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Vl 

ABSTRACT 
In the last few years, power dissipation has become an important design constraint, on par with 
performance, in the design of new computer systems. Whereas in the past, the primary j~ 
of the computer architect was to translate improvements in operating frequency and trans~tc. 

count into performance, now power efficiency must be taken into account at every step of dit 
design process. 

While for some time, architects have been successful in delivering 40% to 50% ann~ 
improvement in processor performance, costs that were previously brushed aside eventual-') 

caught up. The most critical of these costs is the inexorable increase in power dissipation ¾l 
power density in processors. Power dissipation issues have catalyzed new topic areas in computtr 

architecture, resulting in a substantial body of work on more power-efficient architectures, 

Power dissipation coupled with diminishing performance gains, was also the main cause ~ 

the switch from single-core to multi-core architectures and a slowdown in frequency increase. 

This book aims to document some of the most important architectural techniques tfia: 
were invented, proposed, and applied to reduce both dynamic power and static power dissipa~ 

in processors and memory hierarchies. A significant number of techniques have been proJ>OScd 
for a wide range of situations and this book synthesizes those techniques by focusing on thcir 
common characteristics. 

KEYWORDS 
Computer power consumption, computer energy consumption, low power computer dcsig\ 
computer power efficiency, dynamic power, static power, leakage power, dynamic valtlgd 
frequency scaling, computer architecture, computer hardware. 
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In this equation, V refers to the supply voltage, while Vr11 refers to the threthold voltage. 
The exponential link between leakage power and threshold voltage is immediately obviou,, 1 

Lowering the threshold voltage brings a tremendous increase in leakage power. Unfonunately, 
lowering the threshold voltage is what we have to do to maintain the switching speed in the 
face of lower supply voltages. Tempermture, T, is also an important factor in the equation: 
le,tkage power depends exponentially on temperature. The remaining parameters, q, a, and ka, 
surnmarize logic design and fabrication characteristics. The exponential dependence ofleakage 
on temperature, and the interplay between leakage and dynamic energy will be discussed in 
more detail in Chapter 2. 

1.2.3 Other Forms of CMOS Power Dissipation 
While dynamic and leakage power dominate the landscape, other forms of power dissipation 
do e,xist. For example, short circuit or "glitching" power refers to the power dissipated during 

the brief transitional period when both the n and p transistors of a CMOS gate are '"on," 
thus forming a short-circuit path from JPOWer to ground. This is distinguished from dynamic 
power because dynamic power typically refers to power dissipated due to discharging charged 

capacitors; it would be dissipated even if transitions occurred instantaneously. In contrast, 
glitching power refers to transitional power that occurs because of non-ideal transition times. 

1.3 PO\VER-A\.VARECOMPUTINGTODAY 
From the early 1990s to today, power consumption has transitioned into a primary design 
constraint for nearly all computer systems. In mobile and embedded computing, the connec­
tion from power consumption to batte1ry lifetime has made the motivation for power-aware 

computing very clear. Here, it is typically low energy that is stressed, although obviously 

power/performance is also important for some embedded systems with high computational 
requirements. 

In desktop systems, the key cornstraint has become thermal issues. Excessive power 
consumption is one of the prevailing reasons for the abrupt halt of dock frequency increases. 
Currently, high-performance processor clocks have hit a "power wall" and are pegged at or 
below 4 GHz. This is contrary to 2001 ITRS projections which predicted docks in excess of 

6 GHz by roughly 2006. Power consumption is also one important factor driving the adoption 
of chip multiprocessors (CMPs) since they allow high-throughput computing to be performed 
within cost-effective power and thermal envelopes. 

1 What is not shown in this simplified equation is th~so exponential-dependence ofleakage power to the supply 
voltage. This is discussed in Chapter 5. 

Petitioner Samsung Ex-1027, 0009



I . - . 

C.l-1.A.PTER 3 

Using ~~ltage and Frequency 
Adjustments to lVlanage 

Dynamic Power 

23 

Issues addressing dynamic power have predominated the power-aware architecture landscape. 

Amongst these dynamic power techniques, methods for addressing voltage and frequency have 

dominated in turn. Most of these methods have focused on dynamic adjustments to supply 

voltage, clock frequency, of both, and they go under the broad title of Dynamic Voltage and 
Frequency Scaling, or D VFS. This chapter discusses the motivation for these techniques overall, 

and gives examples drawn from different categories of techniques. 

