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Abstract

The electrocardiogram(ECG also called EKG) trace expresses cardiac features that are unique to an individual. The ECG
processing followed a logical series of experiments with quantifiable metrics. Data filters were designed based upon the
observed noise sources. Fiducial points were identified on the filtered data and extracted digitally for each heartbeat. From
the fiducial points, stable features were computed that characterize the uniqueness of an individual. The tests show that the
extracted features are independent of sensor location, invariant to the individual’s state of anxiety, and unique to an individual.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Electrocardiogram (ECG)data are traditionally acquired
for clinical diagnosis of cardiac function. Dubin[1] de-
scribes thelink between cardiac function and the expression
of the ECG trace. In addition, he offers a set of rules for ECG
interpretation. However, Dubin’s work uses analog methods
for applying these rules.With the advances in computational
power and medical instrumentation, hardware/software sys-
tems have been developed for assisted ECG trace interpreta-
tion (e.g. SiemensMedical<www.smed.com>andThought
Technologies<www.thoughttechnology.com>).
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The ECG trace contains a wealth of information. Re-
searchers have been using ECG data as a diagnostic tool
since the early 20th century. Only in the last 20 years,
however, have researchers been able to apply digital anal-
ysis to the data[2]. The most common digital applica-
tion is heartrate variability (HRV)[3]. Researchers have
applied numericalmethods to more complex diagnostic
interpretation tasks such as demixing mother–fetal sig-
nal [4], identifying atrial and ventrical fibrillation[5,6],
myocardial infarction [7] and recently to characterize the
uniqueness ofthe ECG to an individual[8–11]. Except for
the HRV studies, each researcher has developed ad hoc
features.
In this paper, we propose a more extensive set of ECG

descriptors that more completely characterize the trace of a
heartbeat. The proposed ECG descriptors contain informa-
tion about the physiology of an individual’s heart, rather than
some visual expression of traits[9]. As a biometric, heart-
beatdataare difficult to disguise, reducing the likelihood
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Fig. 1. Ideal ECG signal: This figure depicts two idealized heart-
beats. TheR–R interval indicates the duration of a heartbeat. The
major ECG complexes comprising one heartbeat are indicated by
P, QRS, and T.
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Fig. 2. The heart and its pacemakers: The sinoatrial node is the
heart’s primary pacemaker. The atrioventricular node forces the
time lag between the atrial and the ventricular contraction.

of successfully applying falsified credentials into an authen-
tication system.

2. Mechanics of the ECG

The ECG signal measures the change in electrical poten-
tial over time. The trace of each heartbeat consists of three
complexes: P, R, and T. These complexes are defined by the
fiducial that is the peak of each complex (Fig. 1). The la-
belsin Fig. 1 document the commonly used medical science
ECG fiducials.
A heartbeatis the physical contraction of the heart mus-

cle caused by chemical/potential differences in the compo-
nent cells called myocytes. The myocytes have negatively
charged interiors. The heartbeat begins with the firing of the
Sinoatrial (SA) node. The SA node (Fig. 2) is the heart’s
dominantpacemaker. The electrical signal radiates outward
causing the myocytes to depolarize and compress rapidly
by a movement of sodium(NA+) ions. This is expressed
as P wave of the ECG trace. The depolarization rate slows
dramatically when the signal hits the atrio-ventricular (AV)
node, where the chemical signal changes to relatively slow
moving calcium(CA+) ions. The change in contraction is
expressed as the gap between the P and the R complexes.
Once past the AV node, the signal passes through to the
cells lining the ventricles. The ventricles contract rapidly,

which produces the R complex. Repolarization does not ex-
actlymirror polarization due to the chemical agents and the
lag between the end of the electrical impulse and physical
displacement[1].
The heartrateis controlled by the autonomic nervous

system (ANS). ANS is composed of the sympathetic and
parasympathetic system. Each of the two systems has
independent ganglia and secretes neurotransmitters. The
sympathetic system stimulates the cardiovascular system
by increasing the rate of SA node firing, increasing the
mycocyte cell conductivity, and increasing the force of
contraction. The results of the sympathetic secretion of neu-
rotransmitters are: 1. the reduction of the interbeat interval
due to the increased SA firing rate, and 2. the reduction in
the width of the P and T complexes due to increase conduc-
tivity. The parasympathetic system has the opposite effect.
The ECG is measured with respect to an arbitrary base-

line. The magnitude of the electrical potential varies with
the placement of electrodes relative to the heart. Diagnosti-
cians have exploited the change in information with sensor
placement to improve their understanding of cardiac perfor-
mance.

