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Preface

This book is intended for students of science and engineering; it aims to develop
both an understanding of the important concepts of physics and some analytical
skill in the solutions of problems. The mathematical level of the book is such
that it may be used by students who are taking a course in calculus coneurrently.

The notations and methods of the caleulus are introduced early in the text,
beginning with the concept of a derivative in the discussion of motion, and are
then extended to more complex problems as the student progresses hoth in
physies and in mathematics. Vector algebra is, of cowrse, also used. The vector
notation is introduced at the beginning of the text in treating displacements; it
is then extended to include the use of the dot product and cross produet of two
vectors, and the resolution of a vector into components with the aid of unit
veetors. These vector methods are used extensively in the sections on Mechanies
and Electricity. '

The method of exposition and the division of the subject matter into six
parts—Mechanies, Heat, Wave Motion and Sound, Electricity and Magnetism,
Optics, and Atomies and Nucleonies—follow closely those of the senior author's
Fundamentals of Physics, now in it third edition. However, the treatment of
much of the material is entively new, ag are over two hundred of the figures.
The problems at the end of each chapter are graded in difficulty, and many
Hlustrative examples are provided in the text both to clarify concepts and to
guide the student in the analytical approach to the solutions of problems. In-
cluded among these problems are some involving selected derivations and some
requiring the use of calculus. Answers to odd-numbered problems are given in
the Appendix, and a booklet containing all the answers is available to the instrue-
tor and may be distributed to his students if he so desires.

Three systems of units are developed and used in the sections on Mechanics,
Heat, and Sound; these are the British engineering system, and the egs and mks
metrie systems, In the section on Electricity and Magnetism, the rationalized
mks system is the primary one, but the unrationalized Gaussian system is also
developed because of its wide uge in all of physies and much of engineering. The

Gaussian system is introduced in the early chapters of Electricity; in subsequent
v
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chapters it is used only when new concepts are introduced or when important
equations are developed. The forms taken by each important equation in both
the mks and the Gaussian systems are presented in a table at the end of the
appropriate chapter, while the necessary conversion factors for the units and
constants of each system appear in another table. Problems at the end of each
chapter are given in both sets of units.

Tn developing the subject of Blectricity and Magnetism we were guided by
the recommendations of the Coulomb Law Committee of the American Aggocia-
tion of Physics Teachers and we followed these recommendations fairly closely.
We take this opportunity of expressing our indebtedness and appreciation to
this Committee.

We have used modern concepts and examples throughout the hook, and in
addition have devoted an entire separate section to Atomics and Nucleonics.
The reagon for this section is that the traditional two- or three-semester course
in physics is actually a terminal course for a great many students; this course
will be their only opportunity to learn about atomic and nuclear physics from a
physicist’s point of view. Wherever a separate course in atomic and nuclear
physies is part of the currieulum, this section may be omitted from the general
course.

We wish to thank Professor Karl D. Larsen, Head of the Department of
Physics at Lafayette College, Professor L. Wallerstein of Purdue University, and
Professor Robert A. Becker of the University of Illinois, each of whom read the
manuseript and made many valuable eriticisms and helpful suggestions.

We are also indebted to several eolleagues at our respective institutions who
read different parts of the manuscript and made valuable criticisms and helpful
suggestions. At Kansas State College Professor R. M. Kerchner, Head of the
Tlectrical Engineering Department, read the seetion on Electricity and Magnet-
ism; Professor L. D. Tllsworth of the Physies Department read the sections on
Tlectricity and Magnetism and Optics, and Professor Basil Curnutte, Jr., of the
Physics Department read the section on Opties. At the City College of New
York, Professor M. W. Zemansky, Chairman of the Physics Department, read
the section on Heat, Professor Fred C. Rose read the section on Electricity and
Magnetism, and Professor Robert I. Wolff read the section on Optics.

HENRY SEMAT
City College of New York

e ROBERT KATZ
Kansas State College

January, 1968
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29
The Magnetic Field

29-1 Natural and Permanent Magnets

Natural magnets, called lodestones, have been known since ancient times.
The lodestone, a magnetic oxide of iron called magnetite (FezO,), was men-
tioned by Thales of Miletus. By the eleventh century the magnetic com-
pass was known to the Chinese, and in the twelfth century references to

1 Fig. 29-1 Iron ﬁiings cling to the poles
% % of a bar magnet.

/

the compass were made in Western Europe. The lodestone is capable of
attracting pieces of iron and of imparting permanent magnetism to other
pieces of iron so that these too could at-
tract iron filings. If an iron bar is mag- S
netized, as the result of being near a N
piece of lodestone, and is then dipped '
into iron filings, the filings will cling
mostly to the ends of the bar, as shown
in Figure 29-1. These ends are called the
poles of the magnet.

The use of the magnet a’? & compass Fig. 29-2 A simple magnetic com-
depends upon the fact that if a perma- a5 neede. '
nent magnet is suspended so that it can
swing freely in a horizontal plane, the magnet will set itself in nearly a
north-south direction. The end which peints toward the north is called
the north-séeking pole, or simply the north pole, while the other end is
called the south pole. A line joining the south to the north pole is called
the axis of the magnet. A simple magnetic compass is shown in Fig-

ure 29-2. When-such a compass is mounted upon a sheet of cork and is

floated in water, the cork sheet remains at rest, implying that the net force

on the compass is zero.
’ 539




540 THE MAGNETIC FIELD §29-1

A ship’s compass, a somewhat more elaborate instrument, is shown in
Figure 29-3. It consists of a compass card fastened to a set of parallel
magnets with their north poles facing in the same direction and mounted

Fig. 29-3 A ship’s compass. The compass card is mounted on four parallel magnets.

so that the whole assembly rotates freely in a horizontal plane. The case
housing the compass is mounted in a set of bearings so that it can remain
horizontal even when the ship rolls and pitches. A marker on the case
housing the compass shows the direction in which the ship is headed.

29-2 Coulomb’s Law of Force

Suppose that a bar magnet is suspended from its center by a string so that
it can swing freely in a horizontal plane. If the north pole of a second bar
magnet is brought near the north pole of the first one, there will be a force
of repulsion between these poles. The suspended magnet will move so that
its north pole goes away from the north pole of the approaching magnet.
On the other hand, there will be a force of attraction when the north pole
of one magnet approaches the south pole of the other one. In his book,
De Magnete, William Gilbert (1540-1603) first showed that the earth could
be considered as a huge spherical magnet with two poles, and that the com-
pass needle was oriented by the forces exerted by the earth’s magnetism.
About two centuries later Charles Augustin de Coulomb (1736-1806)
measured the law of force between ‘the poles of two magnets. A long thin
magnet was suspended from a fine wire, and the pole of another thin magnet
was brought near a like pole of the suspended magnet, as shown in Figure

Page 11 of 81
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§2%-2 " COULOMB’S LAW OF FORCE 541

, is shown).4. Because of the foree between these two poles, the suspended magnet
t of paralperienced a torque which caused it to rotate about the wire as an axis,
nd mountys twisting the wire. Coulomb
udied the force between the poles

! two magnets as a function of the

istance between them; he also

;udied the force between mag-

ets of different strengths, keeping

he distance between poles con-

tant. He found that the force

- etween two poles of two magnets

-gried inversely with the square of

he distance between them, and

raried directly with the strengths

»f the poles. The results of Cou-

omb’s experiments could be

summed up by stating that the

force between the two magnetic poles

is proportional to the product of the

el magnetstrengths of the poles and inversely
proportional to the square of the

distance between. them, or
The cas ’

! remai _ ' ' .
. the cag Fo= ke (29-1) Fig. 29-4 Coulomb type torsion balance.

Jded., NS, magnet of pole strength p1, is sus-
in which p; is the pole strength of — pended from elastic fiber. N'S’is another
the first magnet, ps is the pole magnet of pole strength pa.
strength of the second magnet, r

» 50 fhat is the distance between the poles, k; is a constant of prOportion.alit.y, and

g 50 that g 55 the force between them. The force between the two poles is directed

zond baz along the line joining the two poles; it is attractive between unlike poles

. a force g repulsive between like poles. )

;nsa(,) nghzt Following the analogy of Coulyxb’s law for electric charges, we may

. thg c?le; write this proportionality in the Torm o.f an equation, bu.t we must ﬁr§t

s b gok define either the constant of proportion.ahty.kl or the .magmtude of ’?he u¥nt

h coul d’ polne. As before, in the cgs syst_en} of \.1n1ts, the constant of proportionality

16 com. k; is set.equal to 1, when the m'e;dmm is vacuum, and the sul?sequen‘? equa~

stism - tion is used to define a unit pole. The units based upon this equation are

. *  then called the cgs electromagnetic units (abbreviated emu). In the form

| .~ Glass
cylinder

P1P2 ,
2

;:glf}?@ of an equation, we have

in '

Xagnet _ i T,
Figure cgs emu_ Fp = 2 1, (29-1a)

B




542 THE MAGNETIC FIELD §29-2

i for the force in dynes between two poles in vacuum (or in air for which this
equation is very nearly correct). In Equation (29-1a)-F; is the force on the
pole ps in dynes, r is the distance betweeq;the-pdlés in centimeters, and the
unit vector 1, is directed from the pole p; to the pole ps. The pole strength
is expressed in unit poles, writing a north pole as positive and a south pole
as negative. A cgs unit pole ¢s implicitly defined in Equation (29-1a) as one
which, placed one centimeter from a like pole in vacuum, will repel it with a

force of one dyne.

In the mks system of units, the constant of proportionality is written

1
as ——, 80 that Coulomb’s law becomes
4o

Sy (20-1b)

mks units F, = 2
4 Mo T

The constant u is assigned the. value 4r X 1077, for reasons which must
be deferred until a subsequent chapter. Equation (29-1b) implicitly defines
% an mks unit pole called a weber. In Equation (29-1b) Fy is the force on pole
‘ pe expressed in newtons, p; and p, are expressed in webers, and r is ex-
pressed in meters. An mks unit pole of strength one weber is one which,
placed one meter from a like pole in vacwum, will repel it with a force of
107/(4w)% nt. This is a force of 10'2/(47)2 dynes. From Equation (29-1a

; two cgs unit poles placed 1 m apart repel each other with a force of 107*
dyne. Thus we see that

1 weber = 10%/(4r) cgs poles. (29-2)
In a form appropriate to Equation’(ZQ—lb) the value of ug may be
given as
b 2
uo = 4r X 1077 e el; . (29-3)
ntm

As the theory of magnetism is developed, other dimensions will be stated
for up which are equivalent to the dimensions given above.

The properties of a magnet and of magnetic poles appear to be similar
to the properties of electric charge, and yet there are extremely significant
differences. For example, when a long magnetized needle is broken in two,
new poles appear at the broken ends, so that each piece of the needle is
observed to contain a north pole and a south pole. An isolated magnetic
pole has never been observed in nature. Poles always occur in pairs. In
caleulating the forces on a magnet due to the presence of other magnets,
, we must always take into account the forces due to the north and the south
i poles of the magnets generating the force.

Page 13 of 81




§29-3 INTENSITY OF MAGNETIC FIELD 543

In a Coulomb type of experiment however, it is possible to use magnets
long enough so that when two poles are placed near each other, the other
poles are far enough removed so that they do not appreciably affect the
result. The pole of a magnet is simply a small region of the magnet which
acts as a center of force rather than the location of isolated magnetic charge.
In spite of the fact that we shall find it convenient to speak of the magnetic
field in terms of magnetic poles, we must always bear in mind that the
smallest element of magnetism observed physically is not a magnetic pole
but a magnetic dipole.

S——

29-3 Intensity of Magnetic Field

Because of the effect that a magnet produces on magnetic materials placed
anywhere in its neighborhood, we can say that a magnetic field exists in the
neighborhood of a magnet. We can make a quantitative statement of the
intensity of the magnetic field at some point in space by placing the north
pole of a long, thin, needlelike magnet at this point. If the pole strength
of this magnet is p, its north pole will experience a force F.  The magnetic
field intensity H at this point is defined as the force F divided by the pole
strength p, or, in the form of an equation,

(29-4)

The magnetic field intensity H is a vector quantity, whose magnitude
is given by the magnitude of the force on & unit north pole, and whose
direction is the direction of the force on a north pole. Algebraically, it is
conventional to represent a north pole as a positive pole and a south pole
as a negative pole. In cgs emu the force is stated in dynes, the pole strength
is cgs unit poles, and H is given in oersteds. If the intensity of the magnetic
field H is known at a particular point in space, the force that would be
experienced by each pole of a magnet placed at this point is given by Equa-
tion (20-4). For example, if the north pole of a long thin magnet having a
pole strength of 2 cgs poles is placed at a point where the intensity is 45
oersteds, the force on it is 90 dynes.

Tlustrative Example. A bar magnet 24 cm long has a pole strength of
800 cgs unit poles. Calculate the intensity of the magnetic field at point 4
16 cm from the magnet, measured along the line which is the perpendicular
bisector of the bar.