Chapter Structure: Decisions to engage voltage and frequency scaling are made at various 

levels. The decision level, the level of the control policy, defines the structure of this chapter. 

Starting from the top, the system ( or operating system) level, the chapter unfolds to progressively 

more focused levels: program (or program phase) level and the hardware (flip-flop) level. The 

following section (Section 3.1) gives an overview of voltage/frequency scaling and discusses a 

number of issues pertaining to the corresponding techniques. 

3.1 DYNAMIC VOLTAGE AND FREQUENCY SCALING: 
lVIOTIVATION AND OVERVIEW 

The basic dynamic power equation: P = CV2 Af clearly shows the significant leverage possible 

by adjusting voltage and frequency [ 47, 101]. If we can reduce voltage by some small factor, we 

can reduce power by the square of that factor. Reducing supply voltage, however, might possibly 

reduce the performance of systems as well. In particular, reducing supply voltage often slows 

transistors such that reducing the clock frequency is also required. The benefit of this is that 

within a given system, scaling supply voltage down now offers the potential of a cubic reduction 
in power dissipation. The downside of this is that it may also linearly degrade performance. If 
the program runs at lower power dissipation levels, but for longer durations, then the benefit 

in terms of total energy will not be cubic. It is interesting to note that while voltage/frequency 
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scaling improves EDP (because the reduction in power outpaces the reduction in performant't), 

it can do no better than break even on the ED2P metric (and this, only when the scaling factor. 
for frequency and voltage are the same). 

Nonetheless, DVFS is appealing first because max-power limits may welcome max-poWc, 

reductions even if the energy i:s not reduced much. In addition, DVFS is appealing hecalffc 

often we can discern ways, as thiis chapter will discuss, to reduce clock frequency without havinis 

the workload experience a proportional reduction in performance. 

3.1.1 Design Issues and Overview 
From an architect's perspective1, key design issues for DVFS include the following: 

(1) At what level should the DVFS control policies operate? Fundamentally, DVFS ap­
proaches exploit slack. Slack can appear at different levels and various DVFS approaches h~ 
been proposed for each level. Approaches operating at the same level share a similar set of 
mechanisms, constraints, and available information. We can discern three major levels when 
DVFS decisions can be made: 

• System-level based on system slack: At this level, the idleness of the whole system is the 
factor that drives DVFS decisions (Section 3.2). In many cases, decisions are taken 

according to system load. The whole processor (or embedded system, wireless system, 
etc.) is typically voltage/frequency scaled to eliminate idle periods. 

• Program- or program-phase-level based on instruction slack: Here, decisions are taken 
according to program (or program phase) behavior (Section 3.3 for a single clock do­
main and Section 3.4 for multiple clock domains). Instntction Slack due to long-latency 
memory operations is ~ypically exploited at this level for DVFS in single-threaded pro­
grams. In multi-core processors, the ability to run parallel (multi-threaded) programs 
opens up the possibility for the parallel program behavior to drive voltage/frequency 
decisions. 

• Hardware-level based on hardware slack: Finally, a recent approach, called Razor, goes 
below the program levd, right to the hardware (Section 3.5). Razor tries to exploit siad 
hidden in hardware operation. This slack exists because of margins needed to isolatt 
each hardware abstraction layer from variations in lower levels. This slack is exploited 
similarly to the way idle time is exploited at the system level. 

(2) How will the DVFS settings be selected and orchestrated? In some cases, DVFS aJY 
pro aches may allow software to adjust a register which encodes the desired ( V, J) setting. In 
other cases, the choices will be made dynamically "under the covers" by hardware mechanisms 
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lllonc. 1 n either ~cenArio, research quc!1tions arise regarding whether to make offline (e.g., 
l'Ompilc· timc) decisions about DVFS scuings, versus online, reactive, appro2chcs. 

(J) What is the hardware gr,mularity al which voltage and frt9uttuy ,an ht ttmlroll1d, 

This question is closely relnted to the question above. The bulk of the DVFS reSHtch has 

focused on cases in which the entire processor core operates at the same: ( JI, f) setting but 
is asynchronous to the "outside" work, such as main memory. In such scenarios, the main 
goal of DVFS is to capitalize on cases in which the processor's workload is heavily mcmory­
bo\lnd. In these rnses, the processor is olften stalled waiting on memory, so reducing its supply 
voltage and clock frequency will reduce power and energy without having significant im~ on 
performance. 

