fields that are
used in synchronization.

The server SFS supports concurrent synchronization of a
large number of clients limited only by the server's perfor­
mance and bandwidth considerations. Concurrent synchro­
nization of different user accounts is supported with no
additional restrictions. On any given account, however, the
server SFS enforces a single changer model in which only
one client at a time can change the state of the user's server
data. When multiple clients of a single user account push
changes to the server concurrently, the server SFS inter­
leaves the changes. For file uploads, a file is first uploaded
to a temporary file on the server. Then, after the file data is
on the server, the server SFS inserts the file and its metadata
into the user's server account database in an atomic opera-

Box & Dropbox Exhibit 1025
Page 33

US 7,035,847 B2
5

tion. Thus, multiple clients to the same account can upload
data concurrently but the insert operations are interleaved.

Thus, state changes to a user's server account occur in file
or directory change increments. This is a fundamental prop­
erty of the server SFS. The server SFS numbers these states 5

and assigns them a sequence number called the sync (short
for synchronization) index. Synchronizing a client machine
with server data that is not up to date with its server account
can be viewed as the process of moving the state of the
client's directory from the old server SFS state, identified by 10

an older (lower) server sync index (SSI) value, to a new
server SFS state, identified by a more recent (higher) SSI
value.

The synchronization process is initiated by a client SA
when it makes a sync poll call to the server, passing it the 15

client sync index (CSI) identifying its current known state of
the account. If the SSI value matches the CSI value passed
in by the polling client, the client is up to date with the
current state of its server account. In that case, the server
SFS returns the SSI (having the same value as the CSI) back 20

to the client. Otherwise, the server SFS returns the new
higher SSI along with the server metadata information the
client needs to transition its account from its current state to
the server's current state.

6
pushes the rename change to the server. The server uses
this field to arbitrate synchronization conflicts in favor
of the most recent change.

Directory Sync Index (DSI) (for directory items only):
This field records the DSI of the most recent change
within the directory.

Previous version File ID (PFID) (for file items only): This
field is passed down to the client SA as a hint to help
it locate the previous version of a file if it needs to
download the file.

Directories within the server SFS are named by their SID
and contain metadata items for each file and directory item
in the directory. The SID of the root directory is always 1.

Files in the server SFS are also named by their SID.
Server SFS files begin with a prefix that contains their ID,
length, update and create times. Following the prefix is the
message digest array (MDA), which contains 16 bytes for
every 4096 bytes of data in the file. The file's data follows
and is encrypted if the user's account is encrypted. The client
SA converts native files within the directory on the client
machine into this format during the file upload process.
Similarly files are converted back to their native format
when the client SA downloads them from the server.

FIG. 2 shows an example of the data structures used in the
The server SFS maintains a three-level hierarchy of sync

indices (Sis) in its metadata. At the highest level, there is an
account SSI field that identifies the current state of the
account. This is the first value checked by the server SFS on

25 server SFS of FIG. 1 to maintain a user's account, according
to an embodiment of the invention. In FIG. 2, the directory
structure and data structures for folder 115-2 are shown.
Folder 115-2 contains folder 205 and files 210 and 215.

a client poll call. If this value matches the CSI value passed
in by a polling client, the client directory is up to date. 30

The directory sync index (DSI) fields reside at the middle
level of the hierarchy. The server SFS maintains a directory
table for each user account with a directory item for each
user directory. Each directory item contains a DSI value
associated with the last change to a file or directory within 35

the directory. The server SFS uses this value to quickly find
directories with changes that need to be pushed down to a
syncing client. Directory items with DSI values greater than
the value passed in by the polling client SA identify the
directories with changes. 40

At the lowest level is the SI field that resides in each file
and directory metadata item. It records the file sync index
(FSI) of the last move or rename for the item (either a file

Folder 205, in tum, contains files 220 and 225.
SSI 230 contains the SSI for the entire account. As

mentioned above, SSI 230 is the highest level of the hier­
archy of Sis. Directory table 235, the middle level of the
hierarchy of Sis, shows the directory table for the user's
account. As mentioned above, directory table 235 tracks the
DSI value associated with the last change to any file or
subdirectory within the directory. Thus, for example, the
root folder (which, as mentioned above, always has a SID of
1) has a DSI of 37. Folder 205, with a SID of Ox 16, has a
DSI of 35.

At the lowest level of Sis are the Sis associated with each
file and folder in the account. Thus, metadata 240 for file 220
shows the file as having an (encrypted) name (although in
alternative embodiments the name is not encrypted), a SID
of Ox 2A, a FSI of 35 (hence the DSI for folder 205 in or a directory) or the FSI associated with the creation of the

item. The server SFS uses this value to locate individual
metadata items that need to be sent to polling clients during
the synchronization process. These include any metadata
items with a FSI value greater than the CSI value passed in
by a client's sync poll call.

45 directory table 235), and a PFID of Ox 24. Metadata 240 also
stores the length of the file, the file's create and update times
(not shown, since they are also typically stored as part of the
native operating system), and its MDA (discussed further
below with reference to FIGS. 6-7), after which comes the

The sync fields in the server metadata are:
Server ID (SID): The server SFS assigns a SID when it

creates a directory or file metadata item that is unique
within a user's account. SIDs make synchronization
more efficient and reliable by making it an ID-based
process instead of a name-based one and by enabling
the client SAs to track files and directories when they
are moved or renamed.

File Sync Index (FSI): This value records the sequence of
the change within a user's server account.

50 file's data. Similarly, metadata 245 for folder 205 shows the
folder as having an (encrypted) name, a SID of Ox 16, a FSI
of 10, and change time. (The difference between the FSI in
metadata 245 and the DSI for the directory with SID Ox 16in
directory table 235 is the difference between a change to

55 folder 205 and a change within folder 205.) In comparison,
metadata 250 of file 210 has an (encrypted) name, a SID of
Ox 36, a FSI of 37 (hence the DSI for the root folder in
directory table 235), a PFID of Ox 12, the file's length, create
and update times (not shown in FIG. 2), MDA, and data.