Referring to Figure 29-5, we note that the point 4 is 16 em from the center
C of the bar and 20 em from each end, N and S. For purposes of caleulation,

Tlet us imagine a long thin magnet of unit pole strength with its north pole at 4,

Page 14 of 81
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and apply Coulomb’s law to calculate the force exerted on it by each of the poles
of the bar magnet. The force of repulsion on the unit north pole at A due to
the north pole N is, from Equation (29-1a)
800 X 1
400

dynes = 2 dynes
directed away from N along NA. The force of attraction on the unit north
pole at 4 due to the south pole S is also 2 dynes but is directed toward S along

AS. Adding these two forces vectorially, we

get 2.4 dynes acting parallel to the axis of the
B iy,

magnet as the force on a unit north pole at 4.
The intensity of the magnetic field at A is
therefore

2.4 dynes

= 2.4 oersteds.
cgs pole

If the north pole is taken away and if a south

pole is placed at 4, it will experience an equal

force in the opposite direction. A magnet so

small that it can be considered as though both

Fig. 29-5 poles are practically at 4 will line up parallel

" to the direction of the field at A4, with the

north pole pointing in the direction of the field. A magnetic field may there-

fore be mapped by small compass needles, which will onent themselves par-
allel to the direction of the field.

When iron filings are introduced into a magnetic field, the filings
become magnetized. The magnetized filings orient themselves in the
direction of the field. Figure 29-6 shows a typical arrangement of iron
filings in the neighborhood of a bar magnet as seen in one plane.

As we shall see in a subsequent chapter, a magnetic field may also be
generated by a wire carrying current, and, in fact, this is the most common
method for the generation of a magnetic field. This has been recognized
in the choice of the units of magnetic field intensity H in the mks system
where H is generally stated in units of amperes per meler. Until we have
developed the concepts appropriate to the generation of the magnetic field
by current in a wire, we shall represent the magnetic field in units of newtons
per weber in the mks system of .units, a form appropriate to the definition
of H in Equation (29-4). The relationship between the mks and cgs units
of the magnetic field intensity H may be stated as '

nt
weber

= 47 X 1072 oersted. (29-5)

This conversion factor may be verified by recalling that
1 nt = 10° dynes,
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Fig. 29-6 Pattern formed by iron filings in the neighborhood of a bar magnet.

108
and 1 weber = — cgs poles.
. Y )
4 5
Thus ot _ 1 nt 10° dynes 1 weber
weber weber 1 nt 108/4m cgs pole
N T i
cgs pole

= 4 X 1073 cersted.

29-4 Magnetic Moment

If a bar magnet of length s and pole strength p is placed in a uniform

magnetic field of intensity H, its

north pole will experience 2 force Hp in

the direction of the field, while its south pole will experience an equal force
in the opposite direction, as shown in Figure 20-7(a). If the magnet is not
parallel to the field, the magnet will expetience a torque tending to rotate

it so that its alignment is parallel

1o the field. The magnet will experience

two forces equal in magnitude but opposite in direction, so that the net

force on the magnet is zero.

Following the terminology developed in electrostatics where we called
an assemblage of two equal and opposite charges an electric dipole, we call
a magnet with its two equal and opposite poles a magnetic dipole. The
magnetic dipole moment m is a vector quantity directed from the south pole:
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of the magnet to ifs north pole and is of magnitude given by the product
of the pole strength p by the separation of the poles s. In the form of an
equation the magnitude of the dipole moment is given by

m = ps. (29-6)
y G=mXxH
N F=Hp m
+p 0
S H
Ve H /// .
£/ /
Zp s
:-—Hp S X

(a) z (b)

Fig. 29-7 (a) Forces on a bar magnet in a uniform magnetic field. The plane of the
paper is the z-y plane. (b) When the magnetic moment vector m and the magnetic
field H lie in the z-y plane as shown, the torque G on the magnet is parallel to the z axis.

If s is the displacement vector directed from the south pole of the magnet
to its north pole, the magnetic dipole moment vector m is given by the
equation

m = ps, (29-6a)

which may be compared to the corresponding definitions in electricity
given in Equation (25-11). The cgs electromagnetic units of magnetic
dipole moment are cgs pole centimeters, while the mks units of dipole moment
may be expressed as weber meters. _
Let us calculate the magnitude of the torque @ about the center of the
magnet due to the effect of the magnetic field H upon the magnetic dipole
m, as shown in Figure 29-7(b). If the dipole-moment vector makes an
angle 6 with H, the torque is -

G = Hpssin 6,
or, in terms of the magnetic moment m as defined in Equations (29-6), the
torque is given by

G = Hm sin 6. (29-7)

" As shown in the figure, the torque tends to rotate the magnet in the clock-

wise direction. Following the right-hand rule, the torque vector is in the
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—2 direction. Using the notation of the vector product developed in
Section 7-4, we may write :

\ ~

G =m x H. (29-7q)

We may apply this result to the measurement of the magnetic field.
If & small bar magnet of moment of inertia I is suspended in a magnetic
field H, the torque on the magnet will be given by Equation (29-7), and if
the angle made by the magnet with the field direction is small, we may
replace sin § by 9. Observing that the direction of the torque vector is
opposite to the direction of the angular displacement, we obtain

G = —Hmf (29-8)

By comparing Equation (29-8) with Equation (12-2), we see that the
magnet is subjected to an elastic restoring torque which is proportional to
the angular displacement  and opposite in direction. The magnet will
therefore vibrate in simple harmonic motion. The period of the motion T
will be given by Equation (12-17) as

\ Iy
= 2
T T i

. (29-9)

Thus the magnetic field intensity H may be determined by measuring the
period of vibration, T' of a magnet of known magnetic moment M and
moment of inertia I.

Illustrative Example. A bar magnet 8 cm long has a mass of 20 gm and a
pole strength of 60 cgs unit poles. Determine (a) its magnetic moment and (b)
its period when placed in a field whose intensity is 100 oersteds.

(2) The magnetic moment of the bar magnet is, from Equation (29-6),

m = 60 poles X 8 cm == 480 pole cm.

To determine the period it is necessary to find the moment of inertia. The
moment of inertia of & uniform bar about an axis through-its center of gravity
is given by the expression
I =_ﬁML?} )
where M is the mass of the bar and L is its length. Therefore '
I =% X 20 gm X 64 cm? = 106.7 gm cm?®.

(b) Substituting these values in Equation (29-9) , we find

T = 2r -1—0§—'z—sec = (.296 sec.
\ 480 X 100
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29-5 Atomic Magnetic Moments

When a small magnet is placed in a uniform magnetic field, it experiences
a torque. When the magnet is placed in a nonuniform field, the field acting
at the south pole of the magnet may be given by H, while that acting at
the north pole of the magnet may be given by H, = H, + AH, as shown
in Figure 29-8, where AH is the vector
difference between the fields at these
two poles. The net force on the mag-
net is due to the change in the field
p AH, for if p is the pole strength of the
magnet, the force on the magnet is

F = pH, — pH, = p AH.

physically small, of length As. We
multiply and divide the right-hand
side of the equation above by the
quantity As to find

F A AR
= §
. P As

Fig. 29-8

The product p As is the magnetic mo-
ment m of the magnet, while the.quantity AH/As is the rate of change
of the magnetic field directed from the south to the north pole. Thus we
have, in the limit of extremely small magnets,

F = A—I-E—mﬁ (29-10)
s T s i

where the direction in which we take the derivative of the magnetic field
intensity is the direction of the magnetic moment. ) )

A method of measuring atomic magnetic moments devised by Stern
and Gerlach (1921) was to generate a beam of atoms, to send them through
a nonuniform or inhomogeneous magnetic field of known inhomogeneity,
and to observe the deflection of the beam. In the Stern-Gerlach experiment
a beam of silver atoms was obtained by heating silver to a high temperature
in 4n oven in vacuum. A narrow beam of silver atoms coming from an
oven O, Figure 29-9, after passing through defining slits Sy and Sz, was
a]lowed to pass through an inhomogeneous magnetic field and strike a
plate P. The inhomogeneous field was produced by an electromagnet with
specially designed pole pieces. One pole piece was in the form of a knife-
edge, while the other pole piece had a channel cut in it parallel to the

Let us suppose that the magnet is
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knife-edge. From the pattern on the photographic plate, shown in Figure
29-10, and a knowledge of the speed of the particles, the magnetic moment

=
VAN

Cross section of
pole pieces

P

Fig. 29-9 Arrangement of apparatus in Stern-Gerlach experiment.

of silver could be calculated. The magnetic dipole moment of silver, M4y,
is now known to be

mag = 0.93 X 1072% emu.

It may be remarked parenthetically that the magnetic moment of the
silver atom, as measured in the Stern-Gerlach experiment, is actually the -
magnetic moment of the valence electron of silver. A glance at Table 5
of Appendix A shows that silver, in the normal state, has a single electron,

Fig. 29-10 Type of pattern made
by a beam of silver atoms (a) with-
out magnetic field on; (b) with
magnetic field on.

ANNANNNNNNNNNNNNNNNNRRNNNNS

(a) © (b)

an s electron outside of a closed, stable configuration of the other 46 elec-
trons. The sum of the magnetic moments of these 46 electrons is zero.
The magnetic moment of an electron is ascribed to its intrinsic spin. One
interesting result of the above experiment was that the silver atom was
deflected in only one of two possible directions, as indicated by the splitting
of the line into two lines. The interpretation of this is that a spinning
electron, when in a magnetic field, cannot have any arbitrary direction in
space. The spin of an electron may be considered as a vector quantity,
since there is an angular momentum associated with it directed along the
axis of spin. The magnetic moment is also a vector quantity directed
along this axis. - When an electron enters a magnetic field, its axis can take
only one of two possible orientations, either parallel to the direction of the

i
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magnetic field or antiparallel, that is, oppositely directed, depending upon
the direction of its spin. This limitation of the possible orientations of the
axis of spin of an electron is called space quantization.

Measurements of the magnetic moment, by the methods of Stern and
Gerlach and by other methods developed subsequently, have been made of
atoms, molecules, and subatomic particles such as electrons, protons,
neutrons, and many nuclei. These measurements are an important part
of our knowledge of the properties of matter.

29-6 Terrestrial Magnetism

We have already shown that a bar magnet, when suspended so that it can
swing freely about a vertical axis, will ultimately come to rest in an approxi-
mately north-south position. The use of a compass is based upon this

20°E

I5E 0 5 o0 5W 0°W 15W 20W

N

¢ 10°E 5°E

Fig. 29-11 Chart showing isogonic lines for the United States, 1955. From the 1955
edition of chart 3077, of the U.8. Coast and Geodetic Survey, showing distribution of
magnetic declination throughout the United States. (Courtesy of Coast and Geodetic
Survey.) A -

observation. It is important, however, to know how much the magnetic
north-south direction differs from the geographic or true north-south
direction. Various surveys have been made to determine this difference for
various points of the earth’s surface. This difference is termed the declina-
tion of the magnetic from the geographic north-south direction. It differs
from point to point on the earth’s surface and: also is found to vary in a




Page 22 of 81

§29-7 A MOLECULAR THEORY OF MAGNETS 551

complex manner with time. Charts are plotted for any region of the earth’s
surface with lines showing equal declinations, or 7sogonic lines, marked on
them. One such chart is shown in Figure 29-11. In New York the declina-
tion is about 11°W, in Detroit it happens to be 3°W, while in San Francisco
it is about 18°E. ‘

The declination gives the direction of the horizontal component only
of the earth’s magnetic field at any one point. The fact that there is a
vertical component to the earth’s magnetic field can be shown by the follow-
ing simple experiment. A long unmagnetized steel needle is mounted so
that it can pivot about a horizontal axis through its center of gravity. Itis
balanced in the horizontal position and pointed in the direction in which a
compass needle would point. The needle is now magnetized by means of a
strong magnet and then allowed to swing freely. It will be found that the
magnetized needle no longer balances in the horizontal position but dips
with its north pole downward. The angle of dip '

varies from place to place over the earth. At New ' H,
York the angle of dip is 72° with the horizontal, Angle
near the equator it is almost 0°, and at the mag- of dip
netic pole in the Northern Hemisphere it is 90°. H
In this manner the earth’s magnetic poles are H,
located. :

When the dip needle is properly used as de-

scribed above, its direction is that of the earth’s
magnetic field at the given place. The horizontal “gig, 2912 Angle of dip.
component H g of the intensity of the earth’s mag-

netic field can easily be determined by means of an oscillating horizontal
magnet, as described above. By means of a simple vector diagram, illus-
trated in Figure 20-12, the total magnetic field intensity H and its vertical
component Hy can be computed. :

The earth behaves as though it contained a very large magnet with its
south pole in the Northern Hemisphere located at and below Boothia
Peninsula in northern Canada, and the other pole in the Southern Hemi-
sphere near Ross Sea in Antarctica. The origin of the earth’s magnetic
field is at present unknown. The hypothesis that seems most reasonable
is that the earth’s magnetic field is produced by electric currents within the
earth, probably within its core. If the above hypothesis is accepted, one
must explain the source of these electric- currents. '

29-7 A Molecular Theory of Magnets

An insight into the origin of the magnetic properties of magnetic substances
can be obtained from the following simple experiment. First magnetize a
Jong steel needle or steel strip; then break the magnet in half. By dipping
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these parts in iron filings, it will be found, as sketched in Figure 29-13, that

each half is itself a magnet. By testing the polarity of each part, it will be

found that opposite poles appear on the faces where the break was made.

If one of these parts is again broken in half, we will again have two magnets.

This process can be repeated until the

% % magnets become too small to handle.

Each part broken from the original

% % % % magnet will always be found to be

i magnetized. This suggests that a magnet

Fig. 29-13 A bar magnet broken ‘is made up of very tiny magnets, perhaps
in half forms two bar magnets. of molecular size.

