
COMPUTER
ARCHITECTU.RE
TECHNIQUES FOR
POWER-EFFI<::IENCY

Petitioner Samsung Ex-1027, 0001

Copyright C 2008 by Morgnn & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmittq·
any fom1 or by any means--clectronic, mechanical, photocopy, recording, or any other except for brief quo~
in printed reviews, without the prior permission of the publisher.

Computer Architcctme Techniques for Power-Efficienq,

Stefanos Ka.xi.ras and Margaret Martonosi

www.morganclaypool.com

ISBN: 9781598292084 paper
ISBN: 9781598292091 ebook

DOI: 10.2200/S00119ED1 V01 Y200805CAC004

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #4

Lecture #4

Series Editor: Mark D. Hill, University of Wisconsin, Madison

Library of Congress Cataloging-in-Publication Data

Series ISSN: 1935-3235 print
Series ISSN: 1935-3243 electronic

Petitioner Samsung Ex-1027, 0002

COMPUTER
ARCHITECTURE
TECHNIQUES FOR
POWER-EFFICIENCY
Stefanos Kaxiras
University of Patras, Greece

Kaxiras@ece.upatras.gr

Margaret l\tlartonosi
Princeton University

mrm@princeton.edu

Petitioner Samsung Ex-1027, 0003

Vl

ABSTRACT
In the last few years, power dissipation has become an important design constraint, on par with
performance, in the design of new computer systems. Whereas in the past, the primary j~
of the computer architect was to translate improvements in operating frequency and trans~tc.

count into performance, now power efficiency must be taken into account at every step of dit
design process.

While for some time, architects have been successful in delivering 40% to 50% ann~
improvement in processor performance, costs that were previously brushed aside eventual-')

caught up. The most critical of these costs is the inexorable increase in power dissipation ¾l
power density in processors. Power dissipation issues have catalyzed new topic areas in computtr

architecture, resulting in a substantial body of work on more power-efficient architectures,

Power dissipation coupled with diminishing performance gains, was also the main cause ~

the switch from single-core to multi-core architectures and a slowdown in frequency increase.

This book aims to document some of the most important architectural techniques tfia:
were invented, proposed, and applied to reduce both dynamic power and static power dissipa~

in processors and memory hierarchies. A significant number of techniques have been proJ>OScd
for a wide range of situations and this book synthesizes those techniques by focusing on thcir
common characteristics.

KEYWORDS
Computer power consumption, computer energy consumption, low power computer dcsig\
computer power efficiency, dynamic power, static power, leakage power, dynamic valtlgd
frequency scaling, computer architecture, computer hardware.

Petitioner Samsung Ex-1027, 0004

vu

Contents
Acknowlcdge1ncnt's • • • • • • • • • • • • • • • • • xi

1. Introduction • • • • • • • • • • .. . 1
1.1 Brief history of the "power problem" • • • • • • • • • • • • • • • • • 1
1.2 CMOS Power Consumption: A Qyick Primer •.•••••••••••• . . 3

1.2.1 Dynamic Power • • • • • • • • • • .. 3
1.2.2 Leakage .. 4
1.2.3 Other Forms of CMOS Power Dissipation 5

1.3 Power-Aware Computing Today 5
1.4 This Book 6

2. Modeling, Simulation, and Measurement 9
2.1 Metrics 9
2.2 Modeling basics .. 11

2.2.1 Dynamic-power Models 12
2.2.2 Leakage Models 13
2.2.3 Thermal models 15

2.3 Power Simulation 17
2.4 l\1easurement 18

2.4.1 Performance-Counter-based Power and Thermal Estimates 19
2.4.2 Imaging and Other Techniques 20

2.5 Summary , 21

3. Using Voltage and Frequency Adjustments to Manage Dynamic Power 23
3.1 Dynamic Voltage and Frequency Scaling: Motivation and Overview 23

3.1.1 Design Issues and Overview 24
3.2 System-Level DVFS 26

3.2.1 Eliminating Idle Time 26
3.2.2 Discovering and Exploiting Deadlines 28

3.3 Program-Level DVFS 29
3.3 .1 Offl.ine Compiler Analysis 29
3.3.2 Online Dynamic Compiler analysis 32
3.3.3 Coarse-Grained Analysis Based on Power Phases 34

Petitioner Samsung Ex-1027, 0005

,-iii C<)NTENTS

' .4 Progmm- Levd DVf.S for Multiple-Clock Domains ··~

3.4.l DVf.S for MCD Processors ~

3.4.2 Dynamic Work-Steering for MCD Processors 3
3.4.3 DVFS for Multi-Core Processors • • •. • • • • • • • • • • • 40

3.5 Hardware- Level DVFS • • • • • • • •. • •.. Al ... ,

.i. Optimizing C.ipacitancc and Switching Activity to Reduce Dynamic Power .. , . . 41
4.1 A Road Map for Effective Switched Capacitance 46

