
USOO67.11691B1

(12) United States Patent (10) Patent No.: US 6,711,691 B1
Howard et al. (45) Date of Patent: Mar. 23, 2004

(54) POWER MANAGEMENT FOR COMPUTER 5,799,198 A 8/1998 Fung
SYSTEMS 5,809,314 A 9/1998 Carmean et al. 713/322

5,812,796 A 9/1998 Broedner et al.

(75) Inventors: Brian D. Howard, Portola Valley, CA 2: A ...R. E. tal
AA 2-a-s-s-s arKy et al.

s: Michael F. Culbert, San Jose, 6,119,194. A 9/2000 Miranda et al.
6,141,762 A * 10/2000 Nicol et al. 713/300
6,230.277 B1 5/2001 Nakaoka et al.

(73) ASSignee: Apple Computer, Inc., Cupertino, CA 6,272.644 B1 8/2001 Urade et al.
(US) 6,308.278 B1 10/2001 Khouli et al.

- 6,460,143 B1 10/2002 Howard et al. 713/323
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. “Universal Serial Bus Specification”, Revision 1.0, Jan. 15,

1996.
(21) Appl. No.: 09/567,201

* cited by examiner
(22) Filed: May 8, 2000

Primary Examiner Dennis M. Butler
Related U.S. Application Data (74) Attorney, Agent, or Firm-Beyer Weaver & Thomas

(60) Provisional application No. 60/133,918, filed on May 13, LLP
1999.

(57) ABSTRACT
(51) Int. Cl. .. G06F 1/32
(52) U.S. Cl. 713/300; 713/320 713/322 Power management approaches for computer Systems hav
(58) Field of Search 713/300, 320 ing one or more processors are disclosed. One power man

713/322 323 324 agement approach provides hierarchical power manage
s s ment. The hierarchical nature of the power management

(56) References Cited provided by the invention has various levels of power
management Such that power consumption of the computer

U.S. PATENT DOCUMENTS System is dependent upon the amount of work placed on the
5,167,024. A 11/1992 Smith et al. processing resources of the computer System. Another
5,239.652 A 8/1993 Seibert et al. power management approach pertains to deterministic hand
5,254,928 A 10/1993 Young et al. Shaking provided between a power manager and one or more
5,396,635 A 3/1995 Fung controller units. The deterministic handshaking provides for
5,483.656 A 1/1996 Oprescu et al. more reliable and controllable transitions between power
5,557,777 A 9/1996 Culbert management States which have associated power manage
5,590,061. A 12/1996 Hollowell, II et al. ment taking place in the controller units. The power man
5: A : 2.92. R al 713/322 agement approaches are Suitable for use with a single
570s s16 A 1/1998 Culbert - - - - - - - - - - - - - - - - processor computer System or a multi-processor computer

5,710,929 A 1/1998 Fung System.
5,724,591. A 3/1998 Hara et al. 713/322
5,737,615. A 4/1998 Tetrick 713/324 18 Claims, 22 Drawing Sheets

OERATING 18
SYSEM

18

MTA
SRSA processor

e A. RECA Sw-A
PLC-A oACK-A

-> 2

{- al NT-B

SRSTB PRocessor CRE
SM-B s (ACK-8

PLC- 1 r -

H NT-C

SRST-C PROCESSORoREo-c iNT-D
LC-C SM)- ACK-C

m- s 18 DRAM

- ||
SRST-D PROCESSOR MEMORY

ONRERF

S- - CRS-D BUS
PLC- ab 108 SS MANAGER

Hrst 112

SUSREQ1
dowr SUSACK

MANAGER SRST

11

SREC
NT uo. INTERRUPTCONTROLLER

SSRE2
SUSACK

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 1 of 34

U.S. Patent Mar. 23, 2004 Sheet 1 of 22 US 6,711,691 B1

12 MONITOR WORKLOAD

14

S
WORKLOAD
HEAVY

p
ACTIVAE ONE OR MORE

PROCESSORS

16

S
WORKLOAD

LIGHT

20

DEACTIVATE ONE OR
MORE PROCESSORS

FIG. 1A

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 2 of 34

U.S. Patent Mar. 23, 2004 Sheet 2 of 22 US 6,711,691 B1

--
>1

ACTIVE
PROCESSORS

PLACE ONE ORMORE (BUT
NOT ALL) PROCESSORS IN
SLEEP MODE BASED ON

WORKLOAD

36
S
AS

PROCESSOR
N RUN
MODE

p

N FRS OW
POWER
MODE PLACE AST PROCESSOR

N FIRST LOWPOWER
MODE

PLACE LAST PROCESSOR
INSECOND LOWPOWER

MODE

SHUTDOWN UNNEEDED
SUBSYSTEMS

F.G. 1B

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 3 of 34

U.S. Patent Mar. 23, 2004 Sheet 3 of 22 US 6,711,691 B1

OPERATING 100
SYSTEM ?

MEMORY
ONTROLLERf

BUS
MANAGER

12

1 O POc

-- IO - iNTERRUPT CONTROLLER
16

FIG. 1C

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 4 of 34

U.S. Patent Mar. 23, 2004 Sheet 4 of 22 US 6,711,691 B1

214

SHUTDOWN

STARTUP PROCESSING

PROCESSENG
FORLAST PROCESOR

238

WAKEUP
PROCESSING

FORLAST ACTIVE
PROCESSOR

204

224

OLE
PROCESSING

PR3EESR ACTIVATON PROCESSING
FOR ALL BUT LAST
ACTIVE PROCESSOR

222

210
NAP

PROCESSING
228 FORLAS

ACTIVE
IP PROCESSOR

230 218

SHUTDOWN PROCESSING
FOR EXTRA PROCESSORS

208
ACTIVAON
PROCESSING

FORLAS PROCESSOR

NAP SINGLE
NERRUPT

220 PROCESSING

FIG 2

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 5 of 34

U.S. Patent Mar. 23, 2004 Sheet 5 of 22 US 6,711,691 B1

STARTUP PROCESSING J 300

PMGRASSERTS SUSREQ2, SREQAND SUSREQ1 302

PMGR ASSERTS ALL RESETS (EXCEPT POC) 304

306
308

PMGR ASSERS POC

DRAM
POWERED

OFF

PMGRACTIVATES POWER AND CLOCKS 310

MCBM ASSERTS SUSACK1 312

316

PMGR DE-ASSERTS POC AND ALL NON-PROCESSOR RESETS

PMGR DE-ASSERS SUSREO1 AND SUSREO2

MCBM AND OC BEGINNTERNAL WAKEUP SECRUENCES 318

320

314

SUSACK1
AND SUSACK2
DE-ASSERTED NO FG. 3A

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 6 of 34

U.S. Patent Mar. 23, 2004 Sheet 6 of 22 US 6,711,691 B1

PMGR DE-ASSERT RESETS FOR PROCESSORS

PROCESSORS EXECUTE RESET VECTORS

COMPLETE WARM OR COLD BOOT SECUENCE

MAP ALL INTERRUPTS TO AST
ACTIVE PROCESSOR

PMGR DE-ASSERTS SREC

ENABLE INTERRUPTS ON ALL PROCESSORS

FIG. 3B

324

326

328

330

332

334

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 7 of 34

U.S. Patent Mar. 23, 2004 Sheet 7 of 22 US 6,711,691 B1

336 SAVE STATE OF ALL BUT LAST
ACTIVE PROCESSOR

FLUSH AND THEN DISABLE CACHES
ONALL BUT LAST ACTIVE PROCESSOR

SET SLEEP BITS NALL BUT
LAST ACTIVE PROCESSOR

ALL BUT LAST ACIVE PROCESSOR ASSERT
THER QREOs

344

338

340

342

MCBM ASSERTS ALL QACKs

346

OACKs
ASSERTED NO

p

ALL BUT LAST ACTIVE PROCESSORENTERS SLEEP MODE
(LAST ACTIVE PROCESSOR IS IN A RUN MODE)

FIG. 3C

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 8 of 34

U.S. Patent Mar. 23, 2004 Sheet 8 of 22 US 6,711,691 B1

ACTIVATION PROCESSING
FOR ALL BUT LAST ACTIVE

PROCESSOR

MAP INTERRUPTS TO ALL PROCESSORS 402

ALL BUT LAST ACTIVE PROCESSOR RECEIVE
INTERRUPTS AND THEN CLEAR SLEEP 404

BITS AND DE-ASSERT OREOS

ENABLE CACHES ON ALL BUT LAST 406
ACTIVE PROCESSOR

ALL BUT LAST ACTIVE PROCESSOR
ENTERRUNMODE (LAST ACTIVE 408

PROCESSOR REMAINS IN RUN MODE)

FIG. 4

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 9 of 34

U.S. Patent Mar. 23, 2004 Sheet 9 of 22 US 6,711,691 B1

SHUTDOWN PROCESSING
FOR EXTRA PROCESSORS J 500

MAP ALL INTERRUPTS TO LAST ACTIVE 5O2
PROCESSOR

SAVE STATE OF ALL BUT AS ACTIVE 504
PROCESSOR

FLUSH AND THEN DISABLE CACHES ON 506
AL BUT LAS ACTIVE PROCESSOR

SE SLEEP BIT NALL BUT LAST ACTIVE 508
PROCESSOR

ALL BULAST ACTIVE PROCESSOR ASSER 510
THER CREQs

MCBM ASSERTS ALL QACKs 511

512

ALL
QACKs

ASSERED NO

YES

ALL BUT LAST ACTIVE PROCESSORENTERS
SLEEP MODE (LAST ACTIVE PROCESSOR 514

REMAINS N RUN MODE)

F.G. 5

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 10 of 34

U.S. Patent Mar. 23, 2004 Sheet 10 of 22 US 6,711,691 B1

1. 600
NAP SINGLE INTERRUPT

PROCESSING

AST ACTIVE PROCESSOR RECEIVES
NTERRUPT WHICH CLEARS NAP BIT 602

LAST ACTIVE PROCESSORDE-ASSERTSTS QREO 604

MCBM DE-ASSERTS QACK 606

LAST ACTIVE PROCESSORENTERS RUN MODE - so
(OTHER PROCESSORS REMAIN IN SLEEP MODE)

LAST ACTIVE PROCESSOR
PROCESSES INTERRUPT 610

F.G. 6

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 11 of 34

U.S. Patent Mar. 23, 2004 Sheet 11 of 22 US 6,711,691 B1

1. 700

SET NAP BIT IN LAST ACTIVE PROCESSOR 702

LAST ACTIVE PROCESSOR ASSERTS ITS QREQ 704

706

NAP PROCESSENG
FORLAST ACTIVE
PROCESSOR

OACK
ASSERTED
FOR AST
ACTIVE

PROCESSOR
?

