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Abstract 

The main purpose of this study is to present a novel personal authentication approach that uses 

the electrocardiogram (ECG) signal. Because the ECG signal varies from person to person, it can 

be used as a new biometric for individual verification. The discrete wavelet transform was 

applied for extracting features. These wavelet coefficients derived from digitized signals were 

sampled from one-lead ECG signal. Using the proposed approach on 35 normal subjects and 10 

arrhythmia patients, 100% verification rate was obtained for normal subjects and 81% 

verification rate for arrhythmia patients. Furthermore, the performance of the ECG verification 

system was estimated by calculating the false acceptance rate (FAR) and false rejection rate 

(FRR). The FAR was 0.83% and FRR was 0.86% for a database containing only 35 normal 

subjects. When 10 arrhythmia patients were added into the database, the FAR became 12.50% 

and the FRR 5.11%. The experimental results demonstrate that the proposed approach works well 

for normal subjects. Therefore, using the ECG as a biometric measure for human identity 

verification is promising. 
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1. Introduction 
 

In many daily life situations our identity must be verified, such as making credit card 

purchases, accessing restricted areas or Internet resources, traveling abroad, withdrawing money, 

and many other instances. Identity verification is an important procedure in modern society and 

has been used extensively in many fields. Traditional user identification systems are based on 

something that we possess, e.g., a key or a card, or something that we know, e.g., password or a 

personal identification number (PIN) [1]. However, passwords may be forgotten or guessed by an 

intruder and cards may be stolen or lost. This means that traditional identification systems are 

inherently insecure. Especially in the global Internet in which information requires a higher level 

of security, safer identification systems are a must. All kinds of terroristic attacks involving stolen 

identity have seriously influenced our social security. Countries around the world are looking 

forward to an efficient and convenient method for identity verification to preserve our social 

security. The biometrics market is growing as a result of this need. The International Biometric 

Group’s “Biometrics Market and Industry Report” [2] indicated that global biometric revenue 

achieved 7.19 billion in 2003 and the trend is predictably increasing. 

Biometric recognition, as a mean of personal authentication, is an emerging signal processing 

area focused on increasing security and convenience in applications where users must be securely 

identified. Biometrics is the science of identifying people using physiological features [3]. Each 

individual has unique biometric features. These features could be used to verify one person from 

another. Unlike traditional identification, biometric identification systems are based on what we 

are or what we do or produce. These features are inherently associated with a particular 

individual and are impossible to be forgotten or lost. Several biometrics have been used 

commercially for human identity verification such as facial geometry, fingerprints and voice 

analysis. Unfortunately, face recognition can be fooled by a photo, fingerprints can be recreated 
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in latex and a voice can be imitated. Each biometric system has various benefits and drawbacks. 

Electrocardiogram (ECG) analysis is well-known as a very useful diagnostic tool for clinical 

proposes. The ECG signal varies from person to person due to the differences in position, size, 

and anatomy of the heart, age, sex, relative body weight, chest configuration and various other 

factors. These ECG properties can be used as a biometric for human identification. In 2001, Biel 

et al. [4] first proposed a new approach using ECG signals for identity verification. A standard 

12-lead ECG recorded during rest was used as a biometric. Selected features extracted from the 

ECG were used to identify a person in a predetermined group. Multivariate analysis was used for 

the identification task. The experimental results showed that it was possible to identify a person 

using only one-lead ECG signal. In 2002, T. W. Shen et al. [5] used one-lead ECG signal as a 

biometric for human identification. It is well-known that the shapes of the ECG waveforms from 

different persons are different but it is unclear whether such differences can be used to identify 

individuals. Therefore, they tried to demonstrate that it is possible to identify a specific person from 

a group of candidates using a one-lead ECG.. Their research applied two techniques, template 

matching and a decision-based neural network (DBNN) [6], to implement the identity verification. 

