
1111111111111111 IIIIII IIIII 1111111111 11111 11111 111111111111111 1111111111 1111111111 11111111 
US 20110022356Al 

c19) United States 
c12) Patent Application Publication 

Nussbaum et al. 
c10) Pub. No.: US 2011/0022356 Al 
(43) Pub. Date: Jan. 27, 2011 

(54) DETERMINING PERFORMANCE 
SENSITIVITIES OF COMPUTATIONAL 
UNITS 

(76) Inventors: Sebastien Nussbaum, Lexington, 
MA (US); Alexander Branover, 
Chestnut Hill, MA (US); John 
Kalamatianos, Arlington, MA (US) 

Correspondence Address: 
ZAGORIN O'BRIEN GRAHAM LLP (1001) 
7600B NORTH CAPITAL OF TEXAS HIGHWAY, 
SUITE 350 
AUSTIN, TX 78731-1191 (US) 

(21) Appl. No.: 

(22) Filed: 

12/508,902 

Jul. 24, 2009 

Publication Classification 

(51) Int. Cl. 
G06F 15100 (2006.01) 

System On Chip 
(SOC) 

B Core 1 
101 1 

111 

Performance Power 
Analysis Allocation 
Control Control 

(52) U.S. Cl. ........................................................ 702/182 

(57) ABSTRACT 

Performance sensitivities to a change in performance capa­
bilities of computational units of a computer system are deter­
mined based on measured utilization metrics for each of the 
computational units. In order to determine the performance 
sensitivities, in one approach, the computational units are 
operated at a first performance level, and respective first uti­
lization metrics are determined. The computational units are 
then operated at a second performance level and respective 
second utilization metrics are determined. The sensitivity to 
performance capability change, e.g., a frequency change, is 
determined based on the respective first and second utiliza­
tion metrics. The performance sensitivities of the computa­
tional units to a change in performance capability are con­
tinually updated in response to, e.g., a process context change 
of a computational unit or in response to a predetermined 
period of time elapsing since the last sensitivity to a perfor­
mance capability change was determined for a computational 
unit. 

100 

Core N 
1Q1 

North-Bridge & DRAM 
Memory Controller 

109 
107 

1/0 
Bridge 

Graphics Processing Unit 
(GPU) 

103 

' 

'°" 

Petitioner Samsung Ex-1007, 0001



Patent Application Publication Jan. 27, 2011 Sheet 1 of 5 

System On Chip 
(SOC) 

G 1 

111 

Performance 
Analysis 
Control 

1/0 
Bridge 

100 

Core 1 Core N 
1Q1 1Q1 

North-Bridge & 
Power Memory Controller 

Allocation 
Control 109 

Graphics Processing Unit 
(GPU) 

FIG. 1 

107 

US 2011/0022356 Al 

DRAM 

Petitioner Samsung Ex-1007, 0002



Patent Application Publication Jan. 27, 2011 Sheet 2 of 5 US 2011/0022356 Al 

APPLY LOW FREQUENCY CLOCK 
SIGNAL TO CORE BEING 

i----.,, 

ANALYZED FOR A FIRST TIME 
201 

PERIOD 

SAMPLE AND AVERAGE 
CORE IPC DURING FIRST r----, 20 3 

TIME PERIOD 

APPLY HIGH FREQUENCY CLOCK 
SIGNAL TO CORE BEING 

ANALYZED FOR A SECOND TIME 
r----, 205 

PERIOD 

'' 
SAMPLE AND AVERAGE 

CORE IPC DURING r---- 20 7 
SECOND TIME PERIOD 

'' 
DETERMINE IPS 1-IPS2 AS BOOST 

r--,, 209 
SENSITIVITY 

'' 
STORE BOOST SENSITIVITY, 

PROCESS CONTEXT, AND CORE r--,, 211 
NUMBER 

FIG. 2 

Petitioner Samsung Ex-1007, 0003



Patent Application Publication Jan. 27, 2011 Sheet 3 of 5 

30 

, .. ------- ... __ 
,- •, 

301 / •• 
Core0 \ Core1 

' ' \ 
\ 
' I 
I 
I 
I 

: 
I 

: . . . 

Core2 

US 2011/0022356 Al 

Core3 

111 

Performarf.!::e Northbrid_. ~e + DOR Controller 
Analysis\ ~--,.----------~ 
Control -. ,• ~--~·-- _,, "'•·---------

FIG. 3 

PERFORMANCE TABLE 
IPC1 401 FREQ1 

/ 405 
Result C# CONTEXT TIME 

X 

'Iii,. 

x, 
407 

IPCZ FREQZ 

FIG. 4 

Petitioner Samsung Ex-1007, 0004



Patent Application Publication Jan. 27, 2011 Sheet 4 of 5 US 2011/0022356 Al 

(3) 

Wait for State change 
~------------------+ in any of on-die 

Track TOP _SOC_Margin 

503 

NO .,_-(3) 

NO (2) 

509 

Calculate New TOP _SOC_Margin = 
TOP _SOC_Margin - Sum 

(CoreBoostPwr - Core_Pwr) 
for all cores at PO 

Transition all Cores in PO to 
P-boost state. Update 

TOP _SOC_Margin: 
TOP _SOC_Margin = New 

TOP _SOC_Margin 

(3) 

FIG. 5 

(1) Components 

Identify Cores with highest 
Boost Sensitivity 

Prioritize Cores in PO 
state by Boost Sensitivity 

in decreasing order. 

