
Pad++: A Zooming Graphical Interface 
for Exploring Alternate Interface Physics 

KEYWORDS 

Benjamin B. Bederson • 
Bell Communications Research 
445 South Street - MRE 20-336 

Morristown, NJ 07960 
(bederson@bellcore.com) 

Interactive user interfaces, multiscale interfaces, zooming 
interfaces, authoring, information navigation, hypertext, 
information visualization, information physics. 

ABSTRACT 
We describe the current status of Pad++, a zooming graphical 
interface that we are exploring as an alternative to traditional 
window and icon-based approaches to interface design. We 
discuss the motivation for Pad++, describe the implementa­
tion, and present prototype applications. In addition, we intro­
duce an informational physics strategy for interface design 
and briefly compare it with metaphor-based design strategies. 

INTRODUCTION 
If interface designers are to move beyond windows, icons, 
menus, and pointers to explore a larger space of interface pos­
sibilities, new interaction techniques must go beyond the 
desktop metaphor. While several groups are exploring virtual 
3D worlds [4][8), we have developed a 2D interface based on 
zooming. With our system, Pad++, graphical data objects of 
any size can be created, and zooming is a fundamental inter­
action technique. 

There are numerous benefits to metaphor-based approaches, 
but they also lead designers to employ computation primarily 
to mimic mechanisms of older media. While there are impor­
tant cognitive, cultural, and engineering reasons to exploit 
earlier successful representations, this approach has the 
potential of underutilizing the mechanisms of new media. 

For the last few years we have been exploring a different 
strategy for interface design to help focus on novel mecha­
nisms enabled by computation rather than on mimicking 
mechanisms of older media. Informally the strategy consists 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com­
mercial advantage, the ACM copyright notice and the title of the pub­
lication and its date appear, and notice is given that copying is by 
pennisslon of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

C 1994 ACM 0-89791-657-3/94/0011 .... $3.50 

James D. Hollan 
Computer Science Department 

University of New Mexico 
Albuquerque, NM 87131 

(hollan@cs.unm.edu) 

of viewing interface design as the development of a physics 
of appearance and behavior for collections of informational 
objects. 

For example, an effective informational physics might 
arrange for useful representations to be a natural product of 
normal activity. Consider how this is at times the case for the 
physics of the world. Some materials record their use and in 
doing so influence future use in positive ways. Used books 
crack open at often referenced places. Frequently consulted 
papers are at the top of piles on our desks. Use dog-ears the 
comers and stains the surface of index cards and catalogs. All 
these provide representational cues as a natural product of 
interaction but the physics of older media limit what can be 
recorded and the ways it can influence future use. 

Following an informational physics strategy has lead us to 
explore history-enriched digital objects [l 1][12). Recording 
on objects (e.g. reports, forms, source-code, manual pages, 
email, spreadsheets) the interaction events that comprise their 
use makes it possible on future occasions, when the objects 
are used again, to display graphical abstractions of the 
accrued histories as parts of the objects themselves. For 
example, we depict on source code its copy history so that a 
developer can see that a particular section of code has been 
copied and perhaps be led to correct a bug not only in the 
piece of code being viewed but also in the code from which it 
was derived. 

This informational physics strategy has also lead us to explore 
new physics for interacting with graphical data. In collabora­
tion with Ken Perlin, we have designed a successor to Pad 
[17] which is an graphical interface based on zooming. This 
system, Pad++, will be the basis for exploration of novel 
interfaces for information visualization and browsing in a 
number of complex information-intensive domains. The sys­
tem is being designed to operate on platforms ranging from 

• This author has moved to the University of New Mexico, Comput­
er Science Department, Albuquereque, NM 87131, beder­
son@cs.unm.edu. 

November 2-4, 1994 UIST '94 17 

Petitioner Samsung Ex-1024, 0001



high-end graphics workstations to PDAs and Set-top boxes. 
Here we describe the motivation behind the Pad++ develop­
ment, report the status of the current implementation, and 
present some prototype applications. 

MOTIVATION 
It is a truism of modern life that there is much more informa­
tion available than we can readily and effectively access. The 
situation is further complicated by the fact that we are on the 
threshold of a vast increase in the availability of information 
because of new network and computational technologies. It is 
somewhat paradoxical that while we continuously process 
massive amounts of perceptual data as we experience the 
world, we have perceptual access to very little of the informa­
tion that resides within our computing systems or that is 
reachable via network connections. In addition, this informa­
tion, unlike the world around us, is rarely presented in ways 
that reflect either its rich structure or dynamic character. 