NO

YES 708

LAS ACTIVE PROCESSOR ENTERS NAP MODE
(ALL OTHER PROCESSORS REMAIN IN SLEEP

MODE)

FIG. 7

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 12 of 34

U.S. Patent Mar. 23, 2004 Sheet 12 of 22 US 6,711,691 B1

A 800 DLE PROCESSENG
FORLAST PROCESSOR

SE DE B NMCBM 802

SET OLE COMMAND TO PMGR 804

PMGRASSERTS SUSREQ1, SUSREQ2 & SREQ 806

FLUSH AND THEN DISABLE CACHES ON
AST ACTIVE PROCESSOR 808

SE SLEEP BITN LASACVE PROCESSOR 812

LAST ACTIVE PROCESSOR ASSERTS 814
OREO AND ENTERS DOZE MODE

816
OACK

ASSERTED
TO AST
ACTIVE

PROCESSOR
p

NO

818
YES

LAS ACTIVE PROCESSOR ENERS SLEEP MODE
(ALL OTHER PROCESSORS ALREADY SLEEPING)

(c) FIG. 8A

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 13 of 34

U.S. Patent Mar. 23, 2004 Sheet 13 of 22 US 6,711,691 B1

SUSACK1
AND SUSACK2
ASSERTED

PMGR STOPS PROCESSOR PLLs

PMGR STOPS PROCESSOR CLOCKS

822

824

FIG. 8B

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 14 of 34

U.S. Patent Mar. 23, 2004 Sheet 14 of 22 US 6,711,691 B1

ACTIVATION PROCESSING
FORLAST PROCESSOR

PMGR STARTS PROCESSOR CLOCKS 902

PMGR STARTS PROCESSOR PLLs 904

PMGR DE-ASSERTS SUSREO1 AND SUSREC2 906

MCBM CLEARSS OLE BIT 908

910

SUSACK1
AND SUSACK2
OE-ASSERED NO

YES

PMGR DE-ASSERTS SREC 912

LAST ACTIVE PROCESSOR RECEIVES INTERRUPT,
CLEARS SLEEP BITN LAST ACTIVE PROCESSOR, 914

AND DE-ASSERS TS CREO

MCBM DE-ASSERTS ALL QACKs 916

ENABLE CACHES ON LAST ACTIVE PROCESSOR 918

AST ACTIVE PROCESSORENTERSRUNMODE Ngo
(OTHER PROCESSORS REMAIN IN SLEEP MODE)

(END) F.G. 9

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 15 of 34

U.S. Patent Mar. 23, 2004 Sheet 15 of 22 US 6,711,691 B1

SET SLEEP BIT IN MCBM 1002

SHUTDOWN PROCESSING
FORLAST PROCESSOR

SEND SLEEP OR OFF COMMAND TO PMGR 1004

PMGRASSERTS SUSREC1, SUSREO2 & SREQ 1006

SAVE STAE OF LAST ACTIVE PROCESSOR 1008

FLUSH AND THEN DISABLE CACHES ON
LAST ACTIVE PROCESSOR 1010

SET SLEEP BITN LAST ACTIVE PROCESSOR 102

LAST ACTIVE PROCESSORASSERTS 1014
TS QREQ

1016
ALL

QACKs
ASSERED NO

YES

LAST ACTIVE PROCESSOR ENTERS SLEEP MODE - 1013
(ALL OTHER PROCESSORS ALREADYSLEEPING)

F.G. 1 OA

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 16 of 34

U.S. Patent Mar. 23, 2004 Sheet 16 of 22 US 6,711,691 B1

102O

MCBMAND OC BEGIN INTERNAL SHUTDOWN
SEQUENCE

SUSACK1
AND SUSACK2
ASSERTED

p

PMGR STOPS ALL CLOCKS,
ASSERTS PROCESSOR RESETS,
AND REMOVES POWER TO

PROCESSORS

1024

OFF
REOUESTED

ASSERT ALL RESETS
AND REMOVE ALL POWER

1028

F.G. 1 OB

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 17 of 34

U.S. Patent Mar. 23, 2004 Sheet 17 of 22 US 6,711,691 B1

WAKEUP PROCESSENG 1100
FORLAST PROCESSOR J

PMGRTURNS-ON POWER TO PROCESSORS 1102
AND RESTARTS CLOCKS

START PROCESSOR PLLs, THENDE-ASSERT 104
SUSREO1 AND SUSREO2

MCBM CLEARS TS SLEEP BT 1106

MCBM AND OC BEGIN INTERNAL 1108
WAKEUP SECUENCE

1110

SUSACK
AND SUSACK2
DE-ASSERTED NO

YES

DE-ASSERT RESETS FOR PROCESSORS 1112

PROCESSORS EXECUTE RESE VECTORS 1114

RESTORE STATE TO ALL PROCESSORS 1116

ENABLE INTERRUPTS ON ALL PROCESSORS 1120

FIG 11

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 18 of 34

U.S. Patent Mar. 23, 2004 Sheet 18 of 22 US 6,711,691 B1

SNOOP PROCESSING I 1200

MCBM DE-ASSERSAL CRACKS 12O2

ANY NAPPING PROCESSORS ENTER OOZE MODE 1204
(SLEEPING PROCESSORS REMAIN SLEEPING)

SNOOP OPERATION COMPLETED 12O6

1208 N
ASSERTED10

YES

ALL OOZNG PROCESSORS RE-ENTER 1210
NAP MODE

(END)

FIG. 12

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 19 of 34

U.S. Patent Mar. 23, 2004 Sheet 19 of 22 US 6,711,691 B1

1300
NAP PROCESSING

SCHEDULE NAP TASK TO ASSOCATED PROCESSOR 1302

SET NAP BIT IN ASSOCATED PROCESSOR 1304

ASSOCATED PROCESSOR ASSERTS TS CREO 1306

ASSOCATED PROCESSOR ENTERS OOZE MODE 1308

ASSERTED10

YES 1312

ANY PROCESSORN OOZE MODE ENTERS NAP MODE

F.G. 13A

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 20 of 34

U.S. Patent Mar. 23, 2004 Sheet 20 of 22 US 6,711,691 B1

1326

INTERRUPT I
PROCESSING

ASSOCATED PROCESSOR CLEARS TSNAP BIT 1328

ASSOCATED PROCESSORDE-ASSERTS ITS QREQh 1330

MCBM DE-ASSERTSAL COACKS 1332

ASSOCATED PROCESSOR ENTERS RUN MODE
(ANY OTHER PROCESSORS THAT WERE

NAPPING ENTER DOZE MODE, AND SLEEPING
PROCESSORS REMAIN SLEEPING)

ASSOCATED PROCESSOR HANDLES THE 1336
INTERRUPT

FIG. 13B

1334

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 21 of 34

U.S. Patent Mar. 23, 2004 Sheet 21 of 22 US 6,711,691 B1

? 1400

COMPLETE ANY PREVIOUSLY QUEUED 1402
TRANSACTIONS

TAKE CONTROLALL BUSES 1404

PLACE DRAM INTO SELF-REFRESH MODE 1406

DRIVE ADDRESS AND DATA LINES LOW 1408

DE-ASSERT AND TR-STATE 1410
CONTROL LINES

BYPASS AND SHU DOWN INTERNAL PLS 1412

ASSERT SUSACK1 1414

F.G. 14A

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 22 of 34

U.S. Patent Mar. 23, 2004 Sheet 22 of 22 US 6,711,691 B1

? 1450

CLEAR SLEEP AND OLE BITS 1452

ENABLE AND SWITCH TO 1454
NTERNAL PLL

RETURN DRAM TO NORMAL MODE 1456

STOP DRIVING DATA & ADDRESS LINES LOW,
STOP TR-STATING CONTROL LINES, AND DE- 1458

ASSERT CONTROL LINES

RELEASE CONTROL OF BUS 1460

DEASSERT SUSACK1 1462

F.G. 14B

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 23 of 34

US 6,711,691 B1
1

POWER MANAGEMENT FOR COMPUTER
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 60/133,918, filed May 13, 1999, and
entitled “POWER MANAGEMENT FOR COMPUTER
SYSTEMS", the content of which is hereby incorporated by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer Systems and,
more particularly, to power management for computer Sys
temS.

2. Description of the Related Art
Computer Systems include electrical components that

consume power when is active. These electrical components
include processors, controllers, buses, and various Sub
Systems. Limited power management has been performed to
reduce the power consumption of these electrical compo
nents. Often, with portable computers where power con
Sumption is a major concern, the portable computers can
enter a sleep mode in which the processor is slowed or
Stopped and in which the controllers, buses and various
Subsystems are also shutdown. The sleep mode thus pro
vides a State which the portable computer is able to enter to
conserve power when processing resources are not needed.
In the sleep mode, processors, controllers and Subsystems
are able to be shutdown. Typically little power management
is offered with desktop computers.

