COMPUTER
ARCHITECTURE

TECHNIQUES FOR
POWER-EFFICIENCY

Petitioner Samsung Ex-1027, 0001

Copyright © 2008 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval systcn:., o; trafnsm,
any form or by any means—clectronic, mechanical, photocopy, recording, or any other except for brie quota%
in printed reviews, without the prior permission of the publisher.

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi

www.morganclaypool.com

ISBN: 9781598292084 paper
ISBN: 9781598292091 ebook

DOI: 10.2200/500119ED1V01Y200805CAC004

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #4

Lecture #4
Series Editor: Mark D. Hill, University of Wisconsin, Madison

Library of Congress Cataloging-in-Publication Data

Series ISSN: 1935-3235 print
Series ISSN: 1935-3243 electronic

Petitioner Samsung Ex-1027, 0002

COMPUTER
ARCHITECTURE
TECHNIQUES FOR
POWER-EFFICIENCY

Stefanos Kaxiras
University of Patras, Greece
Kaxiras@ece.upatras.gr

Margaret Martonosi
Princeton University

mrm@princeton.edu

AR A

G A \ . CLAYPOOL PUBLISHERS

Petitioner Samsung Ex-1027, 0003

vi

ABSTRACT

In the last few years, power dissipation has become an important design constraint, on par i
performance, in the design of new computer systems. Whereas in the past, the Primary it
of the computer architect was to translate improvements in operating frequency and transig,
count into performance, now power efficiency must be taken into account at every step of thy
design process.
While for some time, architects have been successful in delivering 40% to 50% anny,
improvement in processor performance, costs that were previously brushed aside eventy
caught up. The most critical of these costs is the inexorable increase in power dissipation 0y
power density in processors. Power dissipation issues have catalyzed new topic areas in compy,
architecture, resulting in a substantial body of work on more power-efficient architecturu
Power dissipation coupled with diminishing performance gains, was also the main cause[(;
the switch from single-core to multi-core architectures and a slowdown in frequency increa,
This book aims to document some of the most important architectural techniques th,
were invented, proposed, and applied to reduce both dynamic power and static power dissipati,
in processors and memory hierarchies. A significant number of techniques have been propos;

for a wide range of situations and this book synthesizes those techniques by focusing on the
common characteristics.

KEYWORDS

Computer power consumption, computer energy consumption, low power computer desigs.
computer power efficiency, dynamic power, static power, leakage power, dynamic voltag/
frequency scaling, computer architecture, computer hardware. |

Petitioner Samsung Ex-1027, 0004

Contents

Acknowledgements........oovuiiiiiiieririiiiiiiiiiaiiiiiiiiaiiaiiaaa, xi
DI SOR I wovs samvs o s g saess st wnrss BoEe i SBTEERTIE St 1
1.1 Brief history of the “power problem”oiiiiiiiiiiiiiiiiiieiian 1
1.2 CMOS Power Consumption: A Quick Primer............ooovviieenini.. 3
12.1 DynamicPower.......ooovvuiiiiiiiiiiiiiiiiiiiiiiiiiieia.. 3
122 Leakageoovviiiiiiniiniiiiininiiiiiaiiaraeiiieeaeaiaa.. 4
1.2.3 Other Forms of CMOS Power Dissipation.ccocvvieinnaa.. 5
1.3 Power-Aware Computing Todayocovviiiiniiiiiiiiiiniii., 5
18 L BE s e R m TR SRR S S A A 6
Modeling, Simulation, and Measurement.........cocoeieimieiiiiieneiiianiin., 9
DL NIBERIES copowion v ims s culimms seame s oo s sinsswmme o ism ms o s e o wiwsme 9
2.2 Modeling basics: .. cconmsmcnmsmvmmaamsmenns s sne ot SEH I B DENGT RS 11
22.1 Dynamic-power Models..........cooviiiiiiiiiiiiiiiiiii. 12
222 LeakageModels........oovvuieiiiinininncsrcusireniiniiecannss 13
223 Thermal models.cciuiuiiiiiiireennaerecseeoenennnneennns 15
23 Power SIDIEHON «oue o vne s i oo s B i S S e P s e R e 17
28 Measurtment. . osmms snmmmmemesesmnmemy wewees s aSem0s LTS8 ST 0RESE0H 18
241 Performance-Counter-based Power and Thermal Estimates 19
24.2 Imaging and Other Techniques . . vovsvvavovsivvvsssnossssvovsss 20
LR SRR, cropesossnmesemasmmpnsonssammmmon e oot S s 21
Using Voltage and Frequency Adjustments to Manage Dynamic Power......... 23
3.1 Dynamic Voltage and Frequency Scaling: Motivation and Overview 23
3.1.1 Design Issuesand Overiew ..o s ssismissmeus sssissnonss 24
32 Beaten-Lavel DIVER. ..o commmimmmemmsnmmmnoms nammmmmasednnsmasmibmsmsas 26
321 Elimunsting Idle THe. . .. v seiseessissnsores svmsmmmsesaes 26
3.2.2 Discovering and Exploiting Deadlines......................ccl 28
33 Progranyv- Lol DIVTIS: o msnom scmnsiacn:omosonwssio movca e ocaim e Kobmsomsosbox Acm 6 s e 5 29
3371 Offine Conmpiler ABAWEE, v covvnsupinssmsswens aasevises s 29
3.3.2 Online Dynamic Compiler analysis..............cccoviiiiiinnen.. 32
3.3.3 Coarse-Grained Analysis Based on Power Phases.................. 34