We envision a much richer world of dynamic persistent infor­
mational entities that operate according to multiple physics 
specifically designed to provide cognitively facile access. The 
physics need to be designed to exploit semantic relationships 
explicit and implicit in information-intensive tasks and in our 
interaction with these new kinds of computationally-based 
work materials. 

One physics central to Pad++ supports viewing information at 
different scales and attempts to tap into our natural spatial 
ways of thinking. The information presentation problem 
addressed is how to provide effective access to a large body of 
information on a.much smaller display. Furnas [9] explored 
degree of interest functions to determine the information visi­
ble at various distances from a central focal area. There is 
much to recommend the general approach of providing a cen­
tral focus area of detail surrounded by a periphery that places 
the detail in a larger context. 

With Pad++ we have moved beyond the simple binary choice 
of presenting or eliding particular information. We can also 
determine the scale of the information and, perhaps most 
importantly, the details of how it is rendered can be based on 
various semantic and task considerations that we describe 
below. This provides semantic task-based filtering of informa­
tion that is similar to the early work at MCC on HITS[ 13] and 
the recent work of moveable filters at Xerox [3] [18]. 

The ability to make it easier and more intuitive to find specific 
information in large dataspaces is one of the central motiva­
tions for Pad++. The traditional approach is to filter or recom­
mend a subset of the data, hopefully producing a sman 
enough dataset for the user to effectively navigate. Two recent 
examples of work of this nature are latent semantic indexing 
[5] and a video recommender service based on shared ratings 
with other viewers [10]. 

Pad++ is complementary to these filtering approaches in that 
it is a useful substrate to structure information. In concert 
with recommending mechanisms, Pad++ could be used to 
layout the rated information in a way to make the most highly 

rated information largest and most obvious, while placing 
related but lower rated information nearby and smaller. 

DESCRIPTION 
Pad++ is a general-purpose substrate for exploring visualiza­
tions of graphical data with a zooming interface. While Pad++ 
is not an application itself, it directly supports creation and 
manipulation of multiscale graphical objects, and navigation 
through the object space. It is implemented as a widget for 
Tcltrk [16] (described in a later section) which provides a 
simple mechanism for creating zooming-based applications 
with an interpreted language. The standard objects that Pad++ 
supports are colored text, text files, hypertext, graphics, and 
images. 

We have written a simple drawing application using Pad++ 
that supports interactive drawing and manipulation of objects 
as well loading of predefined or programmatically created 
objects. This application produced all the figures depicted in 
this paper. 

The basic user interface for Pad++ uses a three button mouse. 
The left button is mode dependent. For the drawing applica­
tion shown in this paper, the left button might select and move 
objects, draw graphical objects, specify where to enter text, 
etc. The middle button zooms in and the right button zooms 
out. Pad++ always zooms around the current cursor position -
thus the user can control the zooming dynamically by moving 
the mouse while zooming. For systems with a two button 
mouse, we have experimented with various mechanisms for 
mapping zooming in and out to a single button. 'fypically, this 
involves having the first motion of the mouse after the button 
press determine the direction of the zooming. 

Pad++ is a natural substrate for representing abstraction of 
objects using what we term semantic zooming. It is natural to 
see the details of an object when zoomed in and viewing it up 
close. When zoomed out, however, instead of simply seeing a 
scaled down version of the object, it is potentially more effec­
tive to see a different representation of it. Perlin [ 17] 
described a prototype zooming calendar with this notion. We 
foresee two ways to describe this type of object. The first is to 
have different objects, each of which is visible at different, 
non-overlapping, zooms. This method is supported with the -
minsize and -maxsize options described in the Tclffk Section. 
The second, and preferred method, is to describe a procedural 
object that renders itself differently depending on its viewing 
size or other characteristics. It is possible to prototype proce­
dural objects with Tel as described below. 