Although there are various disadvantages of conventional
power management, one disadvantage is that the power
management is primarily processor power management and
not system level. As a result, the Overall power management
is not very efficient in reducing power consumption.
Typically, many electrical components that consume signifi
cant amounts of power are either not power managed or
crudely power managed to have only an on State (i.e., active)
and an off State (i.e., shutdown). Also, in the case of desktop
computers, conventional power management has been even
less efficient.

Still further, conventional power management for multi
processor computer Systems has not been efficient. Hence,
large amounts of power are consumed by these multi
processor computer Systems even when there is no activity.

Thus, there is a need for improved power management in
computer Systems.

SUMMARY OF THE INVENTION

Broadly Speaking, the invention relates to power manage
ment for computer Systems having one or more processors.
One aspect of the invention pertains to providing hierarchi
cal power management. The hierarchical nature of the power
management provided by the invention has various levels of
power management Such that power consumption of the
computer System is dependent upon the amount of work
placed on the processing resources of the computer System.
Another aspect lie of the invention pertains to deterministic
handshaking provided between a power manager and one or
more controller units. The deterministic handshaking pro
vides for more reliable and controllable transitions between
power management States which have associated power
management taking place in the controller units. The inven

15

25

35

40

45

50

55

60

65

2
tion is Suitable for use with a Single-processor computer
System or a multi processor computer System.
The invention can be implemented in numerous ways,

including as a computer System, an apparatus, a method, and
a computer readable medium. Several embodiments of the
invention are discussed below.
AS a power management method for a multi-processor

computer System having a plurality of processors, one
embodiment of the invention includes: monitoring workload
on the multi-processor computer System; and, placing the
multi-processor computer System in one of a plurality of
predetermined power management States based on the work
load.
As a method for managing power consumption of a

multi-processor computer System having a plurality of
processors, one embodiment of the invention includes:
determining a processing workload for the multi-processor
computer System; awakening one or more of the processors
from an inactive mode to an active mode when the proceSS
ing workload is heavy; and transitioning one or more of the
processors from the active mode to the inactive mode when
the processing workload is light. The power consumption of
the multi-processor computer System is managed Such that
those of the processors that are not needed to process the
processing workload are transitioned into the inactive mode
to conserve power, yet one or more of the processors can
awaken from the inactive mode to the active mode to
provide additional processing capabilities as needed to
handle the processing workload.
As a method for providing deterministic State changes

within a computer System having a plurality of processors,
a bus controller and a power manager, one embodiment of
the invention includes: determining when a lower power
State of the multi-processor computer System should be
entered to reduce power consumption, and entering the
lower power state. The lower power state is entered by
performing the following operations: receiving at the bus
controller a State change request from the power manager;
initiating a State change Sequence at the bus controller upon
receiving the State change request; and notifying the power
manager when the bus controller has completed the State
change Sequence.
AS a computer System, one embodiment of the invention

includes: at least one processor, the processor executes
operations in accordance with a processor clock, a bus
controller operatively connected to the processor, the bus
controller controls bus activity on a bus, and a power
manager operatively connected to the processor and the bus
controller, the power manager controls the processor clock
and shutdown of the bus controller, and the power manager
provides a first handshaking between the power manager
and the bus controller to provide deterministic mode
changes for the computer System So as to manage power
consumption.
The advantages of the invention are numerous. Different

embodiments or implementations may have one or more of
the following advantages. One advantage of the invention is
that it offers improved power management that is obtained
by a layered approach. Another advantage of the invention
is that the System power management provided by the
invention includes power management (i.e., shutdown) for
not only processors but also related control circuitry (e.g.,
buS controllers, I/O controllers, memory controllers, inter
rupt controllers). Still another advantage of the invention is
that deterministic control over power management of control
circuitry provides proper Sequencing of shutdown opera

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 24 of 34

US 6,711,691 B1
3

tions. Yet another advantage of the invention is that more
aggressive power management of a computer System is
provided, whether for a single processor or a multi-processor
System.

Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like Structural elements, and in which:

FIG. 1A is a flow diagram of power management pro
cessing according to a basic embodiment of the invention;

FIG. 1B is a flow diagram of processor deactivation
processing according to one embodiment of the invention;

FIG. 1C is a block diagram of a multiple processor
computer System according to one embodiment of the inven
tion;

FIG. 2 is a flow diagram of power management process
ing according to one embodiment of the invention;

FIGS. 3A-3C are flow diagrams of start processing
according to one embodiment of the invention;

FIG. 4 is a flow diagram of activation processing for all
but the last active processor according to one embodiment of
the invention;

FIG. 5 is a flow diagram of the shutdown processing for
extra processors according to one embodiment of the inven
tion,

FIG. 6 is a flow diagram of nap Single interrupt processing
according to one embodiment of the invention;

FIG. 7 is a flow diagram of nap processing for the last
active processor according to one embodiment of the inven
tion;

FIGS. 8A and 8B are flow diagrams of idle processing for
the last active processor according to one embodiment of the
invention;

FIG. 9 is a flow diagram of activation processing for the
last active processor according to one embodiment of the
invention;

FIGS. 10A and 10B are flow diagrams of shutdown
processing for the last active processor according to one
embodiment of the invention;

FIG. 11 is a flow diagram of wakeup processing for the
last active processor according to one embodiment of the
invention;

FIG. 12 is a flow diagram of Snoop processing according
to one embodiment of the invention;

FIG. 13A illustrates a flow diagram of nap processing
according to one embodiment of the invention;

FIG. 13B illustrates a flow diagram of interrupt process
ing according to one embodiment of the invention;

FIG. 14A is a flow diagram of memory controller/bus
manager (MCBM) sleep shutdown processing according to
one embodiment of the invention; and

FIG. 14B is a flow diagram of MCBM sleep wakeup
processing according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention relates to power management for computer
Systems having one or more processors. One aspect of the

15

25

35

40

45

50

55

60

65

4
invention pertains to providing hierarchical power manage
ment. The hierarchical nature of the power management
provided by the invention has various levels of power
management Such that power consumption of the computer
System is dependent upon the amount of work placed on the
processing resources of the computer System. Another
aspect of the invention pertains to deterministic handshaking
provided between a power manager and one or more con
troller units. The deterministic handshaking provides for
more reliable and controllable transitions between power
management States which have associated power manage
ment taking place in the controller units. The invention is
Suitable for use with a Single-processor computer System or
a multi-processor computer System.
Embodiments of the invention are discussed below with

reference to FIGS. 1A-14B. However, those skilled in the
art will readily appreciate that the detailed description given
herein with respect to these figures is for explanatory
purposes as the invention extends beyond these limited
embodiments.

FIG. 1A is a flow diagram of power management pro
cessing 10 according to a basic embodiment of the inven
tion. The power management processing 10 is performed by
a multi-processor computer System to reduce the power
consumption of any processing resources whenever those
resources are not needed.
The power management processing 10 monitors 12 the

Workload of the computer System or the processors within
the computer system. The workload reflects how busy the
computer System or the processors therein are in processing
useful tasks. Once the workload is obtained, it is determined
14 whether the workload is heavy.
When it is determined 14 that the workload is heavy, then

one or more processors of the computer System are activated
16. Here, the heavy workload indicates that additional
processing resources are needed. By activating 16 one or
more of the processors (that were previously inactive), the
computer System obtains the additional processing resources
to help process the heavy workload.
ASSume a simplistic example in which the workload is

1000 units of work that is waiting to be processed by the
computer System. If only one processor is active, the work
load of the one processor can be considered 1000 units. If a
heavy workload is deemed anything over 600 units, then the
power management processing 10 will operate to activate
one or more additional processors. If one additional proces
Sor were to be activated 16, then the average workload for
each of the two activated processors would drop to 500
units.
On the other hand, when it is determined 14 that the

monitored workload is not heavy, it is determined 18
whether the monitored workload is light. When it is deter
mined 18 that the monitored workload is light, then one or
more processors of the computer System are deactivated 20.
By deactivating 20 one or more of the processors, the
computer System conserves power by placing the computer
System, or its processors, into a lower powered State.

Following blocks 16 and 20, as well as following the
decision block 18 when the workload is not light, the power
management processing 10 is complete and ends. However,
typically, the power management processing 10 continu
ously repeats Such that the power management for the
computer System is ongoing and dynamically performed.

According to the invention, the deactivation 20 of one or
more of the processors can be performed in a wide variety
of ways. In particular, the deactivation 20 can be performed

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 25 of 34

US 6,711,691 B1
S

over a Series of low power States into which the computer
System can enter (or low power modes into which its
processors can enter) to conserve power. The deactivation 20
can also be considered to be performed over a Series of
layers such that different layers offer different tradeoffs of
processing resources verses power efficiency.

FIG. 1B is a flow diagram of processor deactivation
processing 30 according to one embodiment of the inven
tion. The processor deactivation processing 30 is, for
example, Suitable for use as the deactivation 20 of the one
or more processorS Such as shown in FIG. 1A.

The processor deactivation processing 30 initially deter
mines whether there is more than one active processor.
When it is determined 32 that there is more than one active
processor, the processor deactivation processing 30 places
34 one or more (but not all) of the processors in a sleep
mode. The number of the processors being placed in the
Sleep mode is based on the workload. For example, in a
computer System having five processors, the processor deac
tivation processing 30 could shutdown up to four of the
processors by placing them in the Sleep mode when the
Workload is light.
On the other hand, when it is determined 32 that there is

only one active processor, then the processor deactivation
processing is performed for the last processor in a layered
fashion. In particular, it is initially determined 36 whether
the last processor is in a run mode. The run mode is a mode
in which the last active processor is active Such that it
processes instructions. When it is determined that the last
processor is in the run mode, then the last processor is placed
38 in a first low power mode. In this embodiment, the first
low power mode is a mode in which the processor conserves
Some power but has a loSS of performance as compared to
the run mode.