Client File System
The client SA creates a client Synchronization File Sys­

tem (CSFS) on each client machine to coordinate the syn­
chronization process with the server SFS. This file system
contains metadata but no file data. Data files reside within

Client change time: This field records the time of the 60

client native file system event that resulted in the
change to the server state identified by the FSI field. For
example, if a user renames a file in his directory on the
client, this field records the time of that rename event.
This time value is normalized to server time to account
for the difference in time between the client machine
and the server. The client SA passes this value when it

65 the directory on the client as files native to the operating
system of the client machine. Like the server metadata, the
client metadata includes file and directory items with fields

Box & Dropbox Exhibit 1025
Page 34

US 7,035,847 B2
7

such as name, update and create time, and file length. Client
names, however, are not encrypted.

8
need to be pushed to the server). Note that metadata 330 is
not shown to store the data of file 320, which is stored in the
native operating system of computer 130 within the folder
structure, as expected.

FIG. 3 also shows CSI 340, client synchronization data
(CSD) 345, and filter driver 350. CSI 340 stores the current
state of the client, in terms of Sis as generated by the server.
CSD 345 is used to track the state of the server the last time
the client synchronized with the server, and stores the SIDs
of each directory in the account and the SIDs of each file and
directory within each directory in the account. CSD 345 is
discussed more below with reference to FIGS. 4A-4C.
Finally, as mentioned above, filter driver 350 is used to
monitor the activity of files within the folder on the client.
Specifically, filter driver 350 watches for other applications
accessing the files in folder 302, so as to determine which
files on the client have been changed. When the client later
synchronizes with the server, the client can use the infor­
mation provided by the filter driver to identify which files to

The client SA monitors file system activity within the
user's directory on the client. When file system activity
occurs, the client SA records the event in the client metadata. 5

In an embodiment of the invention running under the
Windows XP/2000/NT operating system, the client SA
monitors file system activity using a filter driver. In another
embodiment of the invention running under the Windows 9x
operating systems, the client SA monitors file system activ- 10

ity using a VxD. Throughout the rest of this document, the
portion of the client SA responsible for monitoring file
system activity will be referred to as a filter driver. During
synchronization, when the client SA pulls down changes
from the server and makes changes to the user's directory, it 15

updates the client metadata to reflect those changes. Also,
when the client SA pushes changes to the server during the
second part of the synchronization process, it records new
SID and FSI values returned by the server SFS into the client
metadata file and directory items. 20 push to the server. Filter driver 350 has a secondary role of

preventing collisions between file synchronization and run­
ning applications. Filter driver 350 is discussed further in the
section below entitled "Accessing Files."

The sync fields in the client metadata are:
Client ID (CID): The CID is assigned to a file or directory

when a new file or new directory event is received by
the client SA from the filter driver (i.e., some activity
has been initiated in the directory on the client). The 25

client SA uses the CID to locate metadata items when
it is pushing changes to the server.

Server ID (SID): The SID is the SID assigned when a file

Note that client SA 337 is shown including encryption/
decryption module 355. In an embodiment of the invention,
server 105 and client 130 communicate over an untrusted
network. That is, the communications between server 105
and client 130 are subject to interception. Further, server 105
is itself untrusted. To protect the data in the server account, is uploaded or a directory is created on the server. The

SID is returned to the client by the server. The client SA
can also locate client metadata items by SID.

File Sync Index (FSI): This FSI is the server SFS FSI
field. The server returns this value when the client
pushes a change to the server.

Client change time: This field records the time when a
client SA receives a file system event from its filter
driver. For example, if a user renames a file in his
directory on the client, this field records the time when
that rename occurred.

30 the files are stored in an encrypted format. Further, server
105 does not have access to the encryption key, and there­
fore cannot decrypt the information. To accomplish this,
before data are transmitted from client 130 to server 105,
encryption/decryption module 355 encrypts the information.

35 And when client 130 receives data from server 105, encryp­
tion/decryption module 355 decrypts the information after
receipt. In this manner, client 130 has unencrypted access to
the data in the files. Client 130 can use any desired key for

Flags: This field contains flags identifying metadata items 40

with changes that need to be pushed to the server. This
field also contains additional flags that are used to
manage the synchronization process.

encryption, as well as any desired encryption product.
Although in an embodiment of the invention neither

server 105 nor the lines of communication between server
105 and client 130 are trusted, a person skilled in the art will
recognize situations in which server 105 and/or the lines of
communication between server 105 and client 130 are The client SA synchronizes with the server by synchro­

nizing the client metadata with the server metadata. This is
an ID-based process because SIDs are carried in both the
client and server metadata. The client metadata has both a
client and SID because a new file or directory is not assigned

45 trusted. Under such circumstances, encryption/decryption
module 355 can be eliminated.

Synchronization Process

The client polls the server for changes by other clients by a SID until the file is uploaded or the directory is created on
the server. 50 passing its current CSI to the server in a sync polling call.

FIG. 3 shows an example of the data structures used in the
CSFS of the client of FIG. 1 to maintain a user's account,
according to an embodiment of the invention. In FIG. 3, the
directory structure and data structures for a user accessing
folder 115-2 of server 105 (as shown in FIG. 2) via client 55

130 are shown. Folder 302 contains folder 305 and files 310
and 315. Folder 305, in turn, contains files 320 and 325.

Metadata 330 shows the metadata for file 320 as stored
within CSFS 110 335, part of client SA 337. (Although
metadata are not shown for the other files and folders within 60

folder 302, a person skilled in the art will recognize that such
metadata exist.) In metadata 330, file 320 is shown as having
a name (which is typically not encrypted, although the name
can be encrypted in an alternative embodiment of the
invention), a CID of Ox 62, a SID of 0x2A, a FSI of 35, the 65

change time of the file, and the flags used in the synchro­
nization process (such as identifying metadata items that

If the CSI matches the server account's SSI value, then the
client is up to date with the server. Otherwise the client SA
requests server synchronization data (SSD). The SSD con­
tains the following data:

Server's current SSL

SIDs of the directories with changes.

SIDs of the child directory and child file items for each
changed directory.

Server metadata items for any items with FSis greater
than the CSI passed in by the client's sync poll call.

With the SSD, the client SA updates the client's directory
and metadata to match the server state. To manage this
update process, the client SA maintains the CSD that it uses
to track the state changes of the server. CSD data includes:

SIDs of all the server directories that existed for the
previous CSL

Box & Dropbox Exhibit 1025
Page 35

US 7,035,847 B2
9

For each directory SID, the set of directory and file SIDs
contained in the directory that existed for the previous
CSL

10
other client(s) on the next sync polling call. When this
occurs, the client SA does get its own changes returned to it
on the next sync call but they are filtered out and have no
negative impact other than the minor overhead associated
with passing redundant data in the SSD from the server SFS
to the client.