517 

519 

One-by-one remove Core with lowest 
Boost Sensitivityfrom the list and 

re-calculate New TOP _SOC_Margin. 
Stop when New TOP _SOC_Margin is 
> 0. Transition from PO to P-boost 

all Cores that are still in the list. 
Update TOP _SOC_Margin = New 

TOP _SOC_Margin 

NO 

525 

Calculate New TOP _SOC_Margin = 
TOP _SOC_Margin - (GpuBoostPwr 
- GPU_PwrO) 

NO 
>--+(3) 

Transition GPU to its P-boost state. 
Update TOP _SOC_Margin with New 

TOP _SOC_Margin 

(3) 

Petitioner Samsung Ex-1007, 0005



Patent Application Publication Jan. 27, 2011 Sheet 5 of 5 US 2011/0022356 Al 

IDENTIFY CPU-BOUNDED OR 
~ 

GPU-BOUNDED APPLICATION 
601 

' 

REVIEW STORED FREQUENCY 
-.....160 -SENSITIVITY INFORMATION 

3 

,. 

IDENTIFY SUBSET TO THROTTLE --.J 605 

,, 

LIMIT PERFORMANCE OF 
SUBSET OF COMPUTATIONAL ~6 07 

UNITS 

' 
PROVIDE POWER HEADROOM 

TO BOUNDED r----' 6 09 
COMPUTATIONAL UNIT(S) 

FIG. 6 

Petitioner Samsung Ex-1007, 0006



US 2011/0022356 Al 

DETERMINING PERFORMANCE 
SENSITIVITIES OF COMPUTATIONAL 

UNITS 

BACKGROUND 

[0001] 1. Field of the Invention 
[0002] This invention relates to power allocation in com­
puter systems and more particularly to allocating power to 
improve performance. 
[0003] 2. Description of the Related Art 
[0004] Processors run at various performance levels in an 
effort to match power consumption to work load require­
ments. The performance levels are typically determined by 
voltage/frequency combinations used by the processor. As 
processors become ever more highly integrated with multiple 
cores and other functionality, the power and thermal consid­
erations remain of considerable importance. 

SUMMARY OF EMBODIMENTS OF THE 
INVENTION 

[0005] In order to provide improved performance, an 
embodiment enables analysis of workload executed on com­
putational units to help identify those computational units 
that are more performance sensitive to a change in perfor­
mance capability caused by, e.g., a frequency change. 
[0006] In one embodiment, a method is provided that 
includes determining respective performance sensitivities to 
a change in performance capability of each of a plurality of 
computational units of a computer system based on measured 
utilization metrics for each of the computational units. The 
performance sensitivities to may be determined by determin­
ing respective first utilization metrics of the computational 
units associated with a first performance level and determin­
ing respective second utilization metrics of the computational 
units associated with a second performance level. The perfor­
mance sensitivities of the respective computational units are 
determined based on the respective first and second utiliza­
tion metrics, e.g., as a difference between the first and second 
utilization metrics. The performance sensitivity of each of the 
computational units is continually updated in response to, 
e.g., a process context change of a computational unit or a 
predetermined period of time elapsing since the last perfor­
mance sensitivity was determined. 
[0007] In another embodiment, an integrated circuit is pro­
vided that includes a plurality of computational units and 
control logic configured to determine respective performance 
sensitivities for each of the plurality of computational units. 
In an embodiment, the control logic applies clock signals at 
respective first frequencies to respective ones of the compu­
tational units during respective first evaluation periods and 
determines respective first utilization metrics. The control 
logic applies the respective clock signals at respective second 
frequencies to the respective ones of the computational units 
during respective second evaluation periods and determines 
respective second utilization metrics. The respective perfor­
mance sensitivities for the plurality of computational units 
may be determined based on the respective first and second 
utilization metrics. In an embodiment, the integrated circuit 
determines boost sensitivity of a computational unit in 
response to a process context change associated with the 
computational unit. The integrated circuit may determine 
performance sensitivity of a computational unit in response to 

1 
Jan. 27, 2011 

passage of a predetermined period of time since a perfor­
mance sensitivity was previously determined for the compu­
tational unit. 
[0008] In still another embodiment, a computer system is 
provided that includes a plurality of computational units. The 
computer system is configured to determine respective per­
formance sensitivities for each of the plurality of the compu­
tational units based on respective first and second perfor­
mance metrics measured for each of the computational units. 
The respective boost sensitivities may be determined for 
respective ones of the computational units in response to an 
elapsed period of time since a previous boost sensitivity deter­
mination was made and/or a process context switch for the 
computational unit. 

DESCRIPTION OF THE DRAWINGS 

[0009] The present invention may be better understood, and 
its numerous objects, features, and advantages made apparent 
to those skilled in the art by referencing the accompanying 
drawings. 
[0010] FIG. 1 shows a high-level block diagram of an 
exemplary System on a Chip (SOC) system according to an 
embodiment of the invention. 
[0011] FIG. 2 illustrates a high-level flow diagram for pro­
filing performance sensitivity to core frequency changes 
according to one embodiment of the invention. 
[0012] FIG. 3 illustrates frequency training at a system 
block diagram level. 
[0013] FIG. 4 illustrates additional aspects of frequency 
training. 
[0014] FIG. 5 illustrates an exemplary flow diagram of 
power reallocation according to an embodiment of the inven­
tion. 
[0015] FIG. 6 illustrates an exemplary flow diagram for 
throttling computational units according to frequency sensi­
tivity. 
[0016] The use of the same reference symbols in different 
drawings indicates similar or identical items. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT(S) 