Alternatively, when it is determined 36 that the last
processor is not in the run mode, it is determined 40 whether
the last processor is in the first low power mode. When it is
determined 40 that the last processor is already in the first
lower power mode, then the processor deactivation proceSS
ing 30 can perform additional operations to provide greater
reductions in power consumption. Specifically, the last pro
ceSSor is placed 42 in a Second low power mode. The Second
low power mode is a mode that offers less power consump
tion (as well as less performance) than does the first low
power mode. Next, any unneeded electrical components or
units of the computer system are shut down 44. On the other
hand, when it is determined 40 that the last processor is not
in the first low power mode, it is assumed that the last
processor is already in the Second low power mode Such that
additional processing by the processor deactivation proceSS
ing 30 is not available and, thus, the processor deactivation
processing 30 is complete and ends. In addition, following
blocks 34, 38 and 44, the processor deactivation processing
30 is complete and ends.

The processor deactivation processing 30 can be consid
ered to have multiple hierarchical levels. For example, with
respect to a multi-processor computer System, the processor
deactivation processing 30 offers three layer of power man
agement. A first layer is provided by block 34 such that the
number of processors that are active (and not sleeping) is
determined based on workload. Within the first layer there
are various different levels of power management based
largely on the number of processors activated. In any case,
once only one of the processors is active, than a Second layer
can be entered for further power reduction. In the Second
layer provided by block 38, the last active processor is

15

25

35

40

45

50

55

60

65

6
placed in the first low power state. Still further, if further
power reduction is further desired, then the last active
processor can by placed in the Second low power mode.
Typically, the Second power mode would placed the last
active processor in even a greater power Saving State than
provided by the first low power mode. Additionally, since
the Second low power mode essentially deactivates the last
active processor, various other electrical components or
units within the multi-processor computer System can also
be placed in a low-power State (or shut-down) to further
enhance the power reductions. For example, the electrical
components or units can include controllers (e.g., controller
chips) or unneeded Subsystems. Often, Some Subsystem can
be shutdown in other earlier layers.
A third low power mode could also be provided by the

processor deactivation processing 30. The third low power
mode would offer even greater power reductions than pro
Vided in the first and Second low power modes. For example,
in the third low power mode, the last processor could be
placed in the Sleep mode and, thus, with all processors in the
Sleep mode, the computer System would itself be in a sleep
mode. More than three low power modes could also be
provided. The various low power modes can include, for
example, nap, doze or Sleep modes for a processor as well
as also remove clocks and power from a processor and/or
other electrical components in certain of the various low
power States.

Although the invention is described herein largely in
terms of a multi-processor computer System, the invention is
also applicable to Single processor computer Systems. AS an
example, blocks 34-44 of FIG. 1B in effect pertain to power
management for Single processor computer Systems.

FIG. 1C is a block diagram of a multiple processor
computer system 100 according to one embodiment of the
invention. The multiple processor computer system 100
includes a plurality of processors, including processor A
102, processor B104, processor C 106 and processor D 108.
Each of the processors 102-108 operates to execute instruc
tions under the control of an operating System (not shown).
The multiple processor computer system 100 also includes
a power manager 110 that provides power management
functions for the multiple processor computer system 100.
In general, the power manager 110, provides Soft resets
(SRST), hard resets (HRST), system management interrupts
(SMIS), and configuration control signals for phase lock
loops (PLLS). In one embodiment, the power manager is an
embedded controller or processor. The multiple processor
computer system 100 also includes a memory controller/bus
manager (MCBM) 112, a dynamic random access memory
(DRAM) 114, an I/O-interrupt controller (IOIC) 116, and an
operating system 11. Although not shown in FIG. 1C, the
multiple processor computer system 100 would also include
other components such as Read Only Memory (ROM),
System bus, display controller, etc.
The processors 102-108 operate to perform program

instructions under the control of operating system 118. For
processor mode control, processors 102-108 communicate
with the memory controller/bus manager 112 using a
hardware-handshake. The hardware-handshake controls
when the processors 102-108 are able to enter a lower power
State. The processor A 102 Supplies a quiescent request
(QREQ-A) to the memory controller/bus manager 112.
Likewise, the processor B104, the processor C 106, and the
processor D 108 respectively Supply quiescent Signals
(QREQ-B, QREQ-C, and QREQ-D) to the memory
controller/bus manager 112. When the memory controller/
bus manager 112 determines that all of the quiescent

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 26 of 34

US 6,711,691 B1
7

requests QREQ-A, QREQ-B, QREQ-C, and QREQ-D all
are asserted, then the memory controller/bus manager 112
asserts quiescent acknowledgement signals (QACK-A,
QACK-B, QACK-C, and QACQ-D) back to each of the
processors 102-108, after any Snoop cycles are completed.
Hence, the hardware-handshake between the processors
102-108 and the memory controller/bus manager 112 are
provided by the quiescent request signals (QREQ) and the
quiescent acknowledgement signals (QACK).

Another hardware-handshake is provided between the
power manager 110 and the memory controller/buS manager
112. The hardware-handshake utilizes a Suspend request
(SUSREQ1) and a suspend acknowledgement (SUSACK1).
When the power manager 110 asserts the Suspend request
(SUSREQ1) the memory controller/bus manager 112 is
instructed to enter a shut-down mode if a sleep bit has been
previously Set or to enter an idle mode when an idle bit has
been previously Set. After the memory controller/bus man
ager 112 completes its processing to enter either its shut
down mode or the idle mode, the Suspend acknowledgement
(SUSACK1) is asserted to indicate that the memory
controller/buS manager 112 is in now in the requested mode.
The power manager 110 also supplies a system reset (SRST)
and a power-on clear (POC). The system reset (SRST) resets
the one or more devices on buses being managed by the
memory controller/bus manager 112. The System reset
(SRST) affects the memory controller portion of the memory
controller/bus manager 112 Such that the contents of DRAM
114 are preserved, to aid in post-reset recovery and
de-bugging when power to the DRAM 114 has been main
tained. The power-on clear (POC) allows the power manager
110 to reset the memory controller portion of the memory
controller/bus manager 112 and well as the DRAM 114
when the power to the DRAM 114 has previously been
turned off.

The power manager 110 also interacts with the I/O-
interrupt controller 116 to Support the incoming interrupts
when the processors 102-108 are in a low power (or sleep)
mode. More particularly, when the processors 102-108 are
active, the I/O-interrupt controller 116 provides interrupts
INTA, INT-B, INT-C and INT-D to each of the processors
102-108, respectively. However, after the power manager
110 asserts a sleep request (SREQ) to the I/O-interrupt
controller 116, the I/O-interrupt controller 116 no longer
supplies incoming interrupts to the processors 102-108
(which are inactive) but instead Supplies a combined pro
cessor interrupt (PINT) to the power manager 110. The
power manager 110 monitors the combined processor inter
rupt (PINT) to determine when interrupts need to be ser
viced. The I/O-interrupt controller 116 also receives the
system reset (SRST) from the power manager 110. The
system reset (SRST) is used to reset the I/O-interrupt
controller 116.

There is also a hardware-handshake between the power
manager 110 and the I/O-interrupt controller 116. The
hardware-handshake utilizes a suspend request (SUSREQ2)
and a suspend acknowledgement (SUSACK2). When the
power manager 110 asserts the Suspend request
(SUSREQ2), the I/O-interrupt controller 116 is instructed to
enter a low power (or Sleep) mode, in which the clocks for
the I/O-interrupt controller 116 are stopped. After the I/O-
interrupt controller 116 completes its processing to enter the
low power mode, the Suspend acknowledgement
(SUSACK2) is asserted to indicate to the power manager
110 that the I/O-interrupt controller 116 is now in the low
power mode. In one embodiment, even when the I/O con
troller 116 is in the low power mode, interrupts can still be
received in an asynchronous manner.

5

15

25

35

40

45

50

55

60

65

8
In one embodiment, the processors 102-108 themselves

have a plurality of power modes, including run, doze, nap
and sleep. When it is determined (e.g., by operating System)
that an individual processor is idle, a nap bit for the
processor can be set to cause the processor to enter a doze
mode. When all of the processors have entered a doze mode,
and the memory controller/bus manager 112 is idle, all the
processors can transition from a doze mode into a nap mode.
However, once in the nap mode, if a Snoop operation is
needed, the processors will return from the nap mode to the
doze mode So that the Snoop operations can be performed.
Also, if an interrupt arrives for a processor in a nap mode,
the processor will transition to a run mode So that the
interrupt can be handled. The power management performed
within processors is further described below with respect to
FIGS. 13A-13C.

FIG. 2 is a flow diagram of power management process
ing 200 according to one embodiment of the invention. The
power management processing 200 is performed by a mul
tiple processor computer System. For example, the multiple
processor computer system 100 illustrated in FIG. 1C can
perform the power management processing 200.
The power management processing 200 illustrates tran

Sitioning between different States of power management.
These different States allow for a layered approach to power
management for a multiple processor computer System. In
this embodiment, the power management States include an
off state 202, a run single state 204, a run multiple state 206,
a nap multiple State 207, a nap Single State 208, an idle Single
state 210, and a sleep all state 212.