FIGS. 4A-4C show the transfer of information between
the client and server of FIG. 1, according to an embodiment
of the invention. In FIG. 4A, client 130 sends the CSI to

The client SA compares the SSD passed back from the
server SFS to its CSD to determine how the client needs to 5

be updated. The client SA only has to examine the directo­
ries that have been identified as having changes in the SSD.
Note that the client SA does not have to examine the entire
CSD. This SSD-CSD comparison process can uncover the
following situations: 10 server 105, as shown in box 405. (Client 130 includes

transmitter/receiver 402 to communicate with server 105.)
Server 105 compares the received CSI with the SSL If the
two have the same value, then server 105 returns the SSI to
the client, as shown in box 410. Because the SSI has the

SID is in the SSD but not in the CSD. The SID identifies
a new file or directory that exists on the server and
needs to be replicated on the client. In the case of a file
it must be downloaded; directories just need to be
created. In this case, the SSD also includes the meta­
data item for the file or directory.

SID is in the CSD but not in the SSD. The SID identifies
a file or directory that has been deleted on the server but
is still present on the client. The client SA must delete
the file or directory.

SID is present in both sets but in different directories. The
SID identifies a file or directory that has been moved
from one directory to another on the server. The client
SA must replicate the move. In this case, the SSD also
includes the metadata item for the file or directory that
includes the name of the file or directory. The name
must be checked in case the file was also renamed on
the server.

SID is present in both sets in the same directory. The SID
identifies a file that has not been moved or deleted on
the server. The client SA must still check the SSD for
a metadata item with the SID in case the file or
directory was renamed on the server.

With each change the client SA makes to the client native
file system it also makes corresponding updates to the client
metadata. When this process is complete, the client has
updated its CSD to reflect the changes sent by the server SFS
in the SSD.

At this point, the client SA is in sync with the server as
defined by the SSD it received from the server. The client SA
now checks its own client metadata for any changes it needs
to push to the server. These changes include new file
(upload), new directory, move, rename, and delete file or
directory.

On file upload and directory create operations the server
returns the SID assigned to the new file or directory so that
the client SA can store the SID in the client's file or directory
metadata item.

15 same value as the CSI, client 130 knows that client 130 is
synchronized with server 105. Then, ifthere are any changes
to push to server 105, client 130 can skip to FIG. 4C.
Otherwise, server 105 has changes that client 130 lacks.
Server 105 then sends the SSD to client 130 (in response to

20 a request for the SSD by the client), informing the client of
the pertinent changes, as shown in box 415. Specifically, the
SSD includes the SSI, the SIDs of any directories that
contain changes since the last time client 130 synchronized
with server 105, the SIDs of all items (files and directories)

25 in the changed directories, and the metadata of all items
(files and directories) that have been changed since the last
time client 130 synchronized with server 105.

As mentioned above, by comparing the SSD with the
CSD, client 130 can determine what changes have been

30 made to the account on server 105. Referring now to FIG.
4B, the four possible results of the comparison of the CSD
and SSD are shown. In box 420, a SID is found in the SSD
but not the CSD. Client 130 then requests the appropriate file
from server 105 or creates the appropriate directory in the

35 folder on the client. In box 425, a SID is found in the CSD
but not the SSD. Client 130 then deletes the appropriate file
or directory. In box 430, a SID is found in different direc­
tories in the CSD and SSD. Client 130 then moves (and if
necessary, renames) the appropriate file from one directory

40 to another. Finally, in box 435, a SID is found in the same
directory in both the CSD and SSD. Client 130 then checks
to make sure that the file has not been renamed on the server.

Note that the operations shown on FIG. 4B are performed
one at a time on individual files or directories. That is, on

45 FIG. 4B, the client determines updates to retrieve from the
server based on the comparison of the SSD with the CSD,
and requests changes from the server one file or directory at
a time. Once the client is finished performing the changes on

On move, rename and delete operations, the client SA
identifies the server file or directory by SID that is carried in 50

the client metadata.

one file or directory, the client checks to see if there are any
further changes to make based on the comparison of the SSD
with the CSD. If there are further changes, the client can

On all change operations except for delete, the client SA
passes the client change time (adjusted to server time) to the
server.

On each change operation the server SFS returns the SSI
of the change to the user's server data to the client. If the SSI
returned by a server change operation equals the client SA's
CSI plus one, it indicates that the client is the only changer
and it can update its CSD so that the next time it makes a
sync polling call it will not get its own changes returned in
the SSD. Updating the CSD includes updating the CSI as
well as making the necessary update to the CSD directory
SID sets to reflect the update.

If the SSI returned by the server is greater than the client
SA CSI plus one, it indicates that another client has made a
change to the server data. In this case, the client cannot
update its CSD or it would miss the changes made by the

perform any of boxes 420-435 on the next file or directory.
Once client 130 has downloaded all the pertinent changes

from server 105, client 130 can send all the pertinent
55 changes made on client 130 to server 105. Referring to FIG.

4C, in box 440 client 130 uploads a file to server 105, or
instructs server 105 to create a directory. Server 105
responds by sending back the SID for the newly uploaded
file/created directory, so that client 130 can store the SID in

60 the CSD. In box 445, client 130 sends the appropriate
instructions to server 105 to move, rename, or delete files
and directories. Finally, in box 450, server 105 sends to
client 130 the new SSI, reflecting the changes uploaded by
client 130. Client 130 can then compare the new SSI with the

65 current CSL As mentioned above, the new SSI will be one
greater than the current CSI if no other clients have syn­
chronized other changes with server 105. If the new SSI is

Box & Dropbox Exhibit 1025
Page 36

US 7,035,847 B2
11

one greater than the current CSI, then client 130 updates its
CSI, and the process is complete. Otherwise, client 130
knows that there are new changes to download from server
105, and the process can return to box 415 on FIG. 4A.