Other work has considered cases itn which multiple clock dom.uns may exist on a chip. 
These so-called MCD scenarios might ,either be multiple clock domains within a single pro­

cessor core [199, 200, 216, 227, 228] or chip multiprocessors in which each on-chip processot 
core has a different voltage/clock domain [67]. This dimension is explored in Section 3.4. 

(4) How do the implementation ch,aracteristics of the DVFS approach being uud ajfta the 

strategies to employ? Some of the implementation characteristics for DVFS can have: significant 
influence on the strategies an architect might choose, and the likely payoffs they might offer. 

For example, what is the delay required to engage a new setting of ( V, f)? (And, can the 
processor continue to execute during the transition from one ( V, f) pair to another?) If the 
delay is vei:y short, then simple reactive techniques may offer high payoff. If the delay is quite 
long, however, then techniques based on more intelligent or offiine analysis might make more 
sense. 

(5) How does the D VFS landscape change when considering parallel applications on multiJ>I~ 

core processors? When considering one, single-threaded application in isolation, one need only 
consider the possible asynchrony betwe,en compute and memory. In other regards, reducing 

the clock frequency proportionately degrades the performance. In a parallel scenario, however, 
reducing the clock frequency of one thread may impact other dependent threads that are waiting 

for a result to be produced. Thus, when considering DVFS for parallel applications, some notion 

of critical path analysis may be helpful. 

Another similar question regards whether continuous settings of ( V, /) pairs are possible, 

or whether these values can only be chamged in fixed, discrete steps. If only discrete step-wise 

adjustments of ( V, f) are possible, then the optimization space becomes difficult to navigate 

because it is "non-convex." As a result, simple online techniques might have difficulty finding 
global optima, and more complicated or offiine analysis again becomes warranted. 

Because DVFS is available for experimentation on real systems [111, 112, 2], and because 

it offers such high leverage in power/en1ergy savings, it has been widely studied in a variety of 

communities. Our discussion only touches on some of the key observations from the architectural 
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micro-operation," and used this as an indicator of the memory boundedness indicative oflikc:ly 
DVFS effectiveness. For each pattern of past behavior stored in a history entry, a different 
prediction of next-step behavior can be made. For each next-step prediction, there is a one­

to-one mapping to an appropriate DVFS setting. If the DVFS setting is different from the 

current setting, then the V, fare adjusted accordingly. When guided by the GPHT, DVFS 

was found to achieve EDP improvements as high as 34% for the highly variable benchmarks 
that this approach targets. 

,t4 PROGRAM-LEVEL DVFS FOR MULTIPLE-CLOCK DOMAINS 
Some of the early architectural work on DVFS actually focused on opportunities within 

multiple-clock-domain (MCD) processors. The rationale for MCD processors is that as feature 
sizes get smaller, it becomes more difficult and expensive to distribute a global clock signal with 

low skew through the processor die. Thus, researchers have explored globally-asynchronous 
locally-synchronous (GALS) techniques. 

Scaling voltage/frequency independently for each clock domain within a processor can 

be done dynamically ( Section 3.4.1) or statically ( Section 3.4.2); both cases aim to exploit slack 
in the execution of individual instructions. 

Finally, the emerging architectural paradigm for deep sub-micron technologies, the 

multi-core paradigm, can be considered as an MCD design where synchronous cores op­

erate asynchronously to each other. DVFS techniques for multi-cores are discussed in 
Section 3.4.3. 

3.4.1 DVFSfor MCD Processors 
In GALS approaches, a processor core is divided into synchronous islands, each of which is 

then interconnected asynchronously but with added circuitry to avoid metastability. The islands 

are typically intended to correspond to different functional units, such as the instruction fetch 

unit, the ALUs, the load-store unit, and so forth. A typical division is shown in Figure 3.5. 