On this theory of magnetism, mag-
netic substances are assumed to contain little magnets of approximately -
molecular size. When the bar of steel is unmagnetized, these molecular
magnets are oriented at random, as '
sketched in Figure 29-14(a), so that the

bar shows no polarity and has no net mag- e T |
netic moment. But when the bar of (a)

steel is brought into a magnetic field, its = — —= —=% —p —
molecular magnets rotate until they line (b)

up with the field, as shown in Figure :

29-14(b); the bar thus acquires magnet~ Fig. 29-14 (a) Molecular magnets
ization, magnetic poles, and a magnetic in an unmagnetized steel bar have
moment. When the steel bar is removed ~random otientations. (b) When the

: gteel bar is magnetized, the molec-
from the magnetic field, most of these ular magnets line up parallel o the

little magnets retain their orientation S0  gyternal field, producing poles at
that the steel bar remains permanently the ends of the bar.

magnetized, although its magnetic mo-

ment may not be as big as it was when in the magnetic field. Other sub-
stances, such as soft iron, lose most of their magnetism when taken out of
the magnetic field.

Other evidence in support of this molecular theory of magnetism may
be cited. If a magnetized steel bar is dropped, hammered, or otherwise
jarred, it loses some of its magnetism. If it is heated to a temperature
beyond about 800°C, it loses its magnetic properties, probably because of
the fact that the increased vibratory motion of the molecules destroys the
orientation of the molecular magnets. This molecular theory is not, of
course, the complete explanation. One would like to know the origin of
these elementary magnets and why some substances are magnetic while
others apparently are not magnetic. We shall consider this topic again
after we have shown the relationship between electricity and magnetism.
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29-8 A Theory of Magnetism

From Coulomb’s law it is possible to develop a theory of magnetism based
upon the magnetic dipole as the basic element of magnetism, and upon the
auxiliary concept of the magnetic pole. Such a theory of magnetism is
quite analogous to the theory of electrostatics developed in earlier chapters.
In this theory the magnetic field intensity H is analogous to the electric field

_intensity E. The contribution to the magnetic field intensity at a point due

to a magnetic pole of strength p can be written in an equation analogous
to Equation (23-2) as

H=1IK T—Z; 1, (29-11)

where, in the cgs system of units,
cgs units . . kr=1 .
in vacuum, and H is expressed in oersteds when p is expressed in cgs unit
poles and r is expressed in centimeters. In the mks system of units,
1
4o

mks units ki = (29-12)
in vacuum, and H is expressed in newtons per weber when p is expressed
in Webers r is expressed in meters and

; weber®

po = 4m X 10” -

nt m

In many problems associated with the magnetic fields due to permanent
magnets, it is helpful to define a magnetic potential similar to the electric
potential defined in electrostatics. One essential difference between elec-
trostatics and magnetostatics lies in the fact that there are no conductors
of magnetism. Another difference which we have already emphasized is
that the isolated magnetic pole is a useful mental construct rather than an
experimentally observed entity.

To carry the analogy further, we utilize the concept of magnetic lines
of force, developed as in Section 23-5 for the electric field. There are 4w
lines of force emanating from a cgs unit north pole; and 1/uo lines of force
emanating from an mks unit north pole of pole strength 1 weber, as in
Equations (23-5). Since the source of the magnetic field is the magnetic
dipole, every volume element must contain as much positive magnetism as
negative magnetism, so that the net number of magnetic lines of force
emerging from any Gaussian surface is zero.




-~

Page 25 of 81

554 THE MAGNETIC FIELD §29-8

In dealing with the magnetic field in the material medium, we define
the magnetization M as the magnetic moment per unit volume, just as, in a
dielectric, we spoke of the polarization P as the electric moment per unit
volume. The magnetic medium differs from the dielectric medium in that
a permanent state of magnetization is commonly found in magnetic ma-
terials, while the polarization of most dielectric materials is only found in
the presence of an electric field. V

It is possible to produce a state of permanent electric polarization in
some waxes by cooling them slowly in an electric field. These permanently
polarized waxes are called electrets, and generate an electric field similar to
the magnetic field generated by magnets. When electrets are left alone for

_a time, electric charges, in the form of atmospheric ions, collect on their

surfaces in such a way as to neutralize the electric field generated by the
electret. The electret may be revived by scraping away its surface, remov-
ing the collected ions. The fact that permanent magnets are not diminished
in strength by exposure to the atmosphere may be cited as evidence that
free magnetic poles do not exist in the atmosphere.

In addition to the permanent magnetization, we describe the induced
magnetization in a magnetic material by the magnetic susceptibility xm
(chi sub m) so that the induced magnetization could be written as

M = x,H, (29-13)

-analogous to Equation (25-12j.

Just as it was convenient to describe the electric field in the material
medium by means of the electric displacement D, so it is convenient to
describe the magnetic field in terms of the magnetic induction B, defined
by equations analogous to Equation (25-24) as

B = uH -+ M. (29-14a)

In the mks system of units, the magnetization M, the magnetic moment
per unit volume, is expressed in webers per square meter, and the product
uoH is similarly expressed in webers per square meter. Thus the units of
magnetic induction B are expressed in webers per square meter. We may
describe the relationship between B and H in a linear medium through the
equation

B =uH; . (29-15a)

where b= Kmilo- (29-16)

In these equations u is called the permeability of the medium, and «y, is
called the relative permeability of the medium. The value of «, for vacuum
is unity. »

In the cgs system of units Equation (29-14a) may be re-expressed as
cgs units B = H + 47M. (29-14b)
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The units of magnetic induction B are expressed in gausses. The terminology
for this system of units is not so well worked out as in the case of mks units, so
that each quantity in Equation (29-14b) is expressed in different units. Thus
H is expressed in oersteds and M is expressed in cgs poles per square centimeter.
The linear relationship between B and H, for a linear medium, is then expressed as

cgs units B = «k,H. (29-15b)

This neat analogy between the electric field and the magnetic field is
very useful, but it neglects the most important of all magnetic effects, the
generation of a magnetic field by an electric current. It was discovered by
Hans Christian Oersted in 1820 that an electric current in a wire caused a
compass needle to be deflected. Subsequent investigations have shown
that the magnetic field exerts a force on a moving charge, and that a chang-
ing magnetic field induces a current in a wire. The theory outlined above
must be supplemented to include these effects.

In contrast to the case of the electric field in which the electric dis-

" placement D plays a minor role, important in simplifying calculations but

not at the foundation of electrostatics, the magnetic induction B is of great
significance, for, as we shall see, B describes the effects of the field on a
moving charge, while H describes the effects of the field upon a pole. From
a fundamental physical viewpoint the pole is a property of bulk matter
and is not a fundamentally significant magnetic parameter. Since isolated
poles do not exist in nature, we are forced to relegate the magnetic field
intensity H to the role of an auxiliary quantity and to think of the magnetic
induction B as the fundamental magnetic-field vector. The sources of the
magnetic field are today understood to be electric currents and the magnetic
dipole moments of the fundamental physical particles, while the probe by
means of which we are enabled to examine the magnetic field is either a
moving charged particle or an elementary magnetic dipole.

Problems

29-1. A bar magnet having a pole strength of 400 cgs poles and a length of
5 cm is placed so that its south pole is at the origin and its north pole is located
at the point whose coordinates are (5 cm, 0). Find the magnitude and direction
of the force exerted by this magnet on the north pole of a long, slender, needlelike
magnet whose pole strength is 20 cgs poles, when that pole is placed at a point
whose coordinates are (a) (0, 10 em), (b) (—10 e¢m, 0), and (¢) (5 em, 3 cm).

29-2. A bar magnet having a pole strength of 10~ weber is placed along the
y axis so that its south pole is at the origin and its north pole is located at y =
0.1 m. Find the magnitude and direction of the force exerted by this magnet on
the north pole of a needlelike magnet of pole strength 10~® weber when that
north pole is located at a point whose coordinates are (a) (0, —0.2 m), (b) (0.24 m,
0), and (¢) (0.03 m, 0.05 m).
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29-3. Two identical bar magnets are placed side by side with their axes

- parallel and separated by a distance of 10 cm. Find the magnitude and direction
. of the force between them when like poles face each other. The pole strength

of each magnet is 300 cgs poles, and the length of each magnet is 20 em.

29-4. Repeat the calculation of Problem 29-3 in the case that unlike poles
face each other and the pole strength of the magnets is 10~5 weber. Perform
your calculations in mks units.

29-5. What is the intensity of the magnetic field at a point 20 cm from the
north pole of a bar magnet, measured along the axis of the magnet, if the magnet
is 30 cm long and has a pole strength of 400 cgs poles?

29-6. What is the magnetic field intensity generated by the bar magnet at
each of the points indicated in Problem 29-1?

29-7. What is the magnetic field intensity generated by the bar magnet
at each of the points indicated in Problem 29-2? ’

29-8. A bar magnet 4 cm long, having a pole strength of 12 cgs poles, is
placed in a uniform magnetic field with the axis of the magnet perpendicular to
the direction of the magnetic field. The intensity of the magnetic field is 45
cersteds. Determine the torque acting on this magnet.

29-9. A small compass needle oscillates with a period of 2.5 sec when placed
at a point where the horizontal component of the earth’s magnetic field is 0.2
oersted. Determine the magnetic moment of the compass needle if its moment
of inertia about the axis of rotation is 24 gm cm?

29-10. A bar magnet 6 cm long is suspended by a wire passing through its
center. The magnet is placed in a uniform field with the axis of the magnet
perpendicular to the direction of the field. The torque, as measured by the
twist of the wire, is 1,500 dynes ecm. Determine (a) the magnetic moment of
the magnet and (b) the pole strength. The intensity of the field is 50 oersteds.

29-11. A small bar magnet has a period of oscillation of 2 sec when pivoted
in a uniform magnetic field of 36 nt/weber. When it is used to measure the
intensity of a second magnetic field, the period is found to be 0.40 sec. Determine
the intensity of the second magnetic field.

29-12. A uniformly magnetized rod has a pole strength of 10 webers., The
magnet has a cross-sectional area of 1 em? and a length of 10 cm. (a) What is
the magnetic moment of the magnet? (b) What is the magnetization of the
magnet?

29-13. By analogy with the electric field in a material medium (Sections
25-6 to 25-8), write a formula for the magnetic field intensity H due to a magnetic ‘
pole of pole strength p when that pole is immersed in a medium of relative
permeability «» (a) in egs units and (b) in mks units.

29-14, From the result of Problem 20-13, state Coulomb’s law of force
between two poles immersed in a medium of relative permeability x, (a) in mks
units and (b) in cgs units. '
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Magnetic Fields of Currents

30-1 Magnetic Field around an Electric Current

The first evidence for the existence of a magnetic field around an electric
current was observed in 1820 by Hans Christian Oersted (1777-1851). He
found that a wire carrying current eaused a freely pivoted compass needle

N Direction
of current

\
i .
l\ m wire
i

{

i

!

i

/
U
i

C

“(a) (b)
Fig. 30-1 Oersted’s experiment. Compass needle is deflected toward the west when
the wire CD carrying current is placed above it and the direction of the current is toward
the north; from C to D. ’

in its vicinity to be deflected. If the current in a long straight wire is
directed from C to D, as shown in Figure 30-1, a compass needle below it,
whose initial orientation is shown in dotted lines, will have its north pole
deflected to the left and its south pole deflected to the right. If the current
in the wire is reversed and directed from D to C, then the north pole will
be deflected to the right, as seen from above. In terms of the forces acting
on the poles, these forces are clearly perpendicular to the direction of the

current and to the line from the nearest portion of the wire to the pole itself.
557




Page 29 of 81

-

558 MAGNETIC FIELDS OF CURRENTS §30-1

The magnetic field in the neighborhood of a wire carrying current can
be investigated either by exploring the region with a small compass or by
using iron filings. When a wire carrying current is passed perpendicularly
through a plane board and iron filings are sprinkled on the board, the

Fig. 30-2 Pattern formed by iron
B—== filings showing the circular magnetic
field around a wire carrying current.

filings form a circular pattern, as shown in Figure 30-2. Thus the magnetic
field generated by the wire carrying current is circular in a plane at right
angles to the current. The circles are concentric, with their common center
at the position of the wire. The direction of the magnetic field can be

(a) (b)

Fig. 30-3 Direction of the magnetic field around a wire (a) when the current is out of
the paper; (b) when the current is into the paper. The dot represents a head-on view
of an arrow while the cross represents a rear view.

determined with the aid of a small compass. If we look along the wire so
that the current is coming toward us, the magnetic field is counterclockwise.
If we draw a dot to represent a head-on view of an arrow and a cross to
represent a rear view of an arrow, we may show the direction of the mag-
netic field, associated with current in & wire perpendicular to the plane of
the paper when the current is coming toward the reader in Figure 30-3(a),
and when the current is away from the reader in Figure 30-3(b). A small
compass placed anywhere in the field will orient itself tangent to one of
these circles with its north pole in the direction of the arrow.

‘When the wire carrying current is bent in the form of a circular loop,
as shown in Figure 30-4, the direction of the magnetic field around each
small portion of the wire may be determined from the above observations.
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Tf the current in the loop is counterclockwise when viewed from the positive
« axis, the direction of the magnetic field at the center of the loop is per-
pendicular to the plane of the loop and in the positive ¢ direction.