Note that the operations shown on FIG. 4C are iterative. 5

That is, as with FIG. 4B, the client uploads a single file to
the server, sends instructions to the server to create a single
directory, or sends instructions to the server to move,
rename, or delete a single file or directory. In response to the
client's instructions, the server sends the new SSI to the 10

client. In this mamier, the client can determine whether any
other clients are making changes in parallel with client 130.
If it happens that another client is making changes in parallel
with client 130, then the SSI received from server 105 will
be greater than expected. In that case, client 130 can use the 15

last "expected" SSI value as the CSI when the client requests
the new changes from the server. But note that client 130
does not interrupt the upload process to download the new
changes. Instead, client 130 completes its upload process
before returning to box 415 on FIG. 4A to download the 20

changes made on the server by the other client.

12
percentage of the file is actually changed. In addition,
changes tend to be localized. It is common that all the
changes to a file occur within a relatively short span. If the
server were to receive or transmit the entire file, even when
only a few bytes have changed, the server would be wasting
time transmitting or receiving information already present
on the destination machine.

Similarly, if a user has a slow network connection and has
made a small change to a large document, it can be time­
consuming to have to wait for the entire document to upload
or download. An embodiment of the invention uses MD As
to implement partial downloads and uploads to minimize the
amount of data that is transferred over the wire when a file
is updated. MDAs are arrays of 16-byte message digests
computed from each 4K block of a file. (A person skilled in
the art will recognize that other sizes of message digests and
blocks are possible and that synchronization can be per­
formed on parts of the file that are larger or smaller than a
single block.) Message digests are one-way hashes that have
an extremely low probability of collision, and as such are
quasi-unique identifiers for the blocks from which they were
computed. In an embodiment of the invention, the hash
function is an MD5 hash, although a person skilled in the art

When the client is uploading a file to the server, the client
starts by making a copy of the file. The client SA uses the
filter driver to read the file. The filter driver makes sure that
the copy operation does not interfere with an application
attempting to access the file during the copy. Copying the
file is relatively quick, and once the copy is made the client
SA can operate on the copy of the file without worrying
about another application on the client trying to access the
file. Once the file has been completely uploaded to the
server, the client can then delete the temporary copy of the
file.

25 will recognize that other hash functions can be used. The
client SA computes and compares MDAs. By comparing an
MDA computed by the client with an MDA retrieved from
the server, the client can identify individual blocks with
changes. After being uploaded to the server, MDAs are

30 stored with the file data in the server SFS database. Thus, if
data is changed in only one block, only that one block needs
to be transmitted. If the entire file is very large (and it is
common to see files that are megabytes in size), transmitting
only one block is very efficient relative to transmitting the

35 entire file.

FIG. 5 shows the client of FIG. 1 comparing the SSD with
the CSD, in order to determine which file has changed,
according to an embodiment of the invention. In FIG. 5, the
client has received SSD 505 from server 105. SSD 505
includes a new SSI (38), the SIDs of the directories that have
changed items (SID Ox 16), the SIDs of all items in the
changed directories (SID Ox 37, which is a new SID to client
130), and the metadata for the changed item. The metadata 40

is shown in box 510. In particular note that metadata 510
includes the PFID of Ox 2A. Client 130 locates the metadata
item for the file with SID Ox 2A in its client metadata. From
the client metadata item the client can construct the path for
the file. This path identifies the previous version of the file, 45

if it exists. (Another tactic the client can use to determine if
the file has a previous version is to see if the client's
directory corresponding to the directory in which file resides
on the server has a file with the same name as that in the
metadata provided by the server.) Client 130 can then 50

request the MDA of the file with (new) SID Ox 37to
determine which blocks of the file have been changed.

Partial Downloads and Uploads
A single server can support folders for a large number of

users, and each user can have several clients accessing a 55

single folder. Communicating with all of these clients can
take time, and while a server is communicating with one
client, the server has less processing capability to support a
second client. After some number of simultaneous client
requests, the server camiot service any additional clients. It 60

is therefore desirable to minimize the amount of data a
server sends to or receives from a client, so that other clients'
requests can be handled in a timely manner.

FIG. 6 shows an example hash function used by the client
of FIG. 1 to reduce the amount of information transmitted
between the client and server, according to an embodiment
of the invention. In FIG. 6, hash function 605 is used to
calculate the message digests of the MDA. Hash function
605 takes a block of the file, such as block 610 of file 615,
and computes the message digest, such as message digest
620 in MDA 625. MDA 620 can then be used to determine
if the file can be only partially uploaded. If at least a
threshold number of message digests in the MDAs on the
client and server match, then only the blocks corresponding
to message digests that differ between the client and server
need to be transmitted. On the other hand, if less than a
threshold number of message digests in the MDAs match,
the entire file is transmitted.

Upload

Before the client SA uploads a file, it computes an MDA
from the file. It then requests from the server the MDA for
the version of the file on the server by sending to the server
the SID of the file, the name of the file, and the directory to
which the file is to be uploaded. The server then checks to
see if it has a file with that SID or if there is a file with the
same name as that specified by the client in the directory to
which the client is uploading the file. If the server finds a
version of the file, it returns the file's MDA to the client. The
client SA compares the two MD As and if a sufficiently high
number of message digests match, it performs a special
upload where only the differing message digests and their Often, when files are updated, only a portion of a file is

changed. For example, when a text document is edited, some
paragraphs are removed, and other paragraphs are inserted.
Not every byte in the file is changed: usually, only a small

65 corresponding 4K data blocks are uploaded. The server
constructs the new version of the file by starting with a copy
of the previous version and modifying it with the uploaded

Box & Dropbox Exhibit 1025
Page 37

US 7,035,847 B2
13

data. Once the file has been completely uploaded, the server
then stores the file in the specified directory and updates the
file metadata.

Download
Before the client SA downloads a file, it attempts to find 5

a previous version of the file. The client SA can use the PFID
passed down by the server with the new synchronization
metadata to this end. If a previous version exists, the client
SA uses the filter driver to copy the file. This allows other
applications to access the original file without interference 10

from the client SA. The client also computes a MDA from
the file. The client SA then requests the MDA from the file
to be downloaded and compares the two MD As. If the two
arrays are sufficiently similar, the client SA performs a
special download where it requests the specific 4K blocks 15

that have differing message digest values. It creates the
download file by modifying the copy of the file with the
requested downloaded 4K blocks. On the other hand, ifless
than a threshold number of message digests in the MDAs
match, then the entire file is downloaded from the server. 20

Once the download file is completely constructed, the client
inserts the download file into its final location, replacing an
older version of the file if it exists.