4.1 .1 Excess Switching Activity '-6

4.1.2 Capacitance ••••••••••••• • ·····•49

4.2 Idle-Unit Switching Activity: Clock gating SJ

4.2.1 Circuit-Level Basics • • • • • • • • • • • • • • • • 51
4.2.2 Precomputation and Guarded Evaluation SJ

4.2.3 Deterministic Clock Gating • .. • • 54

4.2.4 Clock gating examples • .. • 56

4.3 Idle-Width Switching Activity: Core 58
4.3.1 Narrow-Width Operands 59

4.3.2 Significance Compression 62

4.3.3 Further Reading on Narrow Width Operands 64

4.4 Idle-Width Switching Activity: Caches 64

4.4.1 Dynamic Zero Compression: Accessing Only Significant Bits 65
4.4.2 Value Compression and the Frequent Value Cache 66

4.4.3 Packing Compressed Cache Lines: Compression Cache and

Significance-Compression Cache 68
4.4.4 Instruction Compression 70

4.5 Idle-Capacity Switching Activity .. 70

4.5.1 The Power-inefficiency of Out-of-order Processors •· 71
4.5.2 Resource Partitioning n

4.6 Idle-Capacity Switching Activity: Instruction Qieue 75
4.6.1 Physical Resizing 75

4.6.2 Readiness Feedback Control 77

4.6.3 Occupancy Feedback Control 77
4 6 4 L . al R · · w· th p · · · 78 . . ogic es1zmg 1 out artttlorung • • • · ·

4.6.5 Other Power Optimizations for the Instruction Qyeue • • ro
4.6.6 Related Work on Instruction Windows 81

4. 7 Idle-Capacity Switching Activity: Core 82

Petitioner Samsung Ex-1027, 0006

CONTENTS ix

4.8 ldle-Cnpncity Switching Activity: Caches .. , .. , , , • • • • · 84
4.8.l Trading Memory Between Cache Levels .. •••••·•···········••• ••• 86

4.8.2 Selective Cache Ways ••••••·••············••·• • 89
4.8.3 Accounting Cache , , • • • • • • • · 91
4.8.4 CAM-Tag Cache Resizing •• .. • .. •• 94
4.8.5 Further Reading on Cache Reconfiguration • • • • • , • • • , • • • • • • • • • • • • • 97

4.9 Parallel Switching-Activity in Set-Associative Caches••••••••••••••••• •. •. 97
4.9.1 Phased Cache ... , •.•••• ••••• •••••••••••••••. 98
4.9.2 Sequentially Accessed Set-Associative Cache, ••.,., 99
4.9.3 Way Prediction , • • • •, • • • • • • • • • •, • • .. . 101
4.9.4 Advanced Way-Prediction Mechanisms • .. ••• 104
4.9.5 Way Selection ,, ••••••• 107
4.9.6 Coherence Protocols , , 109

4.10 Cacheable Switching Activity • 110
4.10.1 Work Reuse 112
4.10.2 Filter Cache 114
4.10.3 Loop Cache 115
4.10.4 Trace Cache 116

4.11 Speculative Activity 117
4.12 Value-dependent Switching Activity: Bus encodings 120

4.12.1 Address Buses 121
4.12.2 Address and Data Buses 122
4.12.3 Further Reading on Data Encoding 124

4.13 Dynamic Work Steering. , 124

5. 1\1anaging Static (Leakage) Power ... 131
5.1 A Qyick Primer on Leakage Power 133

5.1.1 Subthreshold Leakage 134
5.1.2 Gate Leakage 137

5.2 Architectural Techniques Using the Stacking Effect 138
5.2.1 Dynamically Resized (DRI) Cache 139
5 .2.2 Cache Decay 141
5.2.3 Adaptive Cache Decay and Adaptive Mode Control 147
5.2.4 Decay in the L2 ... 153
5.2.5 Four-Transistor Memory Cell Decay 155
5.2.6 Gated ¥cld Approaches for Function Units 156

Petitioner Samsung Ex-1027, 0007

X co r rE TS

5.3 Architectural Techniques Using the Drowsy Effect I~
5.3.1 Drowsy Data Caches • • • • • • · • • 1· .. ' ..)

5.3.2 Drowsy Instruction Caches • • • • • • • • • • ~

5 .3.3 State Preserving versus No-state Preserving ~

5.3.4 Temperature • • • • • • • • · · · · · · · · · · · · · · · · · · · • I •• • ' 6'

5 .3.5 Reliability · I~
5.3.6 Compiler Approaches for Decay and Drowsy Mode ·· Ill