A simple way of determining the direction of the magnetic field relative
4o the direction of the current is given by the right-hand rule. If the current

y
I
<<
/
Fig. 30-4 Magnetic field produced
by a current in a circular loop of H - X
wire. The magnetic field at the /
center is at right angles to the plane ) / I
2

of the loop.

is in a straight portion of the wire, then, if we imagine thé thumb of the
right hand to be placed along the wire and pointing in the direction of the
current, the curled fingers of the right hand will point in the direction of
the magnetic field. If the current flows
in a circular path, then, if we imagine
the fingers of the right hand curving in
the direction of the current, the thumb
will point in the direction of the mag-
netic field inside the coil, as in Figure

wound in the form of a helix which is very

long in comparison with its diameter, the - .

magnetic field outside the coil is very Fig. 30-5 Magnetic field due to a
similar to that of & bar magnet, while the * current in a long cylindrical coil or
field inside the coil is uniform and parallel helix.

to the axis of the coil. At large dis- )

tances the field produced by a circular loop of wire carrying current is
indistinguishable from the field generated by a small magnet. According
t0 a theory first presented by Ampére, it is possible to imagine that all
magnetic effects are due to circulating currents, and to attribute the
magnetic fields generated by permanent magnets to circulating currents -
within molecules. These currents are associated with orbital motions
of electrons about some attractive center within the molecule.

30-4. _ v L
When, as in Figure 30-5, the wire is C i
|
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30-2 Magnetic Field Generated by a Wire Carrying Current
~

As soon as Oersted’s discovery was announced, scientists in Europe began
repeating and extending these experiments. Interest in Oersted’s results
was aroused because this was the first time a force had been observed which
was not directed along the line joining the two bodies but was perpendic-
ular to this line. Since Newton had developed the concept of universal
gravitation, both electrostatic and magnetostatic forces had been studied.
All these forces obeyed an inverse square law and were directed along the
line joining the bodies responsible for the forces. Biot and Savart (1820)
determined the magnetic field produced by the current in a long straight
wire. The experiments of Biot and Savart showed that the magnetic field
intensity H at a distance a from a long straight wire carrying current I was

directly proportional to the magnitude of the current and inversely pro-

portional to the distance from the wire; that is,

2
H = kz l ) (30"1)
a

where kg is a constant of proportionality. The direction of the magnetic
field intensity was always normal to the wire and to the perpendicular from

Fig. 30-6 The field at a point P due to a
long straight wire is perpendicular to the
plane formed by the wire and the normal a
dropped from P to the wire. In this figure
H is directed into the plane of the paper,
as given by the right-hand rule.

the point where the field was being evaluated to the wire. The direction of
the magnetic field was given by the right-hand rule, as shown in Figure
" 30-6.

The value of the constant ko depends upon the system of units used
to measure H, I, and a. In the mks system of units, the current I is ex-
pressed in amperes, the distance a is expressed in meters, and the magnetic
field intensity H is expressed in mks units, stated in Section 29-3 as newtons

1 .
per weber. In this system of units the constant ks is — ot and Equation
(30-1) becomes :

I
= 30-1
2ma (30-1a)

—f

Page 31 of 81

e




Page 32 of 81

§30-3 GENERATED BY CURRENT ELEMENT 561

In Section 29-3 we mentioned that the units of H in the mks system were
commonly expressed as amperes per meter. The justification for expressing
H in these terms is provided by Equation (30-1a). The units of H may be
stated equivalently as newtons per weber or as amperes per ‘meter, and the
choice of units will depend upon which form is more convenient for the
problem in hand.

In one form of cgs units called the Gaussian system of units, toward which
we have been building our cgs unit system, the units of electrical quantities such
as charge, current, electric field intensity, electric displacement, potential,
and resistance are based upon the statcoulomb as the unit of charge, while units
of magnetic quantities, the oersted and the gauss, are based upon the cgs unit
pole. In this system the constant ks is 1/c, where ¢ is the velocity of light in
centinieters/per second, given approximately as ¢ = 3 X 10'°cm/sec. To
simplify the presentation of the material of this chapter, all equations will be
presented in the mks system of units.

Traditionally, Equation (30-1) has been used to define a new unit of
current called the electromagnetic unit of current, by setting ks equal to 1. This
unit is called the emu of current, or the abampere. Electromagnetic units of
current will rarely be used in this book. : :

Fig. 30-7 The magnetic field in-
tensity dH at any point P a distance
r from an element.ds of wire carry-
ing current I is perpendicular to the
plane of ds and 1;, where 1 is the
unit vector directed from ds to P.
The element dH is shown coming
out of the plane of the paper when
ds and 1; lie in the plane of the

paper.

30-3 Magnetic Field Generated by Current Element

The results of the experiments of Biot and Savart on the magnetic field
around a wire carrying current form the basis of a fundamental physical
law for the determination of magnetic fields produced by currents. If we
consider any small element of wire of length ds in which there is a current I
(see Figure 30-7), its contribution dH to the magnetic field intensity at a
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point P located a distance r from it, is given by

Tdsx1,
4rr?

dH = (30-2)

The unit vector 1, is directed from the current element to the field point P.
The vector ds is tangent to the. direction of the current. The direction of
dH is perpendicular to both ds and 1,. Fquation (30-2) is sometimes called
the law of Biot and Savart, and also Ampére’s law.

The total magnetic field intensity H at a point P due to a given current
distribution is found by summing vectorially (that is, integrating) the
contributions dH from all the elements ds of the wire. For most geometrical
arrangements of the conductor, this summation is beyond the reach of the
calculus and must be carried out by numerical methods of integration or
by use of an electronic computer. We shall consider only two cases, the

30-4 Magnetic Field of a Flat Circular Coil

Let us use Ampére’s law to calculate the magnetic field intensity at the
center of a single circular loop of wire carrying a current I. As shown in

z

Fig. 30-8

Figure 30-8, each element of the loop of wire makes a right angle with the
line drawn from that element to the field point P at the center of the circle.
The direction of the magnetic field dH due to each element of the loop ds
is in the positive 2z direction when the current is in the counterclockwise
direction, as shown in the figure. Since the contribution to the magnetic
field from every element of current is in the same direction, the problem of
obtaining the vector sum of the contributions to the total magnetic field
intensity is reduced to a scalar sum, and we may set up the problem in the
form of an integral.
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“From Equation (30-2) we have
_ Idsx1,
T dp?

The factor dsx 1, is equal in magnitude to the product of the magnitude
ds by-the magnitude of 1, (which is unity), by the sine of the angle between
them. Since the angle between the two vectors is 90°, the magnitude of
this vector product is simply the magnitude ds. The direction of this vector
product is in the 4z direction, so that we may represent it as

dsx1, = ds1,,
where 1,is a unit vector in the positive z direction, Thus we have

Ids
dH = e 1.,
where the magnitude of dH is the factor multiplying 1..

In order to carry out the integration, we must represent the. variables
of the problem in terms of some simple parameter. Let us measure the
angular position of an element of current by the angle ¢, from the x axis,
positive in -the counterclockwise direction. The angle subtended by the

element of length ds is d¢ such that

v ds = 1 dé.
Thus we have
Irde
dH = ks

and, integrating around the circumference of the circle by letting ¢ go from
0 to 2, we find

_ (1
“Jo Aar
1
T or

The complete representation of the magnetic field intensity at the center
of a single circular loop of wire of radius r carrying a current I in the counter-
clockwise direction is given by

H = i 1. ' (30-3)
2r

In Equation (30-3) the appropriate choice of units to represent H is amperes
per meter when I is in amperes and 7 is expressed in meters.
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In the event that we have a coil of N turns of wire wound as a flat
circular coil rather than a single circular loop, each turn of the coil con-
tributes a magnetic field at the center of the coil, as given by Equation
(30-3). Since these field contributions are all in the same direction, the
total magnetic field is N times that given by Equation (30-3). A circular
coil of wire of N turns carrying current 7 in the counterclockwise direction,
when viewed from the positive 2 axis, as in Figure 30-8, has at its center a
magnetic field H given by

H=— 1 (30-4)

One of the early forms of current-measuring instruments was the
tangent galvtmomete? which consisted of a single circular loop of wire with
a short compass needle placed at its center, as shown in Figure 30-9. When
a current I was sent through the loop, it set up a magnetic field of intensity

(a)

Fig. 30-9 (a) Tangent galvanometer. The plane of the circular coil is parallel to the
earth’s magnetic field. (b) The two magnetic fields which act on the V- -pole of the small
compass needle. Hp is the horizontal component of the earth’s magnetic field; H is the
intensity of the magnetic field produced by the current. R is the resultant of the@e two
field intensities. H = Hyz tan 6.

H at its center, producmg a force Hp on each pole of the magnet. In the
figure the force on the north pole is shown directed to the right, while that
on the south pole is directed to the left. These two forces produced a torque
causing the compass needle to rotate out of the plane of the coil. The
horizontal component of the earth’s magnetic field produced an opposite
torque on the compass needle. The compass needle came to rest at some
angle 6 with the plane of the loop, at which angle the two opposing torques
were equal in magnitude. A simple calculation shows that the current in
the loop is proportional to the tangent of the angle 6, hence the name tan-
gent galvanometer. This was the instrumernt refined by Lord Kelvin as
the detector for use in the first successful operation of the Atlantic cable.

(S
U




Page 36 of 81

§30-5 MAGNETIC FIELD OF A LONG STRAIGHT WIRE 565
Illustrative BExample. A cireular coil of 30 closely wound turns of 15 ecm
average radius carries a current of 2 amp. Determine the magnitude and direction
of the magnetic field at the center of this coil.
Assuming that the turns are so closely wound that the current in each one
contributes the same amount to the intensity of the magnetic field at the center
of the coil, the magnetic field intensity is of magnitude

NI

T
Substituting numerical values, we have

_ 30 turns X 2amp _

H= 200 2P,

2 X 0.16m m

Note that the turn is a dimensionless quantity. The direction of the mag-
netic field is perpendicular to the plane of the coil, as given by the right-hand rule.

30-5 Magnetic Field of a Long Straight Wire

The experimental result of Biot and Savart given in Equation™(30-1) may
be calculated from Equation (30-2) by integrating the contributions to the
field from each element of the wire.
The field point P is located a dist 7
tance a from the wire, as shown in
Figure 30-10. Let us measure the
distance s along the wire from the
foot of the perpendicular from P to qa
the wire.

In terms of the angle 6 between
the element ds and the unit vector
1, from the element ds to the field
point P, the distance r may be repre-
sented as '

Fig.'30-10

a
r =-— = qgcsech.
sin 6

To express the length of the element ds in terms of the distance o and
the angle 8, we first note that the length s’is given by

= g cot §,
50 that, taking differentials to obtain the magnitude of ds,
ds = —acsc?0dp.

We note that contribution to the magnetic field from each element of wire
is in the same direction at P; that is, it is directed out of the plane of the
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paper, toward the reader, If we call this direction the direction of 2z, then

I dssin 6
Arr?

dH = + 1.

Substituting appropriate expressions into the above equation, we find
Ta cse® 6 d6 sin 0
4ma? csc® 0
I sin 6 do
4ra

dH =

Since all contributions to the magnetic field at P are in the same direction,
we may find the magnetic field intensity at P by integrating between
the limits of 8 = « to 8 = 0, corresponding to limits on s of s = — to
s = 4+ . Thus we have

0 I

H =f — —— sin 6 db,
w 4'.1!'01

L

2ra

as previously stated in Equation (30-1a).

30-6 Field of a Solenoid and a Toroid

A solenoid is made by winding wire on a cylindrical form; the length s of
the cylinder is generally much larger than its radius 7. The adjacent turns
of the wire are generally close together, as shown in Figure 30-11. The
field inside the solenoid may be calculated from Ampére’s law. The field
is uniform over the entire region of the solenoid except near the ends, as

[0000600000000000000000000;

'
(a) T S
(b)

Fig. 30-11 (a) >Windings of a solenoid. (b) Magnetic field intensity inside a solenoid.
Currgnt is coming.out of the wires on top and going into the wires on bottom. ‘
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shown in the figure. The field intensity within a solenoid will be shown in
Section 33-6 to be '

H=—) (30-5)
S
where N is the number of turns of the solenoid, s is its length, and I is the
current in it. '
A toroid is made by winding wire on a ring or doughnut-shaped form
called a torus. The field of the toroid is entirely confined to the space within
the toroid. A toroid may be generated by bending a long straight solenoid

Fig. 30-12 Toroid.

in the form of s ring. The magnetic field intensity within the toroid is
given by Equation (30-5), where s now represents the mean circumference
of the ring, shown in Figure 30-12.

The solenoid and the toroid are frequently used as standard means of
achieving known, uniform magnetic fields.

30-7 Equivalence of a Moving Charge and a Current

Our original definition of current was based on the flow of charges through
a surface in a given time interval; it remains to be shown that a set of mov-
ing charges will produce the same magnetic effect as a current in a wire.
This was first shown experimentally by H. A. Rowland in 1876. He used
an ebonite disk having metallic sectors distributed near the rim of the disk.
The metallic sectors were charged electrically, and the disk was set into
rapid rotation. A magnetic needle suspended near the disk was deflected
by the magnetic field set up by the moving charges. The direction of the
deflection was the same as that which would have been produced by the
current in a circular loop of wire coinciding with the rim of the disk. When
the direction of rotation was reversed, the deflection of the magnetic needle
was also reversed. More recently (1929) R. C. Tolman set a charged
cylinder oscillating about its axis and observed that this produced an
alternating magnetic field, the same as that produced in the neighborhood
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of an alternating current. These experiments show that, as far as the
magnetic effect is concerned, a moving charge and a current in a wire are
equivalent.

ds = vdt

S, N\, \,
Moo ®, N DDl ®
/un/m\/uu. R I R TON Y T = m/umv‘nmm//ummu,@//
| s &

| @ 1 &—>®

Fig. 30-13

Figure 30-13 shows a tube in which a current I consists of the motion
of positive charges with uniform velocity ». From the definition of current

dgq

dt
where dq is the quantity of charge which passes through a complete cross
section of the tube in a time d¢. The charge will traverse a length ds of the
tube, where
ds = v dt.