In early GALS DVFS work, Marculescu and her students considered the performance 

and power implications of GALS designs [216, 117]. In [117], they first predicted that going 

from a synchronous to a GALS design caused a drop in performance, but that elimination of the 

global clock would not single-handedly lead to drastic power reductions. In fact, from a power 

perspective, GALS designs are initially less efficient when compared to synchronous architec­

tures. Their potential, however, lies in the flexibility offered by having several independently 

controllable clocks. As with other DVFS opportunities, the key lies in finding inter-domain 

slack that one can exploit. For example, in some MCD designs, the floating point unit could be 
clocked much more slowly than the instruction fetch unit, because its throughput and latency 

demands are lower. Iyer and Marculescu's results show that for a GALS processor with five 
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FIG URE 3.5: Synchronous versus GALS processor. Reproduced from [117]. Copyright 2002 IEEF. 

clock domains, the drop in performance ranges between 5% and 15%, while power consumptioo 

is reduced by 10% on the average. Thus, fine-grained voltage scaling allows GALS to match 

or exceed the power efficiency of fully synchronous approaches. 

In a similar timeframe, research from Albonesi's group also explored DVFS opportunities 

in MCD processors [199,200]. Similar to the Iyer and Marculescu MCD division of the CPU 
(Figure 3.5), Semeraro et al. divide the processor into five domains: Front end, Integer, Floating 
point, Load/Store, and External (Main Memory). The division is shown in Figure 3.6 along 
with the relevant clock parameters. The domains interface via queues. 

The work by Semerao et al. primarily focused on the control policies by which (Y, I 
f) settings could be optimized for such microarchitectures. Their early work used o~ t 
scheduling to accomplish good ( V, J) settings, but subsequent work explored control-the.orelt l 
approaches for managing MCD processors. 

Ofjline approach: Semeraro et al. use an offiine approach in [200] to select the times~ 
frequency values for DVFS in an application. The application is executed (at maximum speed) 

1 

in a simulator that creates an event trace. The events correspond to primitive operations io 
the processor (for example, for a load instruction: fetch, dispatch, address calculation, mernOlf 
access, and commit events are traced). The events are connected with resource constraints aitd 
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FIGURE 3.6: MCD processor and clock parameters. Adapted from [199). 

data dependencies into a temporal-ordered directed acyclic graph (DAG). A DAG is created 
for an interval of SOK instructions and is then processed in two phases. 

In the first phase, each event in the DAG that is not on the critical path is stretched, 
as if each instruction could run at its own frequency. A multi-pass "shaker" algorithm tries to 

distribute slack evenly in the DAG wherever it exists. This step concludes when all slack in the 
DAG is removed and each instruction is assigned to run at one of the allowed frequencies (e.g., 
one of the 32 frequencies for the Transmeta Crusoe or one of the 320 in the Intel XScale). 

Since executing each instruction at a different frequency is not practical, the second phase 
processes the results of the first phase and aims to find a single minimum frequency per interval 
far each domain. This is done under the constraint that each domain finishes its work with 
no more than a fixed-externally set--factor of time dilation. Finally, intervals with the same 
or similar frequencies are merged together to create larger combined intervals-and this is 

continued recursively- with the intent of reducing the number of reconfigurations. In contrast 
to the first phase where DVFS reconfiguration was considered instantaneous and for-free, in 

the second phase realistic DVFS overhead (for the two processors studied) is taken into account. 
Online approach: By analyzing the resource utilization of various CPU structures in [199], 

Semeraro et al. discovered that there is a significant correlation between the number of valid 

entries in the input queues for each domain and the desired frequency of the domain as derived 
by their offiine method (see above). In other words, the occupancy of these queues reveals the 
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throughput of the corresponding domain. 3 When a queue fills up-its utilization incre~ 

throughput ofits domain is low. The analysis of Semeraro et al. revealed that (i) decentratn,, 

control of the different domains is possible and (ii) the utilization of the input queues ia a gr,, 
indicator for the appropriate frequency of operation. 

Based on the observations of their analysis, Semeraro et al. devised an online DVFSt'.4 
trol algorithm for multiple domains called Attack/Decay. This is a decentralized, interval-~ 

algorithm. Decisions are made independently for each domain at regular sampling int~ 

The algorithm tries to react to changes in the utilization of the issue (input) queue of each 'b 

main. During sudden changes, the algorithm sets the frequency aggressively to try to match tic 

utilization change. This is the Attack mode. If the utilization increased by a significant amOl!t 

since the last interval, the frequency is also increased by a significant factor. Conversely, wbQ 
utilization suddenly drops, frequency is also decreased. In the absence of any significant chan, 

in the issue queue, frequency is slowly decreased by a small factor. This is the Decay mode. 