FIG. 7 shows the client of FIG. 1 pulling a specific block
from the server, according to an embodiment of the inven- 25

tion. Although FIG. 7 is shown in terms of synchronizing the
client with the server by downloading a block from the
server, a person skilled in the art will recognize that FIG. 7
can be easily modified to show the client uploading a block
to the server. In FIG. 7, client SA 337 compares the message 30

digests received from the server (MDA 705) with the
message digests computed on the client (MDA 710). In
particular, the comparison identifies that one block in the file
on the client, with message digest 715, differs from one
block on the server, with message digest 720. By comparing 35

MDAs 705 and 710, client SA 337 can identify the block to
pull down from the server, shown by arrow 725. Note that
since other blocks, such as blocks 730 and 735, have the
same message digest, these other blocks are not retrieved
from the server. 40

Accessing Files
The client SA uses a driver read function exported by its

filter driver when the client SA reads files in the directory on
the client. The client SA reads files in two situations: during
file uploads, and during partial downloads when it computes 45

an MDA for a current file.
The client SA uses the exported driver read function so

that it can read files within the user's directory without
interfering with running applications. When the client SA
makes a driver read call, the driver monitors file system 50

activity to detect if any other processes attempt to access the
file during the call. If an access is detected, the filter driver
temporarily suspends the operation, cancels the client SA
read call, and then releases the suspended operation so that

14
CSD with the SSD to identify any changes on the server that
the client is lacking. At step 840, the client synchronizes
with the server to download any changes on the server. At
step 845 (FIG. SC), the client checks to see if it has any
changes that need to be sent to the server. If so, then at step
850 the client sends the changes to the server.

FIGS. 9A-9E show a flowchart of the procedure used to
pull changes from the server to a client of FIG. 1, according
to an embodiment of the invention. In FIG. 9A, at step 902,
the client computes the SSD and CSD set of SIDs, which is
the union of the set of SIDs in the directories of the SSD with
the set of the SIDs in the same directories of the CSD. At
step 905, the client selects an SID in the SSD and CSD set.
At step 910, the client checks to see if the SID is in the SSD
but not the CSD. If the SID is in the SSD but not the CSD,
then there is a file or directory on the server not on the client.
At step 915, the client downloads the file from the server or
creates a directory.

At step 920 (FIG. 9B), the client checks to see if the SID
is in the CSD but not the SSD. If so, then at step 925 the
client deletes the file/directory on the client. At step 930, the
client removes the metadata item for the file/directory from
the client metadata. Finally, at step 935, the client removes
the SID from the CSD.

At step 940 (FIG. 9C), the client checks to see if the SID
is in different directories in the CSD and SSD. If the SID is
in different directories in the CSD and SSD, then at step 945
the client moves the file/directory on the client to the
directory specified by the SSD. At step 950, the client
updates the metadata for the item in the client metadata.
Finally, at step 955, the client moves the SID in the CSD to
reflect the change made on the client.

At step 960 (FIG. 9D), the client checks to see if the SSD
includes a metadata item for the SID. Note that this check is
made whether or not the SID was determined to have been
moved to a different directory at step 940 (on FIG. 9C). If
the SSD includes a metadata item for the SID, then at step
965 the client checks to see if the SSD metadata item has a
different name from the name for the SID on the client. At
step 970, the client checks to see if the client metadata item
has a more recent change than the SSD metadata item. If the
SSD metadata item includes a rename that is more recent
than any file rename on the client, then at step 975 (FIG. 9E)
the file/directory on the client is renamed, and at step 980 the
client metadata is updated to match the SSD metadata item
name. If the SSD did not include a metadata item for the
SID, or if the name is the same, or if the client renamed the
file more recently than the server did, then steps 975 and 980
are not performed.

Regardless of the results of the checks at steps 910, 920,
940, 960, 965, and 970, at step 985 the client checks to see
if there are any further SIDs in the SSD and CSD that need

it can proceed normally.
Flowcharts

55 to be checked. If there are any remaining SIDs to check, then
at step 990 the client gets the next SID and returns to step
910 (on FIG. 9A). Otherwise, at step 995 the client sets the
CSI to the value of the SSI, and the client has retrieved all

FIGS. 8A-11F show flowcharts of the procedures used to
synchronize the client and server. FIGS. SA-SB show a
flowchart of the procedure for synchronizing the clients and
server of FIG. 1, according to an embodiment of the inven- 60

tion. In FIG. SA, at step 805, the client sends the CSI to the
server. At step 810, the client receives the SSI from the
server. At step 815, the client compares the CSI and SSL
Step 820 branches, based on whether or not the client is in
sync with the server. If the client is not in sync with the
server, then at step 825 (FIG. SB), the client receives the
SSD from the server. At step 830, the client compares the

changes from the server.
FIGS. l0A-lOC show a flowchart of the procedure used

to download files from the server to a client of FIG. 1,
according to an embodiment of the invention. At step 1005,
the client locates the SSD metadata item for the SID. At step
1010, the client determines if the item is a file. If the item is

65 not a file, then at step 1012 the client creates the directory.
Otherwise, if the client is a file, then at step 1015 the client
uses the PFID, the parent directory SID, and the metadata

Box & Dropbox Exhibit 1025
Page 38

US 7,035,847 B2
15

item name to locate the file, if it can. At step 1020 the client
checks to see if it was able to locate a previous version of the
file.

If the client was able to locate a previous version of the
file, then at step 1025 (FIG. l0B) the client copies the 5

previous version of the file to a temporary file, using the
filter driver read function. At step 1030, the client computes
the MDA for the temporary file. At step 1035, the client
retrieves the MDA for the file from the server. At step 1040,
the client compares the received and computed MDAs. At 10

step 1045, the client checks to see how many message
digests in the compared MDAs matched. If an insufficient
number of message digests matched between the compared
MD As, or if the client could not locate a previous version of
the file at step 1020 (on FIG. l0A), then at step 1050 the 15

client downloads the entire file.

16
If the change to push to the server at step 1107 (on FIG.

llA) was not a file upload, then at step 1145 (FIG. llD) the
client checks to see if the change is to create a directory on
the server. If so, then at step 1147 the client sends the
directory create request and the client metadata item to the
server. At step 1150, the server creates the directory. At step
1152, the server updates the SSI, and at step 1155 the server
assigns a SID and a sync index (the value of the SST) to the
directory.