3. ECG data

For this experiment, data were collected from males and
females between the ages of 22 and 48. Twenty-nine individ-
uals were tested with 12 repeat sessions for a total of 41 ses-
sions within the data set. Each individual session contained
a set of seven two-minute tasks. The tasks were designed
to stimulate different states of anxiety. Unlike conventional
ECG data, the hardware for this series of experiments
collected ECG data at high temporal resolution, 1000Hz.
Fig. 3 is a waterfall diagram of ECG traces that shows the
differencesamong subjects and tasks. Each block of seven
heartbeats is the average of the heartbeats for that individual
performing each of the seven tasks. The subject-to-subject
differences are visually greater than task differences, a
surrogate for level of stress.
The remainder of this paper is arranged by the ECG pro-

cessing stage. The first half of the paper discusses the unique
data processing stages required to identify individuals. The
latter half of the paper shows the results for the sensor place-
ment, state of anxiety, and identifying individuals tests. The
paper concludes with a discussion of how the results sup-
port our conclusion that ECG data is unique to an individual
and that the features extracted are a viable biometric.

4. ECG processing

To realize the ideal data structure (Fig. 1), the raw ECG
datamustbe processed to remove the non-signal artifacts.
The first step is to identify the noise sources. Based upon
the structure of these noise sources, a filter is designed and
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Each block of curves represents the 
average heartbeat for one individual 
for each of the 7 tasks, i.e., 7 curves
per subject.

Fig. 3. Heartbeats averaged by subject and task.

applied tothe raw data. The filtered data is used to locate
fiducials and to perform feature extraction. To best convey
the processing hierarchy, all of the figures generated in this
paper originate from a common data series.

4.1. Noise sources

Fig. 4a and b show the data sample of the high resolu-
tion ECG data.The figures show that the raw data contain
both high and low frequency noise components. These noise
components alter the expression of the ECG trace from its
ideal structure (Fig. 1). The low frequency noise is expressed
as the slope of the overall signal across multiple heartbeat
traces inFig. 4a. The low frequency noise is generally as-
sociated withchanges in baseline electrical potential of the
device and is slowly varying. Over the 20 s segment, the po-
tential change of the ECG baseline inscribes approximately
1 1/2 wave periods. The high frequency noise is expressed
as the intrabeat noise shown inFig. 4b. The high frequency
noise isassociated with electric/magnetic field of building
power (electrical noise) and the digitization of the analog
potential signal (A/D noise).
Plotting the Fourier power spectra illustrates the various

elements of the ECG signal. In this case, we plotted the
20,000 raw samples over 16384(214) frequencies. InFig.
5a, three fundamental frequencies are readily identified: the
60Hz electrical noise due to the US power line, the 1.10Hz
heartbeat information (approximately 22 heartbeats in 20 s),
and the 0.06Hz change in baseline electrical potential (ap-
proximately 1 1/2 wave periods in 20 s). The remainder of
the frequency power spectra is a combination of other noise

sources and subject information. The goal of filtering is to
remove the 0.06 and 60Hz noise while retaining the individ-
ual heartbeat information between 1.10 and 40Hz. The filter
curve represents the frequency bandpass acceptance region.
Examination of multiple filtering techniques showed that

local averaging, spectral differencing, and Fourier bandpass
filtering held promise. The filter’s design constraints were:

1. Maintain as much of the subject dependent information
(signal) as possible.

2. Reduce the data to best resemble the idealized heartbeat
(Fig. 1).

3. Design a stable filter across all subjects.

After applying each filtering technique to the data, the
best method was observed to be band pass filtering. We re-
viewed the required bandpass limits and developed a fil-
ter that takes advantages of the limitations of filtering cited
above. By observingFig. 5a, a considerable gap exists be-
tweenthesubject information (43Hz) and the 60Hz noise.
The gap at the high frequency will change with heartrate
and individual. The same factors occur at the low frequency
end at approximately 2Hz.
Our filtering solution merges heuristic and quantitative

information and mathematics, using a frequency bandpass
filter between 2 and 40Hz. However, the filter is written us-
ing the equivalent of a lower order polynomial. This filter
allows ‘advantageous’ bleeding of information into the pro-
cessed data stream (Fig. 6 b). The lower order polynomial
filter is stable at the frequency limits, which is important at
the low frequency edge. The resulting post filtering power
spectrum is shown inFig. 5b. After filtering, the heartbeats
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Fig. 4. Raw ECG data 1000Hz: (a) 20 s; (b) 2 s; TheY axis is
electricalpotential and theX axis is time in seconds.

Fig. 5. Power spectra of frequency filtering: (a) bandpass filter of raw data; (b) frequency response of filtered data. (a) shows the noise
sourcespikes at 0.06 and 60Hz and the information spikes between 1.10 and 35Hz. (b) shows the filtered data with the noise spikes
removed and the subject specific information sources retained.

for each data segment were aligned by their R peaks in a
waterfall diagram (Fig. 3).

4.2. Fiducial points

Once the non-signal components were removed from the
ECG data stream, the ECG trace fiducial positions were lo-
cated. The standard medical fiducial labels do not fully char-
acterize the entire heartbeat trace. From pattern recognition
science, additional feature attributes are rarely completely
correlated or independent. However, additional subject at-
tributes generally improve the scalability to larger popula-
tions [13] at the cost of reducing the tolerance intra-subject
variability.
For human identification, attributes were extracted from

the P, R, and T complexes (Fig. 7). Four additional fiducial
pointswere identified. The locations of the four new fidu-
cial positions, noted by an apostrophe (‘), are at the basal
positions of the P and T complexes (Fig. 7). Collectively,
the fiducialsexploit the unique physiology of an individual.
Physically, the L’and P’fiducials indicate the start and end of
the atrial depolarization. The corresponding S’ and T’ posi-
tions indicate the start and end of ventricular repolarization.
The fiducial points were extracted in the time domain in

two stages. The peaks were established by finding the local
maximum in a region surrounding each of the P, R, and T
complexes. The base positions were determined by tracking
downhill and finding the location of the minimum radius of
curvature (Fig. 8). The minimum radius of curvature proved
morerobust to local noise than the more obvious derivative
measures. By fixing the time difference betweenX andY

andX andZ, the minimum radius of curvature is found by
maximizing the value of� using the vector cross product
between the two directed line segments.
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Fig. 6. Bandpass filtered ECG trace: (a) entire range of data; (b)
segmentof data. The results of applying the filter (Fig. 5) to the
raw (Fig. 4) data are shown to closely replicate the idealized (Fig.
1) ECG without noise.

4.3. Features

The expression of the ECG trace is a function of sen-
sor placement for electrical potential magnitude only. The
sensor position does not affect the observed timing of the
individual P, R, and T complexes. Therefore, the temporal
distances among the fiducial points are independent of the
sensor placement (data analysis for this is shown in Section
5.1). Since the heartbeat’s R position was used for aligning
the waterfall diagram, the distances were computed from the
other fiducial points to the R position (Fig. 9). These com-
putational distancesare unsigned. An additional process is
required to account for changes in these individual distances
with changes heartrate.
The distances between the fiducial points and the R

position vary with heartrate. If a linear relationship exists
between heartrate and those distances, normalization would
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Fig. 7. ECG trace based upon cardiac physiology[12]. L’ and P’
indicate thestart and end of atrial depolarization, the R complex
indicates ventricular depolarization, and the T complex indicates
the ventricular repolarization.
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Fig. 8. Radius of curvature: By fixing the time difference between
X andY andX andZ, the radius of curvature is computed as the
vector cross product between the two directed line segments.