Each of the power management States offers a different
tradeoff between processing capabilities and power con
Sumption. In order of processing capabilities, from most to
least, the power management States in this embodiment are
the run multiple state 206, the nap multiple state 207, the run
Single State 204, the nap Single State 208, the idle Single State
210, the sleep all state 212, and the off state 202. With
respect to power consumption, from least to most, the power
management States have the reverse order from that noted
immediately above.
The run multiple state 206 refers to the condition in which

more than one of the processors are active or, if only one
processor is active (run mode), the other processors are in
the doze mode and can rapidly be made active.
The nap multiple state 207 refers to the condition in which

all processors are in the nap mode. All processor clocks are
running and coherent cache Storage for the processors is
maintained. A processor interrupt causes the State to change
to the run multiple state 206.
The run single state 204 refers to the condition in which

a single processor is running, and any other processors are
placed in the Sleep mode with their caches flushed.
The nap single state 208 refers to the condition in which

the Single processor (from the run Single State 204) is in the
nap mode and has its processor clock running and its
coherent cache Storage maintained, while the other proces
SorS remain in the Sleep mode.
The idle single state 210 refers to the condition in which

the Single processor (from the run Single State 204) is placed
in Sleep mode with its cache flushed, and all processor
clocks are stopped.
The sleep all state 212 refers to the condition in which all

processors are powered off with their caches flushed. The
processor States are preserved in memory (e.g., DRAM 114).
The power manager 110 remains operable by way of a low
frequency clock. Various controllers (controllers 112, 116)

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 27 of 34

US 6,711,691 B1
9

and memory (DRAM 114) are also in low power modes but
their State is preserved.
The off state 202 refers to the condition (namely, system

shutdown) where the entire computer System is powered off.
The processing performed to transition between the vari

ous states 202-212 is also illustrated in FIG. 2. To transition
from the off state 202 to the run single state 204, startup
processing 214 is performed. The Startup processing 214 is
described in detail below with respect to FIGS. 3A-3C. To
transition from the run single state 204 to the run multiple
state 206, activation processing 216 for all but a last active
processor is performed. The activation processing 216 is
described in detail below with respect to FIG. 4. To transi
tion from the run multiple state 206 to the nap single state
208, shutdown processing 218 for extra processors is per
formed. The shutdown processing 218 is described in detail
below with respect to FIG. 5. Once in the nap single state
208, the power management processing 200 may determine
that processing power is needed, Such as to handle an
interrupt that has occurred. Hence, when processing power
is needed, nap Single interrupt processing 220 can be per
formed to transition from the nap single state 208 to the run
Single State 204. The nap Single interrupt processing 220 is
further described below with respect to FIG. 6. On the other
hand, while in the run single state 204, if the power
management processing 200 determines that the last active
processor is idle and thus less processing power is needed,
then nap processing 222 for the last active processor can be
performed to transition from the run single state 204 to the
nap Single State 208. The nap processing 222 for the last
active processor is described in detail below with respect to
FIG. 7.

Furthermore, from the run single state 204, the power
management processing 200 can also enter the idle single
state 210. The idle single state offers even more power
conservation than is available in the nap single state 208. In
any case, to transition from the run Single State 204 to the
idle Single State 210, idle processing 224 for the last pro
cessor is performed. The idle single state 210 could also be
entered from the nap Single State 208 (e.g., via processing
220 and then processing 224), Such as after the last processor
is idle in the nap single state 208 for a predetermined period
of time. The idle processing 224 for the last processor is
further described below with respect to FIGS. 8A and 8B.
Once in the idle Single State 210, when the power manage
ment processing 200 needs additional processing power,
activation processing 226 for the last processor can be
performed to transition from the idle single state 210 to the
run single state 204. The activation processing 226 for the
last processor is further described below with respect to FIG.
9.

Still further, once in the run multiple state 206, the power
management processing 200 may determine that particular
processors are not needed due, for example, to blocked
processes or light workloads. In Such cases, the power
management processing 200 can cause these processors to
enter a doze mode and when all the processors have entered
the doze mode, nap processing 228 is performed to transition
to the nap multiple state 207 where all the processors are in
the nap mode. The nap processing 228 is similar to proceSS
ing described with respect to FIG. 7. Then, when processing
power is needed Such as to process an interrupt, interrupt
processing 230 is performed to transition to the run multiple
State 206. Here, at least the processor receiving the interrupt
is returned to a run mode. The interrupt processing 230 is
Similar to processing described with respect to FIG. 6.

Further, when processors are in the nap mode, they are
unable to permit a Snoop transaction of a bus or memory.

5

15

25

35

40

45

50

55

60

65

10
The applies to both the nap single state 208 and the nap
multiple state 207. Hence, from the nap multiple state 207,
Snoop processing 232 can be performed to return the mul
tiple processors from their nap modes to their doze modes So
that the Snoop transactions can be performed. After the
Snoop transactions have been completed, the multiple pro
ceSSors are returned to their nap modes and thus the nap
multiple state 207. Likewise, from the nap single state 208,
Snoop processing 234 can be performed to return the last
processor from its nap mode to its doze mode So that the
Snoop transactions can be performed. After the Snoop trans
actions have been completed, the last processor is returned
to its nap mode and thus the nap single state 208. One
embodiment of Snoop processing is further described below
with reference to FIG. 12.

When no processing is needed, then the power manage
ment processing 200 performs shutdown processing 236 for
the last processor. The shutdown processing 236 transitions
the power management processing 200 from the run Single
state 204 to the sleep all state 212. The shutdown processing
236 is, for example, described in more detail below with
respect to FIGS. 10A and 10B. From the sleep all state 212,
if the power management processing 200 determines that
processing power is again needed, then Wakeup processing
238 for the last active processor can be performed to
transition from the Sleep all State 212 to the run Single State
204. The wakeup processing 238 is, for example, illustrated
in detail below with respect to FIG. 11 as well as FIG. 3C.

Finally, if the computer System is to be completely turned
off, the power management processing 200 typically tran
sitions from the run single state 204 to the off state 202
through the sleep state 212. Hence, to enter the off state 202,
the shutdown processing 236 for the last processor is also
performed. Additionally, the off state 202 or the sleep state
212 can be entered more directly from the run multiple state
206 by performing the shutdown processing 218 for extra
processors as well as the shutdown processing 236 for the
last processor.

FIGS. 3A-3C are flow diagrams of startup processing 300
according to one embodiment of the invention. The Startup
processing 300 is, for example, Suitable for use as the Startup
processing 214 illustrated in FIG. 2.
The startup processing 300 is invoked when a startup

event occurs. Examples of Startup events include a System
reset or a power-on. Once the Startup processing 300 is
invoked, a power manager (PMGR) asserts 302 SUSREQ2,
SREQ, and SUSREQ1. The power manager asserts 304 all
resets (except the POC). Then, a decision 306 determines
whether the DRAM is powered off. When the decision 306
determines that the DRAM is powered off, then the power
manager asserts 308 power-on clear (POC).

Following the decision 306 directly when the DRAM is
powered off, or otherwise following assertion 308 of POC,
a power manager (PMGR) activates 310 all power and
clocks for the processors. In one implementation, the acti
vation 310 of the power and clocks can initially turn-on
power planes for the processors, Start the clocks for the
processors, and then activate phase lock loops (PLLS) within
the processors. The memory controller/buS manager then
asserts 312 SUSACK1. Next, at 314, the power manager
de-asserts POC and all non-processors resets that are cur
rently asserted. The power manager also de-asserts 316
SUSREO1 and SUSREO2.
Once SUSREQ1 and SUSREO2 are de-asserted, the

memory controller/bus manager and the I/O interrupt con
troller (IOIC) begin their respective internal wakeup

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 28 of 34

US 6,711,691 B1
11

sequences at 318. Next, a decision 320 determines whether
the SUSACK1 and SUSACK2 are de-asserted, thus indi
cating that the wakeup Sequences have been completed.
When the decision 320 determines that the wakeup
Sequences are not yet completed, the Startup processing 300
awaits their completion. Once the wakeup Sequences are
determined to be completed, the startup processing 300
continues (see FIG. 3B).

After the wakeup Sequences have completed, the power
manager then deasserts 324 resets for the processors. After
the resets for the processors are deasserted 324, the proces
SorS eXecute 326 reset vectors. Then, the Startup processing
300 waits for warm or cold boot sequence to complete 328.
Next, all interrupts are mapped 330 to the last active
processor. By mapping all the interrupts to the last active
processor, the Startup processing 300 can prevent all pro
ceSSors but the last active processor from being awakened
due to interrupts. Next, the power manager de-asserts 332
SREQ. When SREQ is de-asserted 332, interrupts on all of
the processors are enabled 334.
At this point, the startup processing 300 has effectively

activated all of the processors. However, Since the default
State for the System is assumed to be the run Single State in
this embodiment, additional processing is performed to
configure the processors for the run Single State. Hence, to
transition to the run Single State, the following additional
processing is performed in the startup processing 300 (see
FIG. 3C). Specifically, the state of all but the last active
processor is saved 336. Next, the caches on all but the last
active processor are flushed and then disabled 338. Sleep
bits in all but the last active processor are then set 340. At
this point, all the processors but the last active processor also
assert 342 their quiescent requests (QREQ). Next, MCBM
asserts all QACKs to all the processors asserting QREQ to
Signal that the memory controller/bus manager is ready to
permit those processors to enter a sleep mode. Once a
decision 346 determines that all the OACKS have been
asserted, then all but the last active processor enter 348 the
Sleep mode. Here, the last active processor remains in a run
mode. Thereafter, the startup processing 300 is complete and
ends. At this point, the operating System can also power-up
and/or enable any Subsystems that are required.

FIG. 4 is a flow diagram of activation processing 400 for
all but the last active processor according to one embodi
ment of the invention. The activation processing 400 is used
for transitioning the processors of the computer System from
the run single state 204 to the run multiple state 206.

The activation processing 400 is initiated when the com
puter System, namely, the operating System, determines that
there is a heavy workload and that additional processors are
needed to handle the work. In Such a case, the activation
processing 400 is, for example, Suitable for use as the
activation processing 216 illustrated in FIG. 2, where it
performs the transition from the run single state 204 to the
run multiple state 206.