[0017] There are several methods which have been pro­
posed to opportunistically raise the performance level (e.g., 
raise the frequency) of CPU cores on multi-core processors, 
when the processor integrated circuit is running below its 
thermal design point (TDP). The actual thermal point at 
which the integrated circuit is running may be determined by 
thermal measurement, switching activity measurement or 
electrical current measurement. Such approaches allow the 
operating frequency of the CPU cores to be raised together 
when there is estimated power, current or thermal headroom 
in order to improve performance under a given TDP, and 
decreased when the operation is exceeding those limits. Such 
approaches have assumed all active CPU cores operate in 
their maximum performance state when their frequency is 
raised in a coordinated fashion. 
[0018] Another approach provides power reallocation 
between CPU cores. A core in PO (highest performance state 
set by the operating system (OS)) may be over-clocked by 
reallocating power headroom available on the other core(s) 
whose performance state is below some threshold ( defined by 
a lower performance state). 

Petitioner Samsung Ex-1007, 0007



US 2011/0022356 Al 

[0019] The above approaches for homogenously increasing 
power to all cores or to one or more cores based on perfor­
mance states of the cores, allow for power to be reallocated 
from idle computational units, such as the CPU or graphical 
processing unit (GPU), but treat all active units homoge­
neously when dithering frequency or boosting steady state 
frequency. However, some active cores or other computa­
tional units may be gaining little or no performance increase 
from a higher core frequency, while other cores or computa­
tional units may be running workloads with a higher sensi­
tivity to an increase in core frequency. Selectively distributing 
power among the active cores or other computational units 
based on frequency sensitivity allows for greater overall sys­
tem throughput on heterogeneous workloads or multi­
threaded workloads with heterogeneous threads. That 
requires an effective approach to identify workload sensitiv­
ity to changes in core frequency. 

[0020] FIG. 1 shows a high-level view of an exemplary 
System on a Chip (SOC) 100 incorporating an embodiment of 
the invention. The SOC 100 includes multiple CPU process­
ing cores 101, a GPU (Graphics Processing Unit) 103, an I/0 
Bridge 105 ( named South-Bridge in some embodiments) and 
a North-Bridge 107 (which may be combined with the 
Memory Controller in some embodiments). The power allo­
cation controller 109 is the functional element that controls 
allocation of the Thermal Design Point (TDP) power head­
room to the on-die or on-platform components. The perfor­
mance analysis control logic 111 analyzes performance sen­
sitivity of the cores and other computational units as 
described further herein. Note that while the power allocation 
control 109 and performance analysis center 111 are shown as 
being part of the North-Bridge 107, in other embodiments 
they may be located elsewhere in the SOC 100. 
[0021] A TDP (Thermal Design Point) represents the 
power that can be consumed by the entire SOC and depends 
on such factors as the form-factor, available cooling solution, 
AC adapter/battery, and voltage regulator. The SOC perfor­
mance is optimized within the current TD P and in an embodi­
ment, the power limit corresponding to the TDP is never 
exceeded. Assume the SOC power limit is the SOC_TDP _ 
Limit. SOC characterization is typically based on allocating 
maximum power for each of the on-die components while 
staying within the SOC_TDP _Limit. That occurs by setting 
the highest operational point (in frequency (F) and voltage 
(V)) so that even maximally anticipated activity executed at 
this operational point will not cause the power to exceed the 
allocated envelope. For example, assume that maximum 
power of a 4-Core SOC is limited by a 40 w TDP envelope. 
Table 1 itemizes the power budget allocated for each of the 
on-die components: 

TABLE 1 

On-die component Allocated Power 

Core0 8w 
Corel 8w 
Core2 8w 
Core3 8w 
GPU 5w 
Memory Controller 2w 
1/0 Bridge lw 

Total 40w 

2 
Jan. 27, 2011 

[0022] The 8 w power budget is a limit that defines the 
highest nominal operational point (F, V) of the core and the 5 
w power budget does the same for the GPU. That allocation, 
however, is conservative and only a nominal maximum since 
it assumes simultaneous utilization of all on-die components. 
Most real-world applications are either CPU or GPU­
bounded. Even if an application engages both computing 
engines (e.g., playback video off-loads some tasks to the 
processor cores), it does not utilize all 4 processor cores. Even 
CPU-bounded client applications mostly utilize 1-2 proces­
sor cores (1-2 thread workloads) and only few of them have 
sufficient parallelism for utilizing all 4 cores for long periods 
of time. 

[0023] An embodiment provides reallocation of the power 
from idle or less active components to the busy components 
by having more power allocated to the busy ones. For 
example, in a workload sample where 2 out of 4 cores are idle 
and GPU operates at half power, then the power budget table 
reflecting this state is shown in Table 2: 

On-die component 

Core0 

Corel 

Core2 
Core3 
GPU 
Memory Controller 
1/0 Bridge 

Total 

TABLE2 

Allocated 
Power Remarks 

16. 75 w Core can run at higher F, V to fill new 
power headroom 

16. 75 w Core can run at higher F, V to fill new 
power headroom 

0.5 w Assume that idle core consumes 0.5 w 
0.5 w Assume that idle core consumes 0.5 w 
2.5 w 

2w 
lw 

40w 

[0024] Core0 and Corel are allocated 16.75 w to improve 
overall CPU throughput. The operational point (F,V) of both 
cores may be increased to fill the new power headroom (16. 75 
w instead of8 w ). Alternatively, the power budget of only one 
core can be increased to 25.5 w, while the other core can be 
left with an 8 w power budget. In such a case, the core with the 
increased power budget may be boosted to an even higher 
operational point (F,V), so that the new power headroom 
(25.5 w) can be exploited. In this specific case, the decision 
whether to equally boost two cores or provide all available 
power headroom to one core is dependent on what is the best 
way to improve the overall SOC performance. 