RECENT ADVANCES 
Our focus in the current implementation has been to provide 
smooth zooming in a system that works with very large graph­
ical datasets. The nature of the Pad++ interface requires con­
sistent high frame-rate interactions, even as the dataspace 
becomes large and the scene gets complicated. In many appli­
cations, speed is important, but not critical to functionality. In 
Pad++, however, the interface paradigm is inherently based 
on interaction. The searching strategy is to visually explore 

18 UIST '94 Marina del Rey, California 

Petitioner Samsung Ex-1024, 0002



Figure 1: Sequence of snapshots (from left to right and top to bottom) as the view is 
zoomed in to a hand-drawn picture. 

the dataspace, so it is essential that interactive frame rates be 
maintained. 

IMPLEMENTATION 
We implemented Pad++ in C++. It runs on either of two 
graphics systems: the Silicon Graphics computers graphics 
language facilities (GL); and standard X. The X version runs 
on SGI's, Suns, PC's running Linux, and should be trivially 
portable to other standard UnixR system. Pad++ is imple­
mented as a widget for Tcl/fk which aJlows applications to be 
written in the interpreted Tel language. All Pad++ features are 
accessible through Tel making it unnecessary to write any 
newCcode. 

EFFICIENCY 
In order to keep the animation frame-rate up as the dataspace 

Runilt is a registered trademark of Unix Systems Laboratories, Inc. 

size and complexity increases, we implemented several stan­
dard efficiency methods, which taken together create a power­
ful system. We have successfully loaded over 600,000 objects 
and maintained interactive rates. 

Briefly, the implemented efficiency methods include: 

• Spatial Indexing: Create a hierarchy of objects based on 
bounding boxes to quickly index to visible objects. 

• Restructuring: Automatically restructure the hierarchy 
of objects to maintain a balanced tree which is necessary 
for the fastest indexing. 

• Spatial Level-Of-Detail: Render only the detail needed, 
do not render what can not be seen. 

• Clipping: Only render the portions of objects that are 
actually visible. 

• Refinement: Render fast with low resolution while navi-

November 2-4, 1994 UIST '94 19 

Petitioner Samsung Ex-1024, 0003



gating and refine the image when still. 

• Adaptive Render Scheduling: Keep the zooming rate 
constant even as the frame rate changes. 

One challenge in navigating through any large dataspace is 
maintaining a sense of relationship between what you are 
looking at and where it is with respect to the rest of the data 
(i.e., balancing local detail and global context). The rough 
animation or jumpy zooming as implemented in the original 
Pad [ 17) can be disorienting and thus not provide the most 
effective support for the cognitive and perceptual processing 
required for interactive information visualization and naviga­
tion. 

An important interactive interface issue when accessing 
external information sources is how to give the user access to 
them without incurring substantial start-up costs while the 
database is parsed and loaded. In Pad++ this is accomplished 
with parallel lazy loading: only load the portion of the data­
base that is visible in the current view. As the user navigates 
through the database and looks at new areas, those portions of 
the database are loaded. This lazy loading is accomplished in 
the background so the user can continue to interact with 
Pad++. When the loading is complete, items appear in the 
appropriate place. 

An associated concept is that of ephemeral objects. Objects in 
Pad++ which are representations of data on disk can be 
labeled ephemeral. These objects are automatically deleted if 
they have not been viewed in several minutes, thus freeing 
system resources. When they are viewed again, they are 
loaded again in parallel as described above. 

HYPERTEXT 
In traditional window-based systems, there is no graphical 
depiction of the relationship among windows even when 
there is a strong semantic relationship. This problem typically 
comes up with hypertext. In many hypertext systems, clicking 
on a hyperlink brings up a new window (or alternatively 
replaces the contents of the existing window). While there is 
an important relationship between these windows (parent and 
child), this relationship is not represented. 

We have begun experimenting with multiscale layouts of 
hypertext where we graphically represent the parent-child 
relationships between links. When a hyperlink is selected, the 
linked data is loaded to the side and made smaller, and the 
view is animated to center the new data. 

The user interface for accessing hypertext in Pad++ is quite 
simple. The normal navigation techniques are available, and 
in addition, clicking on a hyperlink loads in the associated 
data as described above, and shift-clicking anywhere on a 
hypertext object animates the view back to that object's par­
ent. 

Pad++ can read in hypertext files written in the Hypertext 
Markup Language (HTML), the language used to describe 
objects in the well-known hypertext system, MOSAIC (from 

the NCSA at the University of Illinois). While we do not yet 
follow links across the network, we can effectively use Pad++ 
as an alternative viewer to MOSAIC within our file system. 
Figure 2 shows a snapshot with one of the author's home­
page loaded and several links followed. 