Petitioner Samsung Ex-1027, 0005

Vil

CONTENTS

3.4 Program-Level DVFS for Multiple-Clock Domains................... = ,
341 DVFS for MCD Processors ...c.ovevereneresiesissntnnnnnn,,,, 1,
3.4.2 Dynamic Work-Steering for MCD Processors, 3
3.43 DVFS for Multi-Core Processorscovveuiiviiiianvnnninn,,,, «
3.5 Huardware-Level DVFS. coonoomiioimminminssms i vwie ses oo o s o5s s mp, ’
Optimizing Capacitance and Switching Activity to Reduce Dynamic Power. .., 4
4.1 A Road Map for Effective Switched Capacitance................... ..., &
411 Excess Switching Aoty v cams e wmsvomymue sy aw o me s o pneny emoingg 4
A.12 PRI s 4 5 ws s v s § ymn wimass s woow voabe easoaa o Ser S48 K s B i hs 4
4.2 Idle-Unit Switching Activity: Clock gatingcooveiiiiiil,, 5
421 Ciroulit-Level Basies . .ccoonveemcss sois sns s5s s smss a e ws s o BT e 51
4.2.2 Precomputation and Guarded Evaluation................... ... 5
423 Determivistic Clock Cating o ssmes sumssnm ver v omvme s sws wn s somiag 54
424 Clock gating examples «.::sussivassvsusvsavaonansvronsnsesormns, 5
4.3 Idle-Width Svatching ACHvItyt Core .. councame s vmn cowaves ss s 085586550000 5
43.1 Narrow-Width Operandscoviiiiiiiiiiiiieinniin. 5
432 Significance Compression sscsevssnsssnaonews s swssossommme)
4.3.3 Further Reading on Narrow Width Operands..................... B4
44 Idle-Width Switching Activity: Cachescooiiiviniianiicinennen 4
44.1 Dynamic Zero Compression: Accessing Only Significant Bits....... 65
4.4.2 Value Compression and the Frequent Value Cache 66

4.43 Packing Compressed Cache Lines: Compression Cache and
Significance-Compression Cacheo 68
444 Instruction CompPressionouuuueeenneeinnnnnnnaneaneeniens [l
45 Idle-Capacity Switching ACHIVIRY < « ¢ s o5 s wsi s a6 6 5.6 5 i 5508 78 8 wiws wore s wombs n
4.5.1 The Power-inefficiency of Out-of-order Processors)
4.5.2 Resource Partitioningoiuiuiiitiiiiiiiiiiiiaraennens)
4.6 Idle-Capacity Switching Activity: Instruction Queueocuveen 1
4.6.1 Physical Resiolng .. ciissncs neensmmnmmnioms 5 20 5 08 278 § 50008 iwmmed 7
4.6.2 Readiness Feedback Control.ootieie e eeeeeanannnnns T
4.6.3 Occupancy Feedback Control.ouevresueeeeeeeanianannnens 7l
4.6.4 Logical Resizing Without Partitioning.c.oeeeuuneaneses 78
4.6.5 Other Power Optimizations for the Instruction Queue-: 80
4.6.6 Related Work on Instruction Windowsooueneenenennnsns 81
4.7 Idle-Capacity Switching Activity: Coreoeuuunsreeeeeeaaenannnns 82