Boost Sensitivity Training and Data Structure 

[0025] According to an embodiment, one way to determine 
how to allocate power between Core0 and Corel to try and 
achieve improved performance gain is to know which of the 
two cores, if any, can better exploit an increase in perfor­
mance capability provided, e.g., by an increase in frequency. 
Changes in performance capability may also be provided by, 
e.g., a change in the amount of cache available to a core, the 
number of pipelines operating in the core and/or the instruc­
tion fetch rate. In order to evaluate which of the cores can 
better exploit an increase in performance capability, in one 
embodiment, performance sensitivity of each computational 
unit to frequency change, and/or other change in performance 
capability, also referred to herein as boost sensitivity, is deter­
mined and stored on a computational unit basis. 

Petitioner Samsung Ex-1007, 0008



US 2011/0022356 Al 

[0026] Referring to FIG. 2, illustrated is a high-level flow 
diagram for profiling performance sensitivity to core fre­
quency changes according to one embodiment of the inven­
tion. First, at 201 a pre-defined low frequency clock signal is 
applied to the CPU core being analyzed for a predetermined 
or programmable interval, e.g., a 100 us-10 ms interval. Dur­
ing that interval, the hardware performance analysis control 
logic (see FIG. 1, element 111) samples and averages core 
instructions per cycle (IPC) (as reported by the core). The 
performance analysis control logic determines a first instruc­
tions per second (IPS) metric based on the IPCxCore fre­
quency (the low frequency). The IPS metric may be stored in 
a temporary register "A". Then, in 205 the performance analy­
sis control logic causes a pre-defined high frequency clock 
signal to be applied to the CPU core being analyzed for the 
same predetermined or programmable time interval. The per­
formance analysis control logic again samples and averages 
core IPC (as reported by the core) in 207. The performance 
analysis control logic determines a second instructions per 
second (IPS) metric based on the IPCxCore frequency (the 
high frequency) and stores the second IPS metric in a tempo­
rary register "B". The performance analysis control logic 
determines the numerical difference between A and B in 209 
and stores the result in a performance or boost sensitivity 
table along with the core number being analyzed and the 
process context number running on the CPU core during the 
analysis. Note that other changes in performance capability 
may be utilized instead of, or in conjunction with, frequency 
changes to determine boost sensitivity. 

[0027] The context number may be determined by the con­
tent of the CR3 register or a hash of the CR3 register to allow 
for a shorter number to be stored. This numerical difference 
represents the boost sensitivity for the core. That is, it repre­
sents the sensitivity of the core, running that particular pro­
cess context, to a change in frequency. The greater the sensi­
tivity, the more performance increase is to be gained by 
increasing the frequency. The same training shown in FIG. 2 
is applied to each of the processor cores and to any other 
component that can be boosted ( over-clocked) above its 
nominal maximum power value and the values are stored in 
the boost sensitivity table. The values in the boost sensitivity 
table may be sorted in descending order starting with the core 
or other on-die component with the highest boost sensitivity. 

[0028] In other embodiments, frequency sensitivity train­
ing is applied to all computational units whose frequency can 
be changed to implement various performance states, regard­
less of whether they can be clocked ( or overclocked) above a 
nominal power level. In that way, systems can still allocate 
power budget to cores ( or other computational units) that are 
more sensitive to frequency change and away from cores that 
are less sensitive to a change in frequency. In that way, cores 
or other computational units may have their frequency 
reduced to save power without a significant performance 
decrease for the SOC. 

[0029] FIG. 3 illustrates frequency training at a system 
block diagram level. Core 301 is representative of the fre­
quency training for each core. The clock generator 303, as 
controlled by the performance analysis control logic 111, 
supplies the high and low frequency clock signals to core 301 
during the frequency period. The core 301 supplies the 
instructions per cycle value to the performance analysis con­
trol logic 111, which controls the process in accordance with 
FIG. 2. FIG. 4 illustrates an instruction per cycle measure­
ment (IPCl) that is determined by sampling and averaging 

3 
Jan. 27, 2011 

during a first time period, being multiplied in multiplier 401 
by the frequency (FREQl) supplied during the first time 
period. Similarly, instructions per cycle measurement (IPC2) 
determined during a second time period, is multiplied in 
multiplier 403 by the frequency (FREQ2) supplied during the 
second time period. A difference in utilization metrics deter­
mined in multipliers 401 and 403 is determined in summer 
405. The result is the boost sensitivity, which is stored in boost 
sensitivity table 407. Boost sensitivity table 407 stores for 
each measurement along with the result, the core number 
(C#), the process context running on the core, and the time 
elapsed since the last performance sensitivity measurement. 
The result is the performance metric or boost sensitivity 
expressed, e.g., as Instructions Per Second (IPS) computed 
via Average IPCxCore Frequency. Note that the boost sensi­
tivity table may be storage within the SOC 100 (FIG. 1) or 
elsewhere in the computer system. 

[0030] The boost sensitivity for each core is tied to the 
current processor context, which can be approximated by the 
x86 register value of CR3, tracked by the North-Bridge. In 
one embodiment, when the context changes, the sensitivity is 
re-evaluated. In another embodiment, the boost sensitivity 
expires for each context based on a fixed or programmable 
timer ( e.g., after 1-100 ms). In still other embodiments, both 
a timer and context switch, whichever occurs first, are used to 
initiate the boost sensitivity reevaluation. 

