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PRE-CONNECTED ANALYTE SENSORS 

INCORPORATION BY REFERENCE TO 
RELATED APPLICATIONS 

2 
an elongated body of the sensor, as described hereinafter, to 
assist with handling, and both temporary and permanent, 
electrical and mechanical connections. A sensor carrier (also 
referred to as a "sensor interposer") may also include 

Any and all priority claims identified in the Application 
Data Sheet, or any correction thereto, are hereby incorpo­
rated by reference under 37 CFR 1.57. This application 
claims the benefit of U.S. application Ser. No. 15/792,038, 
filed on Oct. 24, 2017, now U.S. Pat. No. 10,653,835, issued 
on May 19, 2020. The aforementioned application is incor­
porated by reference herein in its entirety, and is hereby 
expressly made a part of this specification. 

5 features for tracking, data storage, and sealing sensor elec­
trodes, from each other and from the environment. Without 
limiting the scope of the present embodiments as expressed 
by the claims that follow, their more prominent features now 
will be discussed briefly. After considering this discussion, 

10 and particularly after reading the section entitled "Detailed 
Description," one will understand how the features of the 
present embodiments provide the advantages described 
herein. 

TECHNICAL FIELD 15 In accordance with a first aspect, a method of manufac-
turing a sensor is provided. The method includes providing 
an analyte sensor having an elongated body, a first electrode, 
a second electrode coaxially located within the first elec­
trode, and at least two electrical contacts longitudinally 

The present disclosure generally relates to sensors and, 
more particularly, to analyte sensors such as continuous 
analyte sensors. 

20 aligned and spaced along a longitudinal axis of the sensor. 
BACKGROUND The method includes attaching a sensor carrier to the analyte 

sensor, the sensor carrier including an intermediate body, a 
first conductive portion disposed on the intermediate body, 
the first conductive portion in electrical communication with 

Diabetes mellitus is a disorder in which the pancreas 
cannot create sufficient insulin (Type I or insulin dependent) 
and/or in which insulin is not effective (Type 2 or non­
insulin dependent). In the diabetic state, the victim suffers 
from high blood sugar, which can cause an array of physi­
ological derangements associated with the deterioration of 
small blood vessels, for example, kidney failure, skin ulcers, 

25 the first electrode, a second conductive portion disposed on 
the intermediate body, the second conductive portion in 
electrical communication with the second electrode. The 
first and second conductive portions form a connection 

or bleeding into the vitreous of the eye. A hypoglycemic 30 

reaction (low blood sugar) can be induced by an inadvertent 
overdose of insulin, or after a normal dose of insulin or 
glucose-lowering agent accompanied by extraordinary exer­
cise or insufficient food intake. 

Conventionally, a person with diabetes carries a self- 35 

monitoring blood glucose (SMBG) monitor, which typically 
requires uncomfortable finger pricking methods. Due to the 
lack of comfort and convenience, a person with diabetes 
normally only measures his or her glucose levels two to four 
times per day. Unfortunately, such time intervals are spread 40 

so far apart that the person with diabetes likely finds out too 
late of a hyperglycemic or hypoglycemic condition, some­
times incurring dangerous side effects. Glucose levels may 
be alternatively monitored continuously by a sensor system 
including an on-skin sensor assembly. The sensor system 45 

may have a wireless transmitter which transmits measure­
ment data to a receiver which can process and display 
information based on the measurements. 

This Background is provided to introduce a brief context 

portion configured to establish electrical connection 
between the sensor and a separate device. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the method further includes 
coupling an outer layer to the intermediate body. The outer 
layer includes an identifier. The outer layer, the sensor, and 
the intermediate body can form a laminated configuration. 
The identifier can be a QR code sheet. The identifier can 
include any of an optical identifier, a radio-frequency iden­
tifier, or a memory-encoded identifier. The identifier can 
identify the analyte sensor, calibration data for the analyte 
sensor, or a history of the analyte sensor. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the method further includes 
coating the sensor with a membrane after attaching the 
sensor to the sensor carrier. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the first conductive portion 
and the second conductive portion are traces. The traces can 
extend from a distal position of the sensor carrier and 
terminate at a proximal end of the sensor carrier. The traces 
can form exposed contact surfaces in the connection portion. 
The first and second conductive portions can be embedded 

for the S=ary and Detailed Description that follow. This 50 

Background is not intended to be an aid in determining the 
scope of the claimed subject matter nor be viewed as 
limiting the claimed subject matter to implementations that 
solve any or all of the disadvantages or problems presented 
above. 55 into the intermediate body. 

SUMMARY 

There are various steps in the manufacturing process of an 
analyte sensor such as a continuous analyte sensor for which 
temporary mechanical and electrical connections between 
the sensor and manufacturing equipment such as testing 
and/or calibration equipment are used. These connections 
are facilitated by accurate placement and aligmnent of the 
sensor to mechanical and electrical interfaces of the testing 
and/or calibration equipment. A device such as an "inter­
connect", "interposer" or "sensor carrier" can be attached to 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the first conductive portion 
and the second conductive portion are solder welds. The 

60 solder welds can attach the sensor to the sensor carrier. 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the first conductive portion 
and the second conductive portion are conductive tapes. The 

65 conductive tapes can attach the sensor to the sensor carrier. 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden-MASIMO 1067 
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tified herein) of the first aspect, the connection portion is 
configured to mechanically mate with the separate device. 

4 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the first conductive 
portion and the second conductive portion include at least 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the separate device is an 
electronics unit configured to measure analyte data. 

5 one of a solder weld, a conductive tape, a coil spring, a leaf 
spring, or a conductive elastomer. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the separate device is a 
component of a manufacturing station. The method can 
further include performing at least one of a potentiostat 
measurement, a dipping process, a curing process, a cali­
bration process, or a sensitivity measurement while the 
electrical connection is established between the sensor and 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the connection portion is 

10 configured to mechanically mate with the separate device. 

the manufacturing station. The method can further include 15 

de-establishing electrical connection between the sensor and 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the separate device is an 
electronics unit configured to measure analyte data. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the separate device is a 
component of a manufacturing station. At least one of a 
potentiostat measurement, a dipping process, a curing pro-

the calibration station. The method can further include 
establishing electrical connection between the sensor and at 
least one testing station via the connection portion of the 
sensor earner. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the first aspect, the intermediate body further 
includes a datum structure that controls a position and 
spatial orientation of the analyte sensor relative to a sub­
strate of the intermediate body. The datum structure can 
include a flexible portion of the substrate that is folded over 

20 cess, a calibration process, or a sensitivity measurement can 
be configured to be performed while the electrical connec­
tion is established between the sensor and the manufacturing 
station. The manufacturing station can comprise a calibra­
tion station configured to de-establish electrical connection 

25 between the sensor and the calibration station and establish 

at least a portion of the analyte sensor. 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden- 30 

tified herein) of the first aspect, the first conductive portion 
and/or the second conductive portion comprise at least one 
of a coil spring, a leaf spring, or a conductive elastomer. 

In accordance with a second aspect, an apparatus is 
provided that includes an analyte sensor having an elongated 35 

body, a first electrode in electrical communication with a 
first conductive contact, a second electrode in electrical 
communication with a second conductive contact. The sen-

electrical connection between the sensor and at least one 
testing station via the connection portion of the sensor 
earner. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the intermediate body 
further comprises a datum structure configured to control a 
position and spatial orientation of the analyte sensor relative 
to a substrate of the intermediate body. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the first electrode may be 
positioned coaxially within the second electrode, and the 
first electrical contact and the second electrical contact may sor carrier can be attached to the analyte sensor. The sensor 

carrier can include an intermediate body, a first conductive 
portion disposed on the intermediate body, the first conduc­
tive portion in electrical communication with the first con­
ductive contact, and a second conductive portion disposed 

40 be longitudinally aligned and spaced along a longitudinal 
axis of the sensor. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the first electrode and the on the intermediate body, the second conductive portion in 

electrical communication with the second conductive con­
tact. The first and second conductive portions can form a 
connection portion configured to establish electrical com­
munication between the first and second conductive contacts 
and a separate device. 

45 second electrode may be affixed to a flexible planar sub­
strate. In addition, the first electrical contact and the second 
electrical contact may be affixed to the flexible planar 
substrate. 

In a generally applicable embodiment (i.e. independently 
50 combinable with any of the aspects or embodiments iden­

tified herein) of the second aspect, the first conductive 
contact and the second conductive contact are affixed to the 
intermediate body with conductive adhesive. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the apparatus further 
includes an identifier coupled to the intermediate body. The 
identifier, the sensor, and the intermediate body can form a 
laminated configuration. The identifier can be a QR code 55 

sheet. The identifier can be any of an optical identifier, a 
radio-frequency identifier, or a memory-encoded identifier. 
The identifier can be configured to identify any of the 
analyte sensor, calibration data for the analyte sensor, and a 
history of the analyte sensor. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the first conductive 
contact and the second conductive contact are affixed to the 
intermediate body with anisotropic conductive film. 

In accordance with a third aspect, an array of pre-
60 connected analyte sensors is provided. The array includes a 

substrate, a first plurality of electrical contacts disposed on 
the substrate, a second plurality of electrical contacts dis­
posed on the substrate, and a plurality of analyte sensors 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the second aspect, the first conductive 
portion and the second conductive portion are traces. The 
traces can form exposed contact surfaces in the connection 65 

portion. The first and second conductive portions can be at 
least partially embedded into the intermediate body. 

disposed on the substrate. Each of the plurality of analyte 
sensors includes a first sensor electrical contact coupled to a 
corresponding one of the first plurality of electrical contacts 
on the substrate, and a second sensor electrical contact MASIMO 1067 
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coupled to a corresponding one of the second plurality of 
electrical contacts on the substrate. The array may comprise 
one or more strips. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the first plurality of elec­
trical contacts are aligned along the substrate. The first 
plurality of electrical contacts can be formed from an 
exposed contact surface. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the second plurality of 
electrical contacts are aligned along the substrate. The 
second plurality of electrical contacts can be formed from an 
exposed contact surface. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the first and second plurality 
of electrical contacts are configured to connect with a 
separate device. The separate device can be a component of 
a manufacturing station. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the substrate includes at 
least one singulation feature configured to facilitate singu­
lation of the substrate into a plurality of sensor carriers, 
wherein each of the plurality of sensor carriers is attached to 
a corresponding one of the analyte sensors. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the strip further includes a 
plurality of identifiers disposed on the substrate. 

6 
least potentiostat measurements for the plurality of analyte 
sensors. The strip can further include communications cir­
cuitry operable by the processing circuitry to send and 
receive data associated with each of the analyte sensors 

5 together with an identifier for that analyte sensor. 
In accordance with a fourth aspect, a method is provided. 

The method includes providing a pre-connected analyte 
sensor, the pre-connected analyte sensor comprising an 
intermediate body, an analyte sensor permanently attached 

10 to the intermediate body, and an identifier coupled to the 
intermediate body. The method includes communicatively 
coupling the analyte sensor to a processing circuitry of a 
manufacturing station by coupling the intermediate body to 

15 a corresponding feature of the manufacturing station. The 
method includes operating the processing circuitry of the 
manufacturing station to communicate with the pre-con­
nected analyte sensor. 

In a generally applicable embodiment (i.e. independently 
20 combinable with any of the aspects or embodiments iden­

tified herein) of the fourth aspect, operating the processing 
circuitry includes obtaining a signal from the analyte sensor 
via the connection portion. Operating the processing cir­
cuitry can include operating an optical, infrared, or radio-

25 frequency reader of the manufacturing station to obtain the 
identifier. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the fourth aspect, the method further 

30 includes storing, with the processing circuitry of the manu­
facturing station and in connection with the identifier, sensor 
data corresponding to the signal. The identifier can identify 
any of the analyte sensor, calibration data for the analyte In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the substrate includes an 35 

elongated dimension, wherein the plurality of analyte sen­
sors extend beyond an edge of the substrate in a direction 
orthogonal to the elongated dimension. The strip can further 
include a feed-guide strip that runs along an opposing edge 

sensor, and a history of the analyte sensor. 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the fourth aspect, the signal includes a 
glucose sensitivity signal. 

In a generally applicable embodiment (i.e. independently 
of the substrate in the elongated dimension. The substrate 
can further include a flexible substrate configured to be 
rolled onto a reel. The feed-guide strip can be removable 
from the substrate. 

40 combinable with any of the aspects or embodiments iden­
tified herein) of the fourth aspect, the method further 
includes removing the pre-connected analyte sensor from 
the manufacturing station and communicatively coupling 
the analyte sensor to processing circuitry of a wearable In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the substrate comprises a 
molded thermoplastic having a plurality of datum features 
that control a position and orientation of the plurality of 
analyte sensors, and wherein the a first plurality of electrical 
contacts and the second plurality of electrical contacts each 50 

comprise embedded conductive traces in the molded ther­
moplastic. 

45 device by mechanically coupling an anchoring feature of the 
intermediate body to a corresponding feature of a wearable 
device. The method can further include obtaining in vivo 
measurement data from the analyte sensor with the process-

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the strip further includes a 55 

first datum structure coupled to the strip, the first datum 
structure configured to position the plurality of analyte 
sensors. The first datum structure includes at least one 
singulation feature configured to facilitate singulation of the 
first datum structure into a plurality of second datum struc- 60 

tures, wherein each of the plurality of second datum struc­
tures is coupled to a corresponding one of a plurality of 
sensor carriers formed by the substrate. 

ing circuitry of the wearable device. 
In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the fourth aspect, the analyte sensor is 
permanently attached to the intermediate body with conduc­
tive adhesive. 

In a generally applicable embodiment (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the fourth aspect, the analyte sensor is 
permanently attached to the intermediate body with aniso­
tropic conductive film. 

In accordance with a fifth aspect, a wearable device is 
provided. The wearable device comprises a housing and 
electronic circuitry configured to process analyte sensor 
signals. The electronic circuitry is enclosed within the 
housing. An analyte sensor has a distal portion positioned In a generally applicable embodiment (i.e. independently 

combinable with any of the aspects or embodiments iden­
tified herein) of the third aspect, the strip further includes a 
carrier having processing circuitry configured to perform at 

65 outside the housing. An intermediate body has an electrical 
connection to both a proximal portion of the analyte sensor 
and the electronics, wherein the electrical connection MASIMO 1067 
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between the intermediate body and the proximal portion of 
the analyte sensor is external to the housing. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the fifth aspect the intermediate body may 
be positioned adjacent to an exterior surface of the housing. 
The device may include electrical contacts coupled to both 
the electronics and the intermediate body. The intermediate 
body may be electrically connected to the electrical contacts 
with conductive epoxy. The intermediate body is electrically 
connected to the electrical contacts with anisotropic con­
ductive film. The intermediate body may be sealed. The 
electrical contacts may extend through the housing. The 
intermediate body may be positioned in a recess on the 
exterior surface of the housing. The electrical contacts may 
extend through the housing in the recess to electrically 
couple the intermediate body to the electronic circuitry 
enclosed within the housing. The intermediate body may be 
covered with a polymer in the recess. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the fifth aspect the analyte sensor is formed 
as an elongated body with a distal portion configured for 
percutaneous implantation in a subject and a proximal 
portion configured for electrically connecting to the inter­
mediate body. The distal portion of the analyte sensor may 
extend away from an opening through the housing. The 
electronic circuitry may comprise a potentiostat and/or a 
wireless transmitter. 

In accordance with a sixth aspect, a method of making a 
pre-connected analyte sensor is provided. The method com­
prises mechanically and electrically connecting a proximal 
portion of an elongated conductor to a conductive portion of 
an intermediate body, and after the connecting, coating a 
distal portion of the elongated conductor with a polymer 
membrane to form an analyte sensor having a working 
electrode region configured to support electrochemical reac­
tions for analyte detection in the distal portion of the 
elongated conductor. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the sixth aspect, the method additionally 
comprises testing the analyte sensor, wherein the testing 
comprises electrically coupling the intermediate body to a 
testing station. The method may additionally comprise cali­
brating the analyte sensor, wherein the calibrating comprises 
electrically coupling the intermediate body to a testing 
station. The coating may comprise dip coating. 

8 
electrically connecting comprises compressing anisotropic 
conductive film between the proximal portion of the elon­
gated conductor and the conductive portion of the interme­
diate body. The connecting may be performed at a location 

5 remote from the coating. In some embodiments, the coating, 
testing, and calibrating are all performed at a location remote 
from the connecting. 

In accordance with a seventh aspect, a method of making 
an on-skin wearable percutaneous analyte sensor comprises 

10 assembling electronic circuitry into an internal volume of a 
housing, wherein the electronic circuitry is configured for 
(1) detecting signals generated from an electrochemical 
reaction under the skin of a subject at a working electrode of 
an analyte sensor, and (2) wirelessly transmitting data 

15 derived from the detected signals outside of the housing for 
processing and/or display by a separate device. After assem­
bling the electronic circuitry into the internal volume of the 
housing, attaching a proximal portion of the analyte sensor 
to an external electrical interface coupled to the electronic 

20 circuitry such that the electronic circuitry becomes con­
nected to the analyte sensor to receive signals therefrom 
without opening the housing. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden-

25 tified herein) of the seventh aspect, the method comprises 
sealing the interface after attaching the proximal portion of 
the analyte sensor. The method may comprise testing the 
electronic circuitry for functionality prior to the attaching. 
The method may comprise testing the analyte sensor for 

30 functionality prior to the attaching. The assembling may be 
performed at a location remote from the attaching. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the seventh aspect, the method may com-

35 prise coupling an intermediate body to the proximal portion 
of the analyte sensor, and the attaching may comprise 
attaching the intermediate body to the external electrical 
interface. The method may then comprise performing at 
least one manufacturing or testing procedure on the working 

40 electrode using the intermediate body prior to the attaching. 
The performing may comprise coating the working electrode 
of the analyte sensor. The coupling may be performed at a 
first location, the assembling may be performed at a second 
location, and the performing may be performed at a third 

45 location, wherein the first, second, and third locations are 
remote from one another. The attaching and/or the coupling 
may be performed with anisotropic conductive film The 
method may further comprise attaching an inserter to the 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden- 50 

tified herein) of the sixth aspect, the intermediate body may 

housing for implanting the working electrode into a subject. 
It is understood that various configurations of the subject 

technology will become readily apparent to those skilled in 
the art from the disclosure, wherein various configurations 
of the subject technology are shown and described by way 
of illustration. As will be realized, the subject technology is 

be part of an array formed by a plurality of coupled 
intermediate bodies, wherein the method further comprises 
mechanically and electrically connecting a proximal portion 
of each of a plurality of elongated electrodes to a conductive 
portion of each intermediate body of the array. The coating 
may be performed in parallel on each distal portion of each 
of the plurality of elongated electrodes connected to the 
intermediate bodies of the array. The method may comprise 
singulating one or more of the intermediate bodies of the 
array after the coating. 

55 capable of other and different configurations and its several 
details are capable of modification in various other respects, 
all without departing from the scope of the subject technol­
ogy. Accordingly, the summary, drawings and detailed 
description are to be regarded as illustrative in nature and not 

60 as restrictive. 

In generally applicable embodiments (i.e. independently 
combinable with any of the aspects or embodiments iden­
tified herein) of the sixth aspect, mechanically and electri­
cally connecting comprises applying conductive paste to the 65 

elongated conductor and the conductive portion of the 
intermediate body. In some embodiments, mechanically and 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present embodiments now will be discussed in detail 
with an emphasis on highlighting the advantageous features. 
These embodiments are for illustrative purposes only and 
are not to scale, instead emphasizing the principles of the MASIMO 1067 
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disclosure. These drawings include the following figures, in 
which like numerals indicate like parts: 

10 
FIG. 18 illustrates an end view of a sensor carrier attached 

to an analyte sensor with conductive adhesive in a recess of 
a sensor carrier substrate, according to some embodiments. 

FIG. 19 illustrates an end view of a sensor carrier attached 
FIG. 1 is a schematic view of an analyte sensor system 

attached to a host and communicating with a plurality of 
example devices, according to some embodiments. 

FIG. 2 is a block diagram that illustrates electronics 
associated with the sensor system of FIG. 1, according to 
some embodiments. 

5 to an analyte sensor with conductive adhesive in a corner of 
a sensor carrier substrate, according to some embodiments. 

FIGS. 3A-3C illustrate a wearable device having an 
analyte sensor, according to some embodiments. 10 

FIG. 3D illustrates one implementation of an elongated 
sensor connected to a potentiostat. 

FIG. 4A illustrates a schematic of a pre-connected analyte 
sensor, according to some embodiments. 

FIG. 4B illustrates another schematic of a pre-connected 
analyte sensor, according to some embodiments. 

FIG. 4C illustrates a layered view of a pre-connected 
analyte sensor, according to some embodiments. 

15 

FIG. 4D illustrates a schematic view of an array of 20 

pre-connected analyte sensors, according to some embodi-
ments. 

FIG. 20 illustrates an end view of a sensor carrier attached 
to an analyte sensor with conductive adhesive in a rounded 
recess of a sensor carrier substrate, according to some 
embodiments. 

FIGS. 21A and 21B illustrate a perspective view and an 
end view respectively of an analyte sensor attached to a 
sensor carrier in guide structures. 

FIG. 22 illustrates a top view of a sensor carrier attached 
to an analyte sensor with conductive tape, according to some 
embodiments. 

FIG. 23 illustrates a top view of a sensor carrier having a 
substrate attached to and wrapped around an analyte sensor, 
according to some embodiments. 

FIG. 24 illustrates a top view of a sensor carrier attached 
to an analyte sensor with welded conductive plastic, accord­
ing to some embodiments. FIGS. SA-SE illustrate block diagrams of a system having 

a manufacturing system and a wearable device for an analyte 
sensor, according to some embodiments. 

FIG. 6 illustrates a cross-sectional schematic view of a 
wearable device with a pre-connected analyte sensor, 
according to some embodiments. 

FIGS. 25 and 26 illustrate manufacturing equipment for 
25 attaching a sensor carrier to an analyte sensor with conduc­

tive plastic, according to some embodiments. 

FIG. 7 illustrates a cross-sectional schematic view of a 
wearable device with a pre-connected analyte sensor, 30 

according to some embodiments. 

FIG. 27 is a perspective-view schematic illustrating a 
proximal portion of an analyte sensor having flattened 
electrical connector portions, according to some embodi­
ments. 

FIG. 28 illustrates a side view of the analyte sensor of 
FIG. 24 attached to a sensor carrier, according to some 
embodiments. 

FIG. 8 illustrates a cross-sectional schematic view of a 
wearable device with a pre-connected analyte sensor, 
according to some embodiments. 

FIG. 9 illustrates a perspective view of an on-skin sensor 
assembly, according to some embodiments. 

FIG. 29 illustrates a top view of a sensor carrier having a 
35 flexible substrate configured to wrap around an analyte 

sensor, according to some embodiments. 

FIGS. 10 and 11 illustrate perspective views of sensor 
carriers that have springs, according to some embodiments. 

FIG. 12 illustrates a cross-sectional perspective view of a 40 

portion of a sensor carrier, according to some embodiments. 
FIGS. 13A-13B illustrate perspective views of a wearable 

sensor assembly, according to some embodiments. 
FIG. 13C illustrates an exploded view of components of 

a wearable sensor assembly, according to some embodi- 45 

ments. 
FIGS. 14A-14B illustrate perspective views of another 

wearable sensor assembly, according to some embodiments. 
FIG. 14C illustrates an exploded view of components of 

another wearable sensor assembly, according to some 50 

embodiments, including an external electrical interface 
embodiment. 