be computed as the extracted distance divided by the L’T’
distance. This approach effectively scales the heartbeat
to a unit length. The normalized features represent the
relative positions of the fiducials within a heartbeat. The
linear normalization has a heuristic rather than a phys-
iological basis. The distance that an electrical impulse
travels along the atrial axis is fixed, so that changes in
heartrate are not evenly distributed across the P, R, and T
complexes.
To better understand how normalization should occur, a

review of the underlying physiology is required. The inter-
beat interval (T’ of the previous heartbeat to L’ of the cur-
rent heartbeat) is a transition stage that is independent of
the electrical timing mechanism. The R complex is a trigger
for the ventricular contraction. As an electrical trigger, it is
a function of distance and not heartrate. As such, it remains
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Fig. 9. Extracted distance among the ECG fiducials.

Extracted Attributes 

1. RQ 6. RT 11. ST
2. RS 7. RS' 12. PQ
3. RP 8. RT' 13. PT
4. RL 9. P width 14. LQ
5. RP' 10. T width 15. ST'

Fig. 10. Extracted attributes. The feature list labels are the normal-
ized distance betweenthe two fiducials. For example RP’ is the
unsigned distance between the end of the P-wave and the R peak.

fairly constant with changes in heartrate. So, the princi-
pal mechanisms of heartrate changes are caused by atrial
depolarization (P complex) and ventricular repolarization
(T complex). These two events are the dominant causes to
the changes in pressure within the heart and ventricular vol-
ume. The values for P and T complex distances were nor-
malized by dividing by the L’T’ distance. Raw RQ and RS
distances are used as features. In total 15 features were ex-
tracted from each heartbeat (Fig. 10).
Within eachsubject session, each two-minute task was

divided into six twenty-second segments. During feature ex-
traction either all features were identified for an individual
heartbeat, or the heartbeat was removed from further anal-
ysis. Outliers were removed iteratively so that 70% of the
original heartbeats were retained. Low heartbeat count seg-
ments were also removed. The segregation of the task data
into 20 s segments allowed for independent block training
of the discriminant functions.

5. ECG testing

From the original 15 attributes, 12 attributes were
commonly selected during the majority of experimental
constraints of canonical relationships. A stepwise canonical
correlation that used the Wilkes’ lambda as a divergence
measure provided the feature selection[14]. The feature
selectionprocess was performed to ensure stable discrimi-
nation.
Classification was performed on heartbeats using standard

linear discriminant analysis. A conversion is required to link
the performance of the heartbeat classification to human
identification. Standard, majority, voting was used to assign
individuals to heartbeat data. The conversion was performed
using contingency matrix analysis (Fig. 11a).
The contingencymatrix, Fig. 11, is a visualization for

classification performance[15]. The columns represent the
known input data, generally the test examples. The rows
indicate how the discriminant function(s) classified the
data. The correctly identified samples (heartbeats) lie along
the major diagonal. If the maximum number of heartbeats
within a row or column occurs along the major diagonal,
then the subject is correctly identified; i.e., voting. Errors
occurring along the column are errors of omission. For a
verification system, these are false negative errors where
an authorized user cannot gain access. Errors along the
row are errors of commission. Commission errors are false
acceptance errors, where an unauthorized user gains ac-
cesses the system. The identification error rates cited in
this paper are the average of the omission and commission
values.
Fig. 11a highlights a number of interpretation issues. First,

the contingencymatrix is not symmetrical. So, the rate of
false acceptance between individuals is not the same. The
number of heartbeats acquired is not the same for all individ-
uals. The variable number of examples percolates through
the contingency matrix. For Subject B, approximately 30%
of the heartbeats have a commission error with Subject J.
These heartbeats are over 50% of the total assigned to Sub-
ject J. If the two subjects contained the same number of
heartbeats, then no confusion or false acceptance of Sub-
ject B to Subject J would occur. A normalization procedure,
called iterative proportional fitting[16], could be applied
if it were assumed that the number of heartbeats from all
individuals is the same (Fig. 11b). For these experiments,
no assumptions aboutthe relative likelihoods for assigning
heartbeats were made.