[0031] Thus, one embodiment has been described for fre­
quency training. The functionality in FIG. 2 may be imple­
mented in hardware ( e.g., state machines in performance 
analysis control block 111), in firmware (in microcode or a 
microcontroller), or in software (e.g., a driver, BIOS routine 
or higher level software). Software may be responsible to kick 
off the low and high frequency clock signals, receive the IPC 
values, average the IPC values and perform the other func­
tions described in relation to FIG. 2. The software may be 
stored in computer readable electronic, optical, magnetic, or 
other kinds of volatile or non-volatile memory in the com­
puter system of FIG. 1 and executed by one or more of the 
cores. In still other embodiments, the frequency sensitivity 
training, illustrated in FIG. 2, and described above, is imple­
mented partly in hardware and partly in software according to 
the needs and capabilities of the particular system. For 
example, software may be responsible for maintaining the 
boost sensitivity table, reading the CR3 register to determine 
process context, and maintaining software timers to re-deter­
mine boost sensitivity, while the hardware, when notified by 
the software, applies the clocks with the first and second 
frequencies for the appropriate time period and determines 
the average IPC. The software may be responsible for deter­
mining the IPS values. 

Power Budget Reallocation 

[0032] The Boost Sensitivity Table (BST) is maintained as 
a result of a frequency sensitivity training session for the 
components to be potentially boosted. In other embodiments, 
a frequency sensitivity table is maintained as a result of the 
frequency sensitivity training for all components whose per­
formance can be adjusted, typically through adjusting fre­
quency (and voltage if necessary). In an embodiment, power 
budget reallocation uses the information in the BST to decide 
which on-die component(s) are the most sensitive to boosting 
and thus "deserve" to get a higher TDP power margin reallo­
cated when a reallocation takes place. 

Petitioner Samsung Ex-1007, 0009



US 2011/0022356 Al 

[0033] A particular processor core may be in one of N 
performance states. A performance state is characterized by a 
unique pair of core voltage and frequency values. The highest 
performance state is typically selected and characterized so 
that any anticipated activity will not cause the core power 
( dynamic+static) to exceed the power budget allocated for the 
core. In current systems, the core performance state is defined 
by the operating system software guided by current core 
utilization. In other embodiments, the core performance state 
may be specified by hardware, based on the context currently 
executed by the core. Table 3 shows performance states for an 
exemplary system having four performance states (PO, Pl, 
P2, and P3) that the operating system (OS) (or any other 
high-level software) may utilize for each core, depending on 
the core utilization over a time-interval. The time-interval in 
one exemplary operating system ranges from 1 msec to 100 
msec. Two idle states are used when the OS (or any other 
high-level SW) sets the core to a low C-state. AC-state is a 
core power state. In this specific embodiment, the core may be 
placed either in an IDLE state (when it is expected to be idle 
for a short time) or in a deep C-state. The highest operational 
point (P-boost) is the one when core power (CoreBoostPwr) 
exceeds the nominal maximal power budget allocated for that 
specific core. 

TABLE3 

Core Power (dynamic and 
Performance Operational static) consumed 
States point (F, V) in this po int Remarks 

P-boost F-boost/V- CoreBoostPwr Boost point. 
boost Power budget 

of tbe Core has 
been exceeded 

PO F0/V0 Core Pwr0 Core Power 
Pl Fl/Vl Core Pwrl Budget 
P2 F2/V2 Core Pwr2 
P3 F3/V3 Core Pwr3 
Idle Clocks Core Idle Pwr 

Off/Low 
voltage 

Deep Cstate Clocks Core _DeepCstate_Pwr Core is either 
Off/Power Off power gated or 

deep voltage is 
applied 

[0034] The GPU Power state is traditionally controlled by 
software (the graphics driver). In other embodiments, it may 
also be controlled by hardware tracking the GPU activity and 
receiving information from other graphic-related engines 
(Unified Video Decoder (UVD), Display, etc.). In one exem­
plary embodiment, the GPU may be in one of four power 
states, as shown in Table 4. 

GPU 
Performance 
States 

GPU-boost 
GPU_P0 
GPU_Pl 
GPU_P2 
GPU_P3 

TABLE4 

GPU Power (dynamic 
and static) consumed 
in this point 

GPUBoostPwr 
GPU_Pwr0 
GPU_Pwrl 
GPU_Pwr2 
GPU_Pwr3 

[0035] In one embodiment, only two on-die components: 
core processors and the GPU, may be boosted to a higher 
performance point. The I/O module and the memory control-