Petitioner Samsung Ex-1027, 0006

CONTENTS ix

48 Idle-Capacity Switching Activity: Cachesoovvveeeoreermeensermenseees 84
48.1 Trading Memory Between Cache Levels. ...covvvreeiieiieiiiiiai, 86
4.8.2 Selective Cache Waays ... vvoveeeererevarnmmunnnrrssessssis vie0.89
483 Accounting Cache......ooooieiseniannsanranennseionaanienann 91
484 CAM-Tag Cache Resizing. .. .oooveerimurmeneeinnerneeresennnes 94
48.5 Further Reading on Cache Reconfigurationoovveereneens.. 97
4.9 Parallel Switching-Activity in Set-Associative Cachesoovovevriinns 97
49.1 Phased Cache...ovvorronssnsasivusirssssorssersonnesensnsesoaes 98
49.2 Sequentially Accessed Set-Associative Cache..........oovoennes 99
493 Way Predictionoveeenressueeinnaniesmieeiiiiiiii, 101
49.4 Advanced Way-Prediction Mechanismsooooeeiniiiaines 104
4.9.5 Way Selection........ooveeeeiiinniisassniannoraeanecnconacnans 107
4.9.6 Coherence Protocols.ouvuvurururueraiiienrnmmacaiacaecann, 109
4.10 Cacheable Switching ACtivVityvvvueeruariiiirrnnnreensraneeaee.. 110
4.10.1 WOrk ReUSE ovvvirvnrnnanintinenensissneasaeaneasaeanenan. 112
4.10.2 Filter Cacheccvvvveeeiaseraestonsssnroncasssscsccesccancs 114
4.10.3 Loop Cachevvvneeriieainineneiinniiiiiieeiiieeeeecnnnn.. 115
43104 Trace Cathie s s evs cusnmin smmmmnsmmenms snse s s s smess shsssess 116
4.11 Speculative ACHVILYoovunieerrinaaaeeeeereaiaettttatiiaaaaaann 117
4.12 Value-dependent Switching Activity: Bus encodingscvnnnnnnn. 120
4.12.1 Address Buses.. . :conasissvsins suniens suwies seinviassiaesnsie 121
4.12.2 Addressand DataBuses..........cccvviiivinnnniiieiiiiiaiane.. 122
4.12.3 Further Reading on Data Encodingooinee OV— 124
4.13 Dynamic Work Steering. .. .oeceeessssesssiomsnssnssssssissssaninessns 124
Managing Static (Leakage) Power..........oooiiiiiiiiiiiiiiiiiiiinnn. 131
51 A Quick Primer on Leakage Power. .. cviucivveninsnesmanss s wvvnssinesis 133
5.1.1 Subthreshold Leakapeconnsssessnsmnomssosnons sssnasinssssnse 134
512 Gate Letkage .« cvonuers srsnnmmnmmeusimmssns ax s e s 137
5.2 Architectural Techniques Using the Stacking Effect...................... 138
521 Dynamically Resized (DRI) Cache....cocsmmsnsnms ssssnwosonwas 139
522 Cashie DECaY s smneinss somasn orse s s e s e e e S 141
5.2.3 Adaptive Cache Decay and Adaptive Mode Control................ 147
534 Decayinithe L covssivorsn svevmvammssavssssssvrsanws sans 153
5.2.5 Four-Transistor Memory Cell Decay...........ocovvviniiiinn... 155
5.2.6 Gated V3q Approaches for Function Units 156

Petitioner Samsung Ex-1027, 0007

bY

CONTENTS
5.3

5.4

Architectural Techniques Using the Drowsy | I
5.3.1 Drowsy DataCachesovvnniiiinieninennneei, 1;-
5.3.2 Drowsy Instruction Caches..........covuiinenvennni I
5.3.3 State Preserving versus No-state Preserving | h,
B34 TOMPELATLE . o cvos vos wam e s Ehemas 355 9En 55 & 60K B0 04D Rk g I
335 Rellabllity consisammn vvwnmes wmswms e o wmwvon e e be D ursemmmg o I
5.3.6 Compiler Approaches for Decay and Drowsy Mode RN
Architectural Techniques Based on Pp..ooovvenininininnni,,)
54.1 Dynamic Approaches.........coovinineeiininenaanin,,, I
5.42 Static Approaches

543 Dual-FrinFunctionUnits......ccvvvenerevmcnscescececrann,, 1
5.44 Asymmetric Memory Cells

‘.
)"

..................................... l?r
By CODCROSONS o oo 5 5 5h SRR S AEE R SR SRR R S AT A R R B R S S Sy 1t
6.1 Dynamic power management via Voltage and Frequency Adjustment:

Status and Future Trendsoooieiiiiii it eeeeee e, I
6.2 Dynamic Power Reductions based on Effective Capacitance and Activity

Factor: Status and Future Trends..........ouvvnieiinnneenerieinn, Iy
6.3 Leakage Power Reductions: Status and Future Trends..........c.covvilli
64 Final SUNIIAOY coiim w0 0 tonmne smmn o somin o mm sk 8 505 REE i 8 Bosrma S S Ewes i
NOROBSIION . ¢ 50 5 5msosis v mmmms ¥ H SRR Raod A 3o RS B B By S ko AR 11
Bibliography. oot e 18

Petitioner Samsung Ex-1027, 0008

INTRODUCTION 5

In this equation, ¥ refers to the supply voltage, while /), refers to the threshold voltage,
The exponential link between leakage power and threshold voltage is immediately obvious,!
Lowering the threshold voltage brings a tremendous increase in leakage power. Unfortunately,
lowering the threshold voltage is what we have to do to maintain the switching speed in the
face of lower supply voltages. Temperature, T, is also an important factor in the equation:
leakage power depends exponentially on temperature. The remaining parameters, ¢, 4, and %,,
summarize logic design and fabrication characteristics. The exponential dependence of leakage
on temperature, and the interplay between leakage and dynamic energy will be discussed in
more detail in Chapter 2.