INTERFACE TO TCUTK 
Pad++ is built as a new widget for Tk which provides for sim­
ple access to all of its features through Tel, an interpreted 
scripting language. Tel and Tk [16) are an increasingly popu­
lar combination of scripting language and Motif-like library 
for creating graphical user interfaces and applications without 
writing any C code. The Tel interface to Pad++ is designed to 
be very similar to the interface to the Tk Canvas widget -
which provides a surface for drawing structured graphics. 

While Pad++ does not implement everything in the Tk Can­
vas yet, it adds many extra features - notably those supporting 
multiscale objects and zooming. In addition, it supports 
images, text files, and hypertext, as well as several navigation 
tools including content-based search. As with the Canvas, 
Pad++ supports many different types of structured graphics, 
and new graphical widgets can be added by writing C code. 
Significantly, all interactions with Pad++ are available 
through Tel. 

Since Tel is interpreted and thus slower than compiled code, it 
is important to understand what its role is in a real-time ani­
mation system such as Pad++. There are three classes of 
things that one can do with Pad++, and the importance of 
speed varies: 

• Create objects: Slow - Tel is fine 

• Handle events: Medium - Small amount of Tel is ok 

• Render scene: Fast - C++only 

Because all rendering is done in C++, and typically only a 
few lines of Tel are written to handle each event, Pad++ main­
tains interactive rates despite its link to Tel. Tel is quite good, 
however, for reading and parsing input files, and creating and 
laying out graphical multiscale objects. 

The Tel interface to Pad++ is, as previously mentioned, quite 
similar to that of the Tk canvas, and is summarized here to 
give a feel for what it is like to program Pad++. Every object 
is assigned a unique integer id. In addition, the user may asso­
ciate an arbitrary list of text tags with each object. Every com­
mand can be directed to either a specific object id or to a tag, 
in which case it will apply to all objects that share that tag -
implicitly grouping objects. Each Pad++ widget has its own 
name. All Pad++ commands start with the name of the wid­
get, and in the examples that follow, the name of the widget is 
.pad. 

Examples: 

• A red rectangle with a black outline is created whose cor­
ners are at the points (0, 0) and (2, 1): 

.pad create rectangle O O 2 1 -fill red 
-outline black 

'"Put item number 5 at the location (3, 3), make the object 

20 UIST '94 Marina del Rey, California 

Petitioner Samsung Ex-1024, 0004



Figure 2: Hypertext. Links are followed and placed on the surface to the side, and made smaller. 

November 2-4, 1994 UIST '94 21 

Petitioner Samsung Ex-1024, 0005



twice as big, and make the object anchored at that point 
on its northwest comer: 

.pad i temconfig 5 - anchor nw - place •3 3 2• 

• Specify that item number 5 should only be visible when 
its largest dimension is greater than 20 pixels and less 
than 100 pixels. 

.pad itemconfig 5 -minsize 20 -maxsize 100 

• Make all items with tag foo turn blue when the left button 
of the mouse is pressed over any of those objects: 

.pad bi nd foo <ButtonPress> 
{.pad itemconfig foo -fill blue} 

As mentioned previously, Pad++ is a natural environment to 
represent abstraction through semantic zooming. Objects can 
be represented differently depending on their size by defining 
procedural objects. A procedural object is one that is ren­
dered as a result of a special procedure (as opposed to pre­
defined static objects such as lines or text). Pad++ supports 
Tel procedural objects which are very useful for prototyping, 
but too slow for continued use. Tel procedural objects work 
by specifying two Tel scripts. One returns the bounding box 
of the object (necessary for efficiency), and the other renders 
the object (drawing routines are provided). A trivial example 
is shown here which draws "1993" in red when it is small, 
and "Jan Feb Mar" in black when it is a little bigger: 

proc makeCalenda.r {} { 
.pad create tel -script •cal• -bb •cal BB• 

proc ca l (} { 
set view [ .pad rnove_to) 
set s ize [ l i ndex $view 2 ) 
if {$size< . 1} { 

.pad set_color red 

. pad set_linewidth 2 

. pad draw_text • 1993• 0 0 
else { 

. pad set_color bl ack 

.pad set_linewidth l 

.pad draw_text •Jan Feb Mar• 0 0 

proc calBB {} { 
return ·o O 11 1· 

NAVIGATION 
Finding infonnation on the Pad++ surface is obviously very 
important as intuitive navigation through large dataspaces is 
one of its primary motivations. Pad++ support visual search­
ing with zooming in addition to traditional mechanisms, such 
as content-based sean:h. 