5.4 Architectural Techniques Based on VT •••••• ••••• "•,!}
5.4.1 Dynamic Approaches • ••• ••• •••• • J;,

(

5 .4.2 Static Approaches • • • • • • • • • · · · · · • • , I):
5.4.3 Dual-VT in Function Units • • •• •••••• • ,,!)(

5 .4.4 Asymmetric Memory Cells · · · · · · · · · · · · · · · tn

6. Conclusions • • • • • • · · · · · · · · · · · · · · • .. 111
6.1 Dynamic power management via Voltage and Frequency Adjustment:

Status and Future Trends • • • • • • · · · · · · .. • .. , It
6.2 Dynamic Power Reductions based on Effective Capacitance and Activity

Factor: Status and Future Trends • • • • • • • • • • • .. t~

6.3 Leakage Power Reductions: Status and Future Trends • • • • • • • • • • • .. . !~

6. 4 Final Summary • • • • . , . I~

Glossary 1~

Bibliography IM

Petitioner Samsung Ex-1027, 0008

fN'rROOUC'l10N ;

In this equation, V refers to the supply voltage, while Vr11 refers to the threthold voltage.
The exponential link between leakage power and threshold voltage is immediately obviou,, 1

Lowering the threshold voltage brings a tremendous increase in leakage power. Unfonunately,
lowering the threshold voltage is what we have to do to maintain the switching speed in the
face of lower supply voltages. Tempermture, T, is also an important factor in the equation:
le,tkage power depends exponentially on temperature. The remaining parameters, q, a, and ka,
surnmarize logic design and fabrication characteristics. The exponential dependence ofleakage
on temperature, and the interplay between leakage and dynamic energy will be discussed in
more detail in Chapter 2.

1.2.3 Other Forms of CMOS Power Dissipation
While dynamic and leakage power dominate the landscape, other forms of power dissipation
do e,xist. For example, short circuit or "glitching" power refers to the power dissipated during

the brief transitional period when both the n and p transistors of a CMOS gate are '"on,"
thus forming a short-circuit path from JPOWer to ground. This is distinguished from dynamic
power because dynamic power typically refers to power dissipated due to discharging charged

capacitors; it would be dissipated even if transitions occurred instantaneously. In contrast,
glitching power refers to transitional power that occurs because of non-ideal transition times.

1.3 PO\VER-A\.VARECOMPUTINGTODAY
From the early 1990s to today, power consumption has transitioned into a primary design
constraint for nearly all computer systems. In mobile and embedded computing, the connec­
tion from power consumption to batte1ry lifetime has made the motivation for power-aware

computing very clear. Here, it is typically low energy that is stressed, although obviously

power/performance is also important for some embedded systems with high computational
requirements.

In desktop systems, the key cornstraint has become thermal issues. Excessive power
consumption is one of the prevailing reasons for the abrupt halt of dock frequency increases.
Currently, high-performance processor clocks have hit a "power wall" and are pegged at or
below 4 GHz. This is contrary to 2001 ITRS projections which predicted docks in excess of

6 GHz by roughly 2006. Power consumption is also one important factor driving the adoption
of chip multiprocessors (CMPs) since they allow high-throughput computing to be performed
within cost-effective power and thermal envelopes.

1 What is not shown in this simplified equation is th~so exponential-dependence ofleakage power to the supply
voltage. This is discussed in Chapter 5.

Petitioner Samsung Ex-1027, 0009

I . - .

C.l-1.A.PTER 3

Using ~~ltage and Frequency
Adjustments to lVlanage

Dynamic Power

23

Issues addressing dynamic power have predominated the power-aware architecture landscape.

Amongst these dynamic power techniques, methods for addressing voltage and frequency have

dominated in turn. Most of these methods have focused on dynamic adjustments to supply

voltage, clock frequency, of both, and they go under the broad title of Dynamic Voltage and
Frequency Scaling, or D VFS. This chapter discusses the motivation for these techniques overall,

and gives examples drawn from different categories of techniques.

Chapter Structure: Decisions to engage voltage and frequency scaling are made at various

levels. The decision level, the level of the control policy, defines the structure of this chapter.

Starting from the top, the system (or operating system) level, the chapter unfolds to progressively

more focused levels: program (or program phase) level and the hardware (flip-flop) level. The

following section (Section 3.1) gives an overview of voltage/frequency scaling and discusses a

number of issues pertaining to the corresponding techniques.