1.2.3 Other Forms of CMOS Power Dissipation

While dynamic and leakage power dominate the landscape, other forms of power dissipation
do exist. For example, short circuit or “glitching” power refers to the power dissipated during
the brief transitional period when both the n and p transistors of a CMOS gate are “on,”
thus forming a short-circuit path from power to ground. This is distinguished from dynamic
power because dynamic power typically refers to power dissipated due to discharging charged
capacitors; it would be dissipated even if transitions occurred instantaneously. In contrast,
glitching power refers to transitional power that occurs because of non-ideal transition times.

1.3 POWER-AWARE COMPUTING TODAY

From the early 1990s to today, power consumption has transitioned into a primary design
constraint for nearly all computer systems. In mobile and embedded computing, the connec-
tion from power consumption to battery lifetime has made the motivation for power-aware
computing very clear. Here, it is typically low energy that is stressed, although obviously
power/performance is also important for some embedded systems with high computational
requirements.

In desktop systems, the key constraint has become thermal issues. Excessive power
consumption is one of the prevailing reasons for the abrupt halt of clock frequency increases.
Currently, high-performance processor clocks have hit a “power wall” and are pegged at or
below 4 GHz. This is contrary to 2001 ITRS projections which predicted clocks in excess of
6 GHz by roughly 2006. Power consumption is also one important factor driving the adoption
of chip multiprocessors (CMPs) since they allow high-throughput computing to be performed
within cost-effective power and thermal envelopes.

'What is not shown in this simplified equation is the—also exponential—dependence of leakage power to the supply
voltage. This is discussed in Chapter 5.

Petitioner Samsung Ex-1027, 0009

23

CHAPTER 3

Using Voltage and Frequency
Adjustments to Manage
Dynamic Power

Issues addressing dynamic power have predominated the power-aware architecture landscape.
Amongst these dynamic power techniques, methods for addressing voltage and frequency have
dominated in turn. Most of these methods have focused on dynamic adjustments to supply
voltage, clock frequency, of both, and they go under the broad title of Dynamic Voltage and
Frequency Scaling, or DVFS. This chapter discusses the motivation for these techniques overall,
and gives examples drawn from different categories of techniques.

Chapter Structure: Decisions to engage voltage and frequency scaling are made at various
levels. The decision level, the level of the control policy, defines the structure of this chapter.
Starting from the top, the system (or operating system) level, the chapter unfolds to progressively
more focused levels: program (or program phase) level and the hardware (flip-flop) level. The
following section (Section 3.1) gives an overview of voltage/frequency scaling and discusses a
number of issues pertaining to the corresponding techniques.

3.1 DYNAMIC VOLTAGE AND FREQUENCY SCALING:
MOTIVATION AND OVERVIEW

The basic dynamic power equation: P = CV?Af clearly shows the significant leverage possible
by adjusting voltage and frequency [47, 101]. If we can reduce voltage by some small factor, we
can reduce power by the square of that factor. Reducing supply voltage, however, might possibly
reduce the performance of systems as well. In particular, reducing supply voltage often slows
transistors such that reducing the clock frequency is also required. The benefit of this is that
within a given system, scaling supply voltage down now offers the potential of a cubic reduction
in power dissipation. The downside of this is that it may also linearly degrade performance. If
the program runs at lower power dissipation levels, but for longer durations, then the benefit
in terms of total energy will not be cubic. It is interesting to note that while voltage/frequency

Petitioner Samsung Ex-1027, 0010

24 COMPUTERARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

scaling improves EDP (because the reduction in power outpaces the reduction in performanql
it can do no better than break even on the ED?P metric (and this, only when the scaling facto,;
for frequency and voltage are the same).

Nonetheless, DVFS is appealing first because max-power limits may welcome Max-poys,
reductions even if the energy is not reduced much. In addition, DVFS is appealing becayg,
often we can discern ways, as this chapter will discuss, to reduce clock frequency without having
the workload experience a proportional reduction in performance.

3.1.1 Design Issues and Overview
From an architect’s perspective, key design issues for DVFS include the following:

(1) At what level should the DVFS control policies operate? Fundamentally, DVFS ap
proaches exploit slack. Slack can appear at different levels and various DVFS approaches hay
been proposed for each level. Approaches operating at the same level share a similar set of
mechanisms, constraints, and available information. We can discern three major levels where

DVFS decisions can be made:

« System-level based on system slack: At this level, the idleness of the whole system is the
factor that drives DVFS decisions (Section 3.2). In many cases, decisions are taken
according to system load. The wéhole processor (or embedded system, wireless system,
etc.) is typically voltage/frequency scaled to eliminate idle periods.

» Program- or program-phase-level based on instruction slack: Here, decisions are taken
according to program (or program phase) behavior (Section 3.3 for a single clock do-
main and Section 3.4 for multiple clock domains). Instruction Slack due to long-latency
memory operations is typically exploited at this level for DVFS in single-threaded pro-
grams. In multi-core processors, the ability to run parallel (multi-threaded) programs
opens up the possibility for the parallel program behavior to drive voltage/frequency
decisions.