4 
Jan. 27, 2011 

!er may contribute to the boosting process of the cores or the 
GPU by reallocating their "unused" power budget to these 
components, but they cannot be boosted themselves. In other 
embodiments, the memory controller may be boosted as well 
by transitioning the Dynamic Random Access Memory 
(DRAM) and its own frequency to a higher operational point. 
[0036] One embodiment to allocate power efficiently to 
computational units is predicated on permanently tracking 
the available power headroom, or TDP power margin. SOC_ 
TDP _Margin is calculated by subtracting the sum of the 
power consumption of all on-die components from the SOC_ 
TDP _Limit: SOC_TDP _Margin=SOC_TDP _Limit-~Core 
(i) Pwr-GPU Pwr-Memory Controller Pwr-I/O Bridge Pwr. 
Any change in the state of the on-die components triggers an 
update of the SOC_TDP _Margin value. In one embodiment, 
the change of state that triggers the update is a change in 
performance or power state or change in application/work­
load activity. In other embodiments, the change of state trig­
gering the update may be a process context change, or either 
a process context change or a performance state change. In an 
embodiment, any event resulting in a change in power con­
sumed by the component, such as a change in performance/ 
power state or change in application/workload activity, can 
function as the change of state triggering event. 
[0037] In general, the power of a particular computational 
unit (voltagexcurrent) is based on the frequency of the clock 
signal, the supply voltage, and the amount of activity in the 
computational unit. The particular approach to determine the 
power of each computational unit may vary according to 
system capabilities and needs and may be implemented based 
on hardware and/or software approaches. For example, in one 
approach, a computational unit calculates and reports an aver­
age power value as=dynamic power+static power. Dynamic 
power can be calculated as=( average workload activity/maxi­
mal activity )xMaxPower, where MaxPower is a fused or con­
figurable value of the maximal dynamic power associated 
with maximal activity. Static power is dependent on the volt­
age at which the computational unit is rumiing and can be 
extracted from a table, or otherwise made available from 
power management resources, or determined in hardware. 
The average workload activity can be calculated as an average 
number of signal toggles across the computational unit over 
the interval, or average IPC over the interval. Power calcula­
tions may utilize software methods as well in which the 
software ( e.g., a driver) is aware of the application activity 
running in the computational unit and determines average 
power using a similar approach to that described above. 
[0038] In an embodiment, only a core residing in a PO-state 
and the GPU residing in GPU_P0-state can be reallocated 
power from the other on-die components and boosted to a 
higher performance point. That is based on the observation 
that a core in PO-state and a GPU in GPU_P0-state are essen­
tially hints (provided by the OS or some high-level SW such 
as the graphics driver) that the currently executed task is 
computationally bounded. In other embodiments, the core 
and/or the GPU may be boosted when they reside in other 
non-idle states. 
[0039] FIG. 5 illustrates an exemplary flow diagram of 
operation of an embodiment of the power allocation control­
ler 109 (FIG. 1) to allocate power. In 501, the power alloca­
tion controller waits for a state change for any of the on-die 
components, e.g., a performance state, application/activity 
change, or process context change. When a state change 
occurs, the TDP _SOC_Margin is tracked in 503 and a deter­
mination is made in 505 whether the margin is greater than 0. 
If it is not, the flow goes to 501. If the margin is greater than 
zero, meaning that there is headroom to boost one or more 

Petitioner Samsung Ex-1007, 0010



US 2011/0022356 Al 

cores, a check is made to see if any CPU core is in the PO state 
in 507. In this particular embodiment, only cores in PO can be 
boosted. If no cores are in PO, the flow checks on the GPU 
power state in 523. If at least one core is in PO, the power 
allocation controller checks if there is sufficient room to boost 
all the PO cores by calculating in 509 a New TDP _SOC_ 
Margin=TDP _SOC_Margin-~(CoreBoostPwr-Core_Pwr) 
for all cores at PO. The New TDP _SOC_Margin is the pre­
dicted margin value assuming all cores in PO are boosted. 
TDP _SOC_Margin is the current margin value. CoreBoost­
Pwr is the core power when boosted and Core_Pwr is the 
current core power in the PO state. The power allocation 
controller checks in 511 if that new margin is greater than 
zero. If so, there is sufficient headroom to boost all PO cores, 
and that is done in 515 and the TDP _SOC_Margin is updated. 
The flow then returns to 501 to await another state change. 
[0040] If the margin in 511 is not greater than zero, the flow 
goes to 517 to find some margin if possible. Those cores with 
the highest sensitivity are identified. That may be done, e.g., 
by accessing the boost sensitivity table provided by the boost 
sensitivity training discussed above. In 519, the cores in the 
PO state are ordered, e.g., in decreasing order of boost sensi­
tivity. Thus, those at the bottom are least sensitive to a fre­
quency increase. In 521, one-by-one the power allocation 
controller removes a core with the lowest boost sensitivity 
from the list and re-calculates the New TDP _SOC_Margin as 
in 509 for all cores still on the list. In other embodiments, all 
cores having a boost sensitivity below a predetermined or 
programmable threshold are removed from the list at the same 
time. The rationale for that is to not waste power by boosting 
cores whose performance will not be increased. When the 
New TDP _SOC_Margin is >O, those PO cores still on the list 
are transitioned to P-boost and the TDP _SOC_Margin is 
updated. 
[0041] In 523, the power allocation controller checks to see 
if the GPU is in the GPU_PO state. If not, the flow returns to 
501 to await a state change. If the GPU is in the PO state, the 
power allocation controller determines if there is sufficient 
headroom to boost the GPU in 525 by calculating a New 
TDP _SOC_Margin by subtracting the difference between 
boosted and current power for the GPU from the current 
TDP _SOC_Margin. In 527, the power allocation controller 
checks to see if the new margin is greater than zero, and if so, 
transitions the GPU to its boosted state and updates the TDP _ 
SOC_Margin and returns to 503 to await another state change 
in any of the components. If there is not sufficient margin, the 
flow returns to 503. 
[0042] Thus, one embodiment has been described for allo­
cating power to those computational units in the PO state 
when there is sufficient margin and finding that margin by 
eliminating those computational units that are less sensitive to 
a frequency boost. In other embodiments, the frequency boost 
is only provided, e.g., to those computational units with a 
sufficiently high boost sensitivity, e.g., above a predeter­
mined or programmable threshold, to warrant the extra 
power. In that way, increased performance can be provided 
while still trying to maintain reduced power consumption 
where possible. 
[0043] The functionality in FIG. 4 may be implemented in 
hardware ( e.g., state machines), in firmware (in microcode or 
a microcontroller), or in software ( e.g., a driver, BIOS routine 
or higher level software), or any appropriate combination of 
hardware and software to allocate power based on boost sen­
sitivity. Assuming the boost sensitivity information is avail­
able from the boost sensitivity training, in one embodiment, 
software may be notified of a change in state of any compo­
nent and implement the approach described in relation to FIG. 