At step 1157 (FIG. llE), whether the client was uploading
a file to the server or creating a directory on the server, the
client receives the SSI and the SID. At step 1160, the client
inserts the SID into the client metadata item.

If the change to push to the server at steps 1107 and 1145
was neither a file to upload nor a directory to create, then the
change was a move, rename, or delete operation. At step
1162, the client sends the move, rename, or delete instruc­
tion to the server. The server performs the operation. At step
1165 the server updates the SSI, and at step 1167 the client
receives the SSL

At step 1170 (FIG. llF) regardless of what change the
client pushed to the server, the client checks to see if the
received SSI is the expected value. If the received SSI is
equal to the CSI plus one, then no other client has been

But if a threshold number of message digests matched
between the compared MDAs, then at step 1055 (FIG. l0C)
the client requests and receives the changed blocks (as
opposed to the entire file) from the server. At step 1060, the 20

client constructs the download file from the temporary file
and the received changed blocks. At step 1065, whether the
client downloaded the entire file or only the changed blocks,
the client moves the downloaded file to the directory in
which it is to be stored. 25 updating files or directories in the account. At step 1172, the

client updates the CSI to reflect the new SSI, and at step
1175 the client updates the CSD to reflect the transmitted
change. If the received SSI was greater than the CSI plus
one, then another client must have made changes to the

At step 1075, whether the downloaded item was a file or
a newly created directory, the client creates a new metadata
item for the SID from the SSD metadata item. At step 1080,
the client adds the SID to the CSD.

FIGS. llA-llF show a flowchart of the procedure used to
push changes to the server from a client of FIG. 1, according

30 account. In that case, the client skips steps 1172 and 1175,
so that on the next synchronization cycle the client will
receive in the SSD the changes made relative to the current
CSL

to an embodiment of the invention. At step 1105, the client
gets the first change to push to the server. At step 1107, the
client checks to see if the change is a file to upload to the
server. If the change is a file to upload, then at step 1110 the 35

client makes a temporary copy of the file, using the filter
driver read function. At step 1112, the client computes the
MDA for the temporary copy of the file. At step 1115, the
client sends the SID, the parent directory SID, and the file
name to the server. 40

At step 1177, the client checks to see if there are any
further changes to push to the server. If there are, then at step
1180, the client gets the next change, and processing returns
to step 1107 (on FIG. llA) to upload the next change.
Otherwise, if there are no further changes to push to the
server, then the client is finished uploading changes.

Browser Access
At step 1117 (FIG. llB), the server determines if a

previous version of the file is on the server. If not, then at
step 1120 the entire file, the MDA, and the client metadata
item are uploaded to the server. If the server was able to
locate a previous version of the file, then at step 1122 the 45

client requests and receives the MDA of the previous version

An applet provides a browser-based access to a user's data
on the server. In an embodiment of the invention, the applet
does not perform synchronization; it simply allows the user
to access his data from the browser without requiring the
client SA. But a person skilled in the art will recognize that
the applet can be implemented to perform synchronization

of the file. At step 1125, the client compares the received
MDA with the MDA computed for the temporary copy of the
file. At step 1127, the client determines if a threshold number

with the client. The applet is preferably implemented in
Java, but a person skilled in the art will recognize that tools
other than Java can be used.

of message digests match between the computed and 50

received MDAs. If an insufficient number of message
digests match between the received and computed MDAs,
then the client returns to step 1120 and uploads the entire
file.

When the applet is launched it makes a sync poll call
passing a CSI of zero to the server. The server SFS returns
all of the metadata for the user's account. The applet
processes this data, decrypting the name fields if the account
is encrypted, and presents the server directory tree to the

If a threshold number of message digests match between
the received and computed MDAs, then at step 1130 (FIG.
llC) the client uploads the changed blocks and message
digest values to the server. At step 1132, the client uploads
the client metadata item to the server. At step 1135, the
server constructs the uploaded file from the previous version
of the file and the received blocks.

At step 1137, whether the client performed a partial or full
upload of the file, the server inserts the uploaded file, MDA,
and metadata item into the server SFS database. At step
1140, the server updates the SSI, and at step 1142, the server
assigns a SID and a sync index (the value of the SSI) to the
file.

55 user. Using this information, the user can download files or
make changes to the server much like the second (push)
stage of client synchronization. Applet functions include file
upload and download, create directory, and move, rename or
delete files or directories in the server account. The applet

60 also encrypts file data during file uploads and decrypts file
data during file downloads if the account is encrypted.

FIG. 12 shows a browser running the applet displayed on
a client of FIG. 1 used for downloading and uploading of
files, and for directory maintenance, according to an

65 embodiment of the invention. In FIG. 12, browser 1205
includes window 1210, in which directory structure 1215 is
displayed. Directory structure 1215 includes three files orga-

Box & Dropbox Exhibit 1025
Page 39

US 7,035,847 B2
17

nized into two directories, but a person skilled in the art will
recognize that other directory structures are equally pos­
sible. By selecting a file or directory (a directory is consid­
ered a specialized type of file), the user can make changes.
For example, in FIG. 12 the user has selected file 1217.
Pop-up dialog box 1220 presents the user with options.
Specifically, the user can download the file from the server
to the client (option 1225-1), upload the file to the server
from the client (option 1225-2), rename the file on the server
(option 1225-3), delete the file on the server (option 10

1225-4), or move the file to a different directory on the
server (option 1225-5).

There are typically two situations where the browser/
applet combination is typically used. The first is where the
client is a thin client, capable of running a browser and an 15

applet, but not the full client SA. The second situation where
the browser/applet is typically used is where the client is
untrusted. For example, a user might need to show a file to
another party, and wish to do so using the other party's
computer (as might happen if the user does not bring a 20

portable computer with him). If the user does not trust the
other party, the user would not want to install the client
software on the other party's computer. Doing so could give
the other party access to the user's files.

By using the browser and applet of FIG. 12, a person 25

skilled in the art will recognize how client access using an
untrusted computer can be achieved. Most computers today
include a browser with Java capability. By simply accessing
the applet for his folder on the server, a user can access his
files without effecting a full installation of the client on an 30

untrusted computer.
An embodiment of the invention includes a library that

provides direct access to server accounts, equivalent to the
access given by the applet discussed above. This library can
be used by middle tier applications to access account data 35

and deliver it via HTML (Hyper Text Markup Language) to
thin clients using a SSL connection.