Eliminating dt from these two equations yields
. Ids =vdg.

In other words, a charge dg moving with velocity v may be considered to be
equivalent to a current element of length ds carrying a current 1.

We may find the magnetic field H generated by a moving charge ¢ by
substituting the above results into Equation (30-2). We find

gvx1,
Ao . (30-6)
Anr?

30-8 Coulomb’s Law and Ampere’s Law

Let us consider the magnetic field generated by a charged particle
mounted on an airplane. If we calculate the magnetic field generated by
the moving charge from Equation (30-6), we note that, to an observer on
the ground, the charge is moving with the velocity v of the airplane, but,
to an observer on the airplane, the charge is moving with zero velocity.
Thus an observer on the surface of the earth is able to detect a magnetic
field due to the motion of the charged particle on the airplane, but an
observer on the airplane cannot detect a magnetic field due to the charge




Page 40 of 81

$30-8 COULOMB’'S LAW AND AMPERE’S LAW 569

on the airplane, for that charge has no motion with respect to him. By
definition, the magnetic field intensity H in a particular reference frame
is the force on a unit north pole at rest in that frame. If our formulation
is to be consistent, we must expect that the force exerted by a charge upon
a magnetic pole is the same when these are in relative motion, regardless

7

y ' , oy

z (‘1‘) /2 o (b)

Fig. 30-14 (a) System of axes in which the magnetic pole is at rest. (b) System of
axes in which the charge ¢ is at rest. :

of ‘whether the pole is considered to be at rest or the charge is considered
to be at rest. o ‘

In the coordinate frame in which the pole of strength p is at rest, as
shown in Figure 30-14(a), the charge ¢ is moving with velocity v, and the
magnetic field H at the position of the pole, due to the moving charge, is
given by Equation (30-6) as ,

_vxl,
| "4 )
A The force on the magnetic pole at this point is therefore
vx1,
F=Hp= .
D =qp A2

If we consider the frame of reference to be fixed with respect to the
charge ¢, as shown in Figure 30-14(b), we-must consider the charge to be

.. at rest and the pole to be moving with’a velocity v.= —v. Substituting

this into the above equation, and rearranging the position of ¢ in the
equation we find '

. qlr
F = p(-—V’)X m

for the force exerted on the moving pole by the fixed charge. From the
illustrative example of Section 25-8, we note that the terms grouped to the
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right of the cross in the above equation represent precisely the electric
displacement D generated by the charge g at the position of the pole p, for

_ el

D=
Agr?

Thus the force on a pole p, moving with velocity v (dropping the prime)
in a coordinate frame in which the electric displacement is D, is given by

F = —p(vxD).

Thus the force experienced by a moving magnetic pole consists of two
parts. One part is due to the magnetic field H; this force on the pole is
independent of its state of rest or motion. The second part depends upon
the motion of the poles; this force is due to the velocity of the pole and to
the electric displacement D. In the form of an equation, the force on a
magnetic pole, moving with velocity v in a coordinate frame in which the
magnetic field intensity is H and the electric displacement is D, is given by

F = p(H — vxD). (30-7)

Another interpretation of Equation (30-7) is that the force exerted on a
magnetic pole by a charged particle may be caleulated in one of two ways:
(a) for the case in which the pole is considered to be at rest and the charge
in motion, we can use Ampére’s law; (b) for the case in which the charge is
considered to be at rest and the pole is in motion, we can use Coulomb’s
law, utilizing the concept of electric displacement. In Rowland’s experi-
ment a moving charge was seen to deflect a compass needle. From Equa-
tion (30-7) we see that we must expect a compass needle to be deflected
when the needle is moving in a region of space in which there is an electric

TABLE 30-1 PRINCIPAL EQUATIONS IN MKS AND GAUSSIAN UNITS

Equation MKS Gaussian
(30-2) dH = Tdsx1, dH = Idsx1, Current element
4qrp? rie
(30-1a) -1t =2 Straight wire
2w : ac
@osy | m=t =4V Solenoid or toroid
. 8 se
(30-6) H =2 1f H = gv_)(lr Moving charge
4qrr? ric
(30-7) F=pH—-vxD) | F= p(H——‘—’XD) Pole
[
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field, for example, if a compass needle moves between the plates of a
charged capacitor. ’

TABLE 30-2 CONVERSION FACTORS RELATING MKS AND GAUSSIAN UNITS

Quantity Symbol MKS Unit Gaussian Unit
i 100,
Pole P 1 weber = unit pole (emu)
™

Mfa,gnetl'c field H 1 no_ 1222 | _ 47 X 109 oersted (emu)

intensity weber m
Charge q 1 coul = 3 X 10° steoul (esu)
Current I 1 amp = 3 X 10° statamperes . (esu)
Displacement, D 1 coul/m? = 3 X 10° steoul/ecm?  (esu)

Problems

30-1. Determine (a) in mks units and (b) in Gaussian units the intensity
of the magnetic field at the center of a clrcular coil of 6 cm radius when it carries
a current of 15 amp.

30-2. Determine (a) in mks units and (b) in Gaussian units the magnetic
field intensity at the -center of a closely wound circular coil of 75 turns, whose
average radius is 9 cm, when the coil carries a current of 4 amp.

30-3. A circular coil of 20 cm radius consists of a single turn of wire and
has a small compass needle suspended at its center so that it can swing freely
about a vertical axis. The plane of the coil is set parallel to the earth’s magnetic

field. If the horizontal component of the earth’s magnetic field is 0.2 oersted,
determine the angle through which the compass needle is deflected when a current
of 3 amp is sent through the coil.

30-4. Determine (a) in mks units and (b) in Gaussian umts the magnetic
field intensity at a distance of 0.25 m from a long straight wire in Whlch there is
a current of 32 amp.

i 30 5. A small compass needle, whose magnetic moment is 40 cgs poles cm .
and whose moment of inertia is 6.0 gm em? is placed at a point 15 cm from a long
straight wire. When a current is sent through the wire, the needle oscillates with
a period of 7.2 sec. Determine (a) the magnetic field intensity at the position
of the compass and (b) the current in the wire:

30-6. A solenoid 0.75 m long and 0.08 m in dlameter is wound with 400
turns of wire. Determine the magnetic field intensity inside this solenoid when
it carries a current of 6.5 amp.

30-7. A long straight wire carries a current of 25 amp. The north pole of &
long bar magnet is placed 5 cm from this.wire. If the pole strength of this
magnet is 40 cgs poles, determine the direction and magmtude of the force on
this north pole.

30-8. A long straight wire carries a current of 20 amp. The wire is parallel
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to the z axis, and the current flows in the positive 2 direction. In addition to the
magnetic field generated by the current in the wire, there is an external magnetic
field in the positive z direction of intensity 5 amp/m. Find the resultant mag-
netic field (a) at a point in the x-y plane whose coordinates are (5 m, 0) and (b)
at a point in the z-y plane whose coordinates are (0, 10 m).

30-9. Derive an equation, in Gaussian units, for the magnetic field intensity
at a point in the neighborhood of a long straight wire carrying current.

30-10. Derive an equation, in Gaussian units, for the magnetic field intensity
at the-eenter of a circular loop of wire.

) "\30—1P*Find the magnetic field intensity within a toroid of mean radius
10 cn%oéld with 100 turns of wire when the current in the toroid is 4 amp.
The circular cross section of the toroid has a diameter of 1 em. .

30-12. Two long straight wires are 18 om apart and carry currents of 36
amp each. Determine the magnetic field intensity at a point midway between
them (a) when these currents are in the same direction and (b) when the currents
are in opposite directions. Express your answers in both Gaussian and mks units.

30-13. In the Oersted experiment a long straight wire placed 4 cm above a
compass needle carries a current of 28 amp directed to the north. Determine
the torque on the compass needle if its Tnagnetic moment is 75 cgs pole cm.

30-14. Find the force on a magnetic pole of 10™* weber moving in the 4+
direction with a speed of 10% m/sec between the plates of & parallel-plate capaci-
tor in vacuum. The plates of the capacitor are 1 cm apart and are charged to a
potential difference of 500 volts. The electric field between the plates of the
capacitor is i1 the 4y direction.
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31-1 Force on a Charge Moving in a Magnetic Field

Ampére was the first to show that wires carrying current experienced forces
when placed in magnetic fields. Later it was shown that charged particles
moving in magnetic fields also experience forces. Common applications of
these phenomena are the electric motor, the galvanometer, and the eathode-
ray tube. Since a moving electric charge is equivalent to a current, we
shall first consider the force acting on a charge ¢ moving with velocity v in
a magnetic field of induction B. Experiment shows that the force F acting
on the charge ¢ is at right angles to the directions of both v and B. This
provides us with & basic distinction between the fwo magnetic field vectors
B and H.

We have already shown that the force on a magnetic pole at rest is
determined by the magnetic intensity H. We have seen that moving
charges and currents produce H. The relation between the magnetic indue-
tion B and the magnetic intensity H has been given in Equation (29-15a) as

B = .H,

where u is the permeability of the medium.,

The force F on & charge ¢ moving with velocity v in a field of induction
B is given by

F = Iyqvx B, (3t1)

As shown in Figure 31-1 the force is perpendicular to the plane formed by
the vectors v and B and is directed in accordance with the right-hand rule
__61‘ the vector product. The constant kg is a constant of proporticnality
which is assigned the value unity in the mks system of units. Thus if the
orce F is expressed in newtons, the charge ¢ in coulombs, the velocity v in
meters per second, and the magnetic induction B in webers per square
meter, Equation (81-1) may be rewritten as

J F= gV"XB" (31-2)

573
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We may consider Equation (31-2) as a definition of B. From the
above equation we see that if v is parallel to B, the force on the moving
" charge is zero. This suggests a method of determining the direction of B
hy use of cathode-ray tubes, If a charge of 1 coul moving perpendicular
" to the field with a velocity of 1 m/sec cxperiences a force of 1 nt, then the
field has an induction of 1 weber/m®.

¥

A B,=04 webers/m?

B,=03 webers/m?

\\\
S

X
I i x
y="5x10°m/sec
B,=1.2 webers/m’

Z 7

Fig. 31-1 The force F exerted on a charge Fig. 31-2

¢ moving with velocity v in a magnetic
feld of induction B. B and v are in the z-y
plane; F is along the 2 axis.

ITustrative Example. A proton whose charge is 1.60 X 107 poul is moving
in the ¢ direstion with a velocity of 5 X 10% m/sec in a magaetic field whose
components are B, = 0.3 weber/m?, B, = 0.4 weber/m?, B, = 1.2 weber/m?.
See Figure 31-2. Find the =, y, and # components of the force on the proton,

The  compenent of the fleld is parallel to the veloeity ! thus the force on the
moving charge due to By is zero.

Trom Equation (31-2) the direction of the force on the particle due to the
y comporent of the field is in the 2 direction, and sinee the angle between v and

B, is 90° we have
F.= quB, = 1.60 X 107 coul X 5 X 10% m/see X 0.4 weber/m?,

s0 that . F,=3.2 X 107%nt.

Applying the right-hand rule for the vector product, we see that the force
on the particle due to the 2 component of the field is inn the —y direction. The
. angle between v and B, is 90°. The y component of the force on the particle is

therefore
F, = —1.60 X 107%coul X 5 X 10 m/see X 1.2 weber/m?,

P, = —9.6 X 10 nt.
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The resultant force F' is of magnitude

= (F2 + F2)* — 9.74 % 10-1% nt,

In the Gaussian system of unite the constant &y has the value 1/c, and we
must express the unite of B in gausges and of H in oersteds. As before, we must
express ¢ in statecoulombs, T in statamperes, v in centimeters per second, and
Fin dynes. The relationshin hetween B and H is

B =« H. (31-3)

While &y, is & pure number, we may think of it as expressed in units of gausses per
versted for convenience in enleulation.

The relatiovship between gausses and webers per square meter may be
found by caleulating, from Equation (31-1), the magnetic induction in gausses
required to exert a force of 1 nt on a charge of 1 coul moving perpendiculatly to
the magnetic field with a velocity of 1 m/see. By definition, this field is 1
weber/m? The known numerical values are

F = 1nt = 10° dynes,

g = 1leoul = 3 X 10° steonl,
v = 1m/sec = 102 cm/sec,
¢ = 3 X 109 cin/sec,

6 = 90°.

From DBguation (31-1) expressed in cgs units, we have
F=yq ! Bsin 4,
¢

§ 3 X 10" steoul X 107 em/sec
10° dynes =
: 3 X 101 ¢m /gee

X B,

B = 10* gausses.