5 
Jan. 27, 2011 

4. The software may be stored in computer readable elec­
tronic, optical, or magnetic volatile or non-volatile memory in 
the computer system of FIG. 1 and executed by one or more 
of the cores. In still other embodiments, the functionality of 
FIG. 4 is implemented partly in hardware and partly in soft­
ware according to the needs and capabilities of the particular 
system. 
[0044] The availability of boost sensitivity information can 
be utilized in various ways by the SOC. CPU throttling is one 
example of such utilization. Assume a GPU-bounded appli­
cation is being executed. That is, the application being 
executed on the GPU is limited by the performance of the 
GPU, because, e.g., a current performance state is lower than 
needed for the particular application. In that case, the CPU 
cores may be throttled (limit their performance) by imposing 
a P-state limit on all of the cores (for example, P-state 
Limit=P2 state). That will release power margin available to 
the GPU. In an embodiment, a GPU-bounded or CPU­
bounded application is identified based data indicating how 
busy a particular core or GPU is. 
[0045] Alternatively, only those cores with the lowest per­
formance sensitivity on frequency may be throttled to the 
P-state limit. For example, in a four-core system, the two 
cores with the lowest IPS sensitivity to core frequency 
change, according to the boost sensitivity table, may be 
throttled by imposing a P-state Limit=P2, while the state of 
the other cores may be left unchanged. That would release a 
power margin equivalent to ((Core_Pwr0-Core_Pwr2)x2) 
for the GPU, where Core_PwrO is the power consumed by the 
core in the PO state and Core_Pwr2 is the power consumed by 
a core in the P2 state. 
[0046] In still other embodiments, when a CPU-bounded 
( or compute-bounded) application ( an application limited by 
the performance of one or more processing cores) is being 
executed, since applications often execute on a subset of 
available cores, cores that are less sensitive to frequency 
increases ( or decreases) may be throttled to provide extra 
margin to the other cores. 
[0047] FIG. 6 shows a high level flow diagram of perfor­
mance throttling based on boost sensitivity information. In 
601, CPU-bounded or GPU-bounded applications are identi­
fied. In 603, the stored boost or performance sensitivity infor­
mation is reviewed and in 605, a subset of computational 
units, e.g., processing cores, are identified to throttle based on 
the subset of the cores being less sensitive in terms of perfor­
mance to a reduction in performance capability, e.g., a reduc­
tion in frequency, voltage, the amount of cache available to a 
core, the number of pipelines operating in the core, and/or the 
instruction fetch rate. In 607, the performance of the subset is 
limited and the power headroom made available through 
throttling is provided in 609 to the computational unit(s) 
executing the CPU-bounded and/or GPU-bounded applica­
tion. The functionality described in FIG. 6 may be imple­
mented in the power allocation controller 109 or in high-level 
software or utilizing both hardware and software. 
[0048] If an application mainly utilizes CPU cores, the 
GPU may be throttled by either forcing a GPU P-state limit 
lower than GPU_PwrO or by throttling its instruction/ 
memory traffic stream. If the throttled GPU power is equiva­
lent to GPU _Pwr2, then the extra power margin, GPU _Pwr0-
GPU _Pwr2, can be reallocated for boosting one or more of 
the CPU cores, depending on the boost sensitivity table val­
ues. 
[0049] When a CPU-bounded workload runs on a multi­
core processor or on the GPU, memory may also be throttled. 
One way is to stall every other access to DRAM by a number 
of cycles, thus reducing the dynamic part of DRAM I/0 and 

Petitioner Samsung Ex-1007, 0011



US 2011/0022356 Al 

DRAM DIMM power by a factor close to 2. Another 
approach may involve shutting down a number of the avail­
able memory channels, also releasing a given percentage of 
the DRAM I/O and DRAM DIMM power. Reduced DRAM 
I/O power may be reallocated to either the GPU or CPU cores 
depending on the utilization of these components and the 
BST values (as far as the CPU cores are concerned), thus 
leading to higher overall SOC performance throughput. The 
DRAM DIMM may not be part of the SOC in which case its 
power budget is not part of SOC TDP. However, in circum­
stances where the reduced DRAM DIMM power margin can 
be reallocated back to the SOC TDP, the extra margin can be 
used to boost the GPU or some of the CPU cores. 
[0050] While circuits and physical structures are generally 
presumed for some embodiments of the invention, it is well 
recognized that in modem semiconductor design and fabri­
cation, physical structures and circuits may be embodied in 
computer-readable descriptive form suitable for use in sub­
sequent design, test or fabrication stages. Structures and func­
tionality presented as discrete components in the exemplary 
configurations may be implemented as a combined structure 
or component. The invention is contemplated to include cir­
cuits, systems of circuits, related methods, and computer­
readable medium encodings of such circuits, systems, and 
methods, all as described herein, and as defined in the 
appended claims. As used herein, a computer-readable 
medium includes at least disk, tape, or other magnetic, opti­
cal, semiconductor ( e.g., flash memory cards, ROM), or elec­
tronic medium. 
[0051] Thus, various embodiments have been described. 
Note that the description of the invention set forth herein is 
illustrative, and is not intended to limit the scope of the 
invention as set forth in the following claims. For example, 
while the computational units may be part of a multi-core 
processor, in other embodiments, the computational units are 
in separate integrated circuits that may be packaged together 
or separately. For example, a graphical processing unit (GPU) 
and processor may be separate integrated circuits packaged 
together or separately. Variations and modifications of the 
embodiments disclosed herein may be made based on the 
description set forth herein without departing from the scope 
of the invention as set forth in the following claims. 