FIG. 30 illustrates a perspective view of a sensor carrier 
having substrate with a flexible portion configured to wrap 
around an analyte sensor, according to some embodiments. 

FIGS. 31A and 31B illustrate another embodiment of a 
sensor carrier attached to an analyte sensor. 

FIG. 32 illustrates a top view of a sensor carrier having a 
movable fastener for attaching an analyte sensor, according 
to some embodiments. 

FIG. 33 illustrates a perspective view of the movable 
fastener of FIG. 29, according to some embodiments. 

FIG. 34 illustrates a perspective view of a sensor carrier 
implemented as a barrel fastener, according to some embodi­
ments. 

FIG. 35A illustrates a face-on view of a sensor carrier 
having a flexible substrate wrapped around an analyte sen­
sor, according to some embodiments. 

FIG. 14D illustrates a top plan view of the external 
electrical interface of FIG. 14C with a pre-connected sensor 
assembly installed. 

FIG. 35B illustrates a perspective view of a sensor carrier 
having a flexible substrate wrapped around multiple analyte 

55 sensors, according to some embodiments. 
FIG. 14E is a cross section along lines E-E in FIG. 14D. 
FIG. 15A illustrates another embodiment of a printed 

circuit board substrate for a sensor carrier. 

FIG. 36 illustrates an end view of a sensor carrier having 
a crimp connector, according to some embodiments. 

FIG. 37 illustrates an end view of a sensor carrier attached 
FIGS. 15B and 15C illustrate alternative embodiments for 

coupling a sensor and sensor carrier to an electrical interface 
of a wearable sensor assembly. 

to an analyte sensor by a crimp connector, according to some 
60 embodiments. 

FIG. 16 illustrates a top view of a sensor carrier attached 
to an analyte sensor with conductive adhesive, according to 
some embodiments. 

FIG. 17 illustrates an end view of a sensor carrier attached 65 

to an analyte sensor with conductive adhesive, according to 
some embodiments. 

FIG. 38 illustrates a side view of a sensor carrier having 
crimp connectors, according to some embodiments. 

FIG. 39 illustrates a perspective view of a sensor carrier, 
according to some embodiments. 

FIG. 40 illustrates a perspective view of a sensor carrier 
formed from a molded interconnect device, according to 
some embodiments. MASIMO 1067 
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FIG. 41 illustrates a top view of a sensor carrier formed 
from a molded interconnect device, according to some 
embodiments. 

FIG. 42 illustrates a side view of a sensor carrier attached 
to an analyte sensor by a conductive coupler, according to 
some embodiments. 

FIG. 43 illustrates a side view of a sensor carrier having 
an elongated dimension for attachment to multiple analyte 
sensors, according to some embodiments. 

12 
FIG. 58 illustrates a perspective view of a sensor-holding 

apparatus having a fluted flexible tube, according to some 
embodiments 

FIG. 59 illustrates an exploded perspective view of the 
5 apparatus of FIG. 58, according to some embodiments. 

FIG. 60 illustrates a device that includes a sensor mounted 
in the apparatus of FIG. 55, according to some embodi­
ments. 

FIG. 44 illustrates a top view of a sensor carrier having a 10 

flexible substrate for wrapping around an analyte sensor, 
according to some embodiments. 

FIG. 61 illustrates a diagram of a carrier for pre-connected 
sensors, according to some embodiments. 

Like reference numerals refer to like elements throughout. 
Elements are not to scale unless otherwise noted. 

FIG. 45 illustrates a top view of another sensor carrier 
having a flexible substrate for wrapping around an analyte 
sensor, according to some embodiments. 

FIG. 46 illustrates a top view of another sensor carrier 
having a flexible substrate for wrapping around an analyte 
sensor, according to some embodiments. 

FIG. 47 A illustrates a side view of a sensor carrier having 

DETAILED DESCRIPTION 
15 

a feed-guide strip on an elongated dimension for attachment 20 

to multiple analyte sensors, according to some embodi­
ments. 

The following description and examples illustrate some 
exemplary implementations, embodiments, and arrange­
ments of the disclosed invention in detail. Those of skill in 
the art will recognize that there are numerous variations and 
modifications of this invention that are encompassed by its 
scope. Accordingly, the description of a certain example 
embodiment should not be deemed to limit the scope of the 
present invention. FIG. 47B illustrates a perspective view of the sensor 

carrier of FIG. 47A wrapped on a reel, according to some 
embodiments. 

FIG. 48 illustrates a top view of the sensor carrier of FIG. 
47A with a sensor carrier singulated from the sensor carrier, 
according to some embodiments. 

25 

Definitions 
In order to facilitate an understanding of the various 

embodiments described herein, a number of terms are 
defined below. 

FIG. 49 illustrates a perspective view of a sensor carrier 
having spring-loaded receptacles for attachment of multiple 30 

analyte sensors, according to some embodiments. 

The term "analyte" as used herein is a broad term and is 
to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers 

FIG. 50 illustrates a perspective view of a sensor carrier 
having magnetic datum features for positioning and orien­
tation of multiple analyte sensors, according to some 
embodiments. 

FIG. 51A illustrates a top view of a sensor carrier having 
a rigid flex panel for attachment to multiple analyte sensors, 
according to some embodiments. 

FIG. 51B illustrates a top view of a sensor carrier having 
a rigid flex panel for attachment to multiple analyte sensors 
having an edge card connector pad for electronic connection, 
according to some embodiments. 

FIG. 52A illustrates a top view of a sensor carrier singu­
lated from the sensor carrier of FIG. 48 and attached to an 
analyte sensor to form a pre-connected sensor, according to 
some embodiments. 

FIG. 52B illustrates a sensor carrier having a rigid flex 
panel for attachment to multiple analyte sensors of FIG. 48B 
without the V-score portion, according to some embodi­
ments. 

FIG. 53A illustrates the pre-connected sensor to be 
installed in a wearable device, according to some embodi­
ments. 

FIG. 53B illustrates the pre-connected sensor in a folded 
position to be installed in a wearable device, according to 
some embodiments. 

FIG. 54 illustrates a sensor carrier implemented as a 
daughter board for connection to an analyte sensor, accord­
ing to some embodiments. 

FIG. 55 illustrates a sensor carrier implemented with a 
pinch clip, according to some embodiments. 

FIG. 56 illustrates a sensor carrier having clips for con­
nection to an analyte sensor, according to some embodi­
ments. 

FIG. 57 is a flow chart of illustrative operations that may 
be performed for manufacturing and using a pre-connected 
sensor, according to some embodiments. 

without limitation to a substance or chemical constituent in 
a biological fluid (for example, blood, interstitial fluid, 
cerebral spinal fluid, lymph fluid or urine) that can be 

35 analyzed. Analytes can include naturally occurring sub­
stances, artificial substances, metabolites, and/or reaction 
products. In some embodiments, the analyte for measure­
ment by the sensor heads, devices, and methods is analyte. 
However, other analytes are contemplated as well, including 

40 but not limited to acarboxyprothrombin; acylcarnitine; 
adenine phosphoribosyl transferase; adenosine deaminase; 
albumin; alpha-fetoprotein; amino acid profiles (arginine 
(Krebs cycle), histidine/urocanic acid, homocysteine, phe­
nylalanine/tyrosine, tryptophan); andrenostenedione; anti-

45 pyrine; arabinitol enantiomers; arginase; benzoylecgonine 
(cocaine); biotinidase; biopterin; c-reactive protein; carni­
tine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic 
acid; chloroquine; cholesterol; cholinesterase; conjugated 
1-13 hydroxy-cholic acid; cortisol; creatine kinase; creatine 

50 kinase MM isoenzyme; cyclosporin A; D-penicillamine; 
de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA 
(acetylator polymorphism, alcohol dehydrogenase, alpha 
1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular 
dystrophy, analyte-6-phosphate dehydrogenase, hemoglobin 

55 A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglo­
bin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis 
B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic 
neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual 
differentiation, 21-deoxycortisol); desbutylhalofantrine; 

60 dihydropteridine reductase; diptheria/tetanus antitoxin; 
erythrocyte arginase; erythrocyte protoporphyrin; esterase 
D; fatty acids/acylglycines; free 13-human chorionic gonado­
tropin; free erythrocyte porphyrin; free thyroxine (FT 4); free 
tri-iodothyronine (FT3); fumarylacetoacetase; galactose/ 

65 gal- I-phosphate; galactose-1-phosphate uridyltransferase; 
gentamicin; analyte-6-phosphate dehydrogenase; gluta­
thione; glutathione perioxidase; glycocholic acid; glycosy-MASIMO 1067 
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lated hemoglobin; halofantrine; hemoglobin variants; 
hexosaminidaseA; human erythrocyte carbonic anhydrase I; 
17-alpha-hydroxyprogesterone; hypoxanthine phosphoribo-
syl transferase; immunoreactive trypsin; lactate; lead; lipo­
proteins ((a), B/A-1, !3); lysozyme; mefloquine; netilmicin; 5 

phenobarbitone; phenytoin; phytanic/pristanic acid; proges­
terone; prolactin; prolidase; purine nucleoside phosphory­
lase; quinine; reverse tri-iodothyronine (rT3); selenium; 
serum pancreatic lipase; sissomicin; somatomedin C; spe­
cific antibodies (adenovirus, anti-nuclear antibody, anti-zeta 10 

antibody, arbovirus, Aujeszky's disease virus, dengue virus, 
Dracunculus medinensis, Echinococcus granulosus, Enta­
moeba histolytica, enterovirus, Giardia duodenalisa, Heli­
cobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE 
(atopic disease), influenza virus, Leishmania donovani, Lep- 15 

tospira, measles/mumps/rubella, Mycobacterium leprae, 
Mycoplasma pneumoniae, Myoglobin, Onchocerca volvu-
lus, parainfluenza virus, Plasmodiumfalciparum, poliovirus, 
Pseudomonas aeruginosa, respiratory syncytial virus, Rick­
ettsia (scrub typhus), Schistosoma mansoni, Toxoplasma 20 

gondii, Trepenoma pallidium, Trypanosoma cruzilrangeli, 
vesicular stomatis virus, Wuchereria bancrofli, yellow fever 
virus); specific antigens (hepatitis B virus, HIV-1); succiny­
lacetone; sulfadoxine; theophylline; thyrotropin (TSH); thy­
roxine (T4); thyroxine-binding globulin; trace elements; 25 

transferrin; UDP-galactose-4-epimerase; urea; uroporphy­
rinogen I synthase; vitamin A; white blood cells; and zinc 
protoporphyrin. Salts, sugar, protein, fat, vitamins, and hor­
mones naturally occurring in blood or interstitial fluids can 
also constitute analytes in certain embodiments. The analyte 30 

can be naturally present in the biological fluid, for example, 
a metabolic product, a hormone, an antigen, an antibody, and 
the like. Alternatively, the analyte can be introduced into the 
body, for example, a contrast agent for imaging, a radioiso­
tope, a chemical agent, a fluorocarbon-based synthetic 35 

blood, or a drug or pharmaceutical composition, including 
but not limited to insulin; ethanol; cannabis (marijuana, 
tetrahydrocannabinol, hashish); inhalants (nitrous oxide, 
amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocar­
bons); cocaine (crack cocaine); stimulants (amphetamines, 40 

methamphetamines, Ritalin, Cylert, Preludin, Didrex, 
PreState, Voranil, Sandrex, Plegine); depressants (barbitu­
ates, methaqualone, tranquilizers such as Valium, Librium, 
Miltown, Serax, Equanil, Tranxene); hallucinogens (phen­
cyclidine, lysergic acid, mescaline, peyote, psilocybin); nar- 45 

cotics (heroin, codeine, morphine, opium, meperidine, Per­
cocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, 
Lomotil); designer drugs (analogs of fentanyl, meperidine, 
amphetamines, methamphetamines, and phencyclidine, for 
example, Ecstasy); anabolic steroids; and nicotine. The 50 

metabolic products of drugs and pharmaceutical composi­
tions are also contemplated analytes. Analytes such as 
neurochemicals and other chemicals generated within the 
body can also be analyzed, such as, for example, ascorbic 
acid, uric acid, dopamine, noradrenaline, 3-methoxy- 55 

tyramine (3MT), 3,4-Dihydroxyphenylacetic acid 
(DOPAC), Homovanillic acid (HVA), 5-Hydroxytryptamine 
(5HT), and 5-Hydroxyindoleacetic acid (FHIAA). 

The terms "microprocessor" and "processor" as used 
herein are broad terms and are to be given their ordinary and 60 

customary meaning to a person of ordinary skill in the art 
( and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to a 
computer system, state machine, and the like that performs 
arithmetic and logic operations using logic circuitry that 65 

responds to and processes the basic instructions that drive a 
computer. 

14 
The term "calibration" as used herein is a broad term and 

is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to the process of determining the rela­
tionship between the sensor data and the corresponding 
reference data, which can be used to convert sensor data into 
meaningful values substantially equivalent to the reference 
data, with or without utilizing reference data in real time. In 
some embodiments, namely, in analyte sensors, calibration 
can be updated or recalibrated (at the factory, in real time 
and/or retrospectively) over time as changes in the relation­
ship between the sensor data and reference data occur, for 
example, due to changes in sensitivity, baseline, transport, 
metabolism, and the like. 

The terms "calibrated data" and "calibrated data stream" 
as used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi­
tation to data that has been transformed from its raw state to 
another state using a function, for example a conversion 
function, including by use of a sensitivity, to provide a 
meaningful value to a user. 

The term "algorithm" as used herein is a broad term and 
is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a computational process (for example, 
programs) involved in transforming information from one 
state to another, for example, by using computer processing. 

The term "sensor" as used herein is a broad term and is to 
be given its ordinary and customary meaning to a person of 
ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without 
limitation to the component or region of a device by which 
an analyte can be quantified. A "lot" of sensors generally 
refers to a group of sensors that are manufactured on or 
around the same day and using the same processes and 
tools/materials. Additionally, sensors that measure tempera­
ture, pressure etc. may be referred to as a "sensor". 

The terms "glucose sensor" and "member for determining 
the amount of glucose in a biological sample" as used herein 
are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art 
( and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to any 
mechanism (e.g., enzymatic or non-enzymatic) by which 
glucose can be quantified. For example, some embodiments 
utilize a membrane that contains glucose oxidase that cata­
lyzes the conversion of oxygen and glucose to hydrogen 
peroxide and gluconate, as illustrated by the following 
chemical reaction: 

Because for each glucose molecule metabolized, there is 
a proportional change in the co-reactant 0 2 and the product 
H2 O2 , one can use an electrode to monitor the current 
change in either the co-reactant or the product to determine 
glucose concentration. 

The terms "operably connected" and "operably linked" as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi­
tation to one or more components being linked to another 
component(s) in a manner that allows transmission of sig-MASIMO 1067 
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nals between the components. For example, one or more 
electrodes can be used to detect the amount of glucose in a 
sample and convert that information into a signal, e.g., an 
electrical or electromagnetic signal; the signal can then be 
transmitted to an electronic circuit. In this case, the electrode 
is "operably linked" to the electronic circuitry. These terms 
are broad enough to include wireless connectivity. 

The term "determining" encompasses a wide variety of 
actions. For example, "determining" may include calculat­
ing, computing, processing, deriving, investigating, looking 
up ( e.g., looking up in a table, a database or another data 
structure), ascertaining and the like. Also, "determining" 
may include receiving (e.g., receiving information), access-

16 
representative of a glucose concentration. Thus, the terms 
"sensor data point" and "data point" refer generally to a 
digital representation of sensor data at a particular time. The 
terms broadly encompass a plurality of time spaced data 

5 points from a sensor, such as from a substantially continuous 
glucose sensor, which comprises individual measurements 
taken at time intervals ranging from fractions of a second up 
to, e.g., 1, 2, or 5 minutes or longer. In another example, the 
sensor data includes an integrated digital value representa-

10 tive of one or more data points averaged over a time period. 
Sensor data may include calibrated data, smoothed data, 
filtered data, transformed data, and/or any other data asso­
ciated with a sensor. 

ing (e.g., accessing data in a memory) and the like. Also, 
"determining" may include resolving, selecting, choosing, 15 

calculating, deriving, establishing and/or the like. Determin-

The term "sensor electronics," as used herein, is a broad 
term, and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art ( and is not to be limited 
to a special or customized meaning), and refers without 
limitation to the components (for example, hardware and/or 
software) of a device configured to process data. As 

ing may also include ascertaining that a parameter matches 
a predetermined criterion, including that a threshold has 
been met, passed, exceeded, and so on. 

The term "substantially" as used herein is a broad term 20 

and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 

described in further detail hereinafter (see, e.g., FIG. 2) 
"sensor electronics" may be arranged and configured to 
measure, convert, store, transmit, communicate, and/or 
retrieve sensor data associated with an analyte sensor. a special or customized meaning), and furthermore refers 

without limitation to being largely but not necessarily 
wholly that which is specified. 

The term "host" as used herein is a broad term and is to 
be given its ordinary and customary meaning to a person of 
ordinary skill in the art ( and is not to be limited to a special 
or customized meaning), and furthermore refers without 
limitation to manmials, particularly humans. 

The term "continuous analyte ( or glucose) sensor" as used 
herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art 

The terms "sensitivity" or "sensor sensitivity," as used 
25 herein, are broad terms, and are to be given their ordinary 

and customary meaning to a person of ordinary skill in the 
art ( and is not to be limited to a special or customized 
meaning), and refer without limitation to an amount of 
signal produced by a certain concentration of a measured 

30 analyte, or a measured species (e.g., H2O2) associated with 
the measured analyte (e.g., glucose). For example, in one 
embodiment, a sensor has a sensitivity from about 1 to about 
300 picoAmps of current for every 1 mg/dL of glucose 

( and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to a device that 35 

analyte. 
The term "sample," as used herein, is a broad term, and 

continuously or continually measures a concentration of an 
analyte, for example, at time intervals ranging from fractions 
of a second up to, for example, 1, 2, or 5 minutes, or longer. 
In one exemplary embodiment, the continuous analyte sen­
sor is a glucose sensor such as described in U.S. Pat. No. 
6,001,067, which is incorporated herein by reference in its 
entirety. 

The term "sensing membrane" as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art ( and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to a permeable or semi-permeable mem­
brane that can be comprised of two or more domains and is 
typically constructed of materials of a few microns thickness 
or more, which are permeable to oxygen and may or may not 
be permeable to glucose. In one example, the sensing 
membrane comprises an immobilized glucose oxidase 
enzyme, which enables an electrochemical reaction to occur 
to measure a concentration of glucose. 

The term "sensor data," as used herein is a broad term and 
is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and are not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to any data associated with a sensor, such 

is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and it is not to be limited 
to a special or customized meaning), and refers without 
limitation to a sample of a host body, for example, body 

40 fluids, including, blood, serum, plasma, interstitial fluid, 
cerebral spinal fluid, lymph fluid, ocular fluid, saliva, oral 
fluid, urine, excretions, or exudates. 

The term "distal to," as used herein, is a broad term, and 
is to be given its ordinary and customary meaning to a 

45 person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and refers without limi­
tation to the spatial relationship between various elements in 
comparison to a particular point of reference. In general, the 
term indicates an element is located relatively far from the 

50 reference point than another element. 
The term "proximal to," as used herein, is a broad term, 

and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and refers without limi-

55 tation to the spatial relationship between various elements in 
comparison to a particular point of reference. In general, the 
term indicates an element is located relatively near to the 
reference point than another element. 

as a continuous analyte sensor. Sensor data includes a raw 60 

data stream, or simply data stream, of analog or digital 
signals directly related to a measured analyte from an 
analyte sensor (or other signal received from another sen­
sor), as well as calibrated and/or filtered raw data. In one 
example, the sensor data comprises digital data in "counts" 65 

converted by an AID converter from an analog signal ( e.g., 
voltage or amps) and includes one or more data points 

The terms "electrical connection" and "electrical con­
tact," as used herein, are broad terms, and are to be given 
their ordinary and customary meaning to a person of ordi­
nary skill in the art ( and are not to be limited to a special or 
customized meaning), and refer without limitation to any 
connection between two electrical conductors known to 
those in the art. In one embodiment, electrodes are in 
electrical connection with ( e.g., electrically connected to) 
the electronic circuitry of a device. In another embodiment, MASIMO 1067 
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two materials, such as but not limited to two metals, can be 
in electrical contact with each other, such that an electrical 
current can pass from one of the two materials to the other 
material and/or an electrical potential can be applied. 

The term "elongated conductive body," as used herein, is 
a broad term, and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 

18 
middle layer and a conductive outer layer with the conduc­
tive layers exposed at one end for electrical contact. 

"Pre-connected sensor": A sensor that has a "sensor 
interconnect/interposer/sensor carrier" attached to it. There-

5 fore this "Pre-connected sensor" consists of two parts that 
are joined: the sensor itself, and the interconnect/interposer/ 
sensor carrier. The term "pre-connected sensor" unit refers 
to the unit that is formed by the permanent union of these to be limited to a special or customized meaning), and refers 

without limitation to an elongated body formed at least in 
part of a conductive material and includes any number of 10 

coatings that may be formed thereon. By way of example, an 
"elongated conductive body" may mean a bare elongated 
conductive core ( e.g., a metal wire), an elongated conductive 
core coated with one, two, three, four, five, or more layers 15 
of material, each of which may or may not be conductive, or 

two distinct parts. 
Other definitions will be provided within the description 

below, and in some cases from the context of the term's 
usage. 

As employed herein, the following abbreviations apply: 
Eq and Eqs (equivalents); mEq (milliequivalents); M (mo­
lar); mM (millimolar) µM (micromolar); N (Normal); mo! 
(moles); mmol (millimoles); µmo! (micromoles); nmol 

an elongated non-conductive core with conductive coatings, 
traces, and/or electrodes thereon and coated with one, two, 
three, four, five, or more layers of material, each of which 
may or may not be conductive. 

The term "ex vivo portion," as used herein, is a broad 
term, and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art ( and is not to be limited 

(nanomoles); g (grams); mg (milligrams); µg (micrograms); 
Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); 
µL (micro liters); cm (centimeters); mm (millimeters); µm 

20 (micrometers); nm (nanometers); h and hr (hours); min. 
(minutes); sand sec. (seconds);° C. (degrees Centigrade) 0 

F. (degrees Fahrenheit), Pa (Pascals), kPa (kiloPascals), 
MPa (megaPascals), GPa (gigaPascals), Psi (pounds per 

to a special or customized meaning), and refers without 
limitation to a portion of a device (for example, a sensor) 25 

adapted to remain and/or exist outside of a living body of a 
host. 

square inch), kPsi (kilopounds per square inch). 
Overview/General Description of System 

In vivo analyte sensing technology may rely on in vivo 
sensors. In vivo sensors may include an elongated conduc­
tive body having one or more electrodes such as a working 
electrode and a reference electrode. 

The term "in vivo portion," as used herein, is a broad 
term, and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art ( and is not to be limited 30 

to a special or customized meaning), and refers without 
limitation to a portion of a device (for example, a sensor) 
adapted for insertion into and/or existence within a living 
body of a host. 

For example, a platinum metal-clad, tantalum wire is 
sometimes used as a core bare sensing element with one or 
more reference or counter electrodes for an analyte sensor. 
This sensing element is coated in membranes to yield the 
final sensor. 