Using each of the two methods separately on a predetermined group of 20 subjects, the 

experimental results showed that the rate of correct identity verification was 95% for template 

matching and 80% for the DBNN. Combining the two methods produced a 100% correct rate. This 

research showed that ECG analysis is a potentially applicable method for human identity 

verification. 

Because ECG signals vary from person to person, and the results from previous researches, 

one-lead ECG signal was used as a new biometric for individual verification in our study. The 

impetus of this research is to develop an accurate and efficient system for individual verification. 

Research presented in this paper is extended from our previous work [7] with more detail 
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description of the ECG identification system consisted of signal acquirement, signal 

pre-processing, feature extraction, database and identity verification. Some samples of our ECG 

signals obtained from a QT database [8] and others were acquired by using a commercial ECG 

recorder. The characteristic waveform in the time domain was detected using the “So and Chen” 

algorithm [9]. The discrete wavelet transform [10-11] was applied for extracting 

frequency-domain features.  The wavelet coefficients were derived from digitalized signals 

sampled from a one-lead ECG signal. These features were used to represent each individual for 

the purpose of identity verification. Flow chart of ECG identification process proposed in this 

study as shown in Fig. (1). Discrete Wavelet Transform (DWT) will be briefly reviewed in the 

next section for soundness of paper. 

2. Methodology 

Wavelets [10-11] are mathematical functions that satisfy certain criteria, like a zero mean, 

and are used for analyzing and representing signals or other functions. A set of dilations and 

translations, )(, tkjψ of a chosen mother wavele t )(tψ  is used for signal analysis. In Discrete 

Wavelet Transform, dilation factors are chosen at a power of 2 and the set of dilation and 

translation of the mother wavelet is defined as )2(2)( 2/

, ktt
jj

kj −= − ψψ . Where j is the scaling 

factor and k is the translation factor. It is obvious that the dilation factor is a power of 2. A scaling 

function )(tφ is defined as 



 ∈

=
otherwise

tif
t

0

)1,0[1
)(φ                                          (1) 

and the set of dilation and translation of the scaling function is )2(2)(, ktt
jj

kj −= φφ .To 

span our data domain at different resolutions, the wavelet is reprsented in a scaling equation 

∑ −=
k

j

kkj ktCt )2()(, φψ .Where kC  are the wavelet coefficients and they must satisfy linear 
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and quadratic constraints  With scaling basis )(, tkjφ and wavelet basis )(, tkjψ , we can decompose 

any function f(t) as ∑
−

=

+=
1

0

,,00 )()()(
n

j

kjkj tCtCtf ψφ . The coefficients 00C and kjC , are selected as 

features for personal identity verification approach.  

3. Materials and Methods 

3.1 ECG Data Sources 

The ECG data were obtained from two different sources: (1) QT database [8] - the ECG 

database on the internet. Ten normal beats and 10 arrhythmia beats from ECG data were obtained 

from this database. We took a 2-minute data length from the total 15-minute data length for each 

sample. (2) Signals were measured using a commercial ECG recorder-FUKUDA DENSHI AUTO 

CARDINER FCP-145U. We acquired ECG data from 25 normal people with an age range 

between 20 and 30 years old. The measurement duration was also two minutes. Forty-five 

sampled ECG signals from 45 different people were taken as our samples. All of these signals 

were sampled at a 250Hz sampling rate. The data length was set at two minutes. The first minute 

was taken as our training data to build the ECG verification system database. The second minute 

was used as the test data for our system. The lead II ECG signals were acquired in this research. 

The QT Database includes many ECGs being chosen to represent a wide variety of QRS and 

ST-T morphologies. The records were chosen primarily from existing ECG databases, including 

the MIT-BIH arrhythmia database [12-13], the European Society of Cardiology ST-T database 

[14], and several other ECG databases collected at Boston's Beth Israel Deaconess Medical 

Center. The existing databases are an excellent source of varied and well characterized data, to 

which have been added reference annotations marking the waveform boundary locations. The QT 

database contains a total of 105 fifteen-minute excerpts of two channel ECGs. As shown in Fig(2), 

the first channel is a modified limb lead II (ML II), the second channel is usually chest lead V1 
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(sometimes V2, V3, V4 or V5, depending on the subject). All these ECGs were selected to avoid 

significant baseline wander or other artifacts. 