The algorithm tries to balance the utilization of the various domains independently~ 

varying their speeds. This, however, does not account for a natural change in the perfo~ 

of the program. To capture this effect, the performance of the processor in terms of IPC a 

tracked from interval to interval. If there is an inherent change in the IPC that is not relattd 
to frequency adjustments in the domains, then no frequency changes are allowed for the oot 

interval. The IPC is the only global information needed in this algorithm. 

On average, across a wide range ofMediaBench, Olden, and Spec2000 benchmarks, da 
algorithm achieved a 19% reduction (from a non-DVFS baseline) in energy-per-instruction 

and a 16. 7% improvement in energy-delay product. The approach incurred a modest 3.2\ 
increase in cycles per instruction (CPI). Interestingly, their online control-theoretic approach 

was able to achieve a full 85 .5% of the EDP improvement offered by the prior offiine scheduling 

approach. Wu et al. extended the online approach using formal control theory and a dynamx 
stochastic model based on input-queue occupancy for the MCDs [228]. 

3.4.2 Dynamic Work-Steering for M CD Processors 
As an alternative to dynamic voltage/frequency scaling of multiple clock domains, one can 
statically provide multiple components for the same function clocked at different frequencies.. 

For example, one can provide a fast and power-hungry pipeline and a slow but power-efficient 

pipeline. With two such pipelines, the problem is no longer about selecting domain frequencies 

to eliminate stack, but instead is about steering instructions to the appropriate slow or &st 

JThe occupancy of the instruction queue is also used for resizing it to reduce its switching activity factor as we~ 
in Section 4.6.3. 
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pipeline to accomplish this. This is a work-steering strategy that is aJso revisited in Chapter 4 
for effective capacitance optimizations (Section 4.13).4 

Fields, Bodik, and Hill use this work-steering approach as an example of how instruction 

slack can be e.xploited [76]. In their study, they show that there exists a significant slack in 
instrnctions. In many instances, instructions can be delayed several cycles without any impact 
on the program's critical path and hence its performance [76). Furthermore, they classify the 

instmction slack into local, global, and apportioned. Local slack exists when an instruction can 
be delayed without any impact on any other instruction. Global slack exists when delaying an 
instruction does not delay the last instmction of the program (i.e., there is no impact on the 

total execution time). Apportioned slack refers to the amount of slack for a group of instructions 

that can be delayed together without impact on execution. Apportioned slack depends on how 
it is calculated from the instrnctions' individual slack [76]. 

To measure slack, Fields et al. use an offline analysis (similar to the Semeraro et al. 
offiine approach used in (200] and described in Section 3.4.1) that creates a dependence 

graph of the execution taking into account both data dependencies and microarchitectural 
resource constraints. Their offiine approach allows the calculation of all three types of slack. 
Their results show that there is enormous potential for exploiting slack by slowing down 

instructions [76]. 

More interestingly, Fields et al. show that one can dynamically predict slack in hardware. 
This is of significance since it allows for the possibility of fine-grain-on a per-instruction 

basis-control policies. Online control policies discussed previously for DVFS in MCD pro­
cessors cannot treat each instruction individually. There is simply no possibility of dynamically 

changing the frequency of execution individually for each instruction; instead, the frequency of 
each domain is adjusted according to the aggregate behavior of all the instructions processed in 
this domain over the course of a sampling interval (Section 3.4.1). 

With work steering, the execution frequencies are fixed for each execution pipeline-as 
is the case for the fast and slow pipelines in Figure 3. 7--and the instructions are steered toward 

the appropriate pipeline. All that is needed to implement work steering is to have a good idea 
of the slack of each instruction. And this is where prediction comes into play. According to 

Fields et al., for 68% of the static instructions, 90% of their dynamic instances have enough 

slack to double their latency. This slack "locality'' allows slack prediction to be based on sparsely 
sampling dynamic instructions and determining their slack. 

Slack prediction would not be feasible if slack could not be measured efficiently at 
rnn-time. To determine whether an instruction has slack, Fields et al. employ an elegant delay-

4There too, multiple components are provided, offering a range of power/performance characteristics, and work 
(computation) is dynamically steered according to run-time conditions and goals. 
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FIGURE 3.7: Work steering for a fas t and a slow pipeline. Reproduced from (76]. Copyright ¾ 
IEEE. 

and-observe approach. An instruction is delayed for a number of cycles and then observed 
see if it becomes critical. 