The term "potentiostat," as used herein, is a broad term, 35 

and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 

Described herein are pre-connected sensors that include 
an analyte sensor attached to a sensor carrier (also referred 
to herein as a "sensor interposer"). The analyte sensor may 
include a working electrode and a reference electrode at a 
distal end of an elongated conductive body. The sensor 

a special or customized meaning), and refers without limi­
tation to an electronic instrument that controls the electrical 
potential between the working and reference electrodes at 
one or more preset values. 

The term "processor module," as used herein, is a broad 
term, and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and are not to be 
limited to a special or customized meaning), and refers 
without limitation to a computer system, state machine, 
processor, components thereof, and the like designed to 
perform arithmetic or logic operations using logic circuitry 
that responds to and processes the basic instructions that 
drive a computer. 

The term "sensor session," as used herein, is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and refers without limi­
tation to a period of time a sensor is in use, such as but not 
limited to a period of time starting at the time the sensor is 
implanted ( e.g., by the host) to removal of the sensor ( e.g., 
removal of the sensor from the host's body and/or removal 
of (e.g., disconnection from) system electronics). 

The terms "substantial" and "substantially," as used 
herein, are broad terms, and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the 
art ( and are not to be limited to a special or customized 
meaning), and refer without limitation to a sufficient amount 
that provides a desired function. 

"Coaxial two conductor wire based sensor": A round wire 
sensor consisting of a conductive center core, an insulating 

40 carrier may include a substrate, one or more electrical 
contacts coupled to one or more electrical contacts of the 
sensor, and circuitry such as one or more additional or 
external electrical contacts for coupling the one or more 
electrical contacts that are coupled to the sensor contact(s) to 

45 external equipment such as a membrane dip coating station, 
a testing station, a calibration station, or sensor electronics 
of a wearable device. In some embodiments, the substrate 
can be referred to as an intermediate body. 

The following description and examples described the 
50 present embodiments with reference to the drawings. In the 

drawings, reference numbers label elements of the present 
embodiments. These reference numbers are reproduced 
below in connection with the discussion of the correspond­
ing drawing features. 

55 Sensor System 
FIG. 1 depicts an example system 100, in accordance with 

some example implementations. The system 100 includes an 
analyte sensor system 101 including sensor electronics 112 
and an analyte sensor 138. The system 100 may include 

60 other devices and/or sensors, such as medicament delivery 
pump 102 and glucose meter 104. The analyte sensor 138 
may be physically connected to sensor electronics 112 and 
may be integral with ( e.g., non-releasably attached to) or 
releasably attachable to the sensor electronics. For example, 

65 continuous analyte sensor 138 may be connected to sensor 
electronics 112 via a sensor carrier that mechanically and 
electrically interfaces the analyte sensor 138 with the sensor MASIMO 1067 
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electronics. The sensor electronics 112, medicament deliv­
ery pump 102, and/or glucose meter 104 may couple with 
one or more devices, such as display devices 114, 116, 118, 
and/or 120. 

In some example implementations, the system 100 may 
include a cloud-based analyte processor 490 configured to 
analyze analyte data (and/or other patient-related data) pro­
vided via network 409 (e.g., via wired, wireless, or a 
combination thereof) from sensor system 101 and other 
devices, such as display devices 114, 116, 118, and/or 120 
and the like, associated with the host (also referred to as a 
patient) and generate reports providing high-level informa­
tion, such as statistics, regarding the measured analyte over 
a certain time frame. A full discussion of using a cloud-based 
analyte processing system may be found in U.S. patent 
application Ser. No. 13/788,375, entitled "Cloud-Based Pro­
cessing of Analyte Data" and filed on Mar. 7, 2013, pub­
lished as U.S. Patent Application Publication 2013/0325352, 
herein incorporated by reference in its entirety. In some 
implementations, one or more steps of the factory calibra­
tion algorithm can be performed in the cloud. 

In some example implementations, the sensor electronics 
112 may include electronic circuitry associated with mea­
suring and processing data generated by the analyte sensor 
138. This generated analyte sensor data may also include 
algorithms, which can be used to process and calibrate the 
analyte sensor data, although these algorithms may be 
provided in other ways as well. The sensor electronics 112 
may include hardware, firmware, software, or a combination 
thereof, to provide measurement of levels of the analyte via 
an analyte sensor, such as a glucose sensor. An example 
implementation of the sensor electronics 112 is described 
further below with respect to FIG. 2. 

In one implementation, the factory calibration algorithms 
described herein may be performed by the sensor electron­
ics. 

The sensor electronics 112 may, as noted, couple ( e.g., 
wirelessly and the like) with one or more devices, such as 
display devices 114, 116, 118, and/or 120. The display 
devices 114, 116, 118, and/or 120 may be configured for 
presenting information (and/or alarming), such as sensor 
information transmitted by the sensor electronics 112 for 
display at the display devices 114, 116, 118, and/or 120. 

20 
measurement techniques, such as enzymatic, chemical, 
physical, electrochemical, spectrophotometric, polarimetric, 
calorimetric, iontophoretic, radiometric, immunochemical, 
and the like. In implementations in which the analyte sensor 

5 138 includes a glucose sensor, the glucose sensor may 
comprise any device capable of measuring the concentration 
of glucose and may use a variety of techniques to measure 
glucose including invasive, minimally invasive, and non­
invasive sensing techniques ( e.g., fluorescence monitoring), 

10 to provide data, such as a data stream, indicative of the 
concentration of glucose in a host. The data stream may be 
sensor data (raw and/or filtered), which may be converted 
into a calibrated data stream used to provide a value of 

15 glucose to a host, such as a user, a patient, or a caretaker 
( e.g., a parent, a relative, a guardian, a teacher, a doctor, a 
nurse, or any other individual that has an interest in the 
wellbeing of the host). Moreover, the analyte sensor 138 
may be implanted as at least one of the following types of 

20 analyte sensors: an implantable glucose sensor, a transcuta­
neous glucose sensor, implanted in a host vessel or extra­
corporeally, a subcutaneous sensor, a refillable subcutaneous 
sensor, an intravascular sensor. 

Although the disclosure herein refers to some implemen-
25 tations that include an analyte sensor 138 comprising a 

glucose sensor, the analyte sensor 138 may comprise other 
types of analyte sensors as well. Moreover, although some 
implementations refer to the glucose sensor as an implant­
able glucose sensor, other types of devices capable of 

30 detecting a concentration of glucose and providing an output 
signal representative of glucose concentration may be used 
as well. Furthermore, although the description herein refers 
to glucose as the analyte being measured, processed, and the 

35 
like, other analytes may be used as well including, for 
example, ketone bodies ( e.g., acetone, acetoacetic acid and 
beta hydroxybutyric acid, lactate, etc.), glucagon, acetyl­
CoA, triglycerides, fatty acids, intermediaries in the citric 
acid cycle, choline, insulin, cortisol, testosterone, and the 

40 like. 

In one implementation, the factory calibration algorithms 
described herein may be performed at least in part by the 45 

display devices. 

In some manufacturing systems, sensors 138 are manually 
sorted, placed and held in fixtures. These fixtures are manu­
ally moved from station to station during manufacturing for 
various process steps including interfacing electrical mea­
surement equipment for testing and calibration operations. 
However, manual handling of sensors can be inefficient, can 

In some example implementations, the relatively small, 
key fob-like display device 114 may comprise a wrist watch, 
a belt, a necklace, a pendent, a piece of jewelry, an adhesive 
patch, a pager, a key fob, a plastic card ( e.g., credit card), an 50 

identification (ID) card, and/or the like. This small display 
device 114 may include a relatively small display (e.g., 
smaller than the large display device 116) and may be 
configured to display certain types of displayable sensor 
information, such as a numerical value, and an arrow, or a 55 

color code. 

cause delays due to non-ideal mechanical and electrical 
connections, and can risk damage to the sensor and/or 
testing and calibration equipment and can induce sensor 
variability that can lead to inaccurate verification data being 
collected in manufacturing. In addition, the process of 
packaging sensor 138 with the sensor electronics 112 into a 
wearable device involves further manual manipulation of the 
sensor that can damage the sensor 138. 

Various systems, devices, and methods described herein 
help to reduce or eliminate manual interaction with a sensor. 
For example, a pre-connected sensor may be provided that 
includes a sensor interconnect or sensor carrier electrically 
coupled to sensor electrodes and having mechanical and 

In some example implementations, the relatively large, 
hand-held display device 116 may comprise a hand-held 
receiver device, a palm-top computer, and/or the like. This 
large display device may include a relatively larger display 
(e.g., larger than the small display device 114) and may be 
configured to display information, such as a graphical rep­
resentation of the sensor data including current and historic 
sensor data output by sensor system 100. 

60 electrical features configured to accurately interface with 
wearable electronics, automation equipment and/or robustly 
connect to measurement equipment. 

In some example implementations, the analyte sensor 138 65 

may comprise a glucose sensor configured to measure 
glucose in the blood or interstitial fluid using one or more 

Identification and other data associated with each sensor 
may be stored on the sensor carrier for logging and tracking 
of each sensor during manufacturing, testing, calibration, 
and in vivo operations. Following testing and calibration 
operations, the sensor carrier may be used to connect the MASIMO 1067 
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sensor to sensor electronics of a wearable device, such as an 
on-skin sensor assembly, in an arrangement that is sealed 
and electrically robust. 

22 
analyte sensor 138, such as a glucose sensor to generate 
sensor data from the analyte. The potentiostat 210 may be 
coupled to a working electrode 211 and reference electrode 
212 that form a part of the sensor 138. The potentiostat may FIG. 2 depicts an example of electronics 112 that may be 

used in sensor electronics 112 or may be implemented in a 
manufacturing station such as a testing station, a calibration 
station, a smart carrier, or other equipment used during 
manufacturing of device 101, in accordance with some 
example implementations. The sensor electronics 112 may 
include electronics components that are configured to pro­
cess sensor information, such as sensor data, and generate 
transformed sensor data and displayable sensor information, 
e.g., via a processor module. For example, the processor 
module may transform sensor data into one or more of the 
following: filtered sensor data (e.g., one or more filtered 
analyte concentration values), raw sensor data, calibrated 
sensor data (e.g., one or more calibrated analyte concentra­
tion values), rate of change information, trend information, 
rate of acceleration/deceleration information, sensor diag­
nostic information, location information, alarm/alert infor­
mation, calibration information such as may be determined 
by factory calibration algorithms as disclosed herein, 
smoothing and/or filtering algorithms of sensor data, and/or 

5 provide a voltage to one of the electrodes 211, 212 of the 
analyte sensor 138 to bias the sensor for measurement of a 
value (e.g., a current) indicative of the analyte concentration 
in a host (also referred to as the analog portion of the sensor). 
The potentiostat 210 may have one or more connections to 

10 the sensor 138 depending on the number of electrodes 
incorporated into the analyte sensor 138 (such as a counter 
electrode as a third electrode). 

In some example implementations, the potentiostat 210 
may include a resistor that translates a current value from the 

15 sensor 138 into a voltage value, while in some example 
implementations, a current-to-frequency converter (not 
shown) may also be configured to integrate continuously a 
measured current value from the sensor 138 using, for 
example, a charge-counting device. In some example imple-

the like. 

20 mentations, an analog-to-digital converter (not shown) may 
digitize the analog signal from the sensor 138 into so-called 
"counts" to allow processing by the processor module 214. 
The resulting counts may be directly related to the current 
measured by the potentiostat 210, which may be directly 

25 related to an analyte level, such as a glucose level, in the 
host. 

In some embodiments, a processor module 214 is con­
figured to achieve a substantial portion, if not all, of the data 
processing, including data processing pertaining to factory 
calibration. Processor module 214 may be integral to sensor 
electronics 112 and/or may be located remotely, such as in 
one or more of devices 114, 116, 118, and/or 120 and/or 30 

cloud 490. For example, in some embodiments, processor 
module 214 may be located at least partially within a 
cloud-based analyte processor 490 or elsewhere in network 
409. 

The telemetry module 232 may be operably connected to 
processor module 214 and may provide the hardware, firm­
ware, and/or software that enable wireless communication 
between the sensor electronics 112 and one or more other 
devices, such as display devices, processors, network access 
devices, and the like. A variety of wireless radio technolo­
gies that can be implemented in the telemetry module 232 
include Bluetooth, Bluetooth Low-Energy, ANT, ANT+, 

In some example implementations, the processor module 
214 may be configured to calibrate the sensor data, and the 
data storage memory 220 may store the calibrated sensor 
data points as transformed sensor data. Moreover, the pro­
cessor module 214 may be configured, in some example 
implementations, to wirelessly receive calibration informa­
tion from a display device, such as devices 114, 116, 118, 
and/or 120, to enable calibration of the sensor data from 
sensor 138. Furthermore, the processor module 214 may be 
configured to perform additional algorithmic processing on 

35 ZigBee, IEEE 802.11, IEEE 802.16, cellular radio access 
technologies, radio frequency (RF), infrared (IR), paging 
network communication, magnetic induction, satellite data 
communication, spread spectrum communication, fre­
quency hopping communication, near field communications, 

40 and/or the like. In some example implementations, the 
telemetry module 232 comprises a Bluetooth chip, although 
Bluetooth technology may also be implemented in a com­
bination of the telemetry module 232 and the processor 
module 214. 

the sensor data ( e.g., calibrated and/or filtered data and/or 45 

other sensor information), and the data storage memory 220 
may be configured to store the transformed sensor data 
and/or sensor diagnostic information associated with the 
algorithms. The processor module 214 may further be con­
figured to store and use calibration information determined 50 

from a factory calibration, as described below. 
In some example implementations, the sensor electronics 

112 may comprise an application-specific integrated circuit 
(ASIC) 205 coupled to a user interface 222. The ASIC 205 
may further include a potentiostat 210, a telemetry module 55 

232 for transmitting data from the sensor electronics 112 to 
one or more devices, such as devices 114, 116, 118, and/or 
120, and/or other components for signal processing and data 
storage (e.g., processor module 214 and data storage 
memory 220). Although FIG. 2 depicts ASIC 205, other 60 

types of circuitry may be used as well, including field 
programmable gate arrays (FPGA), one or more micropro­
cessors configured to provide some (if not all of) the 
processing performed by the sensor electronics 112, analog 
circuitry, digital circuitry, or a combination thereof. 65 

In the example depicted in FIG. 2, through a first input 
port 211 for sensor data the potentiostat 210 is coupled to an 

The processor module 214 may control the processing 
performed by the sensor electronics 112. For example, the 
processor module 214 may be configured to process data 
( e.g., counts), from the sensor, filter the data, calibrate the 
data, perform fail-safe checking, and/or the like. 

Potentiostat 210 may measure the analyte (e.g., glucose 
and/or the like) at discrete time intervals or continuously, for 
example, using a current-to-voltage or current-to-frequency 
converter. 

The processor module 214 may further include a data 
generator (not shown) configured to generate data packages 
for transmission to devices, such as the display devices 114, 
116, 118, and/or 120. Furthermore, the processor module 
214 may generate data packets for transmission to these 
outside sources via telemetry module 232. In some example 
implementations, the data packages may include an identi­
fier code for the sensor and/or sensor electronics 112, raw 
data, filtered data, calibrated data, rate of change informa­
tion, trend information, error detection or correction, and/or 
the like. 

The processor module 214 may also include a program 
memory 216 and other memory 218. The processor module 
214 may be coupled to a communications interface, such as MASIMO 1067 
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a communication port 238, and a source of power, such as 
24 

The one or more communication ports 238 may further 
include an input port 237 in which calibration data may be 
received, and an output port 239 which may be employed to 
transmit calibrated data, or data to be calibrated, to a receiver 

a battery 234. Moreover, the battery 234 may be further 
coupled to a battery charger and/or regulator 236 to provide 
power to sensor electronics 112 and/or charge the battery 
234. 

The program memory 216 may be implemented as a 
semi-static memory for storing data, such as an identifier for 
a coupled sensor 138 (e.g., a sensor identifier (ID)) and for 
storing code (also referred to as program code) to configure 
the ASIC 205 to perform one or more of the operations/ 
functions described herein. For example, the program code 
may configure processor module 214 to process data streams 

5 or mobile device. FIG. 2 illustrates these aspects schemati­
cally. It will be understood that the ports may be separated 
physically, but in alternative implementations a single com­
munication port may provide the functions of both the 
second input port and the output port. 

10 In some analyte sensor systems, an on-skin portion of the 
sensor electronics may be simplified to minimize complexity 
and/or size of on-skin electronics, for example, providing 
only raw, calibrated, and/or filtered data to a display device or counts, filter, perform the calibration methods described 

below, perform fail-safe checking, and the like. 
The memory 218 may also be used to store information. 

For example, the processor module 214 including memory 
218 may be used as the system's cache memory, where 
temporary storage is provided for recent sensor data 
received from the sensor. In some example implementations, 
the memory may comprise memory storage components, 
such as read-only memory (ROM), random-access memory 
(RAM), dynamic-RAM, static-RAM, non-static RAM, elec­
trically erasable programmable read only memory (EE­
PROM), rewritable ROMs, flash memory, and the like. 

15 configured to run calibration and other algorithms required 
for displaying the sensor data. However, the sensor elec­
tronics 112 (e.g., via processor module 214) may be imple­
mented to execute prospective algorithms used to generate 
transformed sensor data and/or displayable sensor informa-

20 tion, including, for example, algorithms that: evaluate a 
clinical acceptability of reference and/or sensor data, evalu­
ate calibration data for best calibration based on inclusion 
criteria, evaluate a quality of the calibration, compare esti­
mated analyte values with time corresponding measured 

25 analyte values, analyze a variation of estimated analyte 
values, evaluate a stability of the sensor and/or sensor data, 
detect signal artifacts (noise), replace signal artifacts, deter­
mine a rate of change and/or trend of the sensor data, 

The data storage memory 220 may be coupled to the 
processor module 214 and may be configured to store a 
variety of sensor information. In some example implemen­
tations, the data storage memory 220 stores one or more 
days of analyte sensor data. The stored sensor information 30 

may include one or more of the following: a time stamp, raw 
sensor data ( one or more raw analyte concentration values), 
calibrated data, filtered data, transformed sensor data, and/or 
any other displayable sensor information, calibration infor­
mation (e.g., reference BG values and/or prior calibration 35 

information such as from factory calibration), sensor diag­
nostic information, and the like. 

The user interface 222 may include a variety of interfaces, 
such as one or more buttons 224, a liquid crystal display 
(LCD) 226, a vibrator 228, an audio transducer (e.g., 40 

speaker) 230, a backlight (not shown), and/or the like. The 
components that comprise the user interface 222 may pro­
vide controls to interact with the user (e.g., the host). 

The battery 234 may be operatively connected to the 
processor module 214 (and possibly other components of the 45 

sensor electronics 112) and provide the necessary power for 
the sensor electronics 112. In other implementations, the 
receiver can be transcutaneously powered via an inductive 
coupling, for example. 

perform dynamic and intelligent analyte value estimation, 
perform diagnostics on the sensor and/or sensor data, set 
modes of operation, evaluate the data for aberrancies, and/or 
the like. 

FIGS. 3A, 3B, and 3C illustrate an exemplary implemen­
tation of analyte sensor system 101 implemented as a 
wearable device such as an on-skin sensor assembly 600. As 
shown in FIG. 3, on-skin sensor assembly comprises a 
housing 128. An adhesive patch 126 can couple the housing 
128 to the skin of the host. The adhesive 126 can be a 
pressure sensitive adhesive (e.g. acrylic, rubber based, or 
other suitable type) bonded to a carrier substrate (e.g., spun 
lace polyester, polyurethane film, or other suitable type) for 
skin attachment. The housing 128 may include a through­
hole 180 that cooperates with a sensor inserter device (not 
shown) that is used for implanting the sensor 138 under the 
skin of a subject. 

The wearable sensor assembly 600 can include sensor 
electronics 112 operable to measure and/or analyze glucose 
indicators sensed by glucose sensor 138. Sensor electronics 
112 within sensor assembly 600 can transmit information 
(e.g., measurements, analyte data, and glucose data) to a 
remotely located device (e.g., 114, 116, 118, 120 shown in 
FIG. 1). As shown in FIG. 3C, in this implementation the 
sensor 138 extends from its distal end up into the through­
hole 180 and is routed to an electronics module 135 inside 

A battery charger and/or regulator 236 may be configured 50 

to receive energy from an internal and/or external charger. In 
some example implementations, the battery 234 ( or batter­
ies) is configured to be charged via an inductive and/or 
wireless charging pad, although any other charging and/or 
power mechanism may be used as well. 

One or more communication ports 238, also referred to as 
external connector(s), may be provided to allow communi­
cation with other devices, for example a PC communication 
(com) port can be provided to enable communication with 
systems that are separate from, or integral with, the sensor 60 

electronics 112. The communication port, for example, may 
comprise a serial ( e.g., universal serial bus or "USB") 
communication port, and allow for communicating with 
another computer system ( e.g., PC, personal digital assistant 

55 the enclosure 128. The working electrode 211 and reference 
electrode 212 are connected to circuitry in the electronics 
module 135 which includes the potentiostat. 

or "PDA," server, or the like). In some example implemen- 65 

tations, factory information may be sent to the algorithm 
from the sensor or from a cloud data source. 

FIG. 3D illustrates one exemplary embodiment of an 
analyte sensor 138 which includes an elongated body por­
tion. The elongated body portion may be long and thin, yet 
flexible and strong. For example, in some embodiments, the 
smallest dimension of the elongated conductive body is less 
than about 0.1 inches, 0.075 inches, 0.05 inches, 0.025 
inches, 0.01 inches, 0.004 inches, or 0.002 inches. While the 
elongated conductive body is illustrated herein as having a 
circular cross-section, in other embodiments the cross-sec-
tion of the elongated conductive body can be ovoid, rect-MASIMO 1067 
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angular, triangular, or polyhedral, star-shaped, C-shaped, 
T-shaped, X-shaped, Y-shaped, irregular, or the like. 

26 

In the implementation of FIG. 3D, the analyte sensor 138 
comprises a wire core 139. At a distal, in vivo portion of the 
sensor 138, the wire core 139 forms an electrode 211a. At a 5 

proximal, ex vivo portion of the sensor 138, the wire core 
139 forms a contact 211b. The electrode 211a and the 
contact 211b are in electrical communication over the length 

be affixed to a distal in vivo portion of an elongated flexible 
strip of a planar substrate such as a thin, flat, polymer flex 
circuit. The two contacts 211b and 212b could be affixed to 
the proximal ex vivo portion ofthis flexible planar substrate. 
Electrodes 211a, 212a could be electrically connected to 
their respective contacts 211b, 212b a circuit traces on the 
planar substrate. In this case, the electrodes 211a and 212a 
and the contacts 211b and 212b may be adjacent to one 
another on a flat surface rather than being coaxial as shown of the wire core 139 as it extends along the elongated body 

portion of the sensor 138. The wire core can be made from 
a single material such as platinum or tantalum, or may be 
formed as multiple layers, such as a conducting or non­
conducting material with an outer coating of a different 
conducting material. 

10 in FIG. 3D. 

A layer 104 surrounds a least a portion of the wire core 15 

139. The layer 104 may be formed of an insulating material, 
such as polyimide, polyurethane, parylene, or any other 
known insulating materials. For example, in one embodi­
ment the layer 104 is disposed on the wire core 139 and 
configured such that the electrode 211a is exposed via 20 

window 106. 