* Hardware-level based on hardware slack: Finally, a recent approach, called Razor, goes
below the program level, right to the hardware (Section 3.5). Razor tries to exploit slack
hidden in hardware operation. This slack exists because of margins needed to isolate

each hardware abstraction layer from variations in lower levels. This slack is exploited
similarly to the way idle time is exploited at the system level.

(2) How will the DVFS settings be selected and orchestrated? In some cases, DVFS 2p
proaches may allow software to adjust a register which encodes the desired (¥, f) setting. In
other cases, the choices will be made dynamically “under the covers” by hasdipsane: vechuniiins

Petitioner Samsung Ex-1027, 0011

USING VOLTAGE AND FREQUENCY ADJUS TMENTS TO MANAGE DYNAMIC POWER 25
alone. In either scenario, research questions arise regarding whether to make offline (e.g.,
compile-time) decisions about DVFS settings, versus online, reactive, approaches.

(3) What is the hardware granularity at which voltage and frequency can be controlled?
This question is closely related to the question above. The bulk of the DVFS research has
focused on cases in which the entire processor core operates at the same (¥, f) setting but
is asynchronous to the “outside” work, such as main memory. In such scenarios, the main
goal of DVFS is to capitalize on cases in which the processor’s workload is heavily memory-
bound. In these cases, the processor is often stalled waiting on memory, so reducing its supply
voltage and clock frequency will reduce power and energy without having significant impact on
performance.

Other work has considered cases in which multiple clock domains may exist on a chip.
These so-called MCD scenarios might either be multiple clock domains within a single pro-
cessor core [199, 200, 216, 227, 228] or chip multiprocessors in which each on-chip processor
core has a different voltage/clock domain [67]. This dimension is explored in Section 3.4.

(4) How do the implementation characteristics of the DVFS approach being used affect the
strategies to employ? Some of the implementation characteristics for DVFS can have significant
influence on the strategies an architect might choose, and the likely payoffs they might offer.
For example, what is the delay required to engage a new setting of (¥, f)? (And, can the
processor continue to execute during the transition from one (¥, f) pair to another?) If the
delay is very short, then simple reactive techniques may offer high payoff. If the delay is quite
long, however, then techniques based on more intelligent or offline analysis might make more
sense.

(5) How does the DVFS landscape change when considering parallel applications on multiple-
core processors? When considering one, single-threaded application in isolation, one need only
consider the possible asynchrony between compute and memory. In other regards, reducing
the clock frequency proportionately degrades the performance. In a parallel scenario, however,
reducing the clock frequency of one thread may impact other dependent threads that are waiting
for a result to be produced. Thus, when considering DVFS for parallel applications, some notion
of critical path analysis may be helpful.

Another similar question regards whether continuous settings of (¥, f) pairs are possible,
or whether these values can only be changed in fixed, discrete steps. If only discrete step-wise
adjustments of (¥, f) are possible, then the optimization space becomes difficult to navigate
because it is “non-convex.” As a result, simple online techniques might have difficulty finding
global optima, and more complicated or offline analysis again becomes warranted.

Because DVFS is available for experimentation on real systems [111, 112, 2], and because
it offers such high leverage in power/energy savings, it has been widely studied in a variety of
communities. Our discussion only touches on some of the key observations from the architectural

Petitioner Samsung Ex-1027, 0012

USING VOLTAGEAND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 35

micro-operation,” and used this as an indicator of the memory boundedness indicative of likely
DVFS effectiveness. For each pattern of past behavior stored in a history entry, a different
prediction of next-step behavior can be made. For each next-step prediction, there is a one-
to-one mapping to an appropriate DVFS setting. If the DVFS setting is different from the
current setting, then the ¥, f are adjusted accordingly. When guided by the GPHT, DVFS
was found to achieve EDP improvements as high as 34% for the highly variable benchmarks
that this approach targets.

3.4 PROGRAM-LEVEL DVFS FOR MULTIPLE-CLOCK DOMAINS
Some of the early architectural work on DVFS actually focused on opportunities within
multiple-clock-domain (MCD) processors. The rationale for MCD processors is that as feature
sizes get smaller, it becomes more difficult and expensive to distribute a global clock signal with
low skew through the processor die. Thus, researchers have explored globally-asynchronous
locally-synchronous (GALS) techniques.

Scaling voltage/frequency independently for each clock domain within a processor can
be done dynamically (Section 3.4.1) or statically (Section 3.4.2); both cases aim to exploit slack
in the execution of individual instructions.

Finally, the emerging architectural paradigm for deep sub-micron technologies, the
multi-core paradigm, can be considered as an MCD design where synchronous cores op-
erate asynchronously to each other. DVFS techniques for multi-cores are discussed in
Section 3.4.3.

3.4.1 DVFS for MCD Processors

In GALS approaches, a processor core is divided into synchronous islands, each of which is
then interconnected asynchronously but with added circuitry to avoid metastability. The islands
are typically intended to correspond to different functional units, such as the instruction fetch
unit, the ALUs, the load-store unit, and so forth. A typical division is shown in Figure 3.5.