3.1 DYNAMIC VOLTAGE AND FREQUENCY SCALING:
lVIOTIVATION AND OVERVIEW

The basic dynamic power equation: P = CV2 Af clearly shows the significant leverage possible

by adjusting voltage and frequency [47, 101]. If we can reduce voltage by some small factor, we

can reduce power by the square of that factor. Reducing supply voltage, however, might possibly

reduce the performance of systems as well. In particular, reducing supply voltage often slows

transistors such that reducing the clock frequency is also required. The benefit of this is that

within a given system, scaling supply voltage down now offers the potential of a cubic reduction
in power dissipation. The downside of this is that it may also linearly degrade performance. If
the program runs at lower power dissipation levels, but for longer durations, then the benefit

in terms of total energy will not be cubic. It is interesting to note that while voltage/frequency

Petitioner Samsung Ex-1027, 0010

24 COMPUTERARCI IITECTURE TECI INJQUES FOR PO\VER-EFFICIENCY

scaling improves EDP (because the reduction in power outpaces the reduction in performant't),

it can do no better than break even on the ED2P metric (and this, only when the scaling factor.
for frequency and voltage are the same).

Nonetheless, DVFS is appealing first because max-power limits may welcome max-poWc,

reductions even if the energy i:s not reduced much. In addition, DVFS is appealing hecalffc

often we can discern ways, as thiis chapter will discuss, to reduce clock frequency without havinis

the workload experience a proportional reduction in performance.

3.1.1 Design Issues and Overview
From an architect's perspective1, key design issues for DVFS include the following:

(1) At what level should the DVFS control policies operate? Fundamentally, DVFS ap­
proaches exploit slack. Slack can appear at different levels and various DVFS approaches h~
been proposed for each level. Approaches operating at the same level share a similar set of
mechanisms, constraints, and available information. We can discern three major levels when
DVFS decisions can be made:

• System-level based on system slack: At this level, the idleness of the whole system is the
factor that drives DVFS decisions (Section 3.2). In many cases, decisions are taken

according to system load. The whole processor (or embedded system, wireless system,
etc.) is typically voltage/frequency scaled to eliminate idle periods.

• Program- or program-phase-level based on instruction slack: Here, decisions are taken
according to program (or program phase) behavior (Section 3.3 for a single clock do­
main and Section 3.4 for multiple clock domains). Instntction Slack due to long-latency
memory operations is ~ypically exploited at this level for DVFS in single-threaded pro­
grams. In multi-core processors, the ability to run parallel (multi-threaded) programs
opens up the possibility for the parallel program behavior to drive voltage/frequency
decisions.

• Hardware-level based on hardware slack: Finally, a recent approach, called Razor, goes
below the program levd, right to the hardware (Section 3.5). Razor tries to exploit siad
hidden in hardware operation. This slack exists because of margins needed to isolatt
each hardware abstraction layer from variations in lower levels. This slack is exploited
similarly to the way idle time is exploited at the system level.

(2) How will the DVFS settings be selected and orchestrated? In some cases, DVFS aJY
pro aches may allow software to adjust a register which encodes the desired (V, J) setting. In
other cases, the choices will be made dynamically "under the covers" by hardware mechanisms

Petitioner Samsung Ex-1027, 0011

\ lSIN<; \'01 Ti\< ;J,: ANI> FHEQUl-:NCY Al>.JllS'l'Ml-:N'r'S TO M1\ NAC; 1,: l>YN1\MJC POWf,:k 2~

lllonc. 1 n either ~cenArio, research quc!1tions arise regarding whether to make offline (e.g.,
l'Ompilc· timc) decisions about DVFS scuings, versus online, reactive, appro2chcs.

(J) What is the hardware gr,mularity al which voltage and frt9uttuy ,an ht ttmlroll1d,

This question is closely relnted to the question above. The bulk of the DVFS reSHtch has

focused on cases in which the entire processor core operates at the same: (JI, f) setting but
is asynchronous to the "outside" work, such as main memory. In such scenarios, the main
goal of DVFS is to capitalize on cases in which the processor's workload is heavily mcmory­
bo\lnd. In these rnses, the processor is olften stalled waiting on memory, so reducing its supply
voltage and clock frequency will reduce power and energy without having significant im~ on
performance.

Other work has considered cases itn which multiple clock dom.uns may exist on a chip.
These so-called MCD scenarios might ,either be multiple clock domains within a single pro­

cessor core [199, 200, 216, 227, 228] or chip multiprocessors in which each on-chip processot
core has a different voltage/clock domain [67]. This dimension is explored in Section 3.4.