Also shown in FIG. 3D is an illustration of the contact 
211b and the contact 212b electrically coupled to a simple 
current-to-voltage converter based potentiostat 210. The 
potentiostat includes a battery 320 that has an output 
coupled to an input of an operational amplifier 322. The 
output of the operational amplifier 322 is coupled to a 
contact 324 that is electrically coupled to the working 
electrode contact 211b through a resistor 328. The amplifier 
322 will bias the contact 324 to the battery voltage V6 , and 
will drive the current im required to maintain that bias. This 
current will flow from the working electrode 211a through 

In some embodiments, the sensor 138 further comprises a 
layer 141 surrounding the insulating layer 104 like a sleeve 
that comprises a conductive material. At a distal, in vivo 
portion of the sensor 138, the sleeve layer 141 forms an 
electrode 212a. At a proximal, ex vivo portion of the sensor 
138, the sleeve layer 141 forms a contact 212b. The elec­
trode 212a and the contact 212b are in electrical communi­
cation over the length of the sleeve layer 141 as it extends 
along the elongated body portion of the sensor 138. This 
sleeve layer 141 may be formed of a silver-containing 
material that is applied onto the insulating layer 104. The 
silver-containing material may include any of a variety of 
materials and be in various forms, such as, Ag/AgCl­
polymer pastes, paints, polymer-based conducting mixture, 
and/or inks that are commercially available, for example. 
This layer 141 can be processed using a pasting/dipping/ 
coating step, for example, using a die-metered dip coating 
process. In one exemplary embodiment, an Ag/AgCl poly­
mer paste is applied to an elongated body by dip-coating the 
body (e.g., using a meniscus coating technique) and then 
drawing the body through a die to meter the coating to a 
precise thickness. In some embodiments, multiple coating 
steps are used to build up the coating to a predetermined 
thickness. 

The sensor 138 shown in FIG. 3D also includes a mem­
brane 108 covering at least a portion of the distal in vivo 
portion of the sensor 138. This membrane is typically 
formed of multiple layers, which may include one or more 

the interstitial fluid surrounding the sensor 138 and to the 
reference electrode 212a. The reference electrode contact 
212b is electrically coupled to another contact 334 which is 

25 connected to the other side of the battery 320. For this 
circuit, the current im is equal to (V 6 -V m)/R, where V m is the 
voltage measured at the output of the amplifier 322. The 
magnitude of this current for a given bias on the working 
electrode 211a is a measure of analyte concentration in the 

30 vicinity of the window 106. 
The contacts 324 and 334 are typically conductive pads/ 

traces on a circuit board. There is always some level of 
parasitic leakage current iP over the surface of this board 
during the test. If possible, this leakage current should not 

35 form part of the measurement of current due to analyte. To 
reduce the effect this leakage current has on the measured 
current, an optional additional pad/trace 336 may be pro­
vided between the biased contact 324 and the return contact 
334 that is connected directly to the battery output. This 

40 optional additional pad/trace may be referred to as a "guard 
trace." Because they are held at the same potential, there will 
be essentially no leakage current from the biased contact 324 
and the guard trace 336. Furthermore, leakage current from 
the guard trace 336 to the return contact 334 does not pass 

45 through the amplifier output resistor 328, and therefore is not 
included in the measurement. Additional aspects and imple­
mentations of a guard trace may be found in paragraphs 
[0128] and [0129] ofU.S. Patent Publication 2017/0281092, 
which are incorporated herein by reference. 

During manufacturing, various coating, testing, calibra-
tion, and assembly operations are performed on the sensor 
138. However, it can be difficult to transport individual 
sensors and electrically interface the sensors with multiple 
testing and calibration equipment installations. These pro-

of an interference domain, an enzyme domain, a diffusion 50 

resistance domain, and a bioprotective domain. This mem­
brane is important to support the electrochemical processes 
that allow analyte detection and it is generally manufactured 
with great care by dip-coating, spraying, or other manufac­
turing steps. It is preferable for the distal in vivo portion of 55 cesses also subject the sensors to damage from handling. To 

help address these issues, the sensor 138 may be provided as 
a part of a pre-connected sensor that includes a sensor carrier 
as described in greater detail below. 

the sensor 138 to be subject to as little handling as possible 
from the time the membrane 108 is formed to the time the 
distal in vivo portion of the sensor 138 is implanted into a 
subject. In some embodiments, electrode 211a forms a 
working electrode of an electrochemical measuring system, 
and electrode 212a forms a reference electrode for that 
system. In use, both electrodes may be implanted into a host 
for analyte monitoring. 

Although the above description is applicable specifically 
to a coaxial wire type structure, the embodiments herein are 
also applicable to other physical configurations of elec­
trodes. For example, the two electrodes 211a and 212a could 

FIG. 4A shows a schematic illustration of a pre-connected 
60 sensor 400. As shown in FIG. 4A, pre-connected sensor 400 

includes sensor carrier 402 permanently attached to sensor 
138. In the example of FIG. 4A, sensor carrier 402 includes 
an intermediate body such as substrate 404, and also 
includes one or more contacts such as first internal contact 

65 406, and second internal contact 408. First internal contact 
406 is electrically coupled to a first contact on a proximal 
end of sensor 138 and contact internal contact 408 is MASIMO 1067 
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electrically coupled to a second contact on the proximal end 
28 

138 relative to sensor carrier 402. Sensor carrier 402 may 
also include, or may itself form, one or more anchoring 
features for securing and aligning the analyte sensor during 
manufacturing (e.g., relative to a manufacturing station). 

of sensor 138. The distal end of sensor 138 is a free end 
configured for insertion into the skin of the host. Contacts 
406 and 408 may, for example, correspond to contacts 324 
and 334 of FIG. 3D in some implementations. 

As shown in FIG. 4A, first internal contact 406 may be 
electrically coupled to a first external contact 410 and 
second internal contact 408 may be electrically coupled to a 
second external contact 412. As described in further detail 
hereinafter, external contacts 410 and 412 may be config­
ured to electrically interface with sensor electronics 112 in 
wearable device 600. Furthermore, external contacts 410 
and 412 may be configured to electrically interface with 
processing circuitry of manufacturing equipment such one 

5 Additionally, sensor carrier 402 may include an identifier 
450 configured to identify the sensor. In some embodiments, 
identifier 450 is formed on substrate 404. Identifier 450 will 
be explained further below. 

FIG. 4B illustrates another schematic of a pre-connected 
10 analyte sensor 400. The pre-connected analyte sensor 400 

shown in FIG. 4B may include similar components of 
pre-connected analyte sensor 400 shown in FIG. 4A. FIG. 
4B is shown without optional cover 460 for clarity. FIG. 4C 
illustrated an exploded view of pre-connected analyte sensor 

or more testing stations and/or one or more calibration 
stations. Although various examples are described herein in 
which two external contacts 410 and 412 on the sensor 
carrier are coupled to two corresponding contacts on sensor 
138, this is merely illustrative. In other implementations, 
sensor carrier 402 and sensor 138 may each be provided with 

15 400 shown in FIG. 4B. 
In the example of FIG. 4B, sensor carrier 402 includes an 

intermediate body such as a substrate 404, and also includes 
one or more traces such as first trace 414 and second trace 
416. First trace 414 may include a first internal contact 406 

20 and a first external contact 410. Second trace 416 may 
include a second internal contact 408 and a second external a single contact or may each be provided with more than two 

contacts, for example, any N number of external contacts 
(e.g., more than two external contacts 410 and 412) of the 
sensor carrier and any M number of contacts ( e.g., more than 
two contacts 406 and 408) of sensor 138 that can be coupled. 25 

In some implementations, sensor carrier 402 and sensor 138 
may have the same number of contacts (i.e., N=M). In some 
implementations, sensor carrier 402 and sensor 138 may 
have a different number of contacts (i.e., N;,M). For 
example, in some implementations, sensor carrier 402 may 30 

have additional contacts for coupling to or between various 
components of a manufacturing station. 

As described in further detail hereinafter, substrate 404 
may be configured to couple with sensor electronics 112 in 
wearable device 600. In some embodiments, substrate 404 35 

may be sized and shaped to mechanically interface with 
housing 128 and electrically interface with sensor electron-
ics 112 inside housing 128. Further, substrate 404 may be 
sized and shaped to mechanically interface with manufac­
turing equipment, assembly equipment, testing stations and/ 40 

or one or more calibration stations. As described in further 
detail hereinafter, sensor carrier 402 may be attached and/or 
electrically coupled to sensor 138. Sensor 138 may be 
permanently coupled to a component of sensor carrier 402 
( e.g. substrate 404) by using, for example, adhesive ( e.g. UV 45 

cure, moisture cure, multi part activated, heat cure, hot melt, 
etc.), including conductive adhesive (e.g. carbon filled, 
carbon nanotube filled, silver filled, conductive additive, 
etc.), conductive ink, spring contacts, clips, wrapped flexible 
circuitry, a conductive polymer (e.g. conductive elastomer, 50 

conductive plastic, carbon filled PLA, conductive graphene 
PLA), conductive foam, conductive fabric, a barrel connec-
tor, a molded interconnect device structure, sewing, wire 
wrapping, wire bonding, wire threading, spot welding, 
swaging, crimping, stapling, clipping, soldering or brazing, 55 

plastic welding, or overmolding. In some embodiments, 
sensor 138 may be permanently coupled to substrate 404 by 
rivets, magnets, anisotropic conductive films, metallic foils, 
or other suitable structures or materials for mechanically and 
electrically attaching sensor carrier 402 to sensor 138 before 60 

or during assembly, manufacturing, testing and/or calibra­
tion operations. In some embodiments, sensor carrier 402 
may be 3-D printed around sensor 138 to form pre-con­
nected sensor 400. Additionally, sensor carrier 402 may 
include datum features 430 (sometimes referred to as datum 65 

structures) such as a recess, an opening, a surface or a 
protrusion for aligning, positioning, and orienting sensor 

contact 412. In some embodiments, first internal contact 406 
is electrically coupled to a first contact on a proximal end of 
sensor 138 and second internal contact 408 is electrically 
coupled to a second contact on the proximal end of sensor 
138. The distal end of sensor 138 is a free end configured for 
insertion into the skin of the host. The electrical coupling is 
described in connection with various embodiments herein, 
such as clips, conductive adhesive, conductive polymer, 
conductive ink, metallic foil, conductive foam, conductive 
fabric, wire wrapping, wire threading or any other suitable 
methods. In some embodiments, a non-conductive adhesive 
426 (e.g. epoxy, cyanoacrylate, acrylic, rubber, urethane, hot 
melt, etc.) can be used to attach the sensor 138 to substrate 
404. Non-conductive adhesive 426 may be configured to 
affix, seal, insulate, or provide a strain relief to the sensor 
138. Sensor 138 may be attached to substrate 404 by other 
methods, such as those described in FIG. 4A above. 

As shown in FIG. 4C, a pressure sensitive adhesive 428 
may be configured to isolate an exposed end of traces 414 
and 416. For instance, pressure sensitive adhesive 428 may 
laminate sensor 138 between substrate 404 and cover 460. In 
such instances, sensor 138, substrate 404, pressure sensitive 
adhesive 428, and cover 460 may form a laminated con­
figuration. In the laminated configuration, sensor 138 and its 
connection to one or more contacts ( e.g. first internal contact 
406 and second internal contact 408) are isolated from one 
or more exposed contacts ( e.g. first external contact 410 and 
second external contact 412). Furthermore, the laminated 
configuration may create a moisture sealed region surround­
ing the sensor 138. The moisture seal may be created as 
embodied by a combination of a pressure sensitive adhesive 
428 and a non-conductive adhesive 426. In other embodi­
ments, the laminated structure can be created by one or a 
combination of the following materials and methods: A 
non-conductive adhesive, a pressure sensitive adhesive tape, 
an elastomer, heat bonding, hot plate welding, laser welding, 
ultrasonic welding, RF welding, or any suitable type of 
lamination method. The cover 460 may consist of a polymer 
sheet, structure, or film that at least partially covers the 
substrate 404. The cover 460 may optionally contain an 
identifier 450, which can identify the sensor 138. In some 
embodiments, identifier 450 may incorporate various iden­
tification protocols or techniques such as, but not limited to, 
NFC, RFID, QR Code, Bar code, Wi-Fi, Trimmed resistor, 
Capacitive value, Impedance values, ROM, Memory, IC, 
Flash memory, etc. MASIMO 1067 
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to handle them. For example, fabricating the electrodes may 
require various kinds of metal forming/extrusion machines, 
whereas membrane application, testing, and calibration 
requires a wet chemistry lab and sensitive electronic test 

Guide fixture 420, which is an optional component, is an 
exemplary embodiment of an interface with a work station, 
such as a testing station, a calibration station, an assembly 
station, a coating station, manufacturing stations, or as part 
of the wearable assembly. The guide fixture 420 includes 
datum features (or datum structures) 430, such as a recess, 
an opening, a surface or a protrusion for aligning, position­
ing, and orienting sensor 138 relative to sensor carrier 402. 
Datum features 430 may be used in manufacturing and for 
assembly into a wearable electronic component. In some 
embodiments, datum features 430 are raised protrusions 
configured to align with corresponding datum features 432 

5 equipment. Accordingly, the sensor electrodes may be 
formed and mounted on the carrier in one facility in one 
location, and then shipped to a different remote facility that 
is equipped for membrane application, testing, and calibra­
tion. Remote in this context means not in the same produc-

10 tion facility in the same building. It can even be advanta­
geous for different commercial entities to perform the 
different tasks that specialize in the appropriate manufac­
turing and testing technologies. of substrate 404. Corresponding datum features 432 of 

substrate 404 may feature cutouts, slots, holes, or recesses. 
The corresponding datum features 432 in the sensor carrier 
may be placement features that can interface with datum 
features 430 in a work station, such as a testing station, a 
calibration station, an assembly station, a coating station, or 
other manufacturing stations. Guide fixture 420 may be 
configured to ensure proper placement of the sensor carrier 
402 to align the exposed external contacts 410 and 412 for 
connecting to a work station, such as a testing station, a 
calibration station, an assembly station, a coating station, or 
other manufacturing stations. In other embodiments, datum 
features 430 may consist of female features to engage with 25 

male corresponding datum features 432. 

Manufacturing station 5091 may comprise a testing sta-
15 tion as described herein, a calibration station as described 

herein, or another manufacturing station. Manufacturing 
station 5091 may include processing circuitry 5092 and/or 
mechanical components 5094 operable to perform testing 
operations, calibration operations, and/or other manufactur-

20 ing operations such as sensor straightening operations, 
membrane application operations, curing operations, cali­
bration-check operations, glucose sensitivity operations 
( e.g., sensitivity slope, baseline, and/or noise calibration 
operations), and/or visual inspection operations. 

The pre-connected analyte sensor 400 may be connected 
to one or more testing stations 5002 having processing 
circuitry 5012 configured to perform testing operations with 
sensor 138 to verify the operational integrity of sensor 138. 
Testing operations may include verifying electrical proper-

FIG. 4D illustrates a schematic view of an array 480 of 
pre-connected analyte sensors 400 having a plurality of 
pre-connected sensors 400 with optional identifiers 450. In 
FIG. 4D, an array formed as a one-dimensional strip of 
pre-connected analyte sensors 400 is shown, but a two­
dimensional array could also be implanted. In some embodi­
ments, the array 480 of pre-connected analyte sensors may 

30 ties of a sensor 138, verifying communication between a 
working electrode and contact 408, verifying communica­
tion between a reference electrode or additional electrodes 
and contact 406, and/or other electronic verification opera-

be disposed in a cartridge. Each of the plurality of pre­
connected sensors 400 can be singulated. In some embodi- 35 

ments, scoring 4020 may be provided to facilitate singula­
tion into individual pre-connected sensors 400. In some 
embodiments, the array 480 can be used in facilitating 
manufacturing, testing and/or calibrating multiple sensors 
138 individually in sequential or random manners. In some 40 

embodiments, the array 480 can be used in facilitating 
manufacturing, testing and/or calibrating multiple sensors 
138 concurrently. 

FIGS. SA-SE show block diagrams of various machines 
and assemblies the pre-connected analyte sensor 400 may be 45 

associated with during its pre-implant lifetime. Such 
machines and assemblies may include manufacturing equip­
ment such as one or more manufacturing stations 5091, one 
or more testing stations 5002 and/or one more calibration 
stations 5004, and an on-skin wearable assembly 600. At 50 

least some of these are configured to receive sensor carrier 
402 and to communicatively couple the machines and 
assemblies to sensor 138 via sensor carrier 402. 

It is one aspect of some embodiments that the sensor 138 
is coupled to the sensor carrier 402 before the membrane 108 55 

described above is applied. With the sensor 138 attached to 
the sensor carrier, and potentially with multiple carrier 
mounted sensors attached together as shown in FIG. 4D, 
subsequent device production steps such as membrane coat­
ing, testing, calibration, and assembly into a wearable unit 60 

can be performed with easier mounting and dismounting 
from manufacturing and testing equipment, less sensor 
handling, less chance of damaging the membrane, producing 
a significant overall improvement in production efficiency. 

Another benefit of the pre-connected sensor construction 65 

is that it is easier to separate different kinds of manufacturing 
and testing among different facilities that are better equipped 

tions for sensor 138. Processing circuitry 5012 may be 
communicatively coupled with sensor 138 for testing opera­
tions by inserting substrate 404 into a receptacle 5006 (e.g., 
a recess in a housing of testing station 5002) until contact 
410 is coupled to contact 5010 of testing station 5002 and 
contact 412 is coupled to contact 5008 of testing station 
5002. 

System 5000 may include one or more calibration stations 
5004 having processing circuitry 5020 configured to per­
form calibration operations with sensor 138 to obtain cali­
bration data for in vivo operation of sensor 138. Calibration 
data obtained by calibration equipment 5004 may be pro­
vided to on-skin sensor assembly 600 to be used during 
operation of sensor 138 in vivo. Processing circuitry 5020 
may be communicatively coupled with sensor 138 for cali­
bration operations by inserting substrate 404 into a recep­
tacle 5014 (e.g., a recess in a housing of calibration station 
5004) until contact 410 is coupled to contact 5018 of testing 
station 5002 and contact 412 is coupled to contact 5016 of 
testing station 5002. 

In the examples of FIGS. SA-SE, testing station 5002 and 
calibration station 5004 include receptacles 5006 and 5014. 
However, this is merely illustrative and sensor carrier 402 
may be mounted to testing station 5002 and calibration 
station 5004 and/or manufacturing station 5091 using other 
mounting features such as grasping, clipping, or clamping 
figures. For example, manufacturing station 5091 includes 
grasping structures 5093 and 5095, at least one of which is 
movable to grasp sensor carrier 402 ( or a carrier having 
multiple sensor carriers and sensors). Structure 5093 may be 
a stationary feature having one or more electrical contacts 
such as contact 5008. Structure 5095 may be a movable 
feature that moves ( e.g., slides in a direction 5097) to grasp 
and secure sensor carrier 402 in an electrically coupled MASIMO 1067 
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position for manufacturing station 5091. In other implemen­
tations, both features 5093 and 5095 are movable. 

32 
Wearable assembly 600 may also include a reader ( e.g., an 

optical sensor, an RF sensor, or an electrical interface) 
positioned near the contacts 5022 that reads identifier 450 to 
obtain a unique identifier of sensor 138. Sensor electronics 

Sensor carrier 402 may also include an identifier 450 (see, 
e.g., FIGS. 4A-4D). Identifier 450 may be formed on or 
embedded within substrate 404. Identifier 450 may be 
implemented as a visual or optical identifier (e.g., a barcode 

5 may obtain calibration data for in vivo operation of sensor 
138 based on the read identifier 450. The calibration data 

or QR code pre-printed or printed on-the-fly on substrate 
404 or etched in to substrate 404), a radio frequency (RF) 
identifier, or an electrical identifier (e.g., a laser-trimmed 
resistor, a capacitive identifier, an inductive identifier, or a 10 

micro storage circuit ( e.g., an integrated circuit or other 
circuitry in which the identifier is encoded in memory of the 
identifier) programmable with an identifier and/or other data 
before, during, or after testing and calibration). Identifier 15 
450 may be used for tracking each sensor through the 
manufacturing process for that sensor ( e.g., by storing a 
history of testing and/or calibration data for each sensor). In 
other words, the identifier 450 identifies any of the analyte 
sensor, calibration data for the analyte sensor, and a history 20 

of the analyte sensor. For example, identifier 450 may be 
used for binning of testing and calibration performance data. 
Identifier 450 may be a discrete raw value or may encode 
information in addition to an identification number. Identi-
fier 450 may be used for digitally storing data in non-volatile 25 

memory on substrate 404 or as a reference number for 
storing data external to sensor carrier 402. 

Testing station 5002 may include a reader 5011 (e.g., an 
optical sensor, an RF sensor, or an electrical interface such 
as an integrated circuit interface) that reads identifier 450 to 30 

obtain a unique identifier of sensor 138. Testing data 
obtained by testing station 5002 may be stored and/or 
transmitted along with the identifier of sensor 138. 

Calibration station 5004 may include a reader 5011 ( e.g., 

may be stored in, and obtained, from identifier 450 itself, or 
identifier 450 may be used to obtain the calibration data for 
the installed sensor 138 from a remote system such as a 
cloud-based system. 

FIGS. 6-8 are schematic illustrations of various imple­
mentations of securement of a pre-connected sensor 400 
within wearable assembly 600. In the example of FIG. 6, 
sensor carrier 402 is in direct contact with a base wall 605 
and housing 128, and contact 5022 includes multiple con­
tacts on the housing 128 for contacting both contacts 410 
and 412 of sensor carrier 402 (e.g., both located on a top 
surface of sensor carrier 402). In the example of FIG. 7, a 
mechanical receiver 700 is provided on base wall 605 for 
mechanically securing sensor carrier 402. In the example of 
FIG. 8, mechanical receiver 800 is provided on base wall 
605 for mechanically securing sensor carrier 402 in coop­
eration with receiver 702. In the example of FIG. 8, receiver 
702 includes an additional contact 704 for contacting contact 
410 of sensor carrier 402 located on a rear surface of the 
sensor earner. 

FIG. 9 shows a detailed example of a sensor module 300 
including a pre-connected sensor 400 and a sealing structure 
192. As shown, sealing structure 192 may be disposed on a 
substrate 404, in which sealing structure 192 may be con­
figured to prevent moisture ingress toward contacts 410 and 
412. Furthermore, contacts 410 and 412 may be imple­
mented as leaf spring contact for coupling to sensor elec­
tronics. In some embodiments, pre-connected sensor 400 
includes at least one contact. In some embodiments, pre­
connected sensor 400 includes at least two contacts. In some 
embodiments, pre-connected sensor 400 includes at least 
three contacts. In some embodiments, pre-connected sensor 
400 includes at least four contacts. An adhesive 126 can 
couple the housing 128 to the skin 130 of the host. The 
adhesive 126 can be a pressure sensitive adhesive ( e.g. 
acrylic, rubber based, or other suitable type) bonded to a 
carrier substrate ( e.g., spun lace polyester, polyurethane 
film, or other suitable type) for skin attachment. As shown 

an optical sensor, an RF sensor, or an electrical interface) 35 

that reads identifier 450 to obtain a unique identifier of 
sensor 138. Calibration data obtained by calibration station 
5004 may be stored and/or transmitted along with the 
identifier of sensor 138. In some implementations, calibra­
tion data obtained by calibration station 5004 may be added 40 

to identifier 450 by calibration station 5004 ( e.g., by pro­
gramming the calibration data into the identifier). In some 
implementations, calibration data obtained by calibration 
station 5004 may be transmitted to a remote system or 
device along with identifier 450 by calibration station. 45 in FIG. 9, substrate 404 may include at least one arm 202 or 

other mechanical features for interfacing with corresponding 
mating features on base 128 ( e.g., mechanical interlocks 
such as snap fits, clips, and/or interference features) to 
mechanically secure substrate 404 to housing 128. Coupling 

As shown in FIGS. SA-SE and described in further detail 
hereinafter, on-skin sensor assembly 600 may include one or 
more contacts such as contact 5022 configured to couple 
internal electronic circuitry to contacts 410 and 412 of 
sensor carrier 402 and thus to sensor 138. Sensor carrier 402 
may be sized and shaped to be secured within a cavity 5024 
in or on the housing 128 such that sensor 138 is coupled to 
electronics in the housing 128 via sensor carrier 402, and 
sensor 138 may be positionally secured to extend from the 
housing 128 for insertion for in vivo operations. 