In early GALS DVFS work, Marculescu and her students considered the performance
and power implications of GALS designs [216, 117]. In [117], they first predicted that going
from a synchronous to a GALS design caused a drop in performance, but that elimination of the
global clock would not single-handedly lead to drastic power reductions. In fact, from a power
perspective, GALS designs are initially less efficient when compared to synchronous architec-
tures. Their potential, however, lies in the flexibility offered by having several independently
controllable clocks. As with other DVFS opportunities, the key lies in finding inter-domain
slack that one can exploit. For example, in some MCD designs, the floating point unit could be
clocked much more slowly than the instruction fetch unit, because its throughput and latency
demands are lower. Iyer and Marculescu’s results show that for a GALS processor with five

Petitioner Samsung Ex-1027, 0013

36 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

s o RS

§ |

: i I"" Fois¥ ligieie) iy

H | :

' lcache Bpred | am ! | l-cache Bpred ||

: | : — !

E E I R

]

i — 1

' . ! !

' Decode i || Decode | !

; . '

: | | w2 [

E Rename E E Rename E

: | !

s | —= —

= |

NS T R & e s =
' 1 ' 1
i | INT MEM FP ; b INT (4] MEM []| PP}
i | queue queue queve | | i | queue queue | queue |!

Z—
-
@
_@

7

i
.

3 JS 4
Synchronous (base) processor GALS processor
(@ (b)

FIGURE 3.5: Synchronous versus GALS processor. Reproduced from [117]. Copyright 2002 IEEE

clock domains, the drop in performance ranges between 5% and 15%, while power consumptin
is reduced by 10% on the average. Thus, fine-grained voltage scaling allows GALS to matd
or exceed the power efficiency of fully synchronous approaches.

In a similar timeframe, research from Albonesi’s group also explored DVFS opportunitis
in MCD processors [199, 200]. Similar to the Iyer and Marculescu MCD division of the CH
(Figure 3.5), Semeraro et al. divide the processor into five domains: Front end, Integer, Floating
point, Load/Store, and External (Main Memory). The division is shown in Figure 3.6 along
with the relevant clock parameters. The domains interface via queues.

The work by Semerao et al. primarily focused on the control policies by which (F;
f) settings could be optimized for such microarchitectures. Their early work used offlix
scheduling to accomplish good (¥, f) settings, but subsequent work explored <:0m:1'ol-theordic "
approaches for managing MCD processors.

Offfine approach: Semeraro et al. use an offline approach in [200] to select the times 20
frequency values for DVFS in an application. The application is executed (at maximum s ;
in a simulator that creates an event trace. The events correspond to primitive operations E
the processor (for example, for a load instruction: fetch, dispatch, address calculation, memo
access, and commit events are traced). The events are connected with resource constraints

Petitioner Samsung Ex-1027, 0014

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 37

Front End External (Maln Memory)
L1-I Cache [Wain "
amory n
Parameter Value(s)
ymain vollage TSV —T.20V c o
Domain Frequency 250 MHz — 1.0 Gz
Frequency Change Rate 49.1 n/MHz Fetch Unit
Domain Clock Jitter 110ps, normally distributed about zero
Synchronization window 10% of 1.0 GHz clock (200ps) ’ Load/Store.
ROB, Rename, ———1 |2Cache [*
Dispatch

!

Integer ‘ i ‘ Floating Point ‘

y |
Integer Issue Queue FP Issue Queue Load/Store Queue
F ’ 1 ! ‘
Integer ALUs & FP ALUs & L1-D Cache .,_' ;
Register File | Register File AR R
3 LS S S S i

FIGURE 3.6: MCD processor and clock parameters. Adapted from [199].
data dependencies into a temporal-ordered directed acyclic graph (DAG). A DAG is created
for an interval of 50K instructions and is then processed in two phases.

In the first phase, each event in the DAG that is not on the critical path is stretched,
as if each instruction could run at its own frequency. A multi-pass “shaker” algorithm tries to
distribute slack evenly in the DAG wherever it exists. This step concludes when all slack in the
DAG is removed and each instruction is assigned to run at one of the allowed frequencies (e.g.,
one of the 32 frequencies for the Transmeta Crusoe or one of the 320 in the Intel XScale).

Since executing each instruction at a different frequency is not practical, the second phase
processes the results of the first phase and aims to find a single minimum frequency per interval
for each domain. This is done under the constraint that each domain finishes its work with
no more than a fixed—externally set—factor of time dilation. Finally, intervals with the same
or similar frequencies are merged together to create larger combined intervals—and this is
continued recursively—with the intent of reducing the number of reconfigurations. In contrast
to the first phase where DVFS reconfiguration was considered instantaneous and for-free, in
the second phase realistic DVFS overhead (for the two processors studied) is taken into account.