(4) How do the implementation ch,aracteristics of the DVFS approach being uud ajfta the

strategies to employ? Some of the implementation characteristics for DVFS can have: significant
influence on the strategies an architect might choose, and the likely payoffs they might offer.

For example, what is the delay required to engage a new setting of (V, f)? (And, can the
processor continue to execute during the transition from one (V, f) pair to another?) If the
delay is vei:y short, then simple reactive techniques may offer high payoff. If the delay is quite
long, however, then techniques based on more intelligent or offiine analysis might make more
sense.

(5) How does the D VFS landscape change when considering parallel applications on multiJ>I~

core processors? When considering one, single-threaded application in isolation, one need only
consider the possible asynchrony betwe,en compute and memory. In other regards, reducing

the clock frequency proportionately degrades the performance. In a parallel scenario, however,
reducing the clock frequency of one thread may impact other dependent threads that are waiting

for a result to be produced. Thus, when considering DVFS for parallel applications, some notion

of critical path analysis may be helpful.

Another similar question regards whether continuous settings of (V, /) pairs are possible,

or whether these values can only be chamged in fixed, discrete steps. If only discrete step-wise

adjustments of (V, f) are possible, then the optimization space becomes difficult to navigate

because it is "non-convex." As a result, simple online techniques might have difficulty finding
global optima, and more complicated or offiine analysis again becomes warranted.

Because DVFS is available for experimentation on real systems [111, 112, 2], and because

it offers such high leverage in power/en1ergy savings, it has been widely studied in a variety of

communities. Our discussion only touches on some of the key observations from the architectural

Petitioner Samsung Ex-1027, 0012

USING VOLTA(a~AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMK POWER JS

micro-operation," and used this as an indicator of the memory boundedness indicative oflikc:ly
DVFS effectiveness. For each pattern of past behavior stored in a history entry, a different
prediction of next-step behavior can be made. For each next-step prediction, there is a one­

to-one mapping to an appropriate DVFS setting. If the DVFS setting is different from the

current setting, then the V, fare adjusted accordingly. When guided by the GPHT, DVFS

was found to achieve EDP improvements as high as 34% for the highly variable benchmarks
that this approach targets.

,t4 PROGRAM-LEVEL DVFS FOR MULTIPLE-CLOCK DOMAINS
Some of the early architectural work on DVFS actually focused on opportunities within

multiple-clock-domain (MCD) processors. The rationale for MCD processors is that as feature
sizes get smaller, it becomes more difficult and expensive to distribute a global clock signal with

low skew through the processor die. Thus, researchers have explored globally-asynchronous
locally-synchronous (GALS) techniques.

Scaling voltage/frequency independently for each clock domain within a processor can

be done dynamically (Section 3.4.1) or statically (Section 3.4.2); both cases aim to exploit slack
in the execution of individual instructions.

Finally, the emerging architectural paradigm for deep sub-micron technologies, the

multi-core paradigm, can be considered as an MCD design where synchronous cores op­

erate asynchronously to each other. DVFS techniques for multi-cores are discussed in
Section 3.4.3.

3.4.1 DVFSfor MCD Processors
In GALS approaches, a processor core is divided into synchronous islands, each of which is

then interconnected asynchronously but with added circuitry to avoid metastability. The islands

are typically intended to correspond to different functional units, such as the instruction fetch

unit, the ALUs, the load-store unit, and so forth. A typical division is shown in Figure 3.5.

In early GALS DVFS work, Marculescu and her students considered the performance

and power implications of GALS designs [216, 117]. In [117], they first predicted that going

from a synchronous to a GALS design caused a drop in performance, but that elimination of the

global clock would not single-handedly lead to drastic power reductions. In fact, from a power

perspective, GALS designs are initially less efficient when compared to synchronous architec­

tures. Their potential, however, lies in the flexibility offered by having several independently

controllable clocks. As with other DVFS opportunities, the key lies in finding inter-domain

slack that one can exploit. For example, in some MCD designs, the floating point unit could be
clocked much more slowly than the instruction fetch unit, because its throughput and latency

demands are lower. Iyer and Marculescu's results show that for a GALS processor with five

Petitioner Samsung Ex-1027, 0013

_\(\ "'Ol\lPLITER .-\RCI IITECTURE TECI INIQUES FOR POVlER-EFFICIENCY

.r
---·---------- ---------------------- ---- --------- -, I I

' I
' .----------, I : :
I I
I r---, .-~---. I I I

I 1-c: I
: ache Bpred I

ffl
queue

MEM
queue

0-cache

FP
queue

I
I
I
I

I

1---•----- I

Synchronous (base) processor

(a)

J11 ! I-cache ~~,~~-- -
:_~__,
·- ----- -----------------

- -- •- - ••• I

INT
queue

i.1'2

Rename

-- -- -- ------
' I
I

MEM :
queue

___ _.

. .
0-cache :

I

FP
queue

-------- -----• ~-------1

GALS processor

(b)

FIG URE 3.5: Synchronous versus GALS processor. Reproduced from [117]. Copyright 2002 IEEF.

clock domains, the drop in performance ranges between 5% and 15%, while power consumptioo

is reduced by 10% on the average. Thus, fine-grained voltage scaling allows GALS to match

or exceed the power efficiency of fully synchronous approaches.