Some basic navigation and searching mechanisms are pro­
vided at the Tel interface for the application programmer. A 
few basic ones are: 

• Smoothly go to the location ( 1, 0) at zoom of 5, and talce 
1000 milliseconds for the animation: 

.pad move_to l O 5 1000 

• Smoothly go to the location such that object #37 is cen­
tered, and fills three quarter's of the screen, and talce 500 

milliseconds for the animation: 
.pad center 37 500 

• Return the list of object ids that contain the text "foo" 
.pad find withtext foo 

Figure 3 shows a Tk interface based on these commands. 
Entering text in the top entry region returns a list of objects 
that contain that text. Double clicking on any of these objects 
smoothly animates the view to the specified object. 

The smooth animations interpolate in pan and zoom to bring 
the view to the specified location. If the end point, however, is 
more than one screen width away from the starting point, the 
animation zooms out to a point midway between the starting 
and ending points, far enough out so that both points are visi­
ble. The animation then smoothly zooms in to the destination. 
lb.is gives a sense of context to the viewer as well as speeding 
up the animation since most of the panning is performed 
when zoomed out which covers much more ground than pan­
ning while zoomed in. 

Figure 3: Content based search 

VISUALIZATIONS 
We built a Pad++ directory browser to explore how smooth 
zooming and the various efficiency mechanisms help in view­
ing a large hierarchical database, and to experiment with 
multi-scale layouts. The Pad++ directory browser provides a 
graphical interface for accessing the directory structure of a 
filesystem (see Figure 4). Each directory is represented by a 
square frame, and files are repreliented by solid squares col­
ored by file type. Both directories and files show their filena­
mes as labels when the user is sufficiently close to be able to 
read them. Each directory has all of its subdirectories and files 
organized alphabetically inside o f it. Searcbjng through the 
directory structure can be done by zooming in and out of the 
directory tree, or by using the content based search mecha­
nisms described above. Zooming into a file automatically 
loads the text inside the colored square and it can then be 
edited and annotated. 

We are able to load in a directory tree with over 600,000 
objects, and maintain interactive animation rates of about 10 
frames per second. Spatial indexing allows us to explore very 

22 UIST '94 Marina del Rey, California 

Petitioner Samsung Ex-1024, 0006



Figure 4: Directory browser snapshot 

November 2-4, 1994 UIST '94 23 

Petitioner Samsung Ex-1024, 0007



large databases while keeping the search time fast, since we 
render only the visible portion of the scene. While navigating 
with Pad++, very small objects are not drawn and larger ones 
are drawn with reduced resolution. The objects are then 
refined and drawn at high resolution when the user stops 
changing the view. 

Another dataset we looked at with Pad++ is a timeline of 
interesting products, events, and papers in computer technol­
ogy and user interfaces. History naturally lends itself to being 
looked back on at different scales. Figure 5 shows a sequence 
of snapshots as the view is zoomed into the current year. This 
visualization was created by a Tel script which reads in a file 
with a simple format specifying starting and ending dates 
along with text or images. 

PHYSICS AND METAPHOR 
As we mentioned earlier, the exploration of Pad++ is part of 
the development of a more general strategy for interface 
design. Our goal is to move beyond mimicking the mecha­
nisms of earlier media and start to more fully exploit the radi­
cal new mechanisms that computation provides. We think it 
provides an effective complement to the more traditional met­
aphor-based approaches. While an informational physics 
strategy for interface design may certainly involve metaphor, 
we think there is much that is distinctive about a physics­
based perspective. As an interface strategy, it can be distin­
guished from a metaphor-based strategy in at least four ways. 