Thus a magnetic field whose induetion is 10* gausses will produce the same
:effect on a moving charge as a field whose induction is 1 weber/m? In the form
‘of an eguation we may write

1 weber/m? = 10* gausses. (31-4)

31-2° Path of a Charged Particle in a Magnetic Field

When a charged particle is projected into a uniform magnetic field, the
component of the field parallel to the velocity exerts no foree on the partmle
It is convenient to resalve the velocity of the particle into components

arallel and perpendicular to the field, and to consider separately the

‘motion of the particle perpendicular to the field.
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Let us consider a charged parficle that is moving with velocity v per-
pendicular to a magnetic field of induction B. The particle will experience
a force Bgr constant in magnitude and directed perpendicularly te the
velocity of the particle. Hence the pariicle will move in a circular path
with uniform speed ». The force exerted by the magnetic field on the
charged particle iz the centripetal force which produces an acceleration
o = v2/r, where 7 is the radius of the circular path, Applying Newton’s
second law to this case, we get

nw?
= — = By,
r

from which o = —. _ (31-5)

Tf the motion of the charged particle is not transverse to the field, the
gymbol ¢ in Equation (31-5) must be interpreted as the component of the
velocity which is perpendicular to the magnetic field. The motion of the

Fig. 31-3 Beta-ray
speclrometer:

A
1
1

X X X

Pholfogmphfc

5\
Source pjla.!.e

particle will then consist of a motion of translation parallel to the field a
at the same time, a motion in a cireular orbit in a plane perpendicular:to:
the field. The effect of these two simultanecus movements is to prod
a corkscrewlike motion, or a helical motion whose axis is parallel to. the
magnetic field. _ =
Note that the force on the particle moving in the magnetic field i
always perpendicular to its velocity. The magnetic field therefore doesn
work on the charged particle, but only deflects it. This property of
uniform magnetic field may be utilized to measure the velocities of charge
particles. In a befa-ray spectrometer, used to measure the velocities
electrons emitted in radioactive disintegrations, eleetrons or beta rays:-ar
emitled into a uniform magnetic field of known magnetic induction B
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direction perpendicular to the field. The particles are deflected into eircular
orbits and strike a photographic film after completing a semicircle, ag
shown in Figure 31-3. The diameter of the orbit can be measured from the
photographic film; the momentum mw of the electrons ean then he deter-
mined, and the energy of the emitted particles may alzo be caleulated.
The deflection of charged particles in magnetic fields is today widely
utilized in scientific and technical apparatus such as beta-ray spectrometers,

h velocity v per-
le will experience
wdicularly to the
a a circular path
wetic field on the
5 an acceleration
wlying Newton’s

(31-5)

e to the field, the
s:omponent of the
he motion of the

Beta=ray
ater.
: : Fig. 31-4  Cloud chamber photograph showing curved paths of particles moving at
] to the field and ‘right angles to a magnetic field. The magnetic field is directed into the paper and the

: particles originate from a source at the left. The three heavy tracls are those of protons;
. the numerous light tracks curved in the opposite direction are those of electrons, (Photo-
‘graph by H. R. Crane.) .

perperidicular t
nts is to produd
is parallel to ih

‘mass spectrometers, cathode-ray tubes (asused in television), the cyclotron
‘(accelerates charged particles for nuclear research), the magnetron (a
vacuum tube for the production of microwaves used in radar), and many
‘others, The deflection of charged particles in a magnetic field may be seen
I the accompanying photograph of tracks in a Wilson cloud chamber,
hown in Figure 31-4. In this photograph the magnetic field is perpendic-
lar to the paper and is directed into the plane of the paper.

magnetic field:
therefore does 7
iis property of:
ocities of charge
the velocities .0
3 or heta rays ar
mduction B in
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31-3 Force on a Charged Particle in an Electromagnetic Field

We have already seen that a eharged particle in an electric field of intensity
E experiences a force gE. This force does not depend upon the velocity of
the particle. When a charged particle moves with a velocity v, 1t will
experience a force piven by the equation

U@x B) f (31-6)

Equation (31-6) is simply.a- combifiation of results already stated in Equa-
tions (23-1a) and {31-2}. We may think of Equation (31-6} as the defining
equation for the electric field intensity E and the magnetic induction B,
To determine these fields in a region of space, we may imagine that a probe
charge g is directed through the region. The force on the particle is deter-
mined by observing the deflection of
the particle, and the electric and
magnetic fields are determined by
calculation from ]]quation (31-6). In
a similar way we may imagine that
Equation (30-7) is the defining equa-
tion for the magnetic intensity H and
the electric displacement D, through
the force on a moving pole. :
g In our initial discussion of Cou-
lomb’s law of force between magnetic:
poles, in Section 29-2, we stated that
the constant g was to be assigned fo:
a value of 4 X 1077 for reasons which:
Fig. 31-5 had to he deferred to a later chapter,

' _ At this point we wish to justify the

choice of a numerical value for ys. To do this we will calculate the rati
of the magnetic force to the electric force between two movmg charge
particles. :
Let us consider the force between two equal chargcs ¢ moving w

the same velocity v in a direction parallef to the z axis, as shown in Fig
31-5. The instantaneous positions of the charges are P; and Pj, as show
in the figure. The particles are fixed in position relative to each other. Th
electrie foree on the charge at Py due to the presence of an equal charg,e
Py is Fg, iwvhose magnitude is

The magnetic force on the charge at Py may be obtained by first computing
the magnetic field intensity H generated by the motion of the charge at
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1 with respect to the coordinate frame from Equation (30-6),

_ gvx1,

Id of intensity i
o

he velocity of
city v, it will

The relationship between B and H in vacuum is given by B = poH, so that i

ogv % 1. ! b
(31-6) = '
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Since the velocity v is in the 2 direction and the unit vector 1, is in the y I
direction, from P; to Ps, the magnetic induction B is in the —z direction. ‘
The magnitude of the magnetic force F,, on the charged particle at Py may

be obtained from

F,, = ¢vxB, “

Ko, = @B sinf

At Py the magnetic induction B is in the —z direction, and the velocity of
the particle isin the z direction. Since the two vectors v and B are perpendic-
ular to each other, the factor sin 8 in the vector product is equal to 1, and
the magnitude of the magnetic force is equal to

2,2
Ho @7V
F, =207

47 12

The ratio of the magnetic force to the electric force must be a pure number,
without dimensions. We obtain

Fu
F.

mks units = ugegt®. (31-7a)

Thus the quantity uge must have the dimensions of 1/ %; that is, its dimen-
sions must be (see/m)2.
When the same caleulation is carried out in Gaussian units, we find that
F. v

! Gaussian units = (31-7b)
I, c :

¢ moving with
own in Figure:
L Py, as shown
«h other. Th
qual charge afi:

The ratio of the magnetic force to the electric force must be the same
* in whatever system of units the calculation iz earried out. In Gaussian
- units both the velocity of the particle and the velocity of light are expressed

in centimeters per sécond, while in mks units the velocity of the particle is
- expressed in meters per second. In order to equate the results of the two
caleulations, let us now express all velocities in meters per second. This
-will not alter the ratio in Kquation (31-7b). We obtain

st computin

e charge at' P2

2

¥
Moéoﬂz = g

C
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or

1
mks units c="—" i (31-8)
V oo

where ¢ is the velocity of light In meters per second.

Our procedure in developing the mks system of electrical units was
first to define the size of the coulomb from the statcoulomb. This deter-
mined the choice of the constant . Once a choice of & had been made,
there could be no freedom of choiee of the constant pg, for the magnitude
of that constant was determined by the connection between electric and
magnetic forces, as developed in Equation (31-8).

31-4 Force on a Wire Carrying Current in a Magnetic Field

We have already seen in Section 30-7 that a charge dg¢ moving with a
velocity v eould be considered equivalent to a current'! in an element of
wire ds through the relationship

vdg = I ds. . (@)
From Equation (31-2) the force on a moving charge element dg is given by
dF = dgvxB, '

F

and, substituting from Equation (31-9), we find the force dF on a curréﬁ_
elemens [ ds to be '

dF = I dsxB.

This force is perpendicular to the plane formed by the current element anc
the direction of the field. For the special case of a long straight conducto
of length s in a uniform field of magnetic induction B, the magnitude of th
foree F on the wire ig given by

F = Blsgin 0,

where § is the angle between the direction of the current in the wire an he
direction of B, as shown in Figure 31-6, The force is perpendicular to the
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plane formed by s and B, and its direction may be found by the ﬁght~hand
rule for the vector product of Equation (31-10). The force on a wire carry-

(31-8) mg current in a magnetic field 1s the basis for the operation of electric

motors and galvanometers.

Llustrative Hzample. A wire 5 m long lies along the » axis. Find the
components of the force on the wire when it carries a current of 2 amp in the
positive z direction if it is placed in a uniform magnetic field for which

B. = 0.3 weber/m?,
= 0.4 weber/m?,

B, = 1.2 webers/m?

strical units was
mb. This deter-
had been made,
i the magnitude
veen electric and

o]
<
|

Since the wire lies along the z axis, the force on the wire due to B, is zero.
The angle made by the wire with the y axis and with the z axis is 90°. 'The force
exerted on the wire due to the ¥ component of the field is in the 4z direction.
Calling thig force F., we have

F, = B,Is

ald

/ moving with a:
in an element of:;

= (0.4 weber/m? X 2amp X 5 m
nt dg is given by = 4.0 nt.

* The force excrted on the wire due to the 2 component of the field is in the —y
" direction. Calling this foree F,, we have

Fy= —B.ls

—1.2 weber/m* X 2amp X 5m
—12 nt.

Fig. 31-6

31-5 Torque on a Coil Carrying Current

- Let us assume that a rectangular coil of sides a and b is carrying current I
_in a region of space in which there is a uniform field of magnetic induction
g B. If the plane of the coil is perpendicular to the direction of B, as shown
dF on a currer n Figure 31-7 where 5 is directed into the paper, symmetrical elements of
the coil at g and & at the top and bottom of the coil experience equal and
opposite forces. Since the forces on symmetrical elements of the wire are
directed along the same straight line, the resultant force on the coil and the
resultant torque on the coil due to these elements are zero. Similarly, the
elements at ¢ and d contribute a net force of zero and a net torque of zero.

. When the orientation of the coil is changed so that the normal to the
plane of the coil makes an angle ¢ with the direction of B, as shown in
Figure 31-8, the symmetrical elements g and % at the top and bottom of the
coil still experience collinear forces in the —z and +2 direction, respectively,
which are equal and opposite, and therefore contribute zero net foree and

rent element aﬁ_
raight conductor

rendicular to 1
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torque. The forces on elements at ¢ and d are still equal and opposite,

directed parallel to the z axis in the figure, but they are no longer in the
same straight line; they are now separated by a distance ¢ sin ¢ [Figure
31-8(a)]. '
x B X X B x
I . T dF
as” A
RN lr .
X X X | x
dF A ¢ b
<" 45 a5 =
S Y dF
X IT X X X
-y

. ds
I dF l f |
X B X X B x
A Fig. 31-7

The force on each side b of the coil is given by Equation (31-11) as
F = Bib :

for the angle 6 between the vertical wires, and the direction of B i 90/
The resultant force on the coil is zero, for the forces on each side of tha:
coil are in'opposite directions, but the torque & on the coil is now .

# = BIbasin ¢.
Since the area A of the coil is given by
A = ba,
we may express the torque on the eoil as
G = BIA sin ¢.

It the coil is closely wound, having N turns, a torque equal to &
given by Hquation (31-12} is contributed by each turn so that we hav

G = NBIA sin ¢. B (21
Although Equation (31-13) was derived for rectangular loops or c
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al and opposite,
no longer in the

o sin ¢ [Figure .

of wire, it may be seen that coils of any shape, whose eonductors lie in &
single plane, may be approximated by a collection of rectangular coils laid
side by side, as shown in Figure 31-9. Thus Equation (31-13) gives the
torque on a coil of any shape when placed in a uniform magnetic field.

B x .
I 9% 5
- ' 7 F
x (a) i
D
——~Normal
X N
)
X
‘ (b) Fig. 31-8 (a) Top view of
current-carrying coil whaose
plane is perpendicular to the
B x plane of the paper. (b) Per-
Y spective view of the coil.
ion (31-11) as

sion of B is 90°
each side of th___
il is now

>B

The operation of a moving-coil galvanometer, or I¥ Arsonval galvanem-
eler, 18 based upon the torque on a coil in a magnetic field. The essentials
of such a galvanometer are a strong permanent magnet shaped so that the
two poles face each ofher across a gap in which the magnetic induction is
fairly uniform, a rectangular coil of many turns of fine wire, and a fine
spring attached to the coil. This spring may be in the form of a spirallike

fine watch spring, in which case the coil is mounted on jeweled bearings, or
(31-12) the spring may be in the form of a long wire, one end of which is rigidly
attached at the top of the frame housing the coil and the other end is
attached to the coil and is part of the conductor leading eurrent into the
coll.  As seen from Equation (31-13), the torque on the coil is proportional
to the current through the coil. At a particular value of the current, the
coil is deflected until the restoring torque of the spring is equal o the torque

1e equal to that
that we have

(31-1

lar loops or cal
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generated by the magnetic field. The defleétion may be indicated by a
pointer moving over.a scale or by means of a heam of light reflected from

Elastic fiber

JOIORN
\ O C/
I v/

Fig. 31-9 A plane coil of arbitrary shape
may be approximated by a set of rec-

tangular coils. Note that the currents

<

/
| e
I

on all interior wires cancel out.

of a D’Arsonval galvanometer, and a typical panel-type moving-co
galvanometer are shown in Figures 31-10 and 31-11. In practice the pok

Soft iron

Fig. 31-10 Essentials of a IV Arson-

val type of galvanometer.