The activation processing 400 initially maps 402 inter
rupts to all of the processors. After the interrupts have been
re-mapped to all of the processors, all the processors in the
Sleep mode are able to receive interrupts to be awakened.
Upon receiving Such interrupts, the processors clear their
Sleep bits and de-assert their quiescent requests (QREQs) at
404 to awaken. These interrupts are typically scheduled by
the operating System specifically to induce wakeup but could
instead be normal interrupts from peripherals or timers.
Since all but the last active processors were previously
Sleeping, their caches need to be re-enabled when they are

15

25

35

40

45

50

55

60

65

12
awakened. Hence, the caches on all but the last active
processors are enabled 406. Next, all but the last active
processor enter 408 a run mode. The last active processor
need not enter a run mode because it is already in the run
mode. The operating System typically then powers-up and/or
enables any Subsystems of the computer System that are
required. Examples of Such Subsystems include a Soundcard,
PCI cards, hard disk or other drives, FireWire, Universal
Serial Bus (USB), and/or display controller. Also, following
the activation of the processors at 408, the activation pro
cessing 400 is complete and ends.

FIG. 5 is a flow diagram of the shutdown processing 500
for extra processors according to one embodiment of the
invention. The shutdown processing 500 is, for example,
suitable for use as the shutdown processing 218 illustrated in
FIG. 2, where it is utilized to transition the processors of the
computer system from the run multiple state 206 to the run
single state 204. The shutdown processing 500 is invoked
when a light workload is detected by, for example, the
operating system. When the shutdown processing 500
begins, the operating System is also able to shut down any
appropriate Subsystems So as to conserve power.
Once the shutdown processing 500 is invoked, all inter

rupts are mapped 502 to the last active processor. The State
of all but the last active processor is then saved 504. The
caches on all but the last active processor are flushed and
then disabled 506. Next, the sleep bit is set 508 in all but the
last active processor. Then, at 510, all but the last active
processor assert their quiescent requests (QREQ) and enter
the doze mode. The MCBM asserts 511 OACKS to those of
the processors asserting their QREQS to Signal that the
memory controller/bus manager is ready to permit these
processors to enter a sleep mode. Once a decision 512
determines that the QACKs of those of the processors
asserting their QREQs have been asserted, then all but the
last active processor enter 514 the sleep mode. Here, the last
active processor remains in a run mode. Thereafter, the
shutdown processing 500 is complete and ends. At this time,
the operating System can also power-down and/or disable
any Subsystems that are required.

FIG. 6 is a flow diagram of nap Single interrupt processing
600 according to one embodiment of the invention. The nap
Single interrupt processing 600 is, for example, utilized by
the power management processing 200 to transition the
processors of the computer System from the nap Single State
208 to the run single state 204.
When the last active processor is in the nap mode as is the

case in the nap Single State 208 and an interrupt is received,
the processor receiving the interrupt, (namely, the last active
processor) needs to awaken from the nap mode and enter the
run mode in order to process the interrupt. The nap Single
interrupt processing 600 performs the awakening of the last
active processor when an interrupt is received.
Once an interrupt is received at the last active processor,

the nap bit in the last active processor is cleared 602. Next,
the last active processor de-asserts 604 its quiescent request
(QREQ). In turn, the memory controller/bus manager
de-asserts 606 the quiescent acknowledgement (QACK).
After the quiescent acknowledgement (QACK) is
de-asserted 606, the last active processor enters 608 the run
mode. The other remaining processors remain in their sleep
mode. Thereafter, the interrupt that was received can be
processed 610 by the last active processor. Following the
processing of the interrupt, the nap Single interrupt is pro
cessing 600 is complete and ends, and the computer System
is in the run Single State.

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 29 of 34

US 6,711,691 B1
13

FIG. 7 is a flow diagram of nap processing 700 for the last
active processor according to one embodiment of the inven
tion. The nap processing 700 is, for example, utilized by the
power management processing 200 to transition the proces
Sors of the computer System from the run Single State 204 to
the nap Single State 208. In particular, when the operating
System detects that the workload has been low or nonexist
ent for a short period of time, the operating System initiates
the nap processing 700.
When the nap processing 700 is initiated, the nap bit is set

702 in the last active processor. Then, at 704, the last active
processor asserts 704 its quiescent request (QREQ) and
enters the doze mode. Next, it is determined 706 whether the
quiescent acknowledgement (QACK) is asserted. When the
quiescent request (QREQ) is presently asserted by a
processor, and no Snoop operations are needed, the memory
controller/buS manager asserts the corresponding QACK to
that processor. Once the QACK is determined 706 to have
been asserted for the last active processor, the last active
processor enters 708 the nap mode. Here, all other proces
SorS remain in the Sleep mode. At this point, the computer
System has entered the nap Single State 208, and thus the nap
processing 700 is complete and ends.

FIGS. 8A and 8B are flow diagrams of idle processing 800
for the last active processor according to one embodiment of
the invention. The idle processing 800 is used to transition
from the run single state 204 to the idle single state 210.
Before invoking the idle processing 800, the operating
System typically shuts down any appropriate Subsystems of
the computer System that are not needed.

The idle processing 800 is invoked when the last active
processor has been idle or has no workload for a given
period of time. The idle processing 800 initially causes the
operating system to set 802 an idle bit in the memory
controller/bus manager. Then, an idle command is sent 804
to the power manager. The power manager then, at 806,
asserts the suspend request (SUSREQ1) to the memory
controller/bus manager, the suspend request (SUSREQ2) to
the I/O-interrupt controller, and a stop request (SREQ) to the
I/O-interrupt controller. The caches on the last active pro
cessor are flushed and then disabled at 808.

Next, the sleep bit in the last active processor is set 812.
The last active processor then asserts 814 the quiescent
request (QREQ) and enters the doze mode. It is then
determined 816 whether the quiescent acknowledgement
(QACK) is asserted by the memory controller/bus manager.
At this point, the idle processing 800 waits for the QACK to
be asserted. When the quiescent request (QREQ) is presently
asserted by a processor, and no Snoop operations are needed,
the memory controller/bus manager asserts the correspond
ing QACK to that processor. Once it is determined 816 that
the QACK has been asserted for the last active processor, the
last active processor enters the sleep mode 818. Here, all
other processors are already in their Sleep mode.

Next, it is determined 820 determines whether the Sus
pend acknowledgments (SUSACK1 and SUSACK2) has
been asserted. Here, the idle processing 800 waits for the
SUSACK1 and the SUSACK2 to be asserted. Once a
decision 820 determines that the SUSACK1 and SUSACK2
have been asserted by the memory controller/bus manager,
the power manager stops the phase lock loops (PLLS) used
in providing internal clocks to the processors. The power
manager then stops 824 the processor clocks 824 (which are
typically external to the processors). After the processor
clocks are stopped, the idle processing 800 is complete and
ends.

15

25

35

40

45

50

55

60

65

14
FIG. 9 is a flow diagram of activation processing 900 for

the last active processor according to one embodiment of the
invention. The activation processing 900 operates to transi
tion the computer system from the idle single state 210 to the
run Single State 204. Before invoking the activation proceSS
ing 800, the operating System typically powers-up or enables
any Subsystems of the computer System that are required.
The activation processing 900 is initiated by a wakeup

event received at the power manager through the I/O-
interrupt controller. Examples of Such wakeup events can
include an internal timer, a keystroke event, or a processor
interrupt (PINT).
Once the activation processing 900 has been invoked, the

power manager Starts 902 the processor clocks. Then, the
power manager starts 904 the phase lock loops (PLLs) used
in providing internal clocks to the processors. Once the
processor clocks have Stabilized, the power manager
de-asserts 906 the suspend request (SUSREQ1) to the
memory controller/bus manager and the Suspend request
(SUSREQ2) to the I/O-interrupt controller. The idle bit is
then cleared 908. After the idle bit is cleared 908 the memory
controller/buS manager has been cleared, the activation
processing 900 determines 910 whether the suspend
acknowledgements (SUSACK1, SUSACK2) have been
de-asserted.
Once the decision block 910 determines that the Suspend

acknowledgements (SUSACK1, SUSACK2) have been
de-asserted, the power manager de-asserts 912 the Stop
request (SREQ). The last active processor then, at 914,
receives an interrupt, operates to clear its sleep bit, and
de-assert its quiescent request (QREQ). After any quiescent
request (QREQ) is de-asserted, all of the quiescent acknowl
edgements (QACKs) are de-asserted 916 by the memory
controller/buS manager. The caches on the last active pro
cessor are enabled 918. Thereafter, the last active processor
enters 920 the run mode. Here, the other processors remain
in their sleep mode. At this point, the computer System has
entered the run Single State 204, and thus the activation
processing 900 is complete and ends. FIGS. 10A and 10B
are flow diagrams of shutdown processing 1000 for the last
active processor according to one embodiment of the inven
tion. The shutdown processing 1000 is used to enter either
the sleep all state 212 or the off state 202 from the run single
state 204.
The shutdown processing 1000 is invoked when a sleep or

off request is initiated. The shutdown processing 1000
initially causes the operating system to set 1002 the sleep bit
in the memory controller/bus manger. Next, a sleep or off
command is sent 1004 to the power manager. When off is
requested the off command is used, and when Sleep is
requested the Sleep command is used. The power manager
then asserts 1006 the suspend requests (SUSREQ1,
SUSREQ2) and the stop request (SREQ). The assertion of
the suspend requests (SUSREQ1 and SUSREQ2) cause the
memory controller/bus manager and the I/O-interrupt con
troller to begin their internal shutdown Sequences. In one
embodiment, with the SUSREQ1 asserted and the sleep bit
Set, the memory controller/bus manager operates to Stop bus
activity and stop the PLLs as well as place the DRAM (e.g.,
DRAM 114) into a self-refresh mode, thus placing the
memory controller/bus manager in the Sleep mode. The Stop
request (SREQ) to the I/O-interrupt controller operates to
block interrupts to the processors and instead direct the
interrupts to the power manager using the combined pro
cessor interrupt (PINT). The state of the last active processor
is then saved 1008. Caches on the last active processor are
flushed and then disabled 1010. The operating system then

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 30 of 34

US 6,711,691 B1
15

sets 1012 the sleep bit in the last active processor. After the
sleep bit in the last active processor is set 1012, the last
active processor asserts its quiescent request (QREQ) and
enters the doze mode 1014.