Three additional points not previously discussed are
worth mentioning. The first is that before a server allows a
user access to a folder for purposes of synchronization, the 40

server can authenticate the user, to make sure that the user
is authorized to access the folder. FIGS. 13A-13B show a
flowchart of a procedure for permitting or denying the
clients of FIG. 1 access to the files on the server of FIG. 1,
according to an embodiment of the invention. In FIG. 13A, 45

at step 1305, the user logs in to the system, providing his ID
and password. This information is encrypted in step 1310, to
protect the data from unauthorized access. At step 1315, the
encrypted user ID and password are sent to the server. At
step 1320, the encrypted user ID and password are for- 50

warded to a third-party authentication service. Note that if
the server does its own authentication, step 1320 can be
skipped. At step 1325, the encrypted user ID and password
are compared with the kuown user ID/password combina­
tions to see if the encrypted user ID and password are 55

recognized. At step 1330 (FIG. 13B), a decision is made. If
the user is authorized, then at step 1335, the user is permitted
to access the folder. Otherwise, at step 1340, the user is
denied access to the folder.

Although the procedure shown in FIGS. 13A-13B 60

authenticates a user before permitting access to the folder on
the server, a person skilled in the art will recognize that
authenticating a user is not needed while a user is making
changes locally on a client. The filter drivers can track
changes made locally, even while disconnected from the 65

server. The user can later log in to the server and be
authenticated, at which point changes can be migrated to the

18
server. Thus, the steps of FIGS. 13A-13B are not a prereq­
uisite to using the folder on the client.

The second point is that in some environments, the data
on the server can be encrypted but the user of the folder not
trusted to reveal his encryption key if needed. For example,
consider a business environment, where users are employees
of the company. For security reasons, the company wants the
data in the synchronization folder to be encrypted. But what
if the employee leaves without revealing his encryption key?
Then the data is lost to the company. The solution is to use
a key escrow service.

FIG. 14 shows the clients and server of FIG. 1, the server
using a key escrow server, according to an embodiment of
the invention. In FIG. 14, server 105 is connected to key
escrow server 1405, which includes key escrow database
1410. Key escrow database 1410 stores encryption keys
used by the clients to encrypt the data stored in folders
115-1, 115-2, and 115-3. If the clients lose the keys (for
example, the users forget the keys, or choose not to reveal
the keys to the appropriate parties upon request), the encryp­
tion keys can be recovered from key escrow database 1410
upon the showing of the appropriate authority.

The third point is that network administration is not
complicated. Although a network administrator might not be
able to determine to which user a particular file belongs, the
network administrator has tools that make database main­
tenance simple. For example, the network administrator can
move a user's folder from one server to another, by speci­
fying the user's name. The appropriate identifier for the user
can be determined, and the database (preferably not directly
readable by the network administrator) can be read to
determine which files belong to that user. The identified files
can then be moved to another server, without any of the
contents, file names, or directory structure being visible to
the network administrator. And, except for the change in
server to which the user must log in, the move can be
completely transparent to the user.

The network administrator can also set policies. A policy
is a rule that controls operation of the folder by the user. For
example, a network administrator can set a policy that caps
folder size for users at five megabytes. Policies can be set
globally (i.e., applying to all user accounts), in groups (to a
coordinated set of user accounts) or individually (to a
specific user account). Individual user policies override
group policies, which in turn override global policies. Pref­
erably, overriding policies do not contradict more general
policies. For example, a network administrator can set a
global policy that data be encrypted by the clients, and then
set an individual policy for certain users requiring key
escrow of the encryption keys. But the network administra­
tor should not be permitted to set a global policy requiring
encryption, then set a policy permitting certain users to store
files in cleartext. However, in an alternative embodiment of
the invention, more specific policies can contradict more
default policies.

Having illustrated and described the principles of our
invention in an embodiment thereof, it should be readily
apparent to those skilled in the art that the invention can be
modified in arrangement and detail without departing from
such principles. We claim all modifications coming within
the spirit and scope of the accompanying claims.

Box & Dropbox Exhibit 1025
Page 40

US 7,035,847 B2

CID:
CSD:
CS!:
DSI:
FSI:
HTML:
HTTP:
MDA:
PDA:
PFID:
SA:
SFS:
SI:
SID:
SSD:
SSI:

19

Glossary

Client ID
Client Sync Data
Client Sync Index
Directory Sync Index
File Sync Index
HyperText Markup Language
HyperText Transport Protocol
Message Digest Array
Personal Digital Assistant
Previous Version File ID
Synchronization Application
Synchronization File System
Sync Index
Server ID

10

15

20
11. A synchronization file system installed on a server,

comprising
a directory in a user account in the sync file system;
a server ID assigned to the directory;
a directory sync index (DSI) assigned to the directory;
a file in the directory;
a message digest array (MDA), the MDA is an array of

hashes of blocks of the file;
means for transmitting the MDA to the client;
a file sync index (FSI) assigned to the file; and
a server sync index (SSI) for the user account.
12. A synchronization file system according to claim 11,

further comprising a metadata item for the directory storing
the server ID assigned to the directory.

13. A synchronization file system according to claim 12,
wherein the metadata item for the directory further stores a
directory sync index assigned to the directory.

SSL:
TCP/IP:

Server Sync Data
Server Sync Index
Secure Sockets Layer
Transmission Control Protocol/Internet Protocol

14. A synchronization file system according to claim 12,
wherein the metadata item for the directory further stores a

20 change time assigned to the directory.

The invention claimed is:
1. A synchronization file system installed on a server,

comprising:
a server sync index (SSI) for the synchronization file 25

system;
a first directory entry for a directory, including a first

metadata item containing a directory sync index(DSI);

15. A synchronization file system according to claim 12,
wherein:

the directory includes a name; and
the metadata item for the directory further stores an

encrypted name assigned to the directory.
16. A synchronization file system according to claim 11,

further comprising:
a second server ID assigned to the file.

a second directory entry for a file, including a second
metadata item containing a file sync index(FSI);

means for storing a message digest array (MDA), wherein
the MDA is an array of hashes of blocks of the file;

means for transmitting the MDA to the client; and

17. A synchronization file system according to claim 16,
30 further comprising a metadata item for the file storing the

second server ID assigned to the file and the FSI assigned to
the file.

means for assigning a server ID (SID) to at least one of the
first metadata item for the first directory entry and the 35

second metadata item for the second directory entry.
2. A synchronization file system according to claim 1,

further comprising means for updating the SSI when a
change occurs to the first directory entry.