The soft

jron core is introduced to shape the
magnetic field so that it is radial,
thus obtaining a galvanometer in

which the deflection is proportional
to the current through the coil.

the hairspring,

Fig. 31-11 Iissentials of a moving:
coil galvanometer. €' is the moving:
coil, ¥ and S are the poles of &
permanent magnet, 1.0, is the soft:
iron core, P is the pointer, and H is:
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pieces are curved so that the magnetic field is nearly radial. This produces
a galvanometer in w h.lbh the deflection is nearly proportional to the angular
displacement.

+ indicated by a
ih reflected from

Soft iron 31-6 Force between Two Parallel Conductors

When two parallel conductors carry current, there is a force hetween them
which is repulsive when the currents are in opposite directions and attrac-
tive when the currents are in the

same direction, The foree is due to @ @
the interaction between the current

|
in one wire and the magnetic field ' !
at that wire due to current in the Ip Lo/ \ i
other wire. We may calculate the o-] H |
force between the two conductors o ‘
by utilizing the results of the pre- | F /(
ceding chapter, If the current in
the wire shown as 1 in Figure 31-12 ‘ . i
is 11, the magnetic field intensity at :
ls of & D’ Arson- the position of wire 2, due to the |
iztif)' g];ra II;Z St(ﬁ: current Iy in wire 1, is [« Q@ ——>] ' “ .
aat it is radial, I - i i
‘alvanometer in H = 9ra (30-1a) - Fig. 31-12 |
is proportional ;
ugh the cofl where a is the distance between the wires. The magnetic induction B is U
related to the magnetic field intensity H in vaeuum or in air through the ‘ ;
equation ' | ‘
B = ,U,(]H ’ |

thus the magnetic mduc’rlon due to the current in wire 1 at the posmon of

tials of a4 moving wire 2 is

. € is the movin,
re the poles of 4°
st, 1.C. is the soft,
« pointer, and H

7
B — Mot 1
271'(1

The direction of B is parallel to the direction of H and is shown in the figure
as directed into the plane of the paper, perpendicular to the wire 2. We-
may find the force on alength s of wire 2 by application of Lquation (31-11). .
We note that the angle 9 between the direction of the current in wire 2 and

the direction of B at wire 2 is 90°. Thus we have

F BSIg

f the essential
pe moving-coi
sactice the pal

— upl 11 g8 .

27a
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The force per unit length of wire is given by

Fowolidy

8 27a

(31-14)

From application of the rule for the vector product, as given in Equation
(31-10} for the direction of the force, the force on wire 2 may be seen to be
toward wire 1. An equal but opposite force is exerted on wire 2, as may be
seen from an application of the same procedure to wire 2. When the
currents are in opposite directions, the force is of the same magnitude but
is repulsive rather than attractive.

From Equation (31-14) we note that the units of uo may be expressed
as nt/amp” as well as weber/nt m? or weber/amp m. The units in which
uo 19 expressed is a matter of convenience. Thus we may write

po = 4% X 1077 nt/amp®. {31-18)

It iz possible through Equation (31-14) to establish a definition of the
ampere in terms of the mechanical quantities of force and distance and the
constant 9. Thus an ampere may be defined as that current fowing in
two infinitely long parallel wires separated by a distance of 1 m in air
which catises a force of 2 X 1077 nt per meter of length between thiem. In
a device called the current balance, the force between two coils of wire
connected in series and separated by a distance of a few centimeters may
be used to make an absolute determination of current. ,

When there is an alternating current in a coil, the current is first in one !
direction, then in the other, following a sine or cosine function of time. The o
currents in adjacent turns are in the same direction, go that there is an.
attractive force between adjacent turns which varies from some maximum:;
value to zero and back again. This periodic force may cause the wires of -
the coil to vibrate and produce an audible hum; such a noise is sometimes’
heard in a transgformer of a radio set.

Illustrative Example. Find the force between two parallel canductors in-a
power distributing station. The conductors are 10 m long, earry a current’ of
150 amp each, and afe separated by a distance of 1 em.

From Equation (31-14})

F o Helilss
20

Substituting numerical values, we have

7o 47 X 1077 nb/amp? X 150 amp X 150 amp X lf)m’
2 % 0.0l m

F = 4.5nt.
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TABLE 31-1 PRINCIPAL EQUATIONS IN MKS AND GAUSSIAN UNITS
Equation MEKS (Graussian
(31-2) F =gvxB F=g' xB Moving charge
¢
(31-3) B = s, uH B =«,H
my mye .
31-5 = — yo=— Circular path
(31-5) T By By pat}
xB
(31-6) F = 4E + vxB) F=gyg (E + v ) Charge
¢
I - i
(31-10) | dF = I dsxB dF =~ dsxB Element, of wire
oo carrying ecurrént
BIA & .
(31-13) | G = NBIAging g = NBIAsnG | 1 e on coil
c
(31-14) F = #al iy r = —2_{]9—12 Parallel wires
s 2ra § ac? :

TABLE 31-2 CONVERSION FACTORS RELATING

MKS AND GAUSSIAN UNITS

Quantity | Symbol MES Unit (taussian Unit
I\/_Ia,gne?m H |1amp/m -1 nt/weber; = 47 X 1073 cersted (emu)
intensity
Magnetic 7 1 weber/m? - 10¢ (omu)
induction weber,/m = gausses
D 1 10~ statvolt
]fflectm(? g lnt/coul = 1 volt/m | = Statvo (esu)
intensity 3 cm
—d
_ 10 dyne (esu)
3 steoul
El{actrm D 1 coul/m?* = 3 X 10° steoul/cm?* {esu)
displacement
Charge q 1 coul = 3 X 10° steoul (esu)
Current 1 amp = 3 X 10° statamperes  (esu)

Problems

31-1. A proton of charge +4.8 X 1079 stcoul moves with a speed of 10°
- em/sec ab Tight angles to the direction of a magnetic field of 300 gausges. Find

the force on the proton due to its motion with respect to the magnetic field.

31-2. The mass of a proton is 1.67 X 103 gm. What will be the radius
: of the circle in which the preton of Problem 31-1 moves?
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31-3. In a beta-ray spectrometer an electron moving perpendicularly to a
magnetic field of magnetie induetion 150 gausses moves in a circle of 15 em di-
ameter, Find the momentum of the electfon. e

31-4. A proton moves with a velocity of 104 m/see in the 4z direction in a
m&gnetm field whose components are 8, = (.03 weber/m? B, = 0.04 weber/m?
B, =14 webers/m Tind the comporents of the force on the proton.

3J/ A paltmle of charge 10 geoul has a velocity whose components are v, =
3 m/sec, v, = 4 m/see. The particle moves in a magnetic field whose com-
ponents are B, = 0.5 weber/m? B, = 1.2 webhers/m?, and B, = 1.5 webers/m?2
Find the components of the force on the particle.

31-6. The magnetic induetion between the poles of a large electromagnet
is 1,000 gausses in a direction from east to west. The field extends vertically

of 15 amp is sent through it. Determine the magnitude and direction of the
foree on the wire.

31-7. A wire parallel to the y axis carries a current of 10 amp. The wire
is 0.5 m long. The magnetic induetion in the vicinity of the wire has an x com-
ponent of 0.3 weber/m? a y component of —1.2 webers/m? and a z component
of 0.5 weber/m? Find the components of the force on the wire.

31-8. A current of 8 amp iz directed downward in a vertical wire 80 em.
long which is suspended in a place where the intensity of the earth’s magnetic
field has a horizontal component of 0.25 oersted and a vertical component of
0.75 oersted. Determine the magnitude and the direction of the foree on the wire:::

31-9. A long uniform solenoid is wound with 1,000 turns/m of length and
carries a current of 10 amp. An electron, whose velocity component parallel o
the axis of the solenoid iz 10° m/sec and whose velocity perpendicular to the axis™;:
of the solenoid is 10® m/see, is ejected from a radioactive sdurce at the center
of the solenoid. The path deseribed by the clectron is a helix. (a) Find the
radius of the cross section of this helix and (b) find the piteh (number of turas’
per meter) of the helix. The charge of an electron is —4.8 X 107" stcoul, a
the mass of an electron is 8.10 X 10— gm. .

31-10. A rectangular coil of 150 turns of fine wire is suspended in a magnetlc
field with its plane parallel te the direction of the field. The dimensions of the
coil are 2 om by 4 em. When a current of 0.5 amp iz sent through the co
torque of 18,000 dynes ¢m acts on it. Determine the magnetic induetio
this feld.

31-11. A straight wire 12 em long ig placed in a magnetlc field of 350 gau' Fe:
directed at right angles to the length of the wire. A delicate spring balance
attached to the wire mensures a force of 160 dynes when a current is sent througit
the wire. Determine the current in the wire.

31-12. A proton whose mass is 1.65 X 107% kg travels in a circular pa
of 0.35 m radius in a magnetic field of 1.2 webers/m?. Determine (a) the velodify
of the proton and (b) ifs period of revolution. o

31-13. A rectangular galvanometer coil has 500 turns wound on a fr
2 em by 4 cm. Tt hangs between the poles of a magnet where the flux densi
is 0.080 weber/m2 Determine the torque which acts on this coil when the:
rent in it is 3 X 107% amp.
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31-14. Derive Equation (31-7b). .

31-15. Two electrons are meving down the axis of a television tube with a
velocity of 107 m/soe.  The electrons are separated by a distance of 0.01 em.
(a) What is the elsctric force between them? (h) What is the magnetic foree

7

" between them? (c) What is the resultant force between them?

31-16. A eircular coil of wire of radius 10 em and containing 50 turns is
placed in a magnetic field in which B is 1.5 webers/m2. The current in the coil
is 3 amp. (a) What is the torque on the coil when its plane is parallel to the
field? (b) When the normal to the plane of the coil makes an angle of 30° with
the field? .

31-17. One end of a flexible copper wire is fastened to a post while the
other goes over a fixed pulley and has a weight W hanging from it. The portion
of the wire from A4 to the pulley is horizontal and is in 2 uniform magnetic field
of flux density B in the vertical direction, A current [ is sent through the wire;
determine the radius of the circular arc into which the wire is bent.




™
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Electromagnetic Induction

32-1 Motion of a Wire in a Magnetic Field

When a wire moves through a uniform magnetic field of induction B,
in a direction at right angles to the field and to the wire itself, the electric
charges within the conductor experience forces due to their motion through
this magnetic field. The positive charges are held in place in the conductor
by the action of interatomic forces, but the free electrons, usually one or
two per atom, are caused to drift to one side of the conductor, thus setting
up an electric field E within the conductor which opposes the further drift
of electrons. The magnitude of this electric field & may be calculated by
equating the force it exerts on a charge ¢, to the force on this charge due
to its motion through the magnetic field of induction B; thus

Eq = By,

‘from which E = Bv.

If, as a result of the motion of the wire through the magnetic field, a
charge ¢ is moved a distance s along the wire against the internal electric
field E, a quantity of work ¥ is done by the agency moving the wire,
given by the expression .

W = Egs = Bugs.

Thus an electromotive force is generated within the wire as a result of its
motion through the magnetic field. The electromotive force across the
ends of the wire is the work per unit charge done by the agency moving
the wire. The emf & is thus :

W  Bgus

- R

é‘:

q q

so that | & = Bsw. (32-1)

590
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- As shown in Figure 32-1, the direction of the emf is the direction in which

positive charges are made to move by the action of the magnetic field,
and therefore is opposite to the ‘
direction of the induced electric X X X X
field E within the wire. B B
To gain further insight into
the effect of moving a wire
through a magnetic field, let us X
suppose that the wire of length S
s slides over a fixed conductor a
congsisting of two parallel tracks X X
which are electrically connected
at one end, as shown in Figure
32-2. As the wire moves to the
right with velocity v, the induced X X
emf in the wire produces a cur- Fig. 32-1
rent I in the closed circuit, in

—— +++] -
N
m

Xto-
X

" the direction of the emf & in the moving wire. We have seen in Section

31-4 that a wire carrying current in a direction perpendicular to the mag-
netic field experiences a force given by

F = BIs.

In the figure this force is directed to the left. In order to satisfy the princi-
ple of conservation of emergy, the agency moving the wire to the right

X B X X X X B X

‘ a
—

X X . 41\ X 1\ X X X

E»T« s
F WV
X X X X X X
) "

a

xB - X X x X B x

Fig. 32-2

-must exert a force equal and opposite to the force F above, and expend
mechanical power # such that )

&# = Fv = Bls.




—
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At the same time the electrical power generated is
# = E1

Equating the mechanical power expended and the electrical power gener-

~ ated, we find

& = Bsy,

which is Equation (32-1).

In calculating the emf developed by a wire moving through a magnetic
field, we have used two different points of view. The first calculation
was made from essentially a microscopic point of view in which our atten-
tion was directed to the forces on isolated charges within the wire. The
second calculation was made from a macroscopic viewpoint, in which our
attention was directed to the force on the wire and to the emf, The same
result was obtained in each case.

Many practical devices, such as electrlc generators and motors, are
designed so that conductors move across magnetic fields. In using Equa-
tion (32-1) to discuss the operation of these devices, it must be remembered
that B, s, and » were all considered to be perpendicular to one another.
If they are not mutually perpendicular in a particular case, then only the
components of the three quantities which are mutually perpendicular are
to be considered. As the wire moves through the magnetic field, it is
often described as “cutting” the lines of magnetic induction. Equation
(32-1) then shows that the emf induced in a wire depends upon the number
of lines of magnetic induction cut per unit time.