Although one calibration station and one testing station 
are shown in FIGS. SA-SE, it should be appreciated that 
more than one testing station and/or more than one calibra­
tion station may be utilized in the manufacturing and testing 
phase of production. Although calibration station 5004 and 
testing station 5002 are shown as separate stations in FIGS. 
SA-SE, it should be appreciated that, in some implementa­
tions calibration stations and testing stations may be com­
bined into one or more calibration/testing stations ( e.g., 
stations in which processing circuitry for performing testing 
and calibration operations is provided within a common 
housing and coupled to a single interface 5006). 

50 features such as arm 902 and/or other features of substrate 
404 may be sized and shaped for releasably mechanically 
attaching substrate 404 to a connector associated with manu­
facturing equipment such as one or more of connectors 
5006, 5014, and/or 5093/5095 of FIGS. SA-SE for testing 

55 and/or calibration operations during manufacturing and 
prior to attachment to features 900 of housing 128. 

FIG. 10 illustrates a perspective view of the sensor 
module 400 in an implementation in which contacts 406 and 
408 are implemented using coil springs 306. In the example 

60 of FIG. 10, protrusions 308 on substrate 404 can align sensor 
138 and secure springs 306 to substrate 404. (Not all the 
protrusions 308 are labeled in order to increase the clarity of 
FIG. 10.) Protrusions 308 can protrude distally. 

At least three, at least four, and/or less than ten protrusions 
65 308 can be configured to contact a perimeter of a spring 306. 

Protrusions 308 can be separated by gaps. The gaps enable 
protrusions 308 to flex outward as spring 306 is inserted MASIMO 1067 
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between protrusions 308. A downward force for coupling 
electronics unit 500 to base 128 can push spring 306 against 
sensor 138 to electrically couple spring 306 to the sensor 
138. Sensor 138 can run between at least two of protrusions 
308. Testing station 5002 and/or calibration station 5004 5 

may also have a mating connector structure that, when 
substrate 404 is inserted into recess 5006 or 5014, com­
presses springs 306 to couple springs 306 electrically 
between sensor 138 and processing circuitry 5012 or 5020. 

Sensor 138 may include a distal portion 138a configured 10 

for subcutaneous sensing and a proximal portion 138b 
mechanically coupled to sensor carrier 402 having an elec­
trical interconnect (e.g., springs 306) mechanically coupled 
to the substrate 404 and electrically coupled to proximal 
portion 138b. Springs 306 can be conical springs, helical 15 

springs, or any other type of spring mentioned herein or 
suitable for electrical connections. 

Substrate 404 may have a base portion 312 that includes 
at least two proximal protrusions 308 located around a 
perimeter of spring 306. Proximal protrusions 308 are con- 20 

figured to help orient spring 306. A segment of glucose 
sensor 138 is located between the proximal protrusions 308 
( distally to the spring 306). 

Base portion 312 may be configured to be mechanically 
coupled to the housing 128, to manufacturing equipment 25 

5091, testing equipment 5002, and/or calibration equipment 
5004. For example, base portion 312 includes anchoring 
features such as arms 202. Anchoring features may include 
arms 202 and/or may include features such as one or more 
notches, recesses, protrusions, or other features in base 312, 30 

arms 202, and/or substrate 404 that mechanically interface 
with corresponding features of, for example, a receptacle 
such as one of receptacles 5006 of 5014 of FIGS. SA-SE or 
a clamping connector formed by clamping connector fea­
tures such as features 5093 and 5095 of FIGS. SA-SE to 35 

34 
only include one strip (e.g., one layer) of curved metal 
(rather than multiple layers of curved metal). For example, 
leaf spring 306d in FIG. 11 can be made of one layer of metal 
or multiple layers of metal. In some embodiments, leaf 
springs include one layer of flat metal secured at one end 
(such that the leaf spring is a cantilever spring). 

As shown in FIGS. 11 and 12, base portion 312d includes 
a proximal protrusion 320d having a channel 322d in which 
at least a portion of proximal portion 138b is located. The 
channel 322d positions a first area of proximal portion 138b 
such that the area is electrically coupled to leaf spring 306d. 

As shown in the cross-sectional, perspective view of FIG. 
12, leaf spring 306d arcs away from the first area and 
protrudes proximally to electrically couple with testing 
station 5002, calibration station 5004, and/or wearable 
assembly 600. At least a portion of leaf spring 306d forms 
a "W" shape. At least a portion of leaf spring 306d forms a 
"C" shape. Leaf spring 306d bends around the proximal 
protrusion 320d. Leaf spring 306d protrudes proximally to 
electrically couple testing station 5002, calibration station 
5004, and/or electronics unit 500. Seal 192 is configured to 
impede fluid ingress to leaf spring 306d. 

Leaf spring 306d is oriented such that coupling sensor 
carrier 402 to testing station 5002, calibration station 5004, 
and/or electronics unit 500 presses leaf spring 306d against 
a first electrical contact of the testing station 5002, calibra-
tion station 5004, and/or electronics unit 500 and a second 
electrical contact of the glucose sensor 138 to electrically 
couple the glucose sensor 138 to the testing station 5002, 
calibration station 5004, and/or electronics unit 500. The 
proximal height of seal 192 may be greater than a proximal 
height of leaf spring 306d such that the testing station 5002, 
calibration station 5004, and/or electronics unit 500 contacts 
the seal 192 prior to contacting the leaf spring 306d. Springs 
306 and/or leaf springs 306d may cooperate with underlying 
features on substrate 404 (e.g., features 308) and/or channel 
322d, as shown, to form datum features that secure and align 
sensor 138 with respect to sensor carrier 402 (e.g., for 
manufacturing, calibration, testing, and/or in vivo opera-

secure and align sensor 138. In one suitable example, a 
slidable ( or otherwise actuable or rotatable) feature such as 
feature 5095 of FIGS. SA-SE may be arranged to slide over, 
around, or otherwise engage with one or more of arms 202, 
base 312, and/or sensor carrier 402 altogether to secure 
sensor carrier 402 to the manufacturing equipment. For 
example, in other implementations of sensor carrier 402 in 
which arms 202 are not provided, a receptacle connector 
such as one of receptacles 5006 of 5014 of FIGS. SA-SE or 
a clamping connector formed by clamping connector fea­
tures such as features 5093 and 5095 of FIGS. SA-SE may 
include a clamshell component, a sliding component, or 
other movable component that bears against or covers sensor 
carrier 402 to latch sensor carrier 402 to the manufacturing, 
testing, and/or calibration equipment. 

40 tions). 

Referring now to FIGS. 11 and 12, another implementa­
tion of sensor module 400 is shown that includes a base 
portion 312d; a glucose sensor 138 having a distal portion 
138a configured for subcutaneous sensing and a proximal 
portion 138b mechanically coupled to base portion 312d; 
and an electrical interconnect ( e.g., leaf springs 306d) 
mechanically coupled to substrate 404 and electrically 
coupled to the proximal portion 138b. Leaf springs 306d can 
be configured to bend in response to pressure from testing 
station contacts, calibration station contacts, and/or electron­
ics unit 500 coupling with base 128 while pre-connected 
sensor 400 is disposed between electronics unit 500 cou­
pling with base 128. 

As used herein, cantilever springs are a type ofleaf spring. 
As used herein, a leaf spring can be made of a number of 
strips of curved metal that are held together one above the 
other. As used herein in many embodiments, leaf springs 

FIGS. 13A and 13B show perspective views of an 
embodiment of a wearable assembly 600 including a pre­
connected sensor 400. Wearable assembly 600 may include 
sensor electronics and an adhesive patch (not shown). Pre-

45 connected sensor 400 may include a sensor carrier such as 
sensor carrier 402 described in FIGS. 4A-4D. The sensor 
carrier 402 may be placed in or on housing 128. Housing 128 
may be composed of two housing components, top housing 
520 and bottom housing 522. Top housing 520 and bottom 

50 housing 522 can be assembled together to form housing 128. 
Top housing 520 and bottom housing 522 can be sealed to 
prevent moisture ingress to an internal cavity of housing 
128. The sealed housing may include an encapsulating 
material ( e.g. epoxy, silicone, urethane, or other suitable 

55 material). In other embodiments, housing 128 is formed as 
a single component encapsulant (e.g. epoxy) configured to 
contain sensor carrier 402 and sensor electronics. FIG. 13A 
illustrates an aperture 524 within top housing 520 configured 
to allow for an insertion component (e.g. hypodermic 

60 needle, C-needle, V-needle, open sided needle, etc.) to pass 
through the wearable assembly 600 for insertion and/or 
retraction. Aperture 524 may be aligned with a correspond­
ing aperture in bottom housing 522. In other embodiments, 
aperture 524 may extend through an off-center location of 

65 housing 128. In other embodiments, aperture 524 may 
extend through an edge of the housing 128, forming a 
C-shaped channel. In some embodiments the aperture 524 MASIMO 1067 
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includes a sealing material such as a gel, adhesive, elasto­
mer, or other suitable material located within aperture 524. 

36 
704 is a printed circuit board 530 (visible in FIG. 14E) with 
some or all of the sensor electronic circuitry ( e.g. the 
potentiostat 210 or at least traces that connect to the poten­
tiostat) mounted thereon. The printed circuit board 530 may 

FIG. 13B shows a perspective view of the bottom of 
wearable assembly 600. As illustrated, pre-connected sensor 
400 may be disposed within the housing 128. Pre-connected 
sensor 400 may be installed within an aperture 526 of 
bottom housing 522. As shown in the figure, sensor 138 may 
extend out from aperture 526. Aperture 526 may be sized 
and shaped to retain pre-connected sensor 400. Furthermore, 
aperture 526 may be sized and shaped to retain pre-con­
nected sensor 400 in which sensor 138 extends approxi­
mately parallel to the skin surface and forms a 90 degree 
bend for insertion into the skin. It should be understood that 

5 also have conductive pins 712 and 714 mounted thereon 
which extend through apertures 722 and 724 in the floor 704, 
forming an external electrical interface that is accessible 
without opening the housing. The pre-connected sensor 400 
drops into this recess 726. Holes 794 and 796 drop over 

the bottom surface of bottom housing 522 can contain an 
attachment member ( e.g. an adhesive patch) for adhering the 
wearable assembly to the skin surface of a user. 

10 locating pins 784 and 786 and conductive pins 712 and 714 
extend through holes 706 and 708 in the sensor carrier 
substrate 404. These holes 706 and 708 extend through 
plated metal (e.g. copper) contacts 406 and 408 on the 
substrate 404, similar to those shown in a different embodi-

FIG. 13C shows an exploded view of the wearable 
assembly 600. Various electronic components such as the 
potentiostat 210 and other components illustrated in FIG. 2 
may be mounted on or to an electronics assembly substrate 
530, typically some form of printed circuit board. It is 
contemplated that sensor carrier 402 has an electrical cou­
pling with electronics assembly substrate 530. Various meth-

15 ment in FIGS. 4A to 4C. Generally, the number of holes 706, 
708 in the substrate 404 correspond to the number of 
electrodes present in the sensor 138, which may in tum 
correspond to the number of pins 712, 714. For example, a 
three-electrode system with a working, reference, and coun-

ods may be used to establish electrical connection ( e.g. pins, 
solder, conductive elastomer, conductive adhesive, etc.) 
between one or more contacts of pre-connected sensor 400, 
such as external contacts 410 and 412 and electronics 
assembly substrate 530. Sensor carrier 402 may be config­
ured to interface with electronics assembly substrate 530 
through the bottom housing 522. In other implementations, 
the sensor carrier 402 may be configured to interface with 
the electronics assembly substrate 530 through top housing 
520. In some other implementations, the sensor carrier 402 

20 ter electrode may have three holes in the substrate corre­
sponding to three pins extending up through floor 704. The 
pins 712 and 714 may be electrically connected to the 
contacts 408 and 406 in a variety of ways such as solder, 
swaging, or conductive glue, paste, adhesive, or film. After 

25 this connection is made, the electronic circuitry for detecting 
and/or processing analyte sensor signals that is placed inside 
the housing becomes connected to the analyte sensor to 
receive signals therefrom. The connection material bonding 
the sensor 138 to the sensor carrier 402 is designated 762 

30 and 764 in FIGS. 14D and 14E. These connections may be 
established by any of the methods described above with 
reference to FIG. 4A. 

is configured to interface with the electronics assembly 
substrate 530 through the side of wearable assembly 600. 35 

Also shown in the figure, an optional sealing member 528 
may be configured to insulate at least a portion of sensor 
carrier 402 from potential moisture ingress. In some 
instances, the sealing member 528 may be liquid dispensed 
(e.g., adhesive, gel) or a solid material (e.g., elastomer, 40 

polymer). The sealing member 528 may be an assembled 
component that is welded ( e.g., laser or ultrasonic, hot 
plate), or otherwise permanently attached (e.g., anisotropic 
adhesive film, pressure sensitive adhesive, cyanoacrylate, 
epoxy, or other suitable adhesive) to create a sealed region. 45 

The sealing member 528 may be used to physically couple 
and/or provide a sealed region for the sensor carrier 402 to 
the wearable assembly 600. 

FIGS. 14A-14E illustrate another implementation of a 
wearable assembly 600. The implementation of FIGS. 14A- 50 

14E share some similarities to the implementation shown in 
FIGS. 13A-13C. As illustrated in FIG. 14A, the wearable 
assembly 600 includes a housing formed as a top housing 
520 and a bottom housing 522. The wearable assembly also 
includes a through hole 524 for use during interstitial 55 

insertion of the sensor 138 into a subject. Referring espe­
cially to FIGS. 14B, C, and D, the bottom housing 522 
includes a recess 726 with a floor 704. The floor 704 may 
include locating pins 784 and 786 that extend upward from 
the floor 704 and two apertures 722 and 724. The locating 60 

pins may be formed as an integral part of the floor 704, 
during for example molding of the housing, or they may be 
separate parts that are coupled to the floor with friction fit, 
adhesive, or any other means. In some embodiments, there 
is at least one locating pin. In some embodiments, there are 65 

at least two locating pins. In some embodiments, there are at 
least three locating pins. On the opposite side of the floor 

Once the substrate 404 is placed over the pins 712, 714, 
the proximal portion of the sensor 138 can be secured to the 
floor 704 with a pressure sensitive adhesive 772 to retain the 
proximal portion of the sensor on or near the housing prior 
to extending downward at the inserter opening 524. This 
allows for accurate sensor insertion position and controls the 
bias force into the insertion needle. A variety of methods 
and/or structural features may be used to perform this 
retention function such as a protrusion or shelf in the floor 
704, an overmolded part, a snap-fit additional plastic piece 
installed over the sensor, or any sort of glue or adhesive 
placed before or after the pre-connected sensor is placed in 
the recess 726. As is also shown in FIG. 13C, optional 
sealing members 528a and 528b may be configured to seal 
and insulate at least a portion of sensor carrier 402 from 
potential moisture ingress. In some instances, the sealing 
member 528 may be liquid dispensed (e.g., adhesive, gel) or 
a solid material (e.g., elastomer, polymer). The sealing 
member 528 may be an assembled component that is welded 
(e.g., laser or ultrasonic, hot plate), or otherwise perma­
nently attached ( e.g., pressure sensitive adhesive, cyano­
acrylate, epoxy, or other suitable adhesive) to create a sealed 
region. The sealing member 528 may be used to physically 
couple and/or provide a sealed region for the sensor carrier 
402 to the wearable assembly 600. The two sealing members 
528a and 528b are partially separated by walls 766 and 768. 
These walls allow two different sealing methods to be used 
in the two different portions of the recess 726 that are 
separated by the walls. For example, 528b may be a solid 
polymer that is press fit into the recess portion with opening 
524 on one side of the walls. The other portion of the recess 
726 may then be filled with a liquid UV cured epoxy which 
hardens to form sealing member 528a. The depth of the two 
recess portions on either side of the walls may be the same 
or different. MASIMO 1067 
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FIG. 15A shows an alternative embodiment of a sensor 
carrier 402, also potentially taking the form of a printed 
circuit board. In this implementation, a guard trace 407 such 

38 
can be manufactured in a separate facility from the one that 
attaches the pre-connected sensor 400 to the sensor electrical 
interface. This is made possible by providing an analyte 
sensor electronics interface that is accessible from outside as described above with reference to item 336 in FIG. 3D is 

provided on the substrate 404 of the sensor carrier 402. As 
explained above, this guard trace 407 is positioned between 
contacts 406 and 408 and is connected to the bias voltage by 

5 the housing. The housing need not be opened to attach the 

the sensor electronics. The guard trace 407 can be coupled 
to the sensor electronics with or more conductive pins 713 
(not shown in FIGS. 14A to 14E) that extend through the 10 

floor 704 similar to pins 712 and 714. In FIG. 15A, the pins 
are shown connected to castellated contacts on the side of 
the substrate 404. An insulating layer 780 such as solder 
mask may be positioned over the guard trace 407 to elimi­
nate the risk of the analyte sensor electrodes shorting to it. 15 

sensor. 
In some advantageous methods, the electrodes for the 

pre-connected sensor are fabricated and mounted on the 
substrate in a first location and are shipped to a second 
location for coating testing and calibrating. The housing 
with internal electronics is manufactured in a third location. 
The housing with the electronics is shipped from the third 
location to the second location, where the completed analyte 
sensor is attached to the external electrical interface. The 
three locations can all be remote from each other. This 
minimizes handling of the sensitive membrane coated sen­
sor, but still allows separate manufacturing of the other 
components of the complete device. 

FIG. 16 shows a top view of an implementation of sensor 
carrier 402 in which substrate 404 is a substantially planar 
substrate and sensor 138 is attached to substrate 404 with a 
conductive adhesive 1500. As shown in FIG. 16, conductive 
adhesive 1500 may be applied to contacts 1000 and 1002 of 
sensor 138 to mechanically attach sensor 138 to substrate 
404. Once applied the conductive adhesive 1500 on contacts 
1000 and 1002, may itself form contacts 408 and 406 for 
coupling to testing station 5002, calibration station 5004, 
and/or electronics unit 500. FIG. 17 shows an end view of 

FIGS. 15B and 15C illustrated other implementations of 
connecting a sensor carrier 402 having an analyte sensor 138 
mounted thereon to electronic circuitry internal to a wear­
able sensor. In FIG. 15B, the sensor 138 is coupled to the 
sensor carrier 402 with conductive adhesive 762 and 764 as 20 

shown above with reference to FIGS. 14C and 14D. On the 
other side of the sensor carrier substrate are conductive 
contact pads 812 and 814. The circuit board 530 also has 
contact pads 826 and 828 bonded thereto and which are 
accessible through the floor 704 of the recess 726. An 25 

anisotropic film 820 is used to electrically and mechanically 
bond the sensor carrier contact 812 to circuit board contact 
826 and also sensor carrier contact 814 to circuit board 
contact 828. The anisotropic film 820 is compressed with 
heat between the contacts, which makes conductive particles 30 sensor carrier 402 of FIG. 16 in which conductive adhesive 
in the film 820 bridge the gap vertically between the contact 
pairs 812/826 and 814/828. The conductive particles in the 
film 820 are spaced apart horizontally, so no shorting 
between the contact pairs occurs. This electrical and 
mechanical bonding technique has found widespread use in 35 

display applications for small electronics such as smart 
phones and lends itself to easy and consistent connections in 
production environments. 

1500 can be seen covering a portion of sensor 138 at the 
proximal end. In other embodiments, sensor 138 may be 
attached to substrate 404 with a conductive adhesive 1500, 
or via any other suitable methods via the use of, for example, 
clips, conductive polymer, metallic foil, conductive foam, 
conductive fabric, wire wrapping, wire threading or via any 
other suitable methods. 

FIGS. 18, 19, and 20 show examples of substrate 404 of 
FIG. 16, with additional datum features for controlling the 
position and spatial orientation of sensor 138 on substrate 
404. In the example of FIG. 18, substrate 404 includes a 

In FIG. 15C, the proximal region of sensor 138 is coupled 
to the sensor carrier 402 contacts 812 and 814 with aniso- 40 

tropic film 820. A different area of the same anisotropic film 
820 may be used to connect the sensor carrier contacts 812 
and 814 to circuit board contacts 826 and 828 respectively. 
In this implementation, the area of the film 820 that connects 
the sensor 138 to the contacts 812 and 814 may be horizon­
tally adjacent to or otherwise separated from the area of the 
film 820 that connects the circuit board contacts 826 and 828 
to the sensor carrier contacts 812 and 814. 

In the examples of FIGS. 10-15, pre-connected sensor 400 

v-shaped recess 1700. Sensor 138 is disposed partially 
within recess 1700 to orient sensor 138 in a direction along 
the recess, and conductive adhesive 1500 substantially cov-

45 ers sensor 138 and fills in portions of recess 1700 not filled 
by sensor 138 to secure sensor 138 within the recess. In the 
example of FIG. 19, substrate 404 includes a first planar 
portion 1800 and a second planar portion 1802 extending at 

can be installed as a standalone interface between sensor 138 50 

a non-parallel (e.g., perpendicular) angle with respect to the 
first planar portion, and sensor 138 is attached at the 
interface of the first and second planar portions by conduc-and the sensor electronics. However, it should be appreci­

ated that, in some implementations described herein, pre­
connected sensor 400 may include a sensor carrier that 
couples to an additional interface between the sensor 138 
and the sensor electronics inside the wearable assembly 600. 
For example, channel 322d and leaf spring 306d can be 
formed on separate substrate that, following calibration and 
testing operations, mechanically attaches to base portion 
312d within seal 192 for installation into wearable assembly 
600. 

It is one benefit of the analyte sensor connection tech­
niques described above that the fabrication of the pre­
connected sensor 400 may be separated from the fabrication 
of the electronics enclosed within the housing. As described 
above with reference to the pre-connected sensor structure 
and the subsequent coating, testing and calibrating pro­
cesses, the housing with the internally contained electronics 

tive adhesive 1500. In the example of FIG. 20, substrate 404 
includes a rounded recess 1900 in which sensor 138 is 
attached by conductive adhesive 1500 that substantially 

55 covers sensor 138 and fills in portions of recess 1700 not 
filled by sensor 138 to secure sensor 138 within the recess. 

FIGS. 21A and 21B show an example sensor carrier 402 
with at least one pair of guide structures 2106 and 2108 
formed on the substrate 404, such as on one or both contacts 

60 406 and 408. These guide structures can assist placement of 
the sensor body 138 on the appropriate location when 
applying conductive adhesive to bond the two together. This 
can eliminate the need for external guide fixtures when 
assembling the sensor to the sensor carrier during manufac-

65 turing. The structures 2106, 2108 can be made of solder or 
other conductive adhesive. Although not shown in FIGS. 
21A and 21B, an additional adhesive bonding material can MASIMO 1067 
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be provided between the guide structures to fix the sensor to 
the guide structures during manufacturing. 