In a similar timeframe, research from Albonesi's group also explored DVFS opportunities

in MCD processors [199,200]. Similar to the Iyer and Marculescu MCD division of the CPU
(Figure 3.5), Semeraro et al. divide the processor into five domains: Front end, Integer, Floating
point, Load/Store, and External (Main Memory). The division is shown in Figure 3.6 along
with the relevant clock parameters. The domains interface via queues.

The work by Semerao et al. primarily focused on the control policies by which (Y, I
f) settings could be optimized for such microarchitectures. Their early work used o~ t
scheduling to accomplish good (V, J) settings, but subsequent work explored control-the.orelt l
approaches for managing MCD processors.

Ofjline approach: Semeraro et al. use an offiine approach in [200] to select the times~
frequency values for DVFS in an application. The application is executed (at maximum speed)

1

in a simulator that creates an event trace. The events correspond to primitive operations io
the processor (for example, for a load instruction: fetch, dispatch, address calculation, mernOlf
access, and commit events are traced). The events are connected with resource constraints aitd

Petitioner Samsung Ex-1027, 0014

:

")

USI N(: VOLT,\GE AND FREQ!JENCYAD.JUSTMENTS TO M/\NAC J,: DYNAMIC POWER 37

rnrnmctcr

11111nm o ngc
Domnin Frequency
Fn.-qucncy C-hnngc Ruic
Domnin Clod, .l illcr
SynchroniT.ation window

Vnluo(s)

.)
250 Milz - 1.0 G Hz

49.1 nlllMHz
11 Ops, normnlly distributed uhout zero

-'0% of 1.0 O 1-lz clock (200ps)

1nieger .,.. I'\' >M<4 J

l'ronti t,d ~--.... lxi.mel (Main~

Main

ROB, Rename,
Dispatch

Memory

FIGURE 3.6: MCD processor and clock parameters. Adapted from [199).

data dependencies into a temporal-ordered directed acyclic graph (DAG). A DAG is created
for an interval of SOK instructions and is then processed in two phases.

In the first phase, each event in the DAG that is not on the critical path is stretched,
as if each instruction could run at its own frequency. A multi-pass "shaker" algorithm tries to

distribute slack evenly in the DAG wherever it exists. This step concludes when all slack in the
DAG is removed and each instruction is assigned to run at one of the allowed frequencies (e.g.,
one of the 32 frequencies for the Transmeta Crusoe or one of the 320 in the Intel XScale).

Since executing each instruction at a different frequency is not practical, the second phase
processes the results of the first phase and aims to find a single minimum frequency per interval
far each domain. This is done under the constraint that each domain finishes its work with
no more than a fixed-externally set--factor of time dilation. Finally, intervals with the same
or similar frequencies are merged together to create larger combined intervals-and this is

continued recursively- with the intent of reducing the number of reconfigurations. In contrast
to the first phase where DVFS reconfiguration was considered instantaneous and for-free, in

the second phase realistic DVFS overhead (for the two processors studied) is taken into account.
Online approach: By analyzing the resource utilization of various CPU structures in [199],

Semeraro et al. discovered that there is a significant correlation between the number of valid

entries in the input queues for each domain and the desired frequency of the domain as derived
by their offiine method (see above). In other words, the occupancy of these queues reveals the

Petitioner Samsung Ex-1027, 0015

JS ' O IPUTER ARCHITECTURE T ECHNlQ!JES FOR POWER-EFFJCJENCl'

throughput of the corresponding domain. 3 When a queue fills up-its utilization incre~

throughput ofits domain is low. The analysis of Semeraro et al. revealed that (i) decentratn,,

control of the different domains is possible and (ii) the utilization of the input queues ia a gr,,
indicator for the appropriate frequency of operation.