3.2 Pre-processing 

ECG is the recording of the heart's electrical potential versus time. This signal is normally 

corrupted with noises such as muscle contractions or Electromyographic (EMG) interference, 

baseline drift, ECG amplitude modulation due to respiration, power line interference, electrode 

contact noise, instrumentation noise, radiofrequency, etc. To eliminate these noises, the signals 

were processed with a filter. The filter is a combination high-pass filter and low- pass filter. A 

high-pass filter with a cutoff frequency of 0.5Hz was used to eliminate the baseline drift. A 

low-pass filter with a cutoff frequency of 45Hz was used to eliminate high frequency noise such 

as power line interference.  

3.3 Feature Extraction 

The original ECG signals were a one dimensional array and were large and redundant. The 

detailed steps of feature extraction are described as follows and the flow chart of feature 

extraction is shown in Fig(3). We described how to extract the features from the original ECG 

signals. 

3.3.1 The Detection of QRS-Complex 

From an electrocardiogram (ECG) much useful information on the condition of heart can be 

read. Most ECG diagnosis techniques require an accurate detection of the ECG characteristics. 

The ECG signal is formed mainly of a P wave, QRS-complex and T wave. In consideration of 

speed and accuracy, the “So and Chan” method proposed by H.H. So et al. [9] was adopted to 

detect the QRS-complexes. The ”So and Chan” method evaluated the slope in the time domain 

for advanced comparison. The QRS-complexes have the maximum variation in the slopes. Based 

on this property and an adaptive threshold was applied to detect the positions of the 
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QRS-complexes. The ECG characteristic waves could be detected accurately without distortion 

when no filter was added. 

The “So and Chan” QRS detection method was implemented onto an ambulatory ECG monitor. 

The computational requirement was kept at a reasonable level without compromising its accuracy. 

Therefore, the first derivative approach was selected and made substantial improvement to that 

technique. First, let )(nx  represent the amplitude of the ECG data at a discrete time n. The slope 

of the ECG wave is obtained using equation (2). 

)2(2)1()1()2(2 ++++−−−−= nxnxnxnxslope                      (2) 

The slope threshold is computed using equation (3). 

i
paramthresh

threshSlope max*
16

_
_ =                              (3) 

When two consecutive ECG data satisfy the condition that threshslopenslope _)( > , the onset 

of the QRS-complex is detected. According to the suggestion given in [16], the parameter 

paramthresh _ can be set as 2, 4, 8 or 16. After detection of the onset of the QRS-complex, we 

shifted forward from the onset point to find the maximum point ( imax ) and take the R point. 

imax  is then updated using equation (4). 

i
paramfilter

ifirst
i max

_

maxmax_
max +

−
=                                  (4) 

The max_first is defined by equation (5). 

onsetQRSofheightpoRofheightfirst −= intmax_               (5) 

This is a one-pole filter that smoothes out the effect of any abrupt change. According to the 

suggestion given in [16], the parameter filter_param can be set to 2,4,6,8 or 16. The initial 
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imax is the maximum slope within the first 250 data points in the ECG file. Based on the best 

result in [9], we choose the slope_thresh as 8 and the filter_param as 16. An example for 

applying the “So and Chan” method is detecting the positions of the R wave as shown in Fig(4). 

3.3.2 Synthesis Signals 

Let the original ECG signals S obtained in this research be sampled at 250 Hz. 