40 
contacts 1000 and 1002, may itself form contacts 408 and 
406 for coupling to testing station 5002, calibration station 
5004, and/or electronics unit 500. 

FIGS. 25 and 26 show an exemplary ultrasonic welding 
Conductive adhesive 1500 may be, for example, a con­

ductive liquid dispensed glue. The conductive liquid dis­
pensed glue may be a one or two-part adhesive that cures 
(e.g., at room temperate or an elevated curing temperate). 
The conductive liquid dispensed glue may be a snap-cure 
adhesive. A two-part conductive liquid dispensed glue may 
include a base adhesive (e.g., epoxy, polyurethane, etc.) and 
a conductive filler (e.g., silver, carbon, nickel, etc.). Con­
ductive adhesive 1500 may include, for example, an adhe­
sive resin with one or more embedded conductive materials 
such as silver, copper or graphite. Conductive adhesive 1500 
may be a heat curable conductive adhesive. 

5 system for welding conductive plastic 2200 to substrate 404. 
As shown in FIG. 25, substrate 404 may be provided with a 
recess within which a protrusion on a conductive plastic 
member 2200 can be received. Sensor 138 may be disposed 
within a recess in the protrusion on conductive plastic 

10 member 2200 and conductive plastic member 2200 can be 
pressed in direction 2302 and vibrated by ultrasonic welding 
horn 2300 to form a melt region 2400 that, when horn 2300 
is removed, solidifies to secure sensor 138 between substrate 
404 and conductive plastic 2200 to form a conductive 

15 contact to sensor 138. FIG. 22 shows a top view of an implementation of sensor 
carrier 402 in which substrate 404 is a substantially planar 
substrate and sensor 138 is attached to substrate 404 with a 
conductive tape 2000. As shown in FIG. 22, conductive tape 
2000 may be applied to one or more contacts ( e.g. connec­
tion areas 1000 and 1002) of sensor 138 to mechanically 
attach sensor 138 to substrate 404. Once applied the con­
ductive tape 2000 on contacts 1000 and 1002, may itself 
form contacts 408 and 406 for coupling to testing station 
5002, calibration station 5004, and/or electronics unit 500. 
Tape 200 may be applied over sensor 138 as shown in FIG. 25 

22, or may be interposed between substrate 404 and sensor 
138. In implementations in which tape 2000 is disposed 
between substrate 404 and sensor 138, substrate 404 may be 

In some implementations, in order to provide a sensor 138 
with additional surface area for clipping or soldering of 
contacts to substrate 404, the proximal end of sensor 138 
may be rolled or otherwise flattened as shown in FIG. 27. As 

20 shown in FIG. 27, contacts l000F and 1002F may be flat 
contacts that converge into a cylindrical wire sensor 138. As 
shown in the side view of sensor carrier 402 in FIG. 28, 
flattened contacts l000F and 1002F may be attached to 
substrate 404 with conductive attachment members 2600 
and 2602 such as clips, solder welds, an anisotropic con­
ductive film, a conductive tape, a plastic member with 
embedded conductors, conductive springs, or elastomeric 
conductive members (as examples). 

a flexible substrate that can be rolled or folded around sensor 
138 as shown in the end view of FIG. 23. The rolled 30 

In one example, connectors such as contacts l000F and 
1002F (and/or other forms of contacts 1000 and 1002 
described herein) may be laser soldered to corresponding 
contacts on substrate 404. In implementations in which 
sensor 138 is laser soldered to substrate 404, a trace surface 
of substrate 404 may be preheated by laser illumination at a 

substrate of FIG. 23 includes extending portions 2100 that 
can form one or more contacts (e.g. 406 or 408). 

Conductive tape 2000 may be configured for use as a 
multi-zoned tape with one or more conductive tapes 2000 
and non-conductive tape sections. The combination of con­
ductive and non-conductive regions can be used to electri­
cally isolate connection regions. Using a multi-zoned tape 
may simplify the assembly of multiple connection regions in 
a single assembly step. The pitch of the conductive regions 
on the tape may be matched to the targeted connection area 
of the sensor wire 138. In other embodiments the pitch of the 
conductive region of the tape is significantly less than the 
spacing of the targeted connection area of the sensor wire 
138. A shorter pitch may allow for more variability in tape 
placement while ensuring isolated connection between the 
sensor 138 and the substrate 404. Conductive tape 2000 may 

35 soldering location. The surface heat emission may reflow a 
pre-deposited solder material on either side of sensor 139. A 
guide such as a borosilicate glass "angle" may be placed 
over the sensor and per-deposited solder to retain the solder, 
driving molten solder towards the sensor. A resulting 

40 "cradle" bond may then securely anchor the sensor to the 
trace on substrate 404 which may help increase or maximize 
a trace-to-solder-sensor contact wire bonding area. Use of a 
guide such as a borosilicate glass angle may also protect 
printed circuit board assembly electronics that may be 

45 included on and/or in the substrate from solder debris during 
the hot portion of the soldering process. 

In another example, connectors such as contacts l000F 
and 1002F (and/or other forms of contacts 1000 and 1002 
described herein) may be soldered to corresponding contacts 

50 on substrate 404 without a laser. In these example, solder 
wire may be pre-fed onto a tip of a soldering iron to build 
up a blob of molten solder on the tip. The iron may then be 
moved down so the blob touches the sensor and conductive 

be formed from a polymer substrate with a conductive 
adhesive (e.g. carbon-impregnated adhesive, metal-impreg­
nated adhesive). As another example, conductive tape 2000 
may be a metallic substrate with conductive and non­
conductive adhesive. Some examples of non-conductive 
substrates are polyimide, composite, polymers, etc. Some 
examples of conductive substrates are metals (e.g. Foils, 
plating, cladding, etc), conductive polymers, and conductive 
elastomers. Examples of non-conductive adhesive are 55 

epoxy, cyanoacrylate, acrylic, rubber, urethane, hot melt, 

trace on the substrate. A coating on the sensor such as the 
Ag/ AgCl coating described herein may be provided with a 
low thermal mass such that the sensor coating heats up 

etc. Examples of conductive adhesives are carbon filled 
adhesive, nano particle filled adhesive, metal filled adhesive 
(e.g. silver), conductive inks, etc. 

quickly without freezing the solder. Once the coating is 
heated, the solder wets to the coating. The trace would also 
have minimal thermal mass so it will heat up quickly without 
freezing the solder. A solder mask may be provided around 
the trace that prevents the solder flowing off the edge of the 
trace. 

FIG. 24 shows a top view of an implementation of sensor 60 

carrier 402 in which substrate 404 is a substantially planar 
substrate and sensor 138 is attached to substrate 404 with a 
conducive plastic 2200 welded or bonded to a non-conduc­
tive (e.g., plastic) substrate 404. As shown in FIG. 24, 
conductive plastic 2200 may be applied to contacts 1000 and 
1002 of sensor 138 to mechanically attach sensor 138 to 
substrate 404. Once applied the conductive plastic 2200 on 

In some implementations, substrate 404 may be formed, 
at least in part, by a flexible circuit ( e.g., a polyimide 

65 substrate having conductive traces or other suitable flex 
circuit) that folds over and/or around at least a portion of 
sensor 138 to conductive traces of the flex circuit. FIG. 29 MASIMO 1067 
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shows a top view of a flex circuit implementation of sub­
strate 404 in which substrate 404 is a flexible circuit having 
a central, non-conductive, elongated portion 2702 along 
which sensor 138 is oriented and having upper and lower 
extensions 2700 and 2704 that extend from central portion 5 

in a directed perpendicular to the elongated dimension of 
central portion 2702. Extensions 2700 and 2704 respectively 
include conductive contacts 2706 and 2708 that form con­
tacts 408 and 406. Conductive contacts 2706 and 2708 may 
be coupled, via traces and/or conductive vias on or within 10 

substrate 404 to external contacts that form contacts 412 and 

42 
shown) on substrate 404 that form contacts 410 and 412. 
FIG. 33 is a perspective view of one of datum features 2900 
and an associate movable contact 2902, movable in a 
direction 2904 toward datum feature 2900 to secure sensor 
138. Contacts 1000 and 1002 may be flattened to enhance 
contact with datum feature 2900 and contact 2902. Addi­
tional conductive material 2906 may be formed on substrate 
404 between datum feature 2900 and contact 2902 to 
enhance electrical contact with sensor 138 if desired. The 
additional conductive material may be an exposed surface of 
a portion of an embedded conductive layer ( e.g., a copper or 
other conductive metal layer) within substrate 404 or may be 
solder or a conductive adhesive (as examples). 

FIG. 34 shows a perspective view of a pre-connected 

410. In some instances, extensions 2700 and 2704 may 
allow for testing, calibration, sensor electronics or other 
equipment to connect to sensor carrier/sensor assembly in 
area that is not occupied by the sensor. This may allow for 
additional connection types and/or improve electrical cou­
pling of connection. 

15 sensor formed from a sensor carrier implemented as a barrel 
connector that substantially surrounds sensor 138. In the 
example of FIG. 34, substrate 404 may be an insulating layer 
formed around sensor 138 with conductive bands that extend 
from an internal contact with contacts 1000 and 1002 to an 

FIG. 30 shows an implementation of sensor carrier 402 in 
which substrate 404 includes a wedge-shaped base portion 
2800 and a foldable flexible portion 2802. Conductive 20 

contacts 2804 may extend from base portion 2800 to fold­
able portion 2802 so that, when sensor 138 is placed on base 
portion 2800 and optionally foldable portion 2802 is be 
folded over sensor 138 ( e.g., in direction 2820) to wrap over 
and around sensor 138, contacts 410 and 412 electrically 25 

couple to sensor 138. Base portion 2800 may be rigid and 
may taper in a direction away from sensor 138. Base portion 
2800 may include conductive contacts 410 and 412 at a 
narrow end. Base portion 2800 may, for example, be remov­
ably inserted into recesses 5006 and 5014 of testing station 30 

5002 and calibration station 5004 for testing and calibration 
operations. In the examples of FIGS. 27 and 28, the flexible 
substrate may be folded over the sensor and secured ( e.g., to 

external surface that forms contacts 410 and 412. As shown 
in FIG. 34, annular contacts 410 and 412 may be removable 
received by a press fit into conductive brackets 3102 and 
3104 of a device 3100 (e.g., testing station 5002, calibration 
station 5004, and/or electronics unit 500). Conductive brack-
ets 3102 and 3104 may establish electrical communication 
between sensor 138 and device 3100 (e.g., testing station 
5002, calibration station 5004, and/or electronics unit 500). 

FIG. 35A shows an implementation of sensor carrier 402 
in which a flexible circuit is wrapped over an end of sensor 
138 such that a top portion 3200 and a bottom portion 3202 
of the flexible substrate are formed on opposing sides of 

the sensor and/or to itself to secure the sensor by a welding 
soldering, a mechanical crimp, spring contacts, rivets, adhe- 35 

sive such as epoxies, or the like. 

sensor 138. As shown in FIG. 35B, top portion 3200 and 
bottom portion 3202 may be wrapped over the ends of 
multiple sensors 138 such that a flex circuit strip 3404 forms 
a common sensor carrier for multiple sensors. Flex circuit 
strip 3204 may include pairs of internal contacts for cou-

FIGS. 31A and 31B illustrate another embodiment of a 
sensor carrier 402. In this embodiment, the sensor carrier 
402 comprises a block 404 made of non-conducting material 
such as a polymer or ceramic. The block 404 includes a 
through-hole 1420 extending therethrough along the y-axis 
through which the proximal ex vivo portion of the analyte 
sensor 138 extends. Slots or blind holes 1410 and 1412 
intersect the through-hole 1420 on an orthogonal z-axis to 
the through hole y-axis. Conductive contact material 406 
and 408 is plated on the top surface and extends into the slots 
1410 and 1412. Additional holes 1430 and 1432 extending 
along the x-axis intersect both the through-hole 1420 and the 
slots 1410 and 1412. Each hole 1430 and 1432 extends 
across its respective slot and partway into the block on the 
other side of each slot forming a blind hole or depression 
1442, 1444 on the other side. Plugs 1451 and 1453, which 
may be conductive or non-conductive are inserted into the 
holes 1430 and 1432 and push the contacts 212b and 211b 
of the wire analyte sensor into the depressions 1442, 1444, 
causing the contacts 212b and 211b to come into electrical 
contact with the sensor carrier contacts 406 and 408. 

pling to contacts 1000 and 1002 of each sensor 138 and pairs 
of external contacts, each pair of external contacts coupled 
to a corresponding pair of internal contacts and forming 

40 contacts for coupling to testing station 5002 and/or calibra­
tion station 5004. In this way, multiple sensors can be 
transported and coupled to testing and calibration equipment 
as a group. Strip sensor carrier 3204 may include identifiers 
for each sensor 138 so that testing and/or calibration data for 

45 each sensor can be logged and stored. Individual pre­
connected sensors may be formed by singulating strip sensor 
carrier 3204 into individual sensor carriers for each sensor 
that can be installed in an electronics unit, such as the 
wearable sensor units of FIGS. 13 and 14. Strip 3204 may 

50 include singulation features 3220 ( e.g., markings and/or 
scoring that facilitate singulation into individual pre-con­
nected sensors. 

Although FIGS. 35A and 35B show a flexible circuit strip 
that is wrapped around the ends of sensor 138, this is merely 

55 illustrative. It should be appreciated that a flex strip carrier 
for more one or more sensors 138 may be attached to the 
sensor(s) in other ways. For example, the ends or other 
portions of sensors 138 may extend into a substrate of FIG. 32 shows a top view of a sensor carrier having a 

substrate 404, a datum feature 2900, and a movable con­
nector 2902 for each of contacts 406 and 408. Sensor 138 60 

flexible circuit strip 3204 to couple to internal conductive 
contacts in the strip or the ends or other portions of sensors 
138 may be attached to a surface of flexible circuit strip 3204 may be aligned against datum features 2900 and movable 

connectors 2902 may be moved to secure each of contacts 
1000 and 1002 between the corresponding datum feature 
and movable connector. Movable connectors 2902 and/or 
datum features 2900 conductively couple to contacts 1000 65 

and 1002. Movable connectors 2902 and/or datum features 
2900 may be conductively coupled to other contacts (not 

(e.g., using an anisotropic conductive film (ACF) or other 
conductive adhesive, a laser solder or other solder, a clip or 
other attachment mechanisms and/or datum features that 
position and align the sensor). 

FIG. 36 shows an implementation of sensor carrier 302 in 
which a crimp connector 3301 extends through a portion of MASIMO 1067 
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substrate 404. As shown in FIG. 36, crimp connector 3301 
may have a base portion 3300 that extends from a first side 
of substrate 404 ( e.g., to form one of contacts 410 and 412). 
Crimp connector 3301 also includes arms 3302 extend from 
an opposing second side of substrate 404. As shown in FIG. 
37, arms 3302 can be pressed together or crimped to 
mechanically secure and conductively couple to sensor 138, 
thereby forming, for example, contact 406. FIG. 38 shows a 
side view of the sensor carrier of FIGS. 36 and 37 and shows 
how two crimp connectors may be provided that extend 
through substrate 404 and form contacts 406 and 408 on a 
first side and contacts 410 and 412 on a second side. 
Although contacts 410 and 412 are formed on the second 
side of substrate 404 in FIG. 38, it should be appreciated that 
contacts 410 and 412 can be formed on the first side, or on 
a sidewall or edge of substrate 404 ( e.g., by including one or 
more bends or other conductive couplings within substrate 
404). 

FIG. 39 shows an implementation of pre-connected sen­
sor in which sensor carrier 402 includes a distally oriented 
channel 358 that directs sensor 138 distally such that sensor 
138 includes a bend that is at least 45 degrees and/or less 
than 135 degrees. A channel cover 362 secures the glucose 
sensor 138 in the distally oriented channel 358. In the 
example of FIG. 39, one or more contacts (e.g. 408 and 406) 
are implemented using conductive elastomeric members 
1400. In other embodiments contacts may be any suitable 
type ( e.g. coil springs 306, leaf spring 306d). Contacts ( e.g. 
conductive elastomeric members 1400) form a conductive 
coupling between sensor 138 and external equipment (e.g., 
testing station 5002, calibration station 5004, and/or on-skin 
sensor assembly 600). Contacts may cooperate with under­
lying features on substrate 404 (e.g., protrusions 308) and/or 
channel 322d, as shown, to form datum features that secure 
and align sensor 138 with respect to sensor carrier 402 ( e.g., 
for manufacturing, calibration, testing, and/or in vivo opera­
tions). In some implementations, the sensor 138 maybe bent, 
glued, or bonded so as to be affixed within sensor carrier 
402. 

FIG. 40 shows an implementation of sensor carrier 402 in 
which substrate 404 is a molded interconnect device. In the 
example of FIG. 40, substrate 404 is formed from molded 
thermoplastic or thermo set ( e.g., acrylonitrile butadiene 
styrene, a liquid crystal polymer, a polyimide/polyphthal­
amide plastic, or other thermoplastic or thermoset polymer 
materials) that includes conductive traces 3702. Conductive 
traces 3702 may be formed on a surface of substrate 404 
and/or may pass into and/or through portions of substrate 
404 to form suitable connections. Conductive traces may be 
formed on the molded substrate using a variety of techniques 
(e.g. selective plating via laser etching, combining platable 
and non platable substrate polymers, or other suitable meth­
ods). In other embodiments, a conductive material (e.g. 
conductive polymer, metal stamping, plated polymer, metal­
lic structure) may be overmolded with a non-conductive 
material. 

To create suitable electrical connections as shown in FIG. 
40, conductive traces 3702 are electrically coupled between 
contacts (e.g. contact region 1000 and 1002 on sensor 138) 
and external contacts (e.g. contacts 410 and 412). Although 
contacts (e.g. 410 and 412) are formed on the same surface 
of substrate 404 to which sensor 138 is attached in the 
example of FIG. 37, this is merely illustrative. It should be 
appreciated that contacts (e.g. contacts 410 and 412) may be 
formed on an opposing surface or on an edge or sidewall of 
substrate 404 and coupled to contacts ( e.g. contacts 408 and 
406) by conductive materials ( e.g. conductive layers, struc-

44 
tures, adhesive, clips, solder, or interconnects) within or on 
substrate 404. For example, contacts (e.g. contacts 410 and 
412) may form a designated area to interface electrical 
coupling on a different surface or region of substrate 404 on 

5 which sensor 138 is attached. The designated area may form 
a channel, groove, recess, slot, or similar alignment feature 
for orienting the sensor. 

Molded thermoplastic substrate 404 may be an injection­
molded substrate having features that facilitate various 

10 aspects of testing, calibration, and wearable device instal­
lation for sensor 138. For example, molded thermoplastic 
substrate 404 may include datum features or other locating 
features or positioning features such as a recess 3700 having 
a shape that is complementary to the shape of the proximal 

15 end of sensor 138. For example, recess 3700 may include 
three or more stepped regions that correspond to the steps 
between the different layers of the coaxial analyte sensor 
such as shown in FIG. 3D. In other configurations, molded 
thermoplastic substrate 404 may include a flat-walled recess 

20 as in the example of FIG. 18, a wall that forms a corner as 
in the example of FIG. 19, or a rounded recess as in the 
example of FIG. 20. In yet other configurations, molded 
thermoplastic substrate 404 may include raised features or 
protrusions on the surface that position and align sensor 138. 

25 For example, a raised channel having a shape corresponding 
to the shape of sensor 138 may be provided on the surface 
of molded thermoplastic substrate 404. As another example 
one more posts may extend from the surface of molded 
thermoplastic substrate 404. For example, one or more lines 

30 of protrusions can be formed on the surface of molded 
thermoplastic substrate 404 against which and/or between 
which sensor 138 can be positioned and aligned. In this way, 
various configurations can be provided for a molded ther­
moplastic substrate 404 including datum features that orient 

35 sensor 138 in a preferred direction at a preferred position. 
Molded thermoplastic substrate 404 may also include 

other shaped features such as finger holds 3720 on opposing 
sides the substrate that facilitate grasping, holding, and 
transporting of sensor 138. Molded thermoplastic substrate 

40 404 may also include other shaped features such as anchor­
ing features corresponding to the shape of connectors for 
manufacturing equipment 5091, testing equipment 5004, 
and calibration equipment 5004 such as grasping connector 
features 5093/5095 of manufacturing equipment 5091 and/ 

45 or recess connectors 5006 and 5014 of testing equipment 
5002 and calibration equipment 5004. Anchoring features 
formed on molded thermoplastic substrate 404 and/or by 
molded thermoplastic substrate 404 itself may include one 
or more protrusions such as posts, snap-fit features, arms 

50 such as arms 202 (see, e.g., FIGS. 11-14), recesses, notches, 
hooks, and/or tapered portions similar to the tapered por­
tions shown in FIG. 28 (as examples). In some examples, a 
portion of molded thermoplastic substrate 404 or the entire 
molded thermoplastic substrate 404 may have a shape that 

55 corresponds to the shape of a mounting receptacle on or 
within one or more of manufacturing equipment 5091, 
testing equipment 5002, calibration equipment 5004, carri­
ers, and/or a wearable device. 

Although substrate 404 is shown in FIG. 40 as being 
60 substantially rectilinear, a molded thermoplastic substrate 

404 can be provided with features 3720 and/or an overall 
shape such as a handle shape for inserting, pulling, or 
otherwise manipulating sensor 138 during manufacturing 
and assembly operations. For example, molded thermoplas-

65 tic substrate 404 may include a main portion configured to 
mechanically and electrically interface with manufacturing 
equipment 5091, testing equipment 5002, calibration equip-MASIMO 1067 
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sensor 138 to testing station 5002, calibration station 5004, 
and/or electronics unit 500 (e.g., an electronics unit of a 
wearable device). Each of the plurality of pairs of electrical 
contacts is coupled to an associated pair of portions of strips 

ment 5004, and/or a wearable device, and a gripping portion 
that extends from the main portion. The gripping portion 
may extend from the manufacturing equipment 5091, testing 
equipment 5002, or calibration equipment 5004 during 
manufacturing operations to facilitate removal of sensor 
carrier 402 and sensor 138 from the equipment after or 
between the manufacturing operations. The gripping portion 
may be integrally formed with the main portion or may be 

5 4001 and 4002 via the substrate. 

a separate component that extends from the surface of, or 
from within, molded thermoplastic substrate 404. The grip- 10 

ping component may be a post, a stock, a shaft, or an arched 
handle shaped for gripping by a gripping tool or by hand 
(e.g., by a technician). 