Online approach: By analyzing the resource utilization of various CPU structures in [199],
Semeraro et al. discovered that there is a significant correlation between the number of valid
entries in the input queues for each domain and the desired frequency of the domain as derived
by their offline method (see above). In other words, the occupancy of these queues reveals the

Petitioner Samsung Ex-1027, 0015

38 COMPUTERARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

throughput of the corresponding domain.? When a queue fills up—its utilization incre
throughput of its domain is low. The analysis of Semeraro et al. revealed that (i) decentry,
control of the different domains is possible and (ii) the utilization of the input queues is 5 B,
indicator for the appropriate frequency of operation.

Based on the observations of their analysis, Semeraro et al. devised an online DVFs,,
trol algorithm for multiple domains called Attack/Decay. This is a decentralized, interval-by,
algorithm. Decisions are made independently for each domain at regular sampling intery;
The algorithm tries to react to changes in the utilization of the issue (input) queue of eachg,
main. During sudden changes, the algorithm sets the frequency aggressively to try to matchg,
utilization change. This is the A¢fack mode. If the utilization increased by a significant amoy,
since the last interval, the frequency is also increased by a significant factor. Conversely, wh,
utilization suddenly drops, frequency is also decreased. In the absence of any significant chany
in the issue queue, frequency is slowly decreased by a small factor. This is the Decay mode,

The algorithm tries to balance the utilization of the various domains independentlyh
varying their speeds. This, however, does not account for a natural change in the performan
of the program. To capture this effect, the performance of the processor in terms of IPCj
tracked from interval to interval. If there is an inherent change in the IPC that is not relan
to frequency adjustments in the domains, then no frequency changes are allowed for the ne
interval. The IPC is the only global information needed in this algorithm.

On average, across a wide range of MediaBench, Olden, and Spec2000 benchmarks, ther
algorithm achieved a 19% reduction (from a non-DVFS baseline) in energy-per-instruction
and a 16.7% improvement in energy-delay product. The approach incurred a modest 3.%
increase in cycles per instruction (CPI). Interestingly, their online control-theoretic approad
was able to achieve a full 85.5% of the EDP improvement offered by the prior offline scheduling
approach. Wu et al. extended the online approach using formal control theory and a dynams
stochastic model based on input-queue occupancy for the MCDs [228].

3.4.2 Dynamic Work-Steering for MCD Processors

As an alternative to dynamic voltage/frequency scaling of multiple clock domains, one &
statically provide multiple components for the same function clocked at different frequencies
For example, one can provide a fast and power-hungry pipeline and a slow but power—eﬁdent
pipeline. With two such pipelines, the problem is no longer about selecting domain frequencies
to eliminate stack, but instead is about steering instructions to the appropriate slow of fast

3The occupancy of the instruction queue is also used for resizing it to reduce its switching activity factor as we discus$
in Section 4.6.3.

Petitioner Samsung Ex-1027, 0016

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 39

pipeline to accomplish this. This is a work-steering strategy that is also revisited in Chapter 4
for effective capacitance optimizations (Section 4.13).*

Fields, Bodik, and Hill use this work-steering approach as an example of how instruction
slack can be exploited [76]. In their study, they show that there exists a significant slack in
instructions. In many instances, instructions can be delayed several cycles without any impact
on the program’s critical path and hence its performance [76]. Furthermore, they classify the
instruction slack into /ocal, global, and apportioned. Local slack exists when an instruction can
be delayed without any impact on any other instruction. Global slack exists when delaying an
instruction does not delay the last instruction of the program (i.e., there is no impact on the
total execution time). Apportioned slack refers to the amount of slack for a group of instructions
that can be delayed together without impact on execution. Apportioned slack depends on how
it is calculated from the instructions’ individual slack [76].

To measure slack, Fields et al. use an offline analysis (similar to the Semeraro et al.
offline approach used in [200] and described in Section 3.4.1) that creates a dependence
graph of the execution taking into account both data dependencies and microarchitectural
resource constraints. Their offline approach allows the calculation of all three types of slack.
Their results show that there is enormous potential for exploiting slack by slowing down
instructions [76].

More interestingly, Fields et al. show that one can dynamically predict slack in hardware.
This 1s of significance since it allows for the possibility of fine-grain—on a per-instruction
basis—control policies. Online control policies discussed previously for DVFS in MCD pro-
cessors cannot treat each instruction individually. There is simply no possibility of dynamically
changing the frequency of execution individually for each instruction; instead, the frequency of
each domain is adjusted according to the aggregate behavior of all the instructions processed in
this domain over the course of a sampling interval (Section 3.4.1).

With work steering, the execution frequencies are fixed for each execution pipeline—as
is the case for the fast and slow pipelines in Figure 3.7-and the instructions are steered toward
the appropriate pipeline. All that is needed to implement work steering is to have a good idea
of the slack of each instruction. And this is where prediction comes into play. According to
Fields et al., for 68% of the static instructions, 90% of their dynamic instances have enough
slack to double their latency. This slack “locality” allows slack prediction to be based on sparsely
sampling dynamic instructions and determining their slack.