First, metaphors necessarily pre-exist their use. Pre-Copemi­
cans could never have used the metaphor of the solar system 
for describing the atom. In designing interfaces, one is limited 
to the metaphorical resources at hand. In addition, the meta­
phorical reference must be familiar to work. An unfamiliar 
interface metaphor is functionally no metaphor at all. One can 
never design metaphors the way one can design self-consis­
tent physical descriptions of appearance and behavior. Thus, 
as an interface design strategy, physics offer designability and 
tailorability that metaphor does not. 

Second, metaphors are temporary bridging concepts. When 
they become ubiquitous, they die. In the same way that lin­
guistic metaphors lose their metaphorical impact (e.g.,foot of 
the mountain or leg of table), successful metaphors also wind 
up as dead metaphors (e.g. file, menu, window, desktop). The 
familiarity provided by the metaphor during earlier stages of 
use gives way to a familiarity with the interface due to actual 
experience. 

Thus, after awhile, even in the case of metaphor-based inter­
faces, it is the actual details of appearance and behavior (i.e. 
the physics) rather than any overarching metaphor that torm 
much of the substantive knowledge of an experienced user. 
Any restrictions that are imposed on the behaviors of the enti­
ties of the interface to avoid violations of the initial metaphor 
are potential restrictions of functionality that may have been 
employed to better support the users' tasks and allow the 
interface to continue to evolve along with the users increasing 
competency. 

The pervasiveness of dead metaphors such as files, menus, 

and windows may well restrict us from thinking about alter­
native organizations of computation. New conceptions of per­
sistent objects and organizations of entities into units less 
monolithic than that of unstructured files are indeed in con­
flict with older metaphorical notions. 

Figure 5: Timeline. Sequence of snapshots 
(from top to bottom) as the view is zoomed in. 

24 UIST '94 Marina del Rey, California 

Petitioner Samsung Ex-1024, 0008



Third, since the sheer amount and complexity of informa­
tion with which we need to interact continues to grow, we 
require interface design strategies that scale. Metaphor is 
not such a scaling strategy. Physics is. Physics scales to 
organize greater and greater complexity by uniform appli­
cation of sets of simple laws. In contrast, the greater the 
complexity of the metaphorical reference, the less likely 
it is that any particular structural correspondence between 
metaphorical target and reference will be useful. 

Fourth, it is clear that metaphors can be harmful as well 
as helpful since they may well lead users to import 
knowledge not supported by the interface. There are cer­
tainly metaphorical aspects associated with a physics­
based strategy. Our point is not that metaphors are not 
useful but that they may restrict the range of interfaces we 
consider. 

There are, of course, also costs associated in following a 
physics-based design strategy. One cost is that designers 
can no longer rely on users' familiarity with the meta­
phorical reference and this has learnability consequences. 
However, the power of metaphor comes early in usage 
and is rapidly superceded by the power of actual experi­
ence. Furthermore, since empirical knowability naturally 
follows from a physics perspective, we can begin toques­
tion and quantify how much experimentation will be nec­
essary to learn the designed-in principles, how many 
inductive steps will be required and of what kinds. Thus, 
one might want to focus on easily discoverable physics. 
As is the case with metaphors, all physics are not created 
equally discoverable or equally fitted to the requirements 
of human cognition. 

CONCLUSION 
We implemented Pad++, a zooming graphical interface 
substrate, focusing on efficiency and expandability. By 
implementing several efficiency mechanisms which act in 
concert, we are able to maintain high frame-rate interac­
tion with very large databases. This development is part 
of an exploration of an informational physics perspective 
for interface design. 

We are currently, in collaboration with NYU, continuing 
development of the Pad++ substrate as well as starting 
work in several application domains, such as history­
enriched digital objects. 

ACKNOWLEDGEMENTS 
We would like to thank Ken Perlin and his students, 
David Fox and Matthew Fuchs, at NYU for enjoyable 
discussions and for seeding out interest in multiscale 
interfaces. We especially appreciate the support we have 
received from Craig Wier as part of ARPA's new HCI Ini­
tiative. This will allow us to continue our Pad++ research 
collaboration with Bellcore and NYU. We also would like 
to acknowledge other members of the Computer Graphics 
and Interactive Media Research Group at Bellcore for 

many discussions shared during our continuing search for 
the best cheeseburger. 

REFERENCES 
[l] Ronald M. Baecker, Human Factors and Typography for 

More Readable Programs, ACM Press, 1990. 