( )    ,nS  Nn ...3,2,1=                                        (6) 

Using the ”So and Chan” method [9] to detect the QRS-complex of the ECG signals, the 

positions of the R waves in each signal could found, and denoted as: 

( ) , knR  Mk ...,3,2,1=                                      (7) 

Where kn  is the location of R point. Since the positions of R wave ( )   knR are determined, a 

128-point signal segment   kSS can be obtained by taking data points form the backward 43rd 

point to the forward 84
th

 point as shown in Fig(5), which is denoted as:  

( ) ( )[ ] 84:43 +−= kkk nSnSSS                                     (8) 

Four such signal segments form a 512-points synthesis signal F that is denoted 

as [ ]      4321 SSSSSSSSF = .  

3.3.3 Wavelet Coefficients of Discrete Wavelet Transform  

One synthetic signal extracted from original ECG signal with 512- points data length is 

shown in Fig(6). With Haar wavelet, the 512-points wavelet coefficients decomposed from the 

signal were used as the biometric “identity card” of the subject. We decompose the signal with 

level-9 decomposition. Wavelet coefficients decomposed from 512-points synthetic signal is 

shown in Fig(7). 

3.4 Enrollment and Verification 
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In the ECG verification system, there are two separate stages: enrollment phase and 

verification phase. During enrollment, features were extracted from the ECG signal with one 

minute data length to train a model of each user. The resultant model was taken as a 

representation of the enrolled user. In the verification phase, extracted features were verified 

against the enrolled models. 

3.4.1 Enrollment  

In this phase, 35 normal subjects and 10 arrhythmia patients were enrolled to set our database. 

Features were extracted from the first minute of the obtained 45 ECG signals from these 45 

individuals.  

In one minute, finite numbers of 512-points synthesis signal could be extracted.  A mean 

512-point synthesis signal was derived by averaging all of the extracted 512-points synthesis 

signals. Using the discrete wavelet transform to decompose the mean 512-points synthesis signal 

into 512-points wavelet coefficients, the obtained 512-points wavelet coefficients were used as a 

model to represent the user. Forty-five models were saved in our database.      

3.4.2 Euclidean Distance Measure for Identity Verification 

In verification phase, Euclidean distance measure was adopted for verification. The 

Euclidean distance between two feature vectors X
�

and Y
�

was denoted as YX
��

− . When an 

unknown subject X
�

is entered into our ECG verification system, an Euclidean distance measure is 

applied to calculate the difference in the 512-point wavelet coefficient feature set between the 

unknown subject X
�

and all enrolled 45 subjects iY
�

( 45,..,3,2,1=i ) in our database. The unknown 

subject could be determined by finding the argument of the minimum values in the distance 

between X
�

andY
�

as shown below. 

i
i

YX
��

−minarg    45,..,3,2,1=i                                      (9) 

4. Results and Discussion  

MASIMO 1077 
Masimo v. Apple 

IPR2023-00745



 11 

The experimental results are illustrated to show the validity of our method. The sensitivity of 

QRS-complex detection would affect the verification rate of the ECG verification system. After 

checking the results from applying the “So and Chan” method, the verification results will be 

presented. 

4.1 Evaluation of QRS-Complex Detection 

The QRS-complex detection results obtained by applying the “So and Chan” algorithm are 

presented as follows. (a) Normal heart beat results are shown in Table(1). ECG data 

(sel16265~sel17453) are normal samples obtained from QT database and ECG data (S_11~S_35) 

are normal samples by commercial ECG recorder. (b) The arrhythmia heart beat results are 

shown in Table(2). ECG data (sel110~ sel233) arrhythmia samples obtained from QT database. In 

accuracy assessment, defined in equation (10), in the QRS-complex detection method two types 

of false readings were defined as below:   

False Positive (FP): total number of wrong positions detected in the QRS-complex 

False Negative (FN): total number of correct positions missed in the QRS-complex 

%100)/)(1((%) ×+−= BeatsTotalFNFPAccuracy                        (10) 

The average detection accuracy was 99.92% in the normal beats category. The average 

detection accuracy in the arrhythmia samples was only 89.60%. As shown in Table(2), the 

accuracy of some arrhythmia samples was not good enough, such as “sel114”, “sel116” and 

“sel233”. 