As shown in FIG. 40, sensor 138 may be placed in recess 
3700 and secured to substrate 404 using adhesive 3704 ( e.g., 15 

a conductive adhesive as described herein). Adhesive 3704 
may be applied to couple contact 1000 of sensor 138 to a first 
conductive trace 3702 on substrate 404 to form contact 408 
between sensor 138 and sensor carrier 402. Adhesive 3704 
may be also applied to couple contact 1002 of sensor 138 to 20 

a second conductive trace 3702 on substrate 404 to form 
contact 406 between sensor 138 and sensor carrier 402. In 
this way, molded thermoplastic substrate 404 can provide a 
handle and/or a strain relief member for moving and/or 
otherwise handling sensor 138. 25 

FIG. 41 shows a top view of sensor carrier 402 of FIG. 40. 
As shown in FIGS. 40 and 41, the first conductive trace 3702 
may extend from a contact portion with contact 1000 within 
recess 3700 to form one or more exposed portions on the 
surface of substrate 404 that form external contact 412 for 30 

FIGS. 44-46 show various contact configurations on 
sensor carriers that can be singulated from a sensor carrier 
strip of the type shown in FIG. 43. In the example of FIG. 
44, a z-shaped contact configuration on substrate 4000 has 
been singulated to form a pre-connected sensor on a smaller 
portion of the substrate, referred to as substrate 404. In this 
instance, the z-shaped contact configuration may allow for 
greater distance between connectors (e.g., larger pitch con­
nection) on testing, manufacturing, or calibration equip­
ment, though a z-shaped substrate is not necessary to gen­
erate the greater distance and other substrate shapes can be 
used. In the example of FIG. 45, a square portion of substrate 
4000 has been singulated to form a pre-connected sensor on 
the substrate 404. In the example of FIG. 46 a square portion 
of substrate 4000 has been singulated to form a pre-con­
nected sensor and an opening 4300 ( e.g., an air gap) is 
provided in the singulated substrate 404 to improve electri­
cal isolation between singulated contact strip portions 4001 
and 4002. 

As shown in FIG. 47A, in some implementations, an 
elongate substrate 4000 that forms a sensor carrier for 
multiple sensor 138 can be provided with a feed-guide strip 
4402 that runs along an elongated edge of the elongate 
substrate. Feed-guide strip 4402 may include locating fea­
tures 4404 that can be accessed and manipulated to move 
and register a strip of pre-connected sensors through one or 
more manufacturing stations. 

In the implementation of FIG. 47A, sensors 138 can be 
attached to substrate 4000 in bulk and singulated on sub-

coupling to testing station 5002, calibration station 5004, 
and/or electronics unit 500. The second conductive trace 
3702 may extend from a contact portion with contact 1002 
within recess 3700 to form one or more exposed portions on 
the surface of substrate 404 that form external contact 410 
for coupling to testing station 5002, calibration station 5004, 
and/or electronics unit 500. 

FIG. 42 shows a specific implementation of sensor carrier 
402 as illustrated in FIGS. 40 and 41. In this implementation 
of sensor carrier 402, sensor 138 is attached to substrate 404 
with a conductive coupler 3900, such as, for example, clips, 
conductive adhesive, conductive polymer, metallic foil, con­
ductive foam, conductive fabric, wire wrapping, wire 
threading or via any suitable methods. As shown in FIG. 43, 
a substrate 4000 may have an elongated dimension along 
which parallel conductive strips 4001 and 4002 are formed. 
Multiple sensor 138 may be attached to substrate 4000 and 
extend beyond an edge of the substrate in a direction 
perpendicular to the elongated dimension of the substrate. 
Singulation features such as scoring 4020 may be provided 
that facilitate singulation of substrate 4000 into individual 
sensor carrier substrates 404 for each sensor and/or that 
electrically isolate portions of conductive strips 4001 and 
4002 for each sensor. Each sensor may be attached to 
substrate 4000 using, for example clips 3900 or any other 
methods including, via the use of conductive adhesive, 
conductive polymer, metallic foil, conductive foam, conduc­
tive fabric, wire wrapping, wire threading or any other 
suitable methods. An identifier 450 for each sensor may be 
provided on a corresponding portion of substrate 4000. 

35 strate 404 after manufacturing or testing operations. As 
shown in FIG. 47B, a strip of pre-connected sensors as 
shown in FIG. 4 7 A can be provided on a reel 4410 for bulk 
storage and/or transportation and optionally automatically 
pulled from the reel using feed-guide strip 4402 to be moved 

40 through one or more testing stations and/or one or more 
calibration stations. FIG. 48 shows a pre-connected sensor 
having a sensor carrier that has been singulated from sub­
strate 4000 and separated from a singulated portion 4402 of 
feed-guide strip 4402. Alternatively, feed-guide strip 4402 

45 can be separated as a strip prior to singulation of individual 
pre-connected sensors. In other embodiments, the feed guide 
is integrated into the final product configuration and not 
removed from the sensor carrier during or after singulation. 

FIG. 49 shows an implementation of sensor carrier 402 in 
50 which a plurality of sets of contacts 406 and 408 are formed 

from receptacles 4600 having a slot for receiving a corre­
sponding plurality of sensors 138. In some implementations, 
the receptacles 4600 may be an elongated member compris­
ing a resilient or flexible material. The receptacles 4600 may 

55 have slots that optionally pierce through an insulation layer 
or deform a portion of the outer layer so as to make contact 
with the sensors 138. 

FIG. 50 shows an implementation of a sensor carrier for 
multiple sensors 138 having recesses 4700 that form datum 

60 features to hold each sensor in an accurate aligriment and 
position. Complementary magnetic features may be pro­
vided on sensor 138 and substrate 404 to hold each sensor 
in an accurate alignment and position and thereby facilitate 

Sensors 138 may each have a pair of sensor electrical 
contacts (e.g., contacts 1000 and 1002) coupled to a corre­
sponding pair of electrical contacts formed from strips 4001 
and 4002 on the substrate. Openings in substrate 4000 and/or 
vias that extend through substrate 4000 may provide 65 

exposed portions of strips 4001 and 4002 that form a 
plurality of pairs of electrical contacts for coupling each 

accurate sensor processing. 
FIG. 51A shows an implementation of an elongate sub­

strate 4800 formed using printed circuit board technology 
from either a rigid, flexible, or a combination rigid/flexible MASIMO 1067 
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substrate, from which multiple sensor carriers 402 can be 
singulated. Flexible portion of the substrate may be manu­
factured from a material such as polyimide, PEEK, polyester 
or any suitable type. Rigid portion of the substrate may be 
manufactured from a material such as FR4, FR5, FR6, 
insulated metal substrate (IMS), PTFE, or any suitable type. 
As shown in FIG. 51A, each sensor carrier may include a 
sensor connection portion 4804 and an interface or process-
ing portion 4802. In some implementations, each sensor 
carrier may include a sensor connection portion 4804 that 
extends from a rigid or flexible portion and an interface or 
processing portion 4802 that extends from a rigid or flexible 
portion. In these implementations, one or more contacts, 
such as contacts 406 and 408 can be formed on the sensor 
connection portion 4804 of each sensor carrier 402. Sensor 
connection portions 4804 of substrate 4800 may contain 
anchoring or datum features of sensor carriers 402. 

48 
sensors can be permanently connected ( e.g. conductive 
adhesive, conductive polymer, conductive ink, solder, weld­
ing, brazing, or other suitable methods) to the sensor carriers 
402 and both components can be calibrated together or 

5 separately. In other implementations, the sensors can be 
releasably attached (e.g. via clips, metallic foil, conductive 
foam, conductive fabric, wire wrapping, wire threading or 
any other suitable methods). 

Following testing and/or calibration operations, flexible 
10 portion 4802 may be folded around, folded over, wrapped 

around, wrapped over, or manipulated to envelope portion 
4804 for installation into on-skin sensor assembly 600. In 
the example of FIG. 53A, portion 4802 may form a stand­
alone processing circuit for sensor 138 (e.g., an implemen-

15 tation of sensor electronics 112. In other implementations, 
portion 4802 may be coupled directly to signal processing 
circuit for assembly 600, to a system in package (SIP) 
implementation of the sensor electronics or a main printed 
circuit board for the sensor electronics. In the example of 

FIG. 51B shows another implementation of an elongate 
substrate 4800 as shown in FIG. 51A with an optional 
electrical connection interface 4850 for connecting to a work 
station, such as a testing station, a calibration station, an 
assembly station, a coating station, or other manufacturing 
stations. The optional electrical connection interface 4850 
may be coupled to one or more sensor carriers 402 through 
electrical traces configured on one or more layers of the 25 

circuit board. As shown in FIG. 51B, a plurality of sensor 
carriers 402 are assembled in a panel, and each of the sensor 
carrier 402 may include a sensor connection portion 4804 
that extends from a flexible or rigid portion and an interface 

20 FIG. 53B, the flexible portion 4804 is folded to envelope 
portion 4802 for installation into on-skin sensor assembly 
600 so as to have sensor 138 positionally secured to extend 
(e.g. through opening 4808) for insertion for in vivo opera­
tions. 

FIG. 54 shows an implementation in which sensor carrier 
402 is manufactured using printed circuit board technology 
as a daughter board for a main printed circuit board 5100 for 
the sensor electronics. As shown in FIG. 54, one or more 
contacts such as contacts 5104 ( e.g., solder contacts) may be 
formed between sensor carrier 402 and main PCB 5100 to 
form sensor electronics unit for sensor 138 in on-skin sensor 

or processing portion 4802 that extends from a flexible or 30 

rigid portion. In these implementations, one or more con­
tacts, such as contacts 406 and 408 can be formed on the 
sensor connection portion 4804 of each sensor carrier 402. 
Sensor connection portions 4804 of substrate 4800 may 
contain anchoring or datum features of sensor carriers 402. 35 

In some implementations, the elongate substrate 4800 
shown in FIG. 51B may be configured to allow the sensor 
138 to extend beyond the edge of the substrate. This may be 
accomplished by removing a portion of the elongated sub­
strate 4860 for further processing. In some embodiments a 40 

perforation ( e.g. V-score, mouse bites, or other suitable type) 

assembly 600. Conductive traces 5102 may couple contacts 
5104 to sensor 138 via a conductive attachment mechanism 
5103 ( e.g., solder, conductive adhesive, a conductive tape, or 
other conductive attachment as discussed herein). 

FIG. 55 shows an implementation of sensor carrier 402 in 
which a pinch clip 5200 is provided to close the arms 5204 
of a crimp connector 5202 to secure sensor 138 to substrate 
404. Connector 5204 may be formed form a conductive 
material that forms one of contacts 410 and 412. As shown 
in FIG. 55, pinch clip 5200 includes clasping arms 5208 with 

is included in elongated substrate 4800 for enabling the 
removal of the bottom portion of the panel 4860 for dipping 
or calibration. In this implementation, the elongated sub­
strate 4800 can be configured for dipping or calibration, as 45 

described in FIG. 52B. 

ramped surfaces that push the arms outward as pinch clip 
5200 is move toward substrate 404 in direction 5206 and 
snap back to secure pinch clip 5200 to substrate 404. In other 
implementations, pinch clip 5200 may be provided without 
clasping arms 5208 so that pinch clip 5200 is removable 

Now referring to FIG. 52A, an implementation of a sensor 
carrier 402 is shown with one or more sensor contacts ( e.g. 
contacts 406 and 408) on sensor connection portion 4804 
and one or more one or more interface contacts ( e.g. contacts 
410 and 412) on an interface or processing portion 4802. 
One or more interface contacts (e.g., 410 and 412) may be 
formed on sensor carrier 402 for coupling to testing station 
5002, calibration station 5004, and/or electronics unit 500. 
In this configuration, testing and/or calibration operations 
can be performed by coupling portion 4802 to the testing 
and/or calibration equipment. 

FIG. 52B shows an example panel implementation of a 
plurality of sensor carriers 402 with electrical connection 
interface 4850 for interfacing with electronics of a work 
station, such as a testing station, a calibration station, an 
assembly station, a coating station, or other manufacturing 
stations. The illustration of FIG. 52B shows the elongate 
substrate 4800 of FIG. 48B after the bottom panel portion 
4860 has been removed (from the illustration of FIG. 51B) 
and with sensor 138 attached via one or more sensor contacts 
(e.g. contacts 406 and 408). In some implementations, the 

after arms 5204 are pinched closed so that pinch clip 5200 
does not form a part of the sensor carrier. As shown in FIG. 
55, one or more electrode breakouts 5220 may be provided 

50 to form, for example, one or more of contacts 410 and 412 
on substrate 404. Although breakout 5220 is formed on a 
surface of substrate 404 that is opposed to the surface to 
which sensor 138 is attached in the example of FIG. 55, this 
is merely illustrative. It should be appreciated that breakouts 

55 for contacts such as contacts 410 and 412 may be formed on 
the opposing surface, on the same surface as sensor 138, or 
on an edge or sidewall of substrate 404 and coupled to 
contacts 408 and 406 by conductive vias or other conductive 
layers, structures, or interconnects within or on substrate 

60 404. In some implementations, a pinch clip 5200 may be 
used to apply bias force against sensor 138 in combination 
with crimp connector 5202 or directly against substrate 
without crimp connector 5202. Pinch clip 5202 may apply 
force radially, axially, or in a suitable direction to provide a 

65 biasing force on sensor 138 and conductive pathway. 
FIG. 56 shows an implementation of sensor carrier 402 in 

which contacts 406 and 408 are formed from foldable MASIMO 1067 
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conductive clips 5300. Sensor 138 may be inserted through 
openings 5302 in each clip 5300 and mechanically secured 
to substrate 404 and conductively coupled to clips 5300 by 

50 
one or more contacts ( e.g., on a substrate) of the sensor 
carrier to one or more corresponding electrical contacts on 
the elongated body. 

At block 5403, a work station such as a manufacturing a folding a portion 5304 of each of clips 5300 over onto 
sensor 138. 5 station is provided. As described herein, a manufacturing 

station can be configured to perform one or more dip coating 
processes to form the membrane 108 described above on the 
working electrode. 

Portions 5304 of clips 5300 may also form contacts 410 
and 412 for coupling to external equipment such as a 
manufacturing station (e.g., a testing station, a calibration 
station, an assembly station, a coating station, or other 
manufacturing stations). However, this is merely illustrative. 10 

In other implementations, one or more electrode breakouts 
that are conductively coupled to clips 5300 may be provided 
to form, for example, one or more of contacts 410 and 412 
on substrate 404. Such breakouts may be formed on a 15 
surface of substrate 404 that is opposed to the surface to 
which sensor 138 is attached, on the same surface as sensor 
138, or on an edge or sidewall of substrate 404 and coupled 

At block 5404, the analyte sensor may be coupled to at 
least one testing station (e.g., testing station 5002) by 
coupling the sensor carrier to circuitry of the at least one test 
station. Coupling the sensor carrier to the circuitry of the at 
least one test station may include mechanically coupling one 
or more anchoring features such as a substrate of the sensor 
carrier to a mating interface of the test station such that one 
or more external contacts on the substrate are coupled to one 
or more corresponding contacts at the test station. An 
identifier for the sensor on the sensor carrier may be read by 
the testing station. Test data obtained by the test station may to clips 5300 by conductive vias or other conductive layers, 

structures, or interconnects within or on substrate 404. 20 be stored and/or transmitted, in association with the identi­
fier, by the test station. Clips 5300 also form datum features for positioning and 

aligning sensor 138 relative to substrate 404. Substrate 404 
may be sized and shaped ( or may include structural features) 
that form anchoring features for substrate 404 relative to 
manufacturing stations and/or a housing of a wearable 25 

device. In this way, sensor carrier 402 may be used to easily 
position and align sensor 138 for both manufacturing and 
assembly operations (e.g., using the datum features to align 
the sensor relative to substrate 404 and the anchoring 
features to align the substrate relative to the manufacturing 30 

or wearable equipment). 
The conductive components of the sensor carrier 402 in 

the various embodiments described herein are electrically 
isolated from each other and the environment when installed 

35 
in on-skin sensor assembly 600. For example, contacts 406, 
408, 410, and 412 may be electrically isolated from each 
other and the environment, using a non-conductive adhesive 
such as a one or two-part epoxy, using a polyurethane, using 
a low pressure overmolding such as a moldable polyamide 40 

or a moldable polyolefin, using an injection overmolded 
thermoplastic or thermoset, using a non-elastomer such as 
welded clamshell plastic, adhesively bonded clamshell, 
single or 2-sided cavity potted with sealant, e.g., epoxy, 
urethane, silicone, etc., or using a factory pre-compressed 45 

elastomer such as a constrained two-part cavity that holds an 
elastomer in a compressed state. The two-part cavity may 
hold the elastomer in the compressed state by a snap fit, a 
bonding such as an ultrasonic weld, a laser weld, a solvent 
bond, or a heat stake, or a mechanical fastener such as a 50 

screw, rivet, clip, or other fastener. 
Illustrative operations that may be performed for manu­

facturing and using a pre-connected analyte sensor are 
shown in FIG. 57. 

At block 5406, the analyte sensor may be coupled to at 
least one calibration station (e.g., calibration station 5004) 
by coupling the sensor carrier to circuitry of the at least one 
calibration station. Coupling the sensor carrier to the cir­
cuitry of the at least one calibration station may include 
mechanically coupling the one or more anchoring features 
such as the substrate of the sensor carrier to a mating 
interface of the calibration station such that one or more 
external contacts on the substrate is coupled to one or more 
corresponding contacts at the calibration station. An identi­
fier for the sensor on the sensor carrier may be read by the 
calibration station. Calibration data obtained by the calibra­
tion station may be stored and/or transmitted, in association 
with the identifier, by the calibration station. Calibration data 
may be stored on the sensor carrier or transmitted for later 
use by an on-skin sensor assembly 600 during in vivo use of 
sensor 138. 

Sensor carrier 402 may be coupled to one or more 
additional manufacturing stations as desired. The additional 
manufacturing stations may include potentiostat measure­
ment stations, sensor straightening stations, membrane dip­
ping stations, curing stations, analyte sensitivity measure­
ment stations, and/or inspection stations. 

At block 5408, the sensor carrier may be coupled to 
sensor electronics ( e.g., sensor electronics 112 of electronics 
unit 500) of a wearable device such as on-skin sensor 
assembly 600. Coupling the sensor carrier to the sensor 
electronics may include coupling the one or more external 
contacts on the sensor carrier to corresponding contacts of 
the sensor electronics. In some embodiments, coupling the 
sensor carrier to the sensor electronics may include securing 
the sensor carrier between a base such as base 128 and 
electronics unit 500 as described herein. A reader in the 

At block 5400, an analyte sensor such as analyte sensor 
138 may be provided. As described herein the analyte sensor 
may have an elongated body ( e.g., an elongated conductive 
body with an elongated conductive core), and a working 
electrode on the elongated body ( e.g., at a distal end of the 
elongated body). The analyte sensor may also include one or 
more electrical contacts at a proximal end or elsewhere 
along the elongated body and coupled, respectively, to the 
working electrode and/or the reference electrode. 

55 on-skin sensor assembly 600 may obtain an identifier of the 
sensor from the sensor carrier. Calibration data for the sensor 
may be obtained based on the identifier. 

At block 5402, a sensor carrier such as one of the 
implementations of sensor carrier 402 described herein may 
be attached, for example, to the proximal end of the elon­
gated body. Attaching the sensor carrier includes coupling 

At block 5410, in vivo signals from the working electrode 
( e.g., and a reference electrode) may be obtained and pro-

60 cessed with the sensor electronics. The in vivo signals from 
the working electrode ( e.g., and a reference electrode) may 
be received by the sensor electronics from the sensor 
through the circuitry of the sensor carrier. 

The methods disclosed herein comprise one or more steps 
65 or actions for achieving the described methods. The method 

steps and/or actions may be interchanged with one another 
without departing from the scope of the claims. In other MASIMO 1067 
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features that interface with one or more corresponding 
anchoring features of a sensor carrier as described herein in 
accordance with various implementations. Carrier 5800 may 
include circuitry 5806 (e.g., one or more processors and/or 

words, unless a specific order of steps or actions is specified, 
the order and/or use of specific steps and/or actions may be 
modified without departing from the scope of the claims. For 
example, the operations described above in connection with 
blocks 5404 and 5406 may be reversed and/or may be 
performed in parallel. 

In some scenarios, it may be desirable to couple sensor 
138 to one or more contacts on a substrate in a preferred 
position and orientation. FIG. 58 shows an exemplary appa­
ratus 5531 in which sensor 138 is oriented to substrate 5530 
using an elastomeric tube. As shown in FIG. 58, apparatus 
5531 may include a substrate 5530 having one or more 
conductive contacts such as contacts 5532 and 5534 (e.g., 
exposed copper pads on a printed circuit substrate), and an 
elastomeric tube 5500. Elastomeric tube 5500 may be 
formed from a non-conductive elastomer. 

5 memory) configured to communicate with sensors 138 and/ 
or external computing equipment. Circuitry 5806 may 
include communications circuitry such as one or more 
antennas for transmitting and/or receiving data from external 
equipment. Housing 5802 may include one or more struc-

10 tures 5810 ( e.g., clips, clasps, protrusions, recesses, notches, 
posts, or the like) for mechanically coupling carrier 5800 to 
manufacturing equipment. One or more conductive contacts 
5808 may be provided on housing 5802 that communica­
tively couple manufacturing equipment to sensors 138 

15 through the carrier. 
As shown, each interface 5804 may be associated with a 

particular identification number (represented, as an example, 
in FIG. 58 as Ii, I2 ... IN-1' and IN). Circuitry 5806 may 
electronically identify sensors mounted in interfaces 5804 of 

As shown, elastomeric tube 5500 may be formed with a 
"D", "O", oval, pyramidal, or hemispherical shaped cross­
section having an elongated cutout 5503 in the bottom 
portion of the elastomeric tube 5500 within which sensor 
138 is disposed. In this way, sidewalls of the elongated 
cutout of elastomeric tube 5500 can align sensor 138 relative 
to substrate 5530. 

Bottom portions 5502 on either side of cutout 5503 may 

20 carrier 5800 with the identification number associated with 
that interface. However, this is merely illustrative. In other 
implementations, sensors 138 may be uniquely identified by 
circuitry 5806 using a reader in each of interfaces 5804 that 
reads an identifier such as identifier 450 on the sensor 

be attached to substrate 5530. The bottom portions 5502 25 

may be attached to substrate using adhesive 5504 such as a 
pressure-sensitive adhesive. The elongated opening 5501 
and cutout 5503 in the elastomeric tube 5500 provides 
sufficient space that, in order to assemble the apparatus, tube 
5500 can be placed over sensor 138 while sensor 138 is in 30 

place on substrate 5530. 
FIG. 59 shows an exploded perspective view of the 

apparatus of FIG. 55 in which contacts 5532 and 5534 can 
be seen on substrate 5530. Sensor 138 may be positioned 
over one or more contacts such as contacts 5532 and 5534. 35 

Sensor 138 may be loosely held within opening 5501 of 
tube 5500 during initial placement of the tube over the 
sensor, and then be fixed to the substrate 5530 by the tube 
when the tube is compressed ( e.g., by an upper housing of 
a wearable device). In this way, sensor 138 may be com- 40 

municatively coupled and mechanically fixed to a substrate 
without soldering or other bonding operations. 

During manufacturing operations and/or during in-vivo 
use of sensor 138, sensor 138 may be held in place on 
substrate 404 by external compression of tube 5500. FIG. 60 45 

shows an example in which sensor 138 is held in place by 
compression of tube 5500 by a housing structure. For 
example, housing 5700 ( e.g., a housing of a wearable device 
or a lid or clip for a manufacturing station) may include a 
protruding member 5702 that, in an assembled configura- 50 

tion, compresses tube 5500 to secure sensor 138. 
As noted above in connection with, for example, FIGS. 