Based on the observations of their analysis, Semeraro et al. devised an online DVFSt'.4
trol algorithm for multiple domains called Attack/Decay. This is a decentralized, interval-~

algorithm. Decisions are made independently for each domain at regular sampling int~

The algorithm tries to react to changes in the utilization of the issue (input) queue of each 'b

main. During sudden changes, the algorithm sets the frequency aggressively to try to match tic

utilization change. This is the Attack mode. If the utilization increased by a significant amOl!t

since the last interval, the frequency is also increased by a significant factor. Conversely, wbQ
utilization suddenly drops, frequency is also decreased. In the absence of any significant chan,

in the issue queue, frequency is slowly decreased by a small factor. This is the Decay mode.

The algorithm tries to balance the utilization of the various domains independently~

varying their speeds. This, however, does not account for a natural change in the perfo~

of the program. To capture this effect, the performance of the processor in terms of IPC a

tracked from interval to interval. If there is an inherent change in the IPC that is not relattd
to frequency adjustments in the domains, then no frequency changes are allowed for the oot

interval. The IPC is the only global information needed in this algorithm.

On average, across a wide range ofMediaBench, Olden, and Spec2000 benchmarks, da
algorithm achieved a 19% reduction (from a non-DVFS baseline) in energy-per-instruction

and a 16. 7% improvement in energy-delay product. The approach incurred a modest 3.2\
increase in cycles per instruction (CPI). Interestingly, their online control-theoretic approach

was able to achieve a full 85 .5% of the EDP improvement offered by the prior offiine scheduling

approach. Wu et al. extended the online approach using formal control theory and a dynamx
stochastic model based on input-queue occupancy for the MCDs [228].

3.4.2 Dynamic Work-Steering for M CD Processors
As an alternative to dynamic voltage/frequency scaling of multiple clock domains, one can
statically provide multiple components for the same function clocked at different frequencies..

For example, one can provide a fast and power-hungry pipeline and a slow but power-efficient

pipeline. With two such pipelines, the problem is no longer about selecting domain frequencies

to eliminate stack, but instead is about steering instructions to the appropriate slow or &st

JThe occupancy of the instruction queue is also used for resizing it to reduce its switching activity factor as we~
in Section 4.6.3.

Petitioner Samsung Ex-1027, 0016

USJNC VOLTAGE AND FREQUENCY ADJUSTMENTS TO MAN/\CH•: DYNAM IC POWER 39

pipeline to accomplish this. This is a work-steering strategy that is aJso revisited in Chapter 4
for effective capacitance optimizations (Section 4.13).4

Fields, Bodik, and Hill use this work-steering approach as an example of how instruction

slack can be e.xploited [76]. In their study, they show that there exists a significant slack in
instrnctions. In many instances, instructions can be delayed several cycles without any impact
on the program's critical path and hence its performance [76). Furthermore, they classify the

instmction slack into local, global, and apportioned. Local slack exists when an instruction can
be delayed without any impact on any other instruction. Global slack exists when delaying an
instruction does not delay the last instmction of the program (i.e., there is no impact on the

total execution time). Apportioned slack refers to the amount of slack for a group of instructions

that can be delayed together without impact on execution. Apportioned slack depends on how
it is calculated from the instrnctions' individual slack [76].

To measure slack, Fields et al. use an offline analysis (similar to the Semeraro et al.
offiine approach used in (200] and described in Section 3.4.1) that creates a dependence

graph of the execution taking into account both data dependencies and microarchitectural
resource constraints. Their offiine approach allows the calculation of all three types of slack.
Their results show that there is enormous potential for exploiting slack by slowing down

instructions [76].

More interestingly, Fields et al. show that one can dynamically predict slack in hardware.
This is of significance since it allows for the possibility of fine-grain-on a per-instruction

basis-control policies. Online control policies discussed previously for DVFS in MCD pro­
cessors cannot treat each instruction individually. There is simply no possibility of dynamically

changing the frequency of execution individually for each instruction; instead, the frequency of
each domain is adjusted according to the aggregate behavior of all the instructions processed in
this domain over the course of a sampling interval (Section 3.4.1).

With work steering, the execution frequencies are fixed for each execution pipeline-as
is the case for the fast and slow pipelines in Figure 3. 7--and the instructions are steered toward

the appropriate pipeline. All that is needed to implement work steering is to have a good idea
of the slack of each instruction. And this is where prediction comes into play. According to

Fields et al., for 68% of the static instructions, 90% of their dynamic instances have enough

slack to double their latency. This slack "locality'' allows slack prediction to be based on sparsely
sampling dynamic instructions and determining their slack.

Slack prediction would not be feasible if slack could not be measured efficiently at
rnn-time. To determine whether an instruction has slack, Fields et al. employ an elegant delay-

4There too, multiple components are provided, offering a range of power/performance characteristics, and work
(computation) is dynamically steered according to run-time conditions and goals.