3. A synchronization file system according to claim 1, 40

further comprising means for storing a change time to the
metadata item for the directory entry.

4. A synchronization file system according to claim 1,
further comprising means for assigning a previous version
file ID (PFID) to the second metadata item. 45

5. A synchronization file system according to claim 1,
wherein:

the second directory entry includes a name; and
the synchronization file system further comprises means

50
for storing an encrypted version of the name in the
metadata item for the second directory entry.

6. A synchronization file system according to claim 1,
further comprising means for storing an encrypted version of
the file.

7. A synchronization file system according to claim 1,
wherein the means for storing includes means for storing the
MDA with the file.

55

8. A synchronization file system according to claim 1,
wherein the means for storing includes means for storing the 60
MDA in the metadata item.

9. A synchronization file system according to claim 1,
further comprising means for generating a server sync data
(SSD).

10. A synchronization file system according to claim 9, 65

wherein the means for generating includes means for gen­
erating a SSD responsive to a client sync index (CSI).

18. A synchronization file system according to claim 17,
wherein the metadata item f or the file further stores a
previous version file ID (PFID) assigned to the file.

19. synchronization file system according to claim 17,
wherein the metadata item for the file further stores a change
time assigned to the file.

20. A synchronization file system according to claim 17,
wherein:

the file includes a name; and
the metadata item for the file further stores an encrypted

name assigned to the file.
21. A synchronization file system according to claim 16,

wherein the file is an encrypted file.
22. A synchronization file system according to claim 11,

wherein the MDA is stored with the file.
23. A synchronization file system according to claim 11,

wherein the MDA is stored in a metadata item for the file.
24. A synchronization file system according to claim 11,

further comprising a server sync data (SID).
25. A synchronization file system according to claim 11,

further comprising:
a first metadata item for the directory to store the DSI; and
a second metadata item for the directory to store the FSI.

comprising a server sync data (SSD).
26. A method for a synchronization file system of a server

to synchronize a first directory on the synchronization file
system with a second directory on a client, comprising:

receiving a client sync index (CSI) from the client;
transmitting a server sync index (SSI) to the client;
using the CSI and SSI to determine whether the server and

client are synchronized; and if the server and client are
not synchronized:

generation a server sync data (SSD), the SSD including
the SSI and a directory sync index (DSI);

transmitting the SSD to the client;

Box & Dropbox Exhibit 1025
Page 41

US 7,035,847 B2
21

receiving a request for a message digest array (MDA) for
a file, wherein the MDA is an array of hashes of blocks
of the file; and

transmitting the MDA to the client.
27. A method according to claim 26, further comprising: 5

receiving a request from the client for the file; transmitting
the file to the client.

28. A method according to claim 26, wherein:
receiving a request includes receiving a request from the

client for one block of the file; and 10

transmitting the file includes transmitting the requested
block of the file to the client.

29. A method according to claim 26, wherein generating
a server sync data (SSD) includes generating the server sync
data (SSD), the SSD including the SSI, a directory sync 15

index (DSI), and a file sync index (FSI).
30. A synchronization file system (SFS) of a server to

synchronize a first directory on the synchronization file
system with a second directory on a client, comprising:

receiving an instruction from the client to update a first 20

directory entry and a second directory entry; including
receiving a request for a message digest array (MDA),
wherein the MDA is an array of hashes of blocks of the
file;

performing the instruction, including transmitting the 25

MDA to the client;
updating a server sync index (SSI); and
updating a directory sync index (DSI) for the first direc­

tory entry;
updating a file sync index (FSI) for the second directory 30

entry; and
transmitting the updated SSI, the updated DSI and the

updated FSI to the client.
31. A method according to claim 30, further comprising

the synchronization file system assigning the SSI to a 35

metadata item.
32. A method according to claim 30, wherein:
receiving an instruction further includes receiving a meta­

data item from the client; and
performing the instruction further includes adding the 40

metadata item to a server SFS database.
33. A method according to claim 30, wherein performing

the instruction further includes modifying a metadata item.
34. A method according to claim 30, wherein performing

an instruction further includes: 45

creating a third directory in the first directory;
assigning a server ID (SID) to the third directory; and
transmitting the SID for the third directory to the client.
35. A method according to claim 34, wherein assigning a

server ID (SID) to the third directory includes storing the 50

SID in a metadata item for the third directory.
36. A method according to claim 30, wherein performing

an instruction further includes:

22
receiving a second file from the client;
adding the second rile into a server SFS database;
assigning a server ID (SID) to the second file; and
transmitting the SID:for the second file to the client.
37. A method according to claim 36, wherein receiving a

second file includes:
copying the second file to a temporary file;
receiving a block of the second file;
incorporating the block into the temporary copy of the

second file; and
adding the temporary copy of the second file into a server

SFS database.
38. Computer-readable media containing a program for a

synchronization file system of a server to synchronize a first
directory on the synchronization file system with a second
directory on a client, comprising:

software for receiving a client sync index (CSI) from the
client;

software for transmitting a server sync index (SSI) to the
client;

software for using the CSI and SSI to determine whether
the server and client are synchronized; and if the server
and client are not synchronized:

software for generation a server sync data (SSD), the SSD
including the SSI and a directory sync index (DSI);

transmitting the SSD to the client;
software for receiving a request for a message digest array

(MDA) for a file, wherein the MDA is an array of
hashes of blocks of file; and

software for transmitting the MDA to the client.
39. Computer-readable media containing a program for a

synchronization file system of a server to synchronize a first
directory on the synchronization file system with a second
directory on a client, comprising:

software for receiving an instruction from the client to
update a first directory entry and a second directory
entry, including receiving a request for a message
digest array (MDA) for the file, the MDA is an array of
hashes of blocks of the file;

software for performing the instruction, including trans­
mitting the MDA to the client;

software for updating a server sync index (SSI);
software for updating a directory sync index (DSI) for the

first directory entry;
software for updating a file sync index (FSI) for the

second directory entry; and
software for transmitting the updated SSI, the updated

DSI and the updated FSI to the client.

* * * * *

Box & Dropbox Exhibit 1025
Page 42