5.1. ECG features and sensor location

As part of understanding the how well the ECG biomet-
ric can be exploited for identifying individuals, this sec-
tion focuses on the relationship between changes in the
ECG lead placement and identification performance. The
hypothesis is that the extracted ECG attributes are invari-
ant to placement of the ECG leads. To test this hypothesis,
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A B C D E F G H I J K sum 1-comiss identified
A 52 15 10 1 78 67 1
B 15 165 180 92 1
C 6 9 6 75 92 1
D 1 125 9 135 93 1
E 7 76 83 92 1
F 5 77 6 88 88 1
G 65 1 2 68 96 1
H 154 12 166 93 1
I 11 50 61 82 1
J 85 76 161 47 0
K 35 3 2 49 89 55 1

total correct 958 % false pos
sum 74 265 70 165 92 80 67 165 63 77 66 total avail 1184 9

1-omiss 70 62 99 76 83 96 97 93 79 99 74 % correct 81
identified 1 1 1 1 1 1 1 1 1 1 1 %
1=correct 0
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A B C D E F G H I J K sum 1-comiss identified
A .72 .09 .10 .08 0.99 73 1
B .17 .83 1.00 83 1
C . 98 .02 1.00 98 1
D .02 .80 .18 1.00 80 1
E .11 .89 1.00 89 1
F .01 .93 .05 0.99 94 1
G .96 .01 .03 1.00 96 1
H .89 .11 1.00 89 1
I .12 .88 1.00 88 1
J .08 .92 1.00 92 1
K .17 .06 .03 .73 0.99 74 1

total correct 10 % false pos
sum 1.00 1.00 1.00 .98 1.01 .99 .99 1.01 1.00 1.00 .99 total avail 11 0

1-omiss 72 83 98 82 88 94 97 88 88 92 74 % correct 87
identified 1 1 1 1 1 1 1 1 1 1 1 % False  neg

 False  neg

1=correct 0

known inputs

co
m
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na
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(a)

(b)

Fig. 11. (a) Sample contingency matrix; (b) normalized contingency matrix. These tables show the classification rate for the individual
heartbeats. Basedon voting, the marginal statistics show the classification of subjects. A ‘1’ in theidentifiedrow indicates that the correct
subject identification.

Assay 
Training

Data

Heartbeats

Classified 

Individuals

Classified 
Neck 82% 100%Locational 

Invariance Chest 79% 100%

Fig. 12. Classification performance with chest and neck data for
training andtest. Classification accuracies are an average of omis-
sion and commission error.

we collected ECG data at two electrode placements during
each session. The sensor placement locations were at the
base of the neck and fifth intercostal spacing (chest). We
found a strong agreement between neck and chest ECG data
(Fig. 12). The performance was determined by training the
discriminantfunctionswith the neck data and classifying
the chest data. An additional set of discriminant functions
was generated by training on the chest data and classifying
the neck data. The scores are given for both the heartbeat
and subject identification.

5.2. ECG features and state of anxiety

An individual’s emotional state is continually changing.
These changes occur naturally as a result of body chem-
istry, level of stress, and even time of day. The changes in

emotional state are expressed in the ECG trace as changes
in heartrate,noise in trace due to muscle flexor action, and
variations in electrical potential gain. The hypothesis is that
the normalized features extracted for human identification
are invariant to the individual’s state of anxiety. To prove
this four experiments were performed to test within anxiety
and across anxiety states.

1. Discriminant functions trained from low stress conditions
could identify the same individuals under low stress con-
ditions.

2. Discriminant functions trained from high stress condi-
tions could identify the same individuals under high stress
conditions.

3. Discriminant functions trained from high stress condi-
tions could identify the same individuals under low stress
conditions.

4. Discriminant functions trained from low stress conditions
could identify the same individuals under high stress con-
ditions.