[2] Benjamin B. Bederson, Larry Stead, and James D. Hollan, 
Pad++: Advances in Multiscale Interfaces, In Proceed­
ings of CH/'94 Human Factors in Computing Sys­
tems Conference Companion, ACM/SIGCHI, 1994, 
pp. 315-316. 

[3] Eric A. Bier, Maureen C. Stone, Ken Pier, William Bux­
ton, and Tony D. DeRose. Toolglass and Magic Lenses: 
The See-Through Interface, In Proceedings of /993 
ACM SIGGRAPH Conference, pp. 73-80. 

(4) Stuart K. Card, George G. Robertson, and Jock D. Mack­
inlay. The Information Visualizer, an Information Work­
space, In Proceedings of CH/'91 Human Factors in 
Computing Systems, ACM/SIGCHI, 1991, pp. 181-188. 

[5] Steve Deerwester, Sue T. Dumais, George W. Furnas, 
Tom K. Landauer, and Ray Harshman. Indexing by Latent 
Semantic Analysis. Journal of American Society of 
Information Science, 41, 1990, pp. 391-407. 

[6] William C. Donelson. Spatial Management of Informa­
tion, In Proceedings of 1978 ACM SIGGRAPH Confer­
ence, pp. 203-209. 

[71 Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, 
Jr, Seesoft - A Tool for Visualizing Line-Oriented Soft­
ware Statistics, IEEE Transactions on Software Engi­
neering, Vol. 18 (11), pp. 957-968, November, 1992. 

[8] Kim M. Fairchild, Steven E. Poltrock, and George W. Fur­
nas. SemNet: Three-Dimensional Graphic Representa­
tions of Large Knowledge Bases, in Cognitive Science 
and its Applications for Human-Computer Interac­
tion, Lawrence Erlbaum Associates, 1988. 

[9] George W. Furnas, Generalized Fisheye Views, In Pro­
ceedings of CH/'86 Human Factors in Computing 
Systems, ACM/SIGCHI, 1986, pp. 16-23. 

[10) William C. Hill, videos@bellcore.com: Recommending 
and evaluating items on the basis of communal history-of­
use. Bellcore Technical Report #TM-ARH-023560, 
Morristown, NJ 07960, 1994. 

[11) William C. Hill, James D. Hollan, David Wroblewski, and 
Tim McCandless, Edit Wear and Read Wear, In Proceed­
ings of CH/'92 Human Factors in Computing Sys­
tems, ACM/SIGCHI, 1992, pp. 3-9. 

[12) William C. Hill and James D. Hollan, History-Enriched 
Digital Objects, in press. 

[13) James D. Hollan, Elaine Rich, William Hill, David Wrob­
lewski, Wayne Wilner, Kent Wittenburg, Jonathan Gro­
din, and Members of the Human Interface Laboratory. An 
Introduction to HITS: Human Interface Tool Suite, in 
Intelligent User Interfaces, (Sullivan & Tyler, Eds), 
1991, pp. 293-337. 

November2--4,1994 UIST '94 25 

Petitioner Samsung Ex-1024, 0009



[14] James D. Hollan and Scott Stometta, Beyond Being There, In 
Proceedings of CHI'92 Human Factors in Computing 
Systems, ACM/SIGCHI, 1992, pp. 119-125. (also appeared as 
a chapter in Readings in Groupware and Computer Sup­
poned Cooperative Work(Becker, Ed.), 1993, pp. 842-848. 

[15] George Lakoff and Mark Johnson, Metaphors We Live By. 
University of Chicago Press, 1980. 

[ l 6] John K. Ousterhout, Tel and the Tk Toolkit, Addison Wesley, 
1994. 

[17] Ken Perlin and David Fox. Pad: An Alternative Approach to 
the Computer Interface, In Proceedings of 1993 ACM SIG­
GRAPH Conference, pp. 57-64. 

(18] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The Mov­
able Filter as a User Interface Tool, in Proceedings of 
CHJ'94 Human Factors in Computing Systems, ACM/ 
SIGCHI, 1994. 

[19] Ivan E. Sutherland. Sketchpad: A man-machine graphical com­
munications systems, In Proceedings of the Spring Joint 
Computer Conference, 1963, pp. 329-346, Baltimore, MD: 
Spartan Books. 

26 UIST '94 Marina del Rey, California 

Petitioner Samsung Ex-1024, 0010