The shutdown processing 1000 then determines 1016
whether the quiescent acknowledgements (QACKS) have
been asserted. Once the decision 1016 determines that the
quiescent acknowledgement (QACK) has been asserted, the
last active processor enters 1018 a sleep mode. Here, all
other processors are already in the sleep mode. Thereafter,
the memory controller/bus manager and the I/O interrupt
controller (IOIC) begin 1020 an internal shutdown
sequence. The shutdown processing 1000 then determines
1022 whether the suspend acknowledgements (SUSACK1,
SUSACK2) have been asserted. Here, the shutdown pro
cessing 1000 awaits the reception of the suspend acknowl
edgement (SUSACK1) from the memory controller/bus
manager and the Suspend acknowledgement (SUSACK2)
from the I/O-interrupt controller to indicate that their respec
tive internal shutdown Sequences have been completed.
Once the suspend acknowledgements (SUSACK1,
SUSACK2) have been received, the power manager stops
all clocks, asserts processor resets, and removes power to the
processors at 1024. Then, the shutdown processing 1000
determines 1026 whether the off was requested and used to
invoke the shutdown processing 1000. When it is deter
mined 1026 that off has been requested, then the power
manager asserts all resets and removes all power at 1028. In
this case, the computer System is placed in the off State 202
and the shutdown processing 1000 is complete and ends. On
the other hand, when it is determined 1026 that off has not
been requested (i.e., sleep requested), then the computer
system is placed in the sleep all 212 state and the shutdown
processing 1000 is complete and ends. In the sleep all state,
the processors do not receive power, but the power manager,
the DRAM and the various controllers continue to receive
power So that the sleeping processors can be awakened as
needed. However, the DRAM and the various controllers are
typically also in a low power mode.

FIG. 11 is a flow diagram of wakeup processing 1100 for
the last active processor according to one embodiment of the
invention. The wake up processing 1100 is used to awaken
the last active processor from the Sleep all State 212 to the
run single state 204.

The wakeup processing 1100 is invoked when the power
manager receives a Wakeup event (e.g., an internal timer, a
keystroke event, etc.). Once invoked, the power manager
turns-on power to the processors and restarts the clocks at
1102. After the clocks are stable, the power manager Starts
the processor PLLs and then de-asserts 1104 Suspend
requests (SUSREQ1, SUSREQ2). At this point, the memory
controller/bus manager (MCBM) and the I/O-interrupt con
troller (IOIC) begins to perform their respective internal
wakeup Sequences The memory controller/bus manager then
clears its sleep bit (1106).
The wakeup processing 1100 then determines 1110

whether the suspend acknowledgements (SUSACK1,
SUSACK2) have been de-asserted. In other words, the
memory controller/bus manager operates to de-assert the
suspend acknowledgement (SUSACK1) when its internal
wakeup Sequence has been completed, and the I/O-interrupt
controller operates to de-assert the Suspend acknowledge
ment (SUSACK2) when its internal wakeup sequence has
been completed.

Once the suspend acknowledgements (SUSACK1,
SUSACK2) have been de-asserted to indicate the comple

15

25

35

40

45

50

55

60

65

16
tion of the internal wakeup Sequences, the wakeup proceSS
ing 1100 continues. Namely, the resets for the processors are
de-asserted 1112. The processors then execute 1114 their
reset vectors. The States for all of the processors are then
restored 1116. The power manager then de-asserts 1118 the
stop request (SREQ). The interrupts on all of the processors
are then enabled 1120. After the interrupts are enabled, the
processing follows blocks 336-348 of the startup processing
300 illustrated in FIG. 3C.

FIG. 12 is a flow diagram of Snoop processing 1200
according to one embodiment of the invention. The Snoop
processing 1200 is associated with the Snoop processing 232
for the nap multiple state 207 and the Snoop processing 234
for the nap single state 208 illustrated in FIG. 2. In
particular, in certain processors, Such as used in the
described embodiment, their individual modes of operation
include a run mode, a nap mode, a doze mode and Sleep
mode. However, Snoop operations can occur in the run mode
and the doze mode, but not in the nap mode or the Sleep
mode. Hence, the Snoop processing 1200 operates during the
nap Single State 208 to temporarily return a particular
processor to the doze mode So that the Snoop operations can
be performed and then return the particular processor to the
nap mode once the Snoop operations have been completed.
Similarly, during the nap multiple state 207, all the proces
Sors temporarily return to the doze mode So that the Snoop
operations can be performed and then return to the nap mode
once the Snoop operations have been completed.
The Snoop processing 1200 begins when there is a need to

perform one or more Snoop operations. When the Snoop
processing 1200 is invoked, the memory controller/bus
manager de-asserts 1202 all the quiescent acknowledge
ments (QACKs). At this point, any napping processors enter
1204 the doze mode. The Snoop operations can then be
completed 1206 by the processors in the doze mode. After
the one or more pending Snoop operations have been
completed, the Snoop processing 1200 determines 1208
whether all of the quiescent acknowledgements (QACKs)
have been asserted. Here, the memory controller/bus man
ager will re-assert the quiescent acknowledgements
(QACKS) after all of the Snoop transactions are complete.
Thereafter, any processors in the doze mode re-enter 1210
the nap mode. When the dozing processors go to the nap
mode, the computer System returns to its former State (e.g.,
the nap single state 208 or the nap multiple state 207) and the
Snoop processing 1200 is complete and ends.
AS previously noted, each of the processors can operate in

a run mode, a doze mode, a nap mode and a sleep mode.
FIG. 13A illustrates a flow diagram of nap processing 1300
according to one embodiment of the invention. The nap
processing 1300 is, for example, performed during the nap
processing 228 when transitioning from the run multiple
state 206 to the nap multiple state 207 illustrated in FIG. 2.
The nap processing 1300 is invoked for a given processor

whenever an idle task is Scheduled to that processor during
the run multiple state 206. The idle task is scheduled to a
processor when there is no useful work for the processor to
perform. For example, when all Software processes available
to a given processor are blocked, the idle task is Scheduled
to that processor. The idle task schedules (sets) 1304 the nap
bit in the associated processor. The associated processor then
asserts 1306 its quiescent request (QREQ). The associated
processor then enters 1308 the doze mode. The nap pro
cessing 1300 then determines 1310 whether the quiescent
acknowledgements (QACKS) have been asserted. Once it is
determined 1310 that all the quiescent acknowledgements
(QACKS) have been asserted, the processors in the doze

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 31 of 34

US 6,711,691 B1
17

mode enter 1312 the nap mode. Here, the associated pro
ceSSor would enter the nap mode at this point. AS Such, the
computer system transitions from the run multiple state 206
to the nap multiple state 207 which offers lower power
consumption. After the processors in the doze mode enter
1312 the nap mode, the nap processing 1300 is complete and
ends.

FIG. 13B illustrates a flow diagram of interrupt process
ing 1326 according to one embodiment of the invention. The
interrupt processing 1326 is, for example, performed during
the interrupt processing 230 when transitioning from the nap
multiple state 207 to the run multiple state 206 illustrated in
FIG. 2. In the case of the nap multiple state 207, one or more
of the processors are in the nap mode, whereas in the run
multiple State one or more of the processors are in the run
mode. In order to process an interrupt a processor needs to
be in the run mode, So the following processing explains
how the processors needing to handle interrupts enter the run
mode from the nap mode.

The interrupt processing 1326 initially clears 1328 the nap
bit in the associated processor. The associated processor is
the processor receiving the interrupt that needs to be pro
cessed. Then, the associated processor de-asserts 1330 its
quiescent request (QREQ). Once the associated processor
de-asserts 1330 its quiescent request (QREQ), the memory
controller/buS manager de-asserts 1332 all the quiescent
acknowledgements (QACKS). At this point, the associated
processor enterS 1334 the run mode. Although the associated
processor has entered the run mode, any of the other
processors that were in the nap mode enter the doze mode.
Thereafter, the associated processor handles 1336 the inter
rupt. After the interrupt is handled 1336, the interrupt
processing 1326 is complete and ends. If the workload on
the associated processor is Subsequently determined to be
low, the nap processing 1300 can thereafter be performed to
transition the associated processor back to the nap mode and
the nap multiple state 207.
AS noted above the controllers used in the computer

System can also have sleep or idle modes that offer power
Savings. These Sleep or idle modes can be entered by the
controller performing an internal Sequence of operations to
effect the mode change. The particular operations performed
by the controller are dependent on the particular type of
controller or manager that performs the shutdown Sequence.

FIG. 14A is a flow diagram of Sleep shutdown processing
1400 according to one embodiment of the invention. The
sleep shutdown processing 1400 is, for example, Suitable for
use as the internal shutdown Sequence performed by the
memory controller/bus manager. The Sleep shutdown pro
cessing 1400 is activated when the memory controller/bus
manager receives the suspend request SUSREQ1 from the
power manager, all of the quiescent request QREQS are
received from the processors, and the sleep bit has been
previously Set in the memory controller/bus manager.