Petitioner Samsung Ex-1027, 0017

~0 CO 1\1PllTER .-\ RC I 1 lTECT URE TECI JN IQUES FOR POWER-EFFICIENCY

Fetch ,md
Rename

I Window 1-N~ I
/ Fast Plpellne

~~ ..------------.-,

I Window I
Slow Plpellne

,.

Data
Cache

Bypass Bus

FIGURE 3.7: Work steering for a fas t and a slow pipeline. Reproduced from (76]. Copyright ¾
IEEE.

and-observe approach. An instruction is delayed for a number of cycles and then observed
see if it becomes critical.

Criticality, in turn, is tested with a token that is passed from instruction to instruction.

starting from the delayed instruction, and passed to all dependent instructions. The tokca

is dropped if it is not passed to an instruction at the very last moment before it becomes

ready to execute. In other words, the token is dropped if it has slack. If the token is still in
existence well after an instruction is delayed, then the instruction, thus far, is in the critial
path.

Slack determined by sampling is stored, per-instruction, in a PC-indexed predictoL

This prediction is used in subsequent dynamic instances of the instruction for steering. If 2n

instruction's predicted slack can accommodate the increased latency of a slow pipeline, then the

instruction can be steered to this pipeline for execution without an impact on the performance.
Fields et al. confirm this in their results, showing that a control policy based on slack prediction

is second-best, in terms of performance, only to the ideal case of having two fast pipelines
instead of a fast and a slow pipeline [76]. However, execution in the slow pipeline yielm
significant benefits in power consumption.

3.4.3 DVFS for IVlulti-Core Processors

As chip multiprocessors (CMPs) become the predominant general-purpose, high-performance

microprocessor platform, it becomes important to consider how DVFS management can be

applied to them most effectively. One major design decision concerns whether to apply DVFS
at the chip level or at the per-core level. As with other MCD designs, per-core DVFS i5
considered more expensive; it requires more than one power/clock domain per chip, and
synchronizer circuits are required to avoid metastability between domains. On the other band.

multiple clock domains may be employed anyway for circuit design or reliability reasons, in
addition to voltage and frequency control.

Petitioner Samsung Ex-1027, 0018

lJSJN<: VOl .' l'.-\C';&,: AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 41

Research has explored the benefits of per-core versus per-chip DVFS for CMPs. For

example, on a four-core CMP in which DVFS was being employed to avoid thermal emergen­

cies (rather than simply to save power), a per-core approach had 2.5 x better throughput than

a per-chip approach [67]. This is because the per-chip approach must scale down the entire

chip's (V, f) when even a single core is nearing overheating. With per-core control, only the

core with a hot spot must scale (V, f) downwards; other cores can maintain high speed unless

they themselves encounter thermal problems.
\r\Thile a multi-core processor can be used to run independent programs for throughput,

its promise for single-program performance lies in thread-level parallelism. Managing power

in a multicore when running parallel (multi-threaded) programs is currently a highly active

area of research. Many research groups are tackling the problem, considering both symmetric
architectures which replicate the same core and asymmetric architectures that feature a variety

of cores with different power/performance characteristics (146].5 Independent DVFS for each

core [15], a mixture chip-wide DVFS and core allocation [153], or work-steering strategies at

the program level in heterogeneous architectures [146, 170] are considered.

3.5 HARDWARE-LEVELDVFS
The main premise in much of the DVFS work is that a system, a task, or a program can

be slowed down with disproportionally small impact on its performance (or the perception of
performance for interactive tasks), while at the same. time obtaining significant savings in power

consumption by voltage scaling. This can only be achieved by intelligently reducing frequency

to remove slack: idle time in the system, slack in tasks with deadlines, or instruction slack due

to memory accesses in memory-bound program phases. A similar idea can be applied at the

hardware level. Ernst, et al. proposed a DVFS variation intended to remove slack in the timing
of the hardware itself. Their approach is called Razor (73].

The driving motivation is to scale the supply voltage as low as possible for a given
frequency while still maintaining correct operation. What prevents scaling the voltage below a

critical level for a given frequency is the built-in margins in a process technology. For a given

frequency, a voltage level is allowed which is safely above the lowest voltage level needed for the

worst-case process and environment variability in the design. In other words, the relation between

voltage and frequency is such that it guarantees correct operation with significant margin from

the worst-case scenario.

This, however, diminishes the value of DVFS since the useful voltage range for DVFS

shrinks with each new process technology. Going below the critical voltage level (subcritical

voltage) for a given frequency invites trouble: timing faults. Faults, however, are unlikely to

5Similarly to the architecn1re described in Section 3.4.2 but allowing multiple cores to be active at the same time.

Petitioner Samsung Ex-1027, 0019