What is claimed is: 
1. A method comprising determining respective perfor­

mance sensitivities to respective performance capability 
changes for each of a plurality of computational units of a 
computer system based on measured utilization metrics for 
each of the computational units. 

2. The method as recited in claim 1 wherein the respective 
performance capability changes of the computational units 
are based on a change in at least one of clock frequency, 
voltage, cache size, instruction fetch rate, and number of 
pipelines operating. 

3. The method as recited in claim 1 wherein determining 
the performance sensitivities further comprises: 

determining respective first utilization metrics of the com­
putational units associated with a first performance 
level; 

determining respective second utilization metrics of the 
computational units associated with a second perfor­
mance level; and 

determining respective performance sensitivities of the 
computational units based on the respective first and 
second utilization metrics. 

6 
Jan. 27, 2011 

4. The method as recited in 3 further comprising determin­
ing the respective performance sensitivities as a difference 
between the respective first and second utilization metrics. 

5. The method as recited in claim 3 further comprising 
identifying respective process contexts operating on respec­
tive computational units during the determination of the per­
formance sensitivity of each of the computational units. 

6. The method as recited in claim 5 further comprising 
storing an identification of the respective computational 
units, the respective process contexts, and the determined 
performance sensitivity for each of the computational units. 

7. The method as recited in claim 3 further comprising 
determining the performance sensitivity for a particular one 
of the computational units in response to a process context 
change of the particular one of the computational units. 

8. The method as recited in claim 3 further comprising 
determining the performance sensitivity for a particular one 
of the computational units in response to passage of a prede­
termined period of time since a previous sensitivity was deter­
mined for the particular one of the computational units. 

9. The method as recited in claim 3 further comprising 
determining the first and second utilization metrics as instruc­
tions per second. 

10. The method as recited in claim 1 further comprising 
determining the respective performance sensitivities for one 
computational unit at a time. 

11. The method as recited in claim 1 further comprising 
determining the respective performance sensitivities for 
respective multiple computational units at a time. 

12. The method as recited in claim 3 wherein the first and 
second performance levels are determined, at least in part, 
according to frequencies of one or more clock signals sup­
plied to the computational units. 

13. An integrated circuit comprising: 
a plurality of computational units; and 
control logic configured to determine respective perfor­

mance sensitivities to respective performance capability 
changes for each of the plurality of computational units. 

14. The integrated circuit as recited in claim 13 wherein the 
computational units comprise one or more of processing 
cores, a graphical processing unit and a memory controller. 

15. The integrated circuit as recited in claim 13 wherein the 
control logic is further configured to, 

apply respective clock signals at respective first frequen­
cies to respective ones of the computational units during 
respective first evaluation periods and determine respec­
tive first utilization metrics associated therewith; 

apply respective clock signals at respective second fre­
quencies to the respective ones of the computational 
units during respective second evaluation periods and 
determine respective second utilization metrics associ­
ated therewith; and 

determine the respective performance sensitivities for the 
plurality of computational units based on the respective 
first and second utilization metrics. 

16. The integrated circuit as recited in claim 15 wherein the 
integrated circuit is configured to identify respective process 
contexts associated with respective ones of computational 
units during determination ofrespective first and second uti­
lization metrics of the respective ones of the computational 
units. 

17. The integrated circuit as recited in claim 16 wherein the 
integrated circuit is configured to store respective identifica­
tions of the respective ones of the computational units, the 

Petitioner Samsung Ex-1007, 0012



US 2011/0022356 Al 

respective process contexts, and the respective performance 
sensitivities of the respective ones of the computational units. 

18. The integrated circuit as recited in claim 15 wherein the 
integrated circuit is further configured to determine perfor­
mance sensitivity for at least one of the computational units in 
response to a context change of the one computational unit. 

19. The integrated circuit as recited in claim 15 wherein the 
integrated circuit is further configured to determine perfor­
mance sensitivity for at least one of the computational units in 
response to passage of a predetermined period of time since a 
performance sensitivity was previously determined for the 
one of the computational units. 

20. A computer system comprising: 
a plurality of computational units; and 
wherein the computer system is configured to determine 

respective performance sensitivities for each of the plu­
rality of the computational units based on respective first 
and second performance metrics measured for each of 
the computational units, the respective performance sen­
sitivities being determined for respective ones of the 
computational units responsive to at least one of an 

7 
Jan. 27, 2011 

elapsed period of time since a previous performance 
sensitivity determination was made and a process con­
text switch, for the respective ones of the computational 
units. 

21. The computer system as recited in claim 20 further 
comprising storage locations storing an identification of the 
respective computational units, respective process contexts 
associated with the respective computational units, and 
respective performance sensitivities of the respective compu­
tational units. 

22. The computer system as recited in claim 20 wherein the 
computational units are disposed in a single package, includ­
ing one or more integrated circuits. 

23. A computer readable medium encoding a computer 
readable description of circuits that include, 

a plurality of computational units; and 
control logic configured to determine respective perfor­

mance sensitivities for each of the plurality of computa­
tional units. 

* * * * * 

Petitioner Samsung Ex-1007, 0013