4.2 Verification Results 

In this section, the proposed system verification rate is presented. The verification results 

tested using training and test data are shown separately in Tables(3)-(4). The verification rates for 

normal and arrhythmia people are calculated. The verification rate is defined below: 
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%100
   

   
(%) ×=

T

C

Nsamplestestingofnumbertotal

Nsamplesverifiedcorrectlyofnumbertotal
rateonVerificati      (11) 

In the 45 one-minute training data or 45 one-minute test data, we could extract finite numbers 

from a 512-point feature set as our test samples. The total number of extracted numbers ( TN ) 

from the 512-point feature set extracted from the training data was 826, and 791 from the test 

data. As we can see in Tables(3)-(4), the verification rate for the training data was 97.31% and 

95.71% for the test data. The average training and test data verification rate was 100% for normal 

samples and 81% for arrhythmia samples. Furthermore, the false acceptance (FAR) and false 

rejection rates (FRR) were calculated to estimate the performance of the proposed ECG 

verification system. Twelve samples not belonging to the 45 samples in our database were 

obtained. Ten test samples were extracted from each of these samples to test the FAR. To test the 

FRR, 10 test samples were extracted from each of the 45 samples in our database. The FRRs and 

FARs tested with Database_1 (only containing 35 normal-beat samples) and Database_2 

(containing all 45 samples: 35 normal-beat samples and 10 arrhythmia patients) are shown in 

Table(5).  

The false acceptance (FAR) and false rejection rates (FRR) for Database_1 were 0.83% and 

0.86%. The false acceptance (FAR) and false rejection rates (FRR) from Database_2 were 

12.50% and 5.11%.  

4.3 Discussion 

One-lead ECG signals were obtained from normal subjects and patients with arrhythmia and 

adopted to test our verification system. The results revealed that the proposed method for 

verifying normal subjects was very effective with 100% verification rate. On the other hand, 81% 

was achieved with arrhythmia subjects. The possible reasons resulting in a lower verification rate 

MASIMO 1077 
Masimo v. Apple 

IPR2023-00745



 13 

for arrhythmia subjects that for normal subjects could be: (1) missing or incorrect detection 

during the QRS-complex detection procedure. As we can see in Table(2), the detection accuracy 

for arrhythmia samples was not good enough; (2) unstable QRS-complex waveforms were 

obtained from the electrocardiogram. These abnormal waveforms appeared aperiodically and 

caused the extracted features to change. 

According to the results in Table(4), the FARs and FRRs from Database_1 and Database_2 

were different. The verification performance of Database_2 was worse than that for Database_1. 

The difference between Database_1 and Database_2 was that Database_2 contained arrhythmia 

patients. For these arrhythmia patients, the lower verification rates as shown in Tables(2)-(3) 

caused the higher FRR and FAR for Database_2.  

5. Conclusion 

We presented a novel personal identity verification approach that used one-lead ECG signal. 

The features were extracted by applying the discrete wavelet transform. The Euclidean distance 

was used as a measure for the verification mechanism. Using this approach, 100% verification 

rate was achieved for normal subjects and 81% verification rate for arrhythmia patients. The 

results demonstrated the validity of our proposed method and the feasibility of using the ECG as 

a biometric measure for human identity verification. The advantages of our ECG verification 

system are as follows. (1) Only living persons have this biometric. The heart beats exist only in 

living individuals and stop working when then die. The system cannot be cheated using an 

artifact. (2) The ECG signal is difficult to imitate. The ECG varies from person to person due to 

many factors and is not an exterior feature. Therefore, this biometric is difficult to learn or imitate 

by others. (3) It is suitable in combination with other biometrics. Multimodal biometrics are a 

trend for future biometric identification systems. The ECG is an interior feature and easy to 
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combine with other exterior biometric features. (4) It has a reasonable training time. (5) Good 

verification rate for verifying normal people is obtained. The verification results in this 

investigation were achieved using an off-line test. There are many other changing factors in the 

on-line test. Future work will be to investigate the on-line test to demonstrate the practicability of 

our verification system. An investigation of how the ECG will vary over a long time period 

which may affect the verification rate should also be studied. Moreover, the ECG hardware 

recorder should be designed to be convenient for low cost, easy application ambulatory 

measurement as security tool in daily life.   
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Fig. 1 Flow chart of ECG identification process proposed in this study. 