35B, 43, 47A, 47B, 50, and 51, during manufacturing 
operations, multiple sensors 138 may be carried by a com­
mon sensor carrier. However, in some scenarios, a common 55 

carrier such as an intelligent carrier may be provided for 
manufacturing operations for multiple pre-connected sen­
sors. FIG. 61 shows an example of a carrier for multiple 
pre-connected sensors. As shown in FIG. 58, a carrier 5800 
may include a housing 5802 with interfaces 5804 for mu!- 60 

tiple pre-connected sensors. Housing 5802 may be a sub­
stantially solid substrate or may be a housing that forms an 
interior cavity within which other components are mounted 
and/or connected. 

Each interface 5804 may be configured to receive a sensor 65 

carrier 402 in any of the implementations described herein. 
For example, each interface 5804 may include one or more 

carrier. Testing and/or calibration data may be gathered by 
processing circuitry 5806 and stored and/or transmitted 
along with an identifier for each sensor. 

During manufacturing, one or more pre-connected sen­
sors may be loaded carrier 5800. Carrier 5800 may secure 
the pre-connected sensors therein and perform potentiostat 
measurements for each sensor (e.g., using circuitry 5806). 
Sensors 138 may be secured to interfaces 5804 by individual 
mounting features or carrier 5800 may be provided with a 
locking mechanism such as a slidable bar 5812. Slidable bar 
5812 may be slidable (e.g., by a handle 5814) between an 
open position as shown, in which sensor carriers can be 
inserted into and removed from interfaces 5804, to a closed 
position in which bar 5812 blocks removal of the sensor 
carriers from the interfaces. 

In some scenarios, an initial measurement test may be 
performed by carrier 5800 to test the potentiostat connection 
through the sensor interconnect electrodes and the sensor 
surfaces. Manufacturing operations that may be performed 
for sensors 138 coupled to carrier 5800 may include physical 
manipulation of the sensor such as straightening of the 
sensors. Carrier 5800 may facilitate more efficient manufac-
turing by allowing multiple sensors to be straightened in a 
single operation using automated straightening equipment. 

Carrier 5800 may facilitate potentiostat and/or other mea­
surements at various stages of manufacturing for sensors 
138. Potentiostat measurements may be performed before, 
during, and/or after straightening operations and information 
regarding sensor damage or any other mechanical stress that 
might be introduced by the straightening may be saved 
and/or transmitted along with associated sensor ID's. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include a 
membrane process in which dipping operations are per­
formed to form a membrane such as membrane 508 for each 
sensor. Straightened sensors 138 mounted in carrier 5800 
may be concurrently dipped. Potentiostat measurements 
may be performed before, during, and/or after membrane 
operations and information associated with the electrochem­
istry of the sensors and dipping process may be gathered, 
processed, stored, and/or transmitted by carrier 5800. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include a MASIMO 1067 
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curing process. Performing curing for groups of sensors 138 
mounted in carrier 5800 may allow the curing process to 
take less space, which can reduce the footprint of the 
manufacturing area used by curing equipment. Potentiostat 
measurements may be performed before, during, and/or after 
curing operations and information associated with the elec­
trochemistry of the sensors and curing process may be 
gathered, processed, stored, and/or transmitted by carrier 
5800. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include 
calibration operations. Because carrier 5800 can perform 
connection testing early in the manufacturing process, 
improved analyte/electrochemical calibration can be per­
formed by carrier 5800 itself and/or in cooperation with 
external manufacturing equipment. Calibration data may be 
gathered, processed, stored, and/or transmitted by carrier 
5800. 

54 
Various operations of methods described above may be 

performed by any suitable means capable of performing the 
operations, such as various hardware and/or software com­
ponent(s ), circuits, and/or module(s). Generally, any opera-

5 tions illustrated in the figures may be performed by corre­
sponding functional means capable of performing the 
operations. 

The various illustrative logical blocks, modules and cir­
cuits described in connection with the present disclosure 

10 (such as the blocks of FIG. 2) may be implemented or 
performed with a digital signal processor (DSP), an appli­
cation specific integrated circuit (ASIC), a field program­
mable gate array signal (FPGA) or other programmable 

15 logic device (PLD), discrete gate or transistor logic, discrete 
hardware components or any combination thereof designed 
to perform the functions described herein. A processor may 
be a microprocessor, but in the alternative, the processor 
may be any commercially available processor, controller, Gathering calibration and/or testing data with carrier 5800 

can save time in connecting and disconnecting additional 
external equipment. Gathering calibration and/or testing 
data with carrier 5800, particularly when data is gathered 
and stored automatically in connection with sensor ID's, can 
also reduce calibration/testing errors because the data is 
gathered by the same equipment throughout various pro- 25 

20 microcontroller or state machine. A processor may also be 
implemented as a combination of computing devices, e.g., a 
combination of a DSP and a microprocessor, a plurality of 
microprocessors, one or more microprocessors in conjunc-
tion with a DSP core, or any other such configuration. 

In one or more aspects, various functions described may 
cesses. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include analyte 
concentration measurements. For example, carrier 5800 may 
be moved by manufacturing equipment (e.g., a robotic arm) 
to expose the sensors 138 mounted in the carrier through 
various analyte baths ( e.g., glucose baths). Carrier 5800 may 
gather electrical potential measurements during the various 
bath exposures. Information associated with the electrical 
potential measurements during the various bath exposures 
may be gathered, processed, stored, and/or transmitted by 
carrier 5800. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include analyte 
sensitivity measurements. Sensitivity measurements that 
may be performed by carrier 5800 may include baseline 
measurements that indicate the signal from each sensor 
without analyte exposure, slope measurements that indicate 
the signal change for a given amount of an analyte, and/or 
noise measurements. These sensitivity measurements may 
be stored, and/or transmitted by carrier 5800. 

Manufacturing operations that may be performed for 
sensors 138 coupled to carrier 5800 may also include visual 
inspection operations (e.g., by a technician). Providing a 
group of pre-connected sensors, mounted in carrier 5800, 
that have already been through all of the testing/calibration/ 
manufacturing operations described above may allow a 
more efficient and/or more automated visual inspection and 
rejection (e.g., because the exact physical location of each 
sensor within carrier 5800 is known). Sensors 138 that have 
exhibited unusual electrochemistry or mechanical stress 
during manufacturing operations can be flagged by carrier 
5800 ( e.g., using a display, a visual indicator, or transmission 
of flag information to an external device) for retesting or 
rejection. 

The connections between the elements shown in some 
figures illustrate exemplary communication paths. Addi­
tional communication paths, either direct or via an interme­
diary, may be included to further facilitate the exchange of 
information between the elements. The communication 
paths may be bi-directional communication paths allowing 
the elements to exchange information. 

be implemented in hardware, software, firmware, or any 
combination thereof. If implemented in software, the func­
tions may be stored on or transmitted over as one or more 
instructions or code on a computer-readable medium. Com-

30 puter-readable media includes both computer storage media 
and communication media including any medium that facili­
tates transfer of a computer program from one place to 
another. A storage media may be any available media that 
can be accessed by a computer. By way of example, and not 

35 limitation, such computer-readable media can comprise 
various types of RAM, ROM, CD-ROM or other optical 
disk storage, magnetic disk storage or other magnetic stor­
age devices, or any other medium that can be used to carry 
or store desired program code in the form of instructions or 

40 data structures and that can be accessed by a computer. Also, 
any connection is properly termed a computer-readable 
medium. For example, if the software is transmitted from a 
website, server, or other remote source using a coaxial cable, 
fiber optic cable, twisted pair, digital subscriber line (DSL), 

45 or wireless technologies such as infrared, radio, and micro­
wave, then the coaxial cable, fiber optic cable, twisted pair, 
DSL, or wireless technologies such as infrared, radio, WiFi, 
Bluetooth®, RFID, NFC, and microwave are included in the 
definition of medium. Disk and disc, as used herein, includes 

50 compact disc (CD), laser disc, optical disc, digital versatile 
disc (DVD), floppy disk and Blu-ray® disc where disks 
usually reproduce data magnetically, while discs reproduce 
data optically with lasers. Thus, in some aspects a computer 
readable medium may comprise non-transitory computer 

55 readable medium ( e.g., tangible media). In addition, in some 
aspects a computer readable medium may comprise transi­
tory computer readable medium (e.g., a signal). Combina­
tions of the above should also be included within the scope 

60 

of computer-readable media. 
Certain aspects may comprise a computer program prod-

uct for performing the operations presented herein. For 
example, such a computer program product may comprise a 
computer readable medium having instructions stored (and/ 
or encoded) thereon, the instructions being executable by 

65 one or more processors to perform the operations described 
herein. For certain aspects, the computer program product 
may include packaging material. MASIMO 1067 
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Software or instructions may also be transmitted over a 
transmission medium. For example, if the software is trans­
mitted from a website, server, or other remote source using 
a coaxial cable, fiber optic cable, twisted pair, digital sub­
scriber line (DSL ), or wireless technologies such as infrared, 5 

radio, and microwave, then the coaxial cable, fiber optic 
cable, twisted pair, DSL, or wireless technologies such as 
infrared, radio, and microwave are included in the definition 
of transmission medium. 

Further, it should be appreciated that modules and/or 10 

other appropriate means for performing the methods and 
techniques described herein can be downloaded and/or oth­
erwise obtained by a user terminal and/or base station as 
applicable. For example, such a device can be coupled to a 
server to facilitate the transfer of means for performing the 15 

methods described herein. Alternatively, various methods 
described herein can be provided via storage means ( e.g., 
RAM, ROM, a physical storage medium such as a compact 
disc (CD) or floppy disk, etc.), such that a user terminal 
and/or base station can obtain the various methods upon 20 

coupling or providing the storage means to the device. 
Moreover, any other suitable technique for providing the 
methods and techniques described herein to a device can be 
utilized. 

It is to be understood that the claims are not limited to the 25 

precise configuration and components illustrated above. 
Various modifications, changes and variations may be made 

56 
invention. Likewise, a group of items linked with the 
conjunction 'and' should not be read as requiring that each 
and every one of those items be present in the grouping, but 
rather should be read as 'and/or' unless expressly stated 
otherwise. Similarly, a group of items linked with the 
conjunction 'or' should not be read as requiring mutual 
exclusivity among that group, but rather should be read as 
'and/or' unless expressly stated otherwise. 

Where a range of values is provided, it is understood that 
the upper and lower limit and each intervening value 
between the upper and lower limit of the range is encom­
passed within the embodiments. 

With respect to the use of substantially any plural and/or 
singular terms herein, those having skill in the art can 
translate from the plural to the singular and/or from the 
singular to the plural as is appropriate to the context and/or 
application. The various singular/plural permutations may 
be expressly set forth herein for sake of clarity. The indefi­
nite article "a" or "an" does not exclude a plurality. A single 
processor or other unit may fulfill the functions of several 
items recited in the claims. The mere fact that certain 
measures are recited in mutually different dependent claims 
does not indicate that a combination of these measures 
cannot be used to advantage. Any reference signs in the 
claims should not be construed as limiting the scope. 

It will be further understood by those within the art that 
if a specific number of an introduced claim recitation is 
intended, such an intent will be explicitly recited in the 
claim, and in the absence of such recitation no such intent is 

in the arrangement, operation and details of the methods and 
apparatus described above without departing from the scope 
of the claims. 

Unless otherwise defined, all terms (including technical 
and scientific terms) are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art, 
and are not to be limited to a special or customized meaning 
unless expressly so defined herein. It should be noted that 

30 present. For example, as an aid to understanding, the fol­
lowing appended claims may contain usage of the introduc­
tory phrases "at least one" and "one or more" to introduce 
claim recitations. However, the use of such phrases should 
not be construed to imply that the introduction of a claim 

35 recitation by the indefinite articles "a" or "an" limits any 
particular claim containing such introduced claim recitation 
to embodiments containing only one such recitation, even 
when the same claim includes the introductory phrases "one 
or more" or "at least one" and indefinite articles such as "a" 

the use of particular terminology when describing certain 
features or aspects of the disclosure should not be taken to 
imply that the terminology is being re-defined herein to be 
restricted to include any specific characteristics of the fea­
tures or aspects of the disclosure with which that terminol­
ogy is associated. Terms and phrases used in this application, 
and variations thereof, especially in the appended claims, 
unless otherwise expressly stated, should be construed as 
open ended as opposed to limiting. As examples of the 
foregoing, the term 'including' should be read to mean 45 

'including, without limitation,' 'including but not limited 

40 or "an" ( e.g., "a" and/or "an" should typically be interpreted 
to mean "at least one" or "one or more"); the same holds true 
for the use of definite articles used to introduce claim 
recitations. In addition, even if a specific number of an 

to,' or the like; the term 'comprising' as used herein is 
synonymous with 'including,' 'containing,' or 'character­
ized by,' and is inclusive or open-ended and does not exclude 
additional, unrecited elements or method steps; the term 50 

'having' should be interpreted as 'having at least;' the term 
'includes' should be interpreted as 'includes but is not 
limited to;' the term 'example' is used to provide exemplary 
instances of the item in discussion, not an exhaustive or 
limiting list thereof; adjectives such as 'known', 'normal', 55 

'standard', and terms of similar meaning should not be 
construed as limiting the item described to a given time 
period or to an item available as of a given time, but instead 
should be read to encompass known, normal, or standard 
technologies that may be available or known now or at any 60 

time in the future; and use of terms like 'preferably,' 
'preferred,' 'desired,' or 'desirable,' and words of similar 
meaning should not be understood as implying that certain 
features are critical, essential, or even important to the 
structure or function of the invention, but instead as merely 65 

intended to highlight alternative or additional features that 
may or may not be utilized in a particular embodiment of the 

introduced claim recitation is explicitly recited, those skilled 
in the art will recognize that such recitation should typically 
be interpreted to mean at least the recited number (e.g., the 
bare recitation of "two recitations," without other modifiers, 
typically means at least two recitations, or two or more 
recitations). Furthermore, in those instances where a con­
vention analogous to "at least one of A, B, and C, etc." is 
used, in general such a construction is intended in the sense 
one having skill in the art would understand the convention, 
e.g., as including any combination of the listed items, 
including single members ( e.g., "a system having at least 
one of A, B, and C" would include but not be limited to 
systems that have A alone, B alone, C alone, A and B 
together, A and C together, B and C together, and/or A, B, 
and C together, etc.). In those instances where a convention 
analogous to "at least one of A, B, or C, etc." is used, in 
general such a construction is intended in the sense one 
having skill in the art would understand the convention ( e.g., 
"a system having at least one of A, B, or C" would include 
but not be limited to systems that have A alone, B alone, C 
alone, A and B together, A and C together, B and C together, 
and/or A, B, and C together, etc.). It will be further under­
stood by those within the art that virtually any disjunctive 
word and/or phrase presenting two or more alternative MASIMO 1067 
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mobile phones, smart phones, tablet computers, and also on 
devices specifically designed for these purpose. In one 
implementation, a user of a smart phone or wi-fi-connected 
device downloads a copy of the application to their device 

terms, whether in the description, claims, or drawings, 
should be understood to contemplate the possibilities of 
including one of the terms, either of the terms, or both terms. 
For example, the phrase "A or B" will be understood to 
include the possibilities of "A" or "B" or "A and B." 

All numbers expressing quantities of ingredients, reaction 
conditions, and so forth used in the specification are to be 
understood as being modified in all instances by the term 
'about.' Accordingly, unless indicated to the contrary, the 
numerical parameters set forth herein are approximations 
that may vary depending upon the desired properties sought 
to be obtained. At the very least, and not as an attempt to 
limit the application of the doctrine of equivalents to the 
scope of any claims in any application claiming priority to 
the present application, each numerical parameter should be 
construed in light of the number of significant digits and 
ordinary rounding approaches. 

5 from a server using a wireless Internet connection. An 
appropriate authentication procedure and secure transaction 
process may provide for payment to be made to the seller. 
The application may download over the mobile connection, 
or over the WiFi or other wireless network connection. The 

10 application may then be run by the user. Such a networked 
system may provide a suitable computing environment for 
an implementation in which a plurality of users provide 
separate inputs to the system and method. In the below 
system where factory calibration schemes are contemplated, 

15 the plural inputs may allow plural users to input relevant 
data at the same time. 

All references cited herein are incorporated herein by 
reference in their entirety. To the extent publications and 
patents or patent applications incorporated by reference 20 

contradict the disclosure contained in the specification, the 
specification is intended to supersede and/or take precedence 
over any such contradictory material. 

Headings are included herein for reference and to aid in 
locating various sections. These headings are not intended to 25 

limit the scope of the concepts described with respect 
thereto. Such concepts may have applicability throughout 
the entire specification. 

Furthermore, although the foregoing has been described 
in some detail by way of illustrations and examples for 30 

purposes of clarity and understanding, it is apparent to those 
skilled in the art that certain changes and modifications may 
be practiced. Therefore, the description and examples should 
not be construed as limiting the scope of the invention to the 
specific embodiments and examples described herein, but 35 

rather to also cover all modification and alternatives coming 
with the true scope and spirit of the invention. 

Various system and methods described may be fully 
implemented and/or controlled in any number of computing 
devices. Typically, instructions are laid out on computer 40 

readable media, generally non-transitory, and these instruc­
tions are sufficient to allow a processor in the computing 
device to implement the method of the invention. The 
computer readable medium may be a hard drive or solid state 
storage having instructions that, when run, are loaded into 45 

random access memory. Inputs to the application, e.g., from 
the plurality of users or from any one user, may be by any 
number of appropriate computer input devices. For example, 
users may employ a keyboard, mouse, touchscreen, joystick, 
trackpad, other pointing device, or any other such computer 50 

input device to input data relevant to the calculations. Data 
may also be input by way of an inserted memory chip, hard 
drive, flash drives, flash memory, optical media, magnetic 
media, or any other type of file-storing medium. The outputs 
may be delivered to a user by way of a video graphics card 55 

or integrated graphics chipset coupled to a display that 
maybe seen by a user. Alternatively, a printer may be 
employed to output hard copies of the results. Given this 
teaching, any number of other tangible outputs will also be 
understood to be contemplated by the invention. For 60 

example, outputs may be stored on a memory chip, hard 
drive, flash drives, flash memory, optical media, magnetic 
media, or any other type of output. It should also be noted 
that the invention may be implemented on any number of 
different types of computing devices, e.g., personal comput- 65 

ers, laptop computers, notebook computers, net book com­
puters, handheld computers, personal digital assistants, 

What is claimed is: 
1. A wearable device for measuring an analyte concen­

tration in a host, the wearable device comprising: 
a housing; 
a transcutaneous analyte sensor comprising: 

an in vivo portion configured to be inserted in a living 
body of a host during a sensor session, wherein the 
in vivo portion comprises an electrode, wherein the 
electrode is configured to generate a signal indicative 
of an analyte concentration; and 

an ex vivo portion configured to remain outside the 
living body of the host during the sensor session; 

a substrate located in the housing, wherein the substrate 
comprises: 
a first portion; and 
a second portion, wherein the second portion is folded 

over the first portion; and 
sensor electronics operably connected to the transcutane­

ous analyte sensor, wherein the sensor electronics is 
configured to process the signal generated by the elec­
trode, wherein at least a portion of the sensor electron­
ics is located on the first portion of the substrate. 

2. The wearable device of claim 1, wherein the substrate 
comprises a foldable portion positioned between and con­
necting the first portion of the substrate to the second portion 
of the substrate. 

3. The wearable device of claim 2, wherein the foldable 
portion of the substrate has a width that is less than a width 
of both the first portion of the substrate and the second 
portion of the substrate. 

4. The wearable device of claim 1, wherein the first 
portion comprises an opening, and wherein the transcutane­
ous analyte sensor extends into the opening. 

5. The wearable device of claim 1, wherein the first 
portion of the substrate is substantially parallel to the second 
portion of the substrate when the second portion of the 
substrate is folded over the first portion of the substrate. 

6. The wearable device of claim 1, wherein the first 
portion of the substrate lies in a common plane with the 
second portion of the substrate when the substrate is in an 
unfolded state. 

7. The wearable device of claim 1, wherein the substrate 
comprises a flexible circuit board. 

8. The wearable device of claim 1, wherein the sensor 
electronics comprises a battery, a processor, conductive 
traces, and wireless communication circuitry. 

9. The wearable device of claim 8, wherein a portion of 
the sensor electronics is located on the second portion of the 
substrate. 

10. The wearable device of claim 9, wherein the portion 
of the sensor electronics is the conductive traces. MASIMO 1067 
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11. The wearable device of claim 1, wherein the sensor 
electronics comprises interface circuitry, and wherein the 
interface circuitry is configured to connect to calibration 
equipment during manufacture. 

60 
wherein the ex vivo portion of the transcutaneous 
analyte sensor is operably connected to the sensor 
electronics; and 

12. The wearable device of claim 11, wherein the interface 5 

circuitry is configured to connect to traces on a test panel 
circuit board during manufacture. 

transforming the substrate from the first state to a second 
state, wherein the transforming is performed by folding 
the substrate, wherein in the second state, the second 
portion is folded over the first portion. 

13. The wearable device of claim 12, wherein the sub­
strate is configured to be integrally connected to the test 
panel circuit board during manufacture. 

14. The wearable device of claim 1, wherein the trans­
cutaneous analyte sensor is removably attached to the sub­
strate. 

15. The wearable device of claim 1, wherein the sensor 
electronics is configured to wirelessly transmit sensor data to 
an external device. 

16. The wearable device of claim 1, comprising an 
electrical contact, wherein the transcutaneous analyte sensor 
is operably connected to the sensor electronics via the 
electrical contact. 

17. The wearable device of claim 16, wherein the elec­
trical contact is attached to the substrate. 

18. The wearable device of claim 17, wherein the elec­
trical contact is located in or on a sensor carrier. 

19. A method for manufacturing a wearable device, the 
method comprising: 

providing a substrate in a first state, wherein the substrate 
comprises a first portion and a second portion, wherein 
at least a portion of sensor electronics is located on the 
first portion of the substrate, wherein the sensor elec­
tronics are configured to process a signal generated by 
an electrode during a sensor session, and wherein the 
signal is indicative of an analyte concentration; 

operably connecting a transcutaneous analyte sensor to 

20. The method of claim 19, comprising placing the 
transformed substrate into a housing. 

10 21. The method of claim 20, comprising placing a portion 
of the transcutaneous analyte sensor into an opening in the 
substrate. 

22. The method of claim 21, comprising placing a portion 

15 of the transcutaneous analyte sensor through an opening in 
the housing. 

23. The method of claim 22, wherein the transforming 
comprises folding the substrate at a foldable portion having 
a width that is less than both the first portion and the second 

20 portion. 
24. The method of claim 19, comprising connecting the 

sensor electronics to calibration equipment when the sub­
strate is in the first state. 

25. The method of claim 24, comprising detaching the 
25 substrate from a test panel when the substrate is in the first 

state. 
26. The method of claim 19, comprising singulating the 

substrate away from an array of other substrates. 
27. The method of claim 19, comprising attaching the 

30 transcutaneous analyte sensor to the substrate. 
28. The method of claim 27, comprising attaching the 

transcutaneous analyte sensor to the substrate via a sensor 
module. 

the sensor electronics, wherein the transcutaneous ana- 35 

lyte sensor comprises: 

29. The method of claim 19, wherein transforming the 
substrate from the first state to the second state comprises 
folding the substrate from a common plane into a pair of 
substantially parallel planes. 

an in vivo portion configured to be inserted in a living 
body of a host during a sensor session, wherein the 
in vivo portion comprises the electrode; and 

an ex vivo portion configured to remain outside the 40 

living body of the host during the sensor session, 

30. The method of claim 19, wherein the substrate com­
prises a flexible circuit board. 

* * * * * 
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