Once invoked, any previously queued transactions to be
processed by the memory controller/bus manager are ini
tially completed 1402. Next, the memory controller/bus
manager takes 1404 control of the bus. Here, the memory
controller/buS manager becomes the bus master and prevents
any external grants of the bus. Then, the DRAM (i.e.,
SDRAM) is placed 1406 in a self-refresh mode. The
memory controller/bus manager also drives 1408 address
and data lines for the bus low. The control lines for the bus
are then de-asserted 1410. Also, in Some embodiments, for
those of the control lines that are driven high in their
de-asserted State, the memory controller/bus manager can

15

25

35

40

45

50

55

60

65

18
tri-State Such control lines So that these lines can be held high
by pull-up resistors connected to the power of the peripheral
devices. Additionally, the memory controller/bus manager
can ignore any external bus control Signals at this point as
Such control Signals may result from transitions when power
is Switched on or off to the peripheral devices and the pull-up
resistors. Next, the memory controller/bus manager
bypasses and shuts down an internal phase-lock loops (PLL)
at 1412. Instead of using the internal PLL, the memory
controller/buS manager uses an external clock with a lower
frequency. Thereafter, the memory controller/bus manager
asserts 1414 the suspend acknowledgment SUSACK1. After
the suspend acknowledgment SUSACK1 has been asserted
1414, the sleep shutdown processing 1400 is complete and
ends.

Also, as noted above, the controllers used in the computer
System can also have wakeup Sequences that return the
controllers from sleep or idle modes to active modes. The
particular operations performed by the controller are depen
dent on the particular type of controller or manager that
performs the wakeup Sequence.

FIG. 14B is a flow diagram of Sleep wakeup processing
1450 according to one embodiment of the invention. The
Sleep wakeup processing 1450 is, for example, the internal
wakeup Sequence performed by the memory controller/buS
manager. The Sleep wakeup processing 1450 begins at the
memory controller/bus manager when the Suspend request
(SUSREQ1) from the power manager is de-asserted. When
the sleep wakeup processing 1450 begins, the memory
controller/bus manager is currently in the Sleep mode
because the sleep shutdown processing 1400 has already
been performed. In any case, when the Sleep shutdown
processing 1450 begins, the Sleep and idle bits are cleared
1452. Then, the memory controller/bus manager enables the
internal PLL and then Switches to utilize the internal PLL
(instead of the external clock) after an appropriate amount of
time to enable the internal PLL to lock its frequency. Next,
the DRAM is returned 1456 to its normal mode (i.e.,
removed from the self-refresh mode). Then, data and
address lines are released (no longer driven low), and the
control lines for the bus are driven (no longer tri-stated) and
de-asserted 1458. Next, the control of the bus by the memory
controller/bus manager is released 1460 so that the memory
controller/buS manager can accept bus requests from exter
nal devices.

Next, the suspend acknowledgment SUSACK1 is
de-asserted 1462 to indicate to the power manager that the
Sleep wakeup processing 1450 is complete and ends. Note,
if instead the power-on clear (POC) was asserted by the
power manager to the memory controller/bus manager, the
power manager is able to reset the memory controller
portion of the memory controller/buS manager after power to
the DRAM has been turned off. The separate resets allow the
computer System to preserve the contents of memory
through an ordinary reset when power to the DRAM has
been maintained.

The invention can also be embodied as computer readable
code on a computer readable medium. The computer read
able medium is any data Storage device that can Store data
which can be thereafter be read by a computer System.
Examples of the computer readable medium include read
only memory, random access memory, CD-ROMs, magnetic
tape, optical data Storage devices. The computer readable
medium can also be distributed over a network coupled
computer Systems So that the computer readable code is
Stored and executed in a distributed fashion.
The advantages of the invention are numerous. Different

embodiments or implementations may have one or more of

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 32 of 34

US 6,711,691 B1
19

the following advantages. One advantage of the invention is
that it offers improved power management obtained by a
layered approach. Another advantage of the invention is that
the System power management provided by the invention
includes power management (i.e., shutdown) for not only
processors but also related control circuitry (e.g., bus
controllers, I/O controllers, memory controllers, interrupt
controllers). Still another advantage of the invention is that
deterministic control over power management of control
circuitry provides proper Sequencing of shutdown opera
tions. Yet another advantage of the invention is that more
aggressive power management of a computer System is
provided, whether for a single processor or a multi-processor
System.

The many features and advantages of the present inven
tion are apparent from the written description, and thus, it is
intended by the appended claims to cover all Such features
and advantages of the invention. Further, Since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all Suitable modifications and equivalents may be
resorted to as falling within the Scope of the invention.
What is claimed is:
1. In a computer System having a plurality of processors,

a bus controller and a power manager, a method for pro
Viding deterministic State changes, Said method comprising:

(a) determining when a lower power State of the multi
processor computer System should be entered to reduce
power consumption; and

(b) entering the lower power State by performing the
following operations:
(b1) receiving, at the bus controller, a state change

request from the power manager;
(b2) initiating a state change Sequence at the bus

controller upon receiving the State change request;
and

(b3) notifying the power manager when the bus con
troller has completed the State change Sequence.

2. A method as recited in claim 1, wherein the computer
System is a multiprocessor computer System.

3. A method as recited in claim 1, wherein Said entering
(b) of the lower power state also performs the operation of:

(b4) setting a state change bit in the bus controller prior
to said receiving (b1).

4. A method as recited in claim 1, wherein the State change
Sequence is a shutdown Sequence performed at the bus
controller, Such that the bus controller thereafter has reduced
power consumption.

5. A method as recited in claim 1,
wherein said entering (b) of the lower power State also

performs the operation of:
(b5) stopping clocks to at least one of the processors

following Said notifying, and wherein the lower
power State is entered following Said stopping (b5).

6. A method as recited in claim 1, wherein Said entering
(b) of the lower power state also performs the operations of:

(b5) Setting a mode change bit in at least one of the
processors to initiate a change its mode,

(b6) receiving, at the bus controller, a mode change
request from at least one of the processors to the bus
controller in accordance with the mode change bit;

(b7) receiving, at the at least one of the processors, an
acknowledgement from the bus controller to the mode
change request after the bus is prepared to permit the
mode change, and

15

25

35

40

45

50

55

60

65

20
(b8) changing the mode of the at least one of the proces

Sors in accordance with the mode change bit after the
acknowledgement to the mode change request has been
received.

7. A method as recited in claim 6, wherein Said operations
(b5)-(b8) are performed at least partially concurrent with the
mode change sequence and before said notifying (b4).

8. A method as recited in claim 7, wherein the mode
change Sequence is a shutdown Sequence performed at the
bus controller, Such that the bus controller thereafter has
reduced power consumption.

9. A method as recited in claim 7,
wherein the multi-processor computer System further

includes an interrupt controller, and
wherein Said method further comprises the operations of:

(b9) receiving, at the interrupt controller, a state change
request from the power manager;

(b 10) initiating a state change Sequence at the interrupt
controller upon receiving the State change request;
and

(b11) notifying the power manager when the interrupt
controller has completed the State change Sequence.

10. A method as recited in claim 9,
wherein said entering (b) of the lower power State also

performs the operation of
(b12) stopping clocks to at least one of the processors

following said notifying (b4) and (b11), and
wherein the lower power State is entered following Said

Stopping (b12).
11. A method as recited in claim 10, wherein the state

change Sequence at the bus controller is a shutdown
Sequence performed at the bus controller, Such that the bus
controller thereafter has reduced power consumption, and
wherein the State change Sequence at the interrupt controller
is a shutdown Sequence performed at the interrupt controller,
Such that the interrupt controller thereafter redirects inter
rupts to the power manager.

12. A computer System, Said computer System comprises:
at least one processor, Said processor executes operations

in accordance with a processor clock;
a bus controller operatively connected to Said processor,

Said bus controller controls bus activity on a bus, and
a power manager operatively connected to Said processor

and Said bus controller, Said power manager controls
the processor clock and shutdown of Said bus
controller, and Said power manager provides a first
handshaking between Said power manager and Said bus
controller to provide deterministic mode changes for
Said computer System So as to manage power consump
tion.

13. A computer System as recited in claim 12,
wherein Said computer System further comprises:

an I/O controller operatively connected to Said proces
Sor and Said power manager,

wherein Said power manager provides a Second handshak
ing between Said power manager and Said I/O
controller, and

wherein Said power manager considers both the first
handshaking and the Second shaking in providing deter
ministic mode changes for Said computer System So as
to manage power consumption.

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 33 of 34

US 6,711,691 B1
21

14. A computer System as recited in claim 12,
wherein Said computer System further comprises:

an interrupt controller operatively connected to Said
processor and Said power manager,

wherein Said power manager provides a Second handshak
ing between Said power manager and Said interrupt
controller, and

wherein Said power manager considers both the first
handshaking and the Second Shaking in providing deter
ministic mode changes for Said computer System So as
to manage power consumption.

15. A computer System as recited in claim 12, wherein
Said computer System comprises a plurality of processors,
Said processors execute operations in accordance with pro
ceSSor clocks,

wherein Said bus controller and Said power manager are
operatively connected to Said processors, and

wherein Said power manager controls the processor
clockS.

15

22
16. A computer System as recited in claim 15, wherein

each of Said processors has a run mode and a plurality of low
power modes.

17. A computer System as recited in claim 12, wherein
Said computer System further comprises:

computer program code for determining when a lower
power mode of Said computer System should be entered
to reduce power consumption.

18. A computer system as recited in claim 17, wherein
Said power manager controls the entry into the lower power
mode by Sending a mode change request to Said bus
controller, then awaiting a notification from Said bus con
troller to Said power manager when Said bus controller has
completed a mode change Sequence in response to the mode
change request, and then completing the entry into the low
power mode.

Patent Owner Daedalus Prime LLC
Exhibit 2005 - Page 34 of 34