 

 
Fig. 2 An arrhythmia ECG signal [15].  
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Fig. 3 Flow chart of feature extraction.  

 

Fig. 4 The detection of R waves. 
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Fig. 5 A 128-points signal segment. 
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Fig. 6 One synthetic signal extracted from original ECG signal with 512- points data. 
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Fig. 7 Wavelet coefficients decomposed from 512-points synthetic signal.
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Table 1 QRS detection results of normal samples. 

 

 

File Total Beats False Positive False Negative Accuracy (%) 

sel16265 67 0 0 100.00  sel16272 56 0 0 100.00  sel17273 79 0 0 100.00  sel16420 71 0 0 100.00  sel16483 71 0 0 100.00  sel16539 60 0 0 100.00  sel16773 65 0 0 100.00  sel16786 59 0 0 100.00  sel16795 51 0 0 100.00  sel17453 70 0 0 100.00  S_11 65 0 1 98.46  S_12 74 0 0 100.00  S_13 71 0 0 100.00  S_14 64 0 0 100.00  S_15 68 0 0 100.00  S_16 70 0 0 100.00  S_17 96 0 0 100.00  S_18 85 0 0 100.00  S_19 71 0 0 100.00  S_20 66 0 0 100.00  S_21 77 0 0 100.00  S_22 79 0 1 98.73  S_23 91 0 0 100.00  S_24 78 0 0 100.00  S_25 60 0 0 100.00  S_26 71 0 0 100.00  S_27 69 0 0 100.00  S_28 87 0 0 100.00  S_29 70 0 0 100.00  S_30 67 0 0 100.00  S_31 91 0 0 100.00  S_32 76 0 0 100.00  S_33 94 0 0 100.00  S_34 64 0 0 100.00  S_35 69 0 0 100.00  TotalTotalTotalTotal    2522252225222522    0000    2222    99.92 99.92 99.92 99.92     
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Table 2 QRS detection results of arrhythmia samples.  

File Total Beats False Positive False Negative Accuracy (%) 

sel100 69 0 0 100.00  

sel114 45 6 2 82.22  

sel116 76 22 0 71.05  

sel223 101 1 3 96.04  

sel221 74 6 0 91.89  

sel223 81 0 3 96.30  

sel230 64 0 0 100.00  

sel231 47 0 0 100.00  

sel232 54 0 0 100.00  

sel233 94 28 11 58.51  

Total 705 63 19 89.60  

Table 3 Verification rate of test by training data.   TN  cN  fN  Verification rate 

normal 628 628 0 100.00% 

arrhythmia 198 164 34 81.92% 

Total 826 792 34 97.31% 

TN ： Total numbers the samples.  cN
: Numbers of correctly verified samples. 

fN
:  Numbers of wrong verified samples. 

Table 4 Verification rate of test by testing data.   TN  cN  fN  Verification rate 
normal 604 604 0 100.00% 

arrhythmia 187 152 36 81.63% 

Total 791 753 38 95.92% 

TN ：Total numbers the samples.  cN
: Numbers of correctly verified samples. 

fN
:  Numbers of wrong verified samples. 

Table 5 FRR and FAR results.    Database _1 Database _2 FAR 0.83% 12.50% FRR 0.86% 5.11% 
“Database_1”: contains 35 normal beat users; “Database_2”: contains 35 

normal beat users and 10 arrhythmia patients. 
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