The seven task protocol was divided into high stress and
low stress tasks. The low stress tasks were the subject’s
baseline state, meditative, and recovery tasks. The high stress
tasks were reading aloud, mathematical manipulation, and
driving in virtual reality.
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Assay 
Training

Data

Heartbeats

Classified 

Individuals

Classified 
Low 83% 97%Within 

Anxiety State High 78% 97%
Low 66% 98%Between 

Anxiety State High 63% 98%

Fig. 13. Classification performance for within and between anxiety
state, ‘Low’ indicates low stress tasks and ‘High’ indicates high
stress tasks.

Fig. 13shows the results for characterizing an individual
basedupontheir level of anxiety. Both within and between
anxiety states, nearly all the individuals were correctly clas-
sified. The results indicate that the extracted features are
invariant to anxiety state.

5.3. ECG feature as a biometric

To use ECG as a biometric, individuals will enroll their
information into the security system. After enrollment, the
user’s ECG will be interrogated by the system. The state of
anxiety and the relative orientation of the ECG electrodes
with respect to their heart’s potential center are unknown.As
the number of access controllers and individuals within a fa-
cility increases, the number of interrogations grows rapidly.
To mitigate data handling issues, the number of descriptors
for a given individual must be minimized.
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baseline meditative reading mathematic recovery 1 VR driving recovery 2 intra-high
stress

intra-low
stress

interstress
low /high

interstress
high/low

all data

individuals

heartbeats

Fig. 14. Classification performance for heartbeats and identification. Labels indicate training data. Test data was the remainder of the data
base. The ‘all data’ was an average of segments across all tasks (i.e., train segment 1–test segments 2, 3, 4, 5, and 6).

The results show a high degree of agreement of general-
ization across the tasks, except for the VR driving. During
VR driving, many of the subjects’ data still contained muscle
flexor noise that was not removed with the current filter. We
are exploring improvements in the processing techniques to
minimize these problems (Fig. 14).
In orderto understand the extent that the data were able to

generalize, discriminant functions were generated by train-
ing on the tasks individually and then block segmentation
across tasks. If the features were completely invariant to
anxiety state, then an operational enrollment and deploy-
ment scheme would be simplified.Fig. 15shows the results
of the identification performance for a many-to-many clas-
sification strategy.

6. Discussion

The ECG data can be easily manipulated using traditional
signal processing techniques. Extracted features are based
upon cardiac physiology and have fixed positions relative
to the heartbeat. The normalization of these features makes
them invariant to anxiety state. Using conventional voting
techniques, the classification of heartbeats yields subject
identification.
During this entire exercise, all processing was performed

using robust conventional algorithms. Performance gains
may be realized through an optimized classification algo-
rithm. Optimizing the selection of a classification algorithm
requires the assessment of the distribution of the extracted
features over a significant population. Additional data are

140 MASIMO 1055 
Masimo v. Apple 

IPR2023-00745



S.A. Israel et al. / Pattern Recognition 38 (2005) 133–142 141

Fig. 15. Heartbeat classification for test data.

being collectedto answer this and two additional questions
about the ECG data: the scalability of this set of ECG fea-
tures to large populations and the invariance of ECG data
over significant time intervals.

7. Summary

In this paper, we show that cardiac function as expressed
by the electrocardiogram (ECG) trace exhibits features that
are unique to an individual. The logical series of experi-
ments described here are quantified at each stage of process-
ing. The experiments are divided into two categories: data
processing and testing. The processing began with the char-
acterization of noise sources in the raw data stream. From
this, an optimum filter was designed to separate the cardiac
information from the noise. Fiducial points were identified
on the filtered data and digitally extracted. From the fidu-
cial points, stable features were defined that characterize
individuals. After the processing, the data were tested for
invariance to sensor location. Next, the extracted features
were tested for invariance to the individual’s state of anxi-
ety. Finally, the data set was used to identify a population of
individuals. Additional data are being collected to perform
two additional tests: the scalability of the features to char-
acterize a large population, and the stability of the feature
over long time intervals.
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