Slack prediction would not be feasible if slack could not be measured efficiently at
run-time. To determine whether an instruction has slack, Fields et al. employ an elegant delay-

“There too, multiple components are provided, offering a range of power/performance characteristics, and work
(computation) is dynamically steered according to run-time conditions and goals.

Petitioner Samsung Ex-1027, 0017

40 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

L]
.+ Reg.
_] fru
" [Fast Pipeline
Fetch o ——
Rena‘r‘\n\ecI *(Steer) cD.at.a
TN ache
,_G_J Bypass Bus

Slow Pipeline

FIGURE 3.7: Work steering for a fast and a slow pipeline. Reproduced from [76]. Copyrigh W
IEEE. ‘

and-observe approach. An instruction is delayed for a number of cycles and then observed,,
see if it becomes cntical.

Cnutcality, in turn, is tested with a token that is passed from instruction to Instructio,
starting from the delayed instruction, and passed to all dependent instructions. The toke
1s dropped 1f it is not passed to an instruction at the very last moment before it become
ready to execute. In other words, the token is dropped if it has slack. If the token is stillj;
existence well after an instruction is delayed, then the instruction, thus far, is in the critigl
path.

Slack determined by sampling is stored, per-instruction, in a PC-indexed predicto
This prediction is used in subsequent dynamic instances of the instruction for steering. Ifa
instruction’s predicted slack can accommodate the increased latency of a slow pipeline, then the
instruction can be steered to this pipeline for execution without an impact on the performanc.
Fields et al. confirm this in their results, showing that a control policy based on slack prediction
is second-best, in terms of performance, only to the ideal case of having two fast pipelins
instead of a fast and a slow pipeline [76]. However, execution in the slow pipeline yiels
significant benefits in power consumption.

3.4.3 DVFS for Multi-Core Processors

As chip multiprocessors (CMPs) become the predominant general-purpose, high-performanc
microprocessor platform, it becomes important to consider how DVFS management can be
applied to them most effectively. One major design decision concerns whether to apply DVFS
at the chip level or at the per-core level. As with other MCD designs, per-core DVF§ s
considered more expensive; it requires more than one power/clock domain per chip, and
synchronizer circuits are required to avoid metastability between domains. On the other hand,

multiple clock domains may be employed anyway for circuit design or reliability reasons, m
addition to voltage and frequency control.

Petitioner Samsung Ex-1027, 0018

USING VOLTAGE AND FREQUENCY ADJUS TMENTS TO MANAGE DYNAMIC POWER - 41

Research has explored the benefits of per-core versus per-chip DVFS for CMPs. For
example, on a four-core CMP in which DVFS was being employed to avoid thermal emergen-
cies (rather than simply to save power), a per-core approach had 2.5x better throughput than
a per-chip approach [67]. This is because the per-chip approach must scale down the entire
chip’s (¥, f) when even a single core is nearing overheating. With per-core control, only the
core with a hot spot must scale (¥, f) downwards; other cores can maintain high speed unless
they themselves encounter thermal problems.

While a multi-core processor can be used to run independent programs for throughput,
its promise for single-program performance lies in thread-level parallelism. Managing power
in a multicore when running parallel (multi-threaded) programs is currently a highly active
area of research. Many research groups are tackling the problem, considering both symmetric
architectures which replicate the same core and asymmetric architectures that feature a variety
of cores with different power/performance characteristics [146).> Independent DVFS for each
core [15], a mixture chip-wide DVFS and core allocation [153], or work-steering strategies at
the program level in heterogeneous architectures [146, 170] are considered.

3.5 HARDWARE-LEVEL DVFS

The main premise in much of the DVFS work is that a system, a task, or a program can
be slowed down with disproportionally small impact on its performance (or the perception of
performance for interactive tasks), while at the same time obtaining significant savings in power
consumption by voltage scaling. This can only be achieved by intelligently reducing frequency
to remove slack: idle time in the system, slack in tasks with deadlines, or instruction slack due
to memory accesses in memory-bound program phases. A similar idea can be applied at the
hardware level. Ernst, et al. proposed a DVFS variation intended to remove slack in the timing
of the hardware itself. Their approach is called Razor [73].

The driving motivation is to scale the supply voltage as low as possible for a given
frequency while still maintaining correct operation. What prevents scaling the voltage below a
critical level for a given frequency is the built-in margins in a process technology. For a given
frequency, a voltage level is allowed which is safely above the lowest voltage level needed for the
worst-case process and environment variability in the design. In other words, the relation between
voltage and frequency is such that it guarantees correct operation with significant margin from
the worst-case scenario.

This, however, diminishes the value of DVFS since the useful voltage range for DVFS
shrinks with each new process technology. Going below the critical voltage level (subcritical
voltage) for a given frequency invites trouble: timing faults. Faults, however, are unlikely to

5Similarly to the architecture described in Section 3.4.2 but allowing multiple cores to be active at the same time.

Petitioner Samsung Ex-1027, 0019