Criticality, in turn, is tested with a token that is passed from instruction to instruction. 

starting from the delayed instruction, and passed to all dependent instructions. The tokca 

is dropped if it is not passed to an instruction at the very last moment before it becomes 

ready to execute. In other words, the token is dropped if it has slack. If the token is still in 
existence well after an instruction is delayed, then the instruction, thus far, is in the critial 
path. 

Slack determined by sampling is stored, per-instruction, in a PC-indexed predictoL 

This prediction is used in subsequent dynamic instances of the instruction for steering. If 2n 

instruction's predicted slack can accommodate the increased latency of a slow pipeline, then the 

instruction can be steered to this pipeline for execution without an impact on the performance. 
Fields et al. confirm this in their results, showing that a control policy based on slack prediction 

is second-best, in terms of performance, only to the ideal case of having two fast pipelines 
instead of a fast and a slow pipeline [76]. However, execution in the slow pipeline yielm 
significant benefits in power consumption. 

3.4.3 DVFS for IVlulti-Core Processors 

As chip multiprocessors (CMPs) become the predominant general-purpose, high-performance 

microprocessor platform, it becomes important to consider how DVFS management can be 

applied to them most effectively. One major design decision concerns whether to apply DVFS 
at the chip level or at the per-core level. As with other MCD designs, per-core DVFS i5 
considered more expensive; it requires more than one power/clock domain per chip, and 
synchronizer circuits are required to avoid metastability between domains. On the other band. 

multiple clock domains may be employed anyway for circuit design or reliability reasons, in 
addition to voltage and frequency control. 
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Research has explored the benefits of per-core versus per-chip DVFS for CMPs. For 

example, on a four-core CMP in which DVFS was being employed to avoid thermal emergen­

cies (rather than simply to save power), a per-core approach had 2.5 x better throughput than 

a per-chip approach [67]. This is because the per-chip approach must scale down the entire 

chip's ( V, f) when even a single core is nearing overheating. With per-core control, only the 

core with a hot spot must scale ( V, f) downwards; other cores can maintain high speed unless 

they themselves encounter thermal problems. 
\r\Thile a multi-core processor can be used to run independent programs for throughput, 

its promise for single-program performance lies in thread-level parallelism. Managing power 

in a multicore when running parallel (multi-threaded) programs is currently a highly active 

area of research. Many research groups are tackling the problem, considering both symmetric 
architectures which replicate the same core and asymmetric architectures that feature a variety 

of cores with different power/performance characteristics (146].5 Independent DVFS for each 

core [15], a mixture chip-wide DVFS and core allocation [153], or work-steering strategies at 

the program level in heterogeneous architectures [146, 170] are considered. 

3.5 HARDWARE-LEVELDVFS 
The main premise in much of the DVFS work is that a system, a task, or a program can 

be slowed down with disproportionally small impact on its performance (or the perception of 
performance for interactive tasks), while at the same. time obtaining significant savings in power 

consumption by voltage scaling. This can only be achieved by intelligently reducing frequency 

to remove slack: idle time in the system, slack in tasks with deadlines, or instruction slack due 

to memory accesses in memory-bound program phases. A similar idea can be applied at the 

hardware level. Ernst, et al. proposed a DVFS variation intended to remove slack in the timing 
of the hardware itself. Their approach is called Razor (73]. 

The driving motivation is to scale the supply voltage as low as possible for a given 
frequency while still maintaining correct operation. What prevents scaling the voltage below a 

critical level for a given frequency is the built-in margins in a process technology. For a given 

frequency, a voltage level is allowed which is safely above the lowest voltage level needed for the 

worst-case process and environment variability in the design. In other words, the relation between 

voltage and frequency is such that it guarantees correct operation with significant margin from 

the worst-case scenario. 

This, however, diminishes the value of DVFS since the useful voltage range for DVFS 

shrinks with each new process technology. Going below the critical voltage level (subcritical 

voltage) for a given frequency invites trouble: timing faults. Faults, however, are unlikely to 

5Similarly to the architecn1re described in Section 3.4.2 but allowing multiple cores to be active at the same time. 
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