32-2 Magnetic Flux and Flux Density

It is convenient to represent the magnetic induction B by lines of magnetic
induction, sometimes called lines of magnetic fluz. The direction of the
magnetic induction is tangent to the flux lines, and the magnitude of the
magnetic induction is given in the usual way by the number of lines per
unit area passing through a surface perpendicular to the flux lines. The
total number of lines passing perpendicularly through an element of area
is then called the magnetic flux ® (capfml phi) through that area. If the
area of an element perpendicular to B is AA, then the flux A® through
that element is given by

A® = BAA. ‘ (32-2)

In the mks system of units, the magnetic induction is stated in units of
webers per square meter, and the area is stated in units of square meters.
The flux is expressed in units of webers. For this reason the magnetic
induction B is often referred to as the flux density.
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/
/

/' In the Gaussian system of units, the magnetic induction B is expressed in

gausses, the area in square centimeters, and the flux in mazwells. We have

already seen that '

1 weber/m? = 10* gausses,
so that ‘1 weber = 10* gausses X 10% cm?,
or 1 weber = 108 maxwells.

Following the procedure we have used throughout the development of
electricity and magnetism, unless otherwise indicated all equations are expressed
in the mks system of units, and the principal ones will be restated in the Gaussian
system of units in a table at the end of this chapter.

The magnetic flux ® is a scalar quantity, but the magnetic induction B
is a vector quantity; the area AA may be considered as a vector quantity.
In dealing with closed surfaces, as in Gauss’s theorem in electrostatics,
we considered the direction of an area as that of an outward drawn normal.
Although in the present instance the area is not part of a closed surface, it
may be thought of as a film or a cap bounded by a closed conducting
boundary. In choosing the direction of the area vector, we must associate
a positive direction of circulation around the boundary of the area in
accordance with a right-hand rule. Thus if in Figure 32-2 the direction of
the area vector is chosen as pointing toward the reader, the positive
direction of the current in the wire may be found by directing the thumb
of the right hand in the direction of the area vector. The curled fingers
of the right hand indicate the positive direction of the current or the emf
as in the counterclockwise direction. If the area vector is pointing into
the paper, the positive direction of the current is clockwise. Following
this convention, we may rewrite Equation (32-2) in véctor form as the
scalar product of B and AA as

A@ = B+AA. ) © (32-24)

32-3 Faraday’s Law of Eleciromagnetic Induction

The. phenomenon of electromagnetic induction was discovered in 1831 by .
Michael Faraday (1791-1867) in England and independently by Joseph

Henry (1797-1878) in the United States.- One example of electromagnetic

induction is the emf generated in a wire moving through a magnetic field, -
as discussed in Section 32-1. In Faraday’s original experiment the appa-
ratus consisted essentially of two neighboring circuits, shown in Figure
32-3; one circuit, which we shall call the primary circuit, contained a
battery B, a coil P, and a key K, for opening and closing the circuit; the
secorid circuit, or secondary circuit, consisted of a coil S and a galvanome-’
ter @. Faraday observed that when the key was closed, the galvanometer
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in the S circuit gave a momentary deflection and then returned to its zero
position and remained there as long as the key was closed. When the key
was opened, there was another momentary deflection of the galvanometer,
opposite in direction to the previous deflection, and then the galvanometer
needle returned to its zero position.

Analyzing this simple experiment, we find that when the key in the
primary circuit was closed, a current started flowing through the primary
coil P. This current produced a magnetic field in the neighborhood of P
and also around the coil S; that is, a change was produced in the magnetic
field around the coil S in the secondary circuit. The fact that the galva-

.l D

ig. 32-3 Faraday’s experiment on

P»q} (\'):S Fig. 32-3 rad :
electromagnetic induction.

K‘ E: ) - ,

nometer showed only a momentary deflection can be interpreted by saying
that a current was induced in the secondary circuit momentarily and that
this induced current was due to the change in the magnetic field around
the secondary circuit. As long as the current in the primary circuit re-
mained constant, the magnetic field around both P and S remained con-
stant, but the galvanometer read zero during this time. But when the
magnetic field was again changed, say by opening the key, a current was
again induced in the secondary circuit, this time in a direction opposite to
that produced when the key was closed.

The results of the above experiment on electromagnetic induction can
be explained qualitatively by stating that the change in the magnetic field
around the secondary coil induced an electromotive force in the coil, and,
since the coil is part of a closed circuit, this induced emf produced a current
in the secondary circuit. ' )

There are many ways in which the'magnetic field around the coil S may
be varied. Suppose, for example, that the key of the primary circuit is
kept closed so that a steady current flows through the coil P. Aslong as
the magnetic field around the secondary coil S remains constant, there will
be no emf induced in it, and the galvanometer will read zero. But if we
move S away from P so as to decrease the magnetic field around S, the
galvanometer will show a deflection; similarly, if we move S toward P, the
galvanometer will show & deflection but now in the opposite direction.

If we put a variable resistor in the primary circuit so that the current
In it may be varied, and keep the distance between S and P constant, there
will be an induced emf and hence an induced current in the secondary
circuit whenever the current in the primary circuit is changed. When the
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current in the primary coil is increased, the induced current in the second-
ary coil will be in one direction; when the current in the primary coil is
decreased, the induced current in the secondary coil will be in the opposite
direction. . : ,

\

Fig. 32-4 Michael Faraday (1791~
1867). Chemist and physicist.

and electromagnetic  induction.
Introduced the concept of lines of
force to help understand the phe-
nomens associated with electric and
magnetic fields. - (Courtesy of
Scripte Mathematica.)

The results of many experiments on electromagnetic induction can
be stated in the form of a law known as Faraday’s law of electromagnetic
induction as follows:

The electromotive force induced in each turn of wire in any circust is

 equal to the time rate of decrease of the magnetic flux through it, or, in the form

of an equation:

a®

— (32-3)
dt

E =

Faraday’s law may be considered as one of the fundamental empirical
laws of electromagnetism, or it may be derived by applying Ampére’s law
and the principle of conservation of energy to typical cases.. To show this,
let us reconsider the case of a wire moving perpendicularly with constant
velocity through a magnetic field of flux density B, as shown in Figure 32-2.
If the wire moves a distance Az to the right, the change in area is

A4 = s Az, ~

In accordance with the sign convention, the positive direction of the normal
to AA is upward toward the reader. The flux density B is directed down-
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ward, so that B+AA, the change in flux A® through this area, is
A® = —Bs Az,

If thi'sc\hange in flux takes place in a short time interval Af, then

Substituting for the quantity on the right-hand side of the above equation
from Equation (32-1), we find

E = 7 (32-3)

Although we have derived the result for a moving wire, Equation
(82-3) has been found_ to be true for the emf induced in any closed circuit
when the flux through that circuit changes with time.

Whenever the magnetic flux passing through a single turn of wire is
changing, the instantaneous emf developed in the loop is given by Equation
(32-3), regardless of the reason for the change in the flux. If the coil con-
sists of N turns of wire, an emf will be induced in each turn by the changing
magnetic flux. The turns of a coil may be considered as connected in series,
so that the emf in the coil will be the sum of the emf’s induced in the in-
dividual turns. If the rate of change of magnetic flux is the same through
each turn, then the total emf induced in the coil will be given by

(32-4)

_ Tllustrative Example. A coil containing 750 turns of wire is wound on a
rectangular frame 20 cm by 30 cm. The magnetic induction normal to the area
of the coil is 0.3 weber/m?. The magnetic field is. reduced to zero at a uniform
rate in 0.25 sec. ‘Determine the magnitude of the emf induced in the coil.

The total flux through the coil is

$ = B4

weber

2

= 0.3

X 0.06 m*?

= (.018 weber .
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The rate of change of ﬁux\is\given by
@\_ 0.018 weber
dt 0.25 sec
= 0.072 weber/sec.
Sinece N.= 750 turns, we have, from Equation (32-4), neglecting the sign of
the emf,
& =750 X 0.072 volts,

& = 54 volts. -

32-4 Llenz’s Law

The method for determining the direction of the current in a coil produced
by an induced emf was first clearly stated by H. F. E. Lenz (1804-1864) in
1834; it is based upon the application of the “principle of conservation of
energy to the process of electromagnetic induction. Lenz's law states that
the induced current ts tn such a direction as to oppose by its magnetw action,
whatever change produces the current.

| 5
Fig. 32-5 An emf is induced in the

coil by the motion of a bar magnet.

. Direction of the induced current is

shown by the arrows on the wire.

Another way of stating Lenz’s law is that the direction of the induced
current is such as to oppose the change in the magnetic flux in the circuit.
If for any reason whatever there is an increase in the magnetic flux through
the circuit, the induced current will be in such a direction as to set up a
magnetic field to oppose the increase in the magnetic flux through it.
Similarly, if there is a decrease in the magnetic flux through the circuit, the

- induced current will be in such a direction that it will set up a magnetic

field which will oppose the decrease in the flux through it. In the case of
the moving wire of Figure 32-2, the motion of the wire to the right tended
to increase the magnetic flux enclosed within the closed circuit. The in-
crease in magnetic flux was directed into the plane of the paper. According

" 40 Lenz’s law the induced current in this circuit had to be in the counter-

clockwise direction, as shown in the figure. The magnetic field generated

" by the induced current was directed out of the plane of the paper, so as to

oppose the change in the flux through the circuit,
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Let us suppose that a bar magnet is brought near a coil whose terminals
are connected to a galvanometer, as shown in Figure 32-5. 'When the north
pole of the magnet approaches the coil, the galvanometer registers a current
in one direction. When the magnet is removed from the coil, the galva-
nometer registers a current in the opposite direction. We may find the
direction of the induced currents by the application of Lenz’s law. When
the north pole of the bar magnet is brought near one end of the coil, the in-
duced current in the coil will be in such a direction as to set up a magnetic
field which will oppose the motion of the north pole toward it; that is, the
magnetic field caused by the induced current will repel the north pole of
the bar magnet. If the north pole of the magnet is moved away from one
end of the coil, the induced current will set up a magnetic field so as to
attract the north pole of the bar magnet and oppose its motion away from
the coil. Thus work must be done in moving the bar magnet with respect
to the coil because of the force which is generated when the magnet is -
moved. This work is transformed into electric energy, as evidenced by the
existence of an induced current in the coil, and the conversion of this energy

into heat.

32-5 Electric Dynamo or Generator

The moving wire of Figure 32-2 is'a simple form of electric generator. In
this illustrative dynamo, mechanical work is done on the wire, and this is
converted into electrical energy.

More practical forms of generators

B 1Y g
. A are usually constructed so that the
/ motion of the conductor is rota-

tional rather than translational. In
A the simplest case a coil of N turns
is rotated about an axis in the
plane of the coil, in' a magnetic
B feld which is perpendicular to the
axis of rotation, as shown in Figure
32-6. The two ends of the coil are
connected to two insulated conduct-
ing rings called slzp rings, mounted
Fig. 32-6 on the axis and rotating with the
coil. Two blocks of carbon, called
brushes, press agalnst these rings as they rotate and provide electncal con-
tact Wlth the external circuit.
Let us suppose that the coil of area A is rotating in a field of uniform
flux density B. If the coil is oriented so that the normal to the plane of the
coil makes an angle 6 with the lines of flux, the component of the magnetic
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field which is normal to the plane of the coil is B cos 6, so that the flux
passing perpendicularly through the coil is '

® = BA cos 6. = ,
The emf & generated in a coil of N turns, as a result of the changing flux

through the coil as it rotates, may be obtained from Equation (32-4) as

d®
£=Ng
= —NBA 4 (cos 6)
T dt

\

= NBA sin 0@ .
dt

Let us, a;ssumt_eﬁt}l#ai@e/ooﬂ rotates with uniform angular velocity w, and
that at time ¢ = 0, the angle 6 = 0°. We have

e v 6= at,
d6 '

and i

so that e N B:z;ic:smwt/ (32-5)

The emf is zero at time ¢ = 0 and varies as a sine function of the time«.
The emf changes direction after each half revolution of the coil. The emf
is said to be an alternating emf, The maximum value of the emf occurs
when 6 = wt = 90°; that is, when the plane of the coil is parallel to the

f
Fig. 32-7 Graph of the alternating . em

emf induced in the coil of the genera-
tor during one revolution.

0° 90° 180° 270° 360°

magnetic field. The emf is zero when the plane of the coil is perpendicular

_to the magnetic field (6 = 0°). The variation in-the emf induced in the

coil is one revolution, as shown in Figure 32-7. The rate of change of the
magnetic flux through the coil is greatest when it is passing through the
position where it is parallel to the field, and is zero when the coil is perpen-

- dicular to the field.

Tn some small generators, such as those operated by hand and used
to supply current to ring bells in rural telephones, the magnetic field may
be supplied by a permanent magnet; these generators are called magnetos.
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In most generators the magnetic field is produced by current in field cosls.
This current may be supplied by a battery or it may be supplied by the
generator itself. Instead of a single rotating coil of wire, there are usually
several coils, each consisting of many turns of wire, wound on an iron core,
rotating in the magnetic field. The whole assembly is called an armature.
Most large generators have a complicated field structure, with two or more
: pairs of poles. The induced emf in the
coils of an armature is always an alter-
nating emf, and the current in these
coils is always an alternating current.
For some purposes it is desired to
have a current which does not reverse its
direction, as in electroplating baths. For
such cases it is necessary to change the
alternating current developed in the ar-
mature to current which is always in the
- same direction in the outside circuit. In
Fig. 32-8 Split-ring commutator, & Simple form of d-c generator, this is
P and @ are brushes in contact with ~ accomplished by a split-ring commutator,
the segments of the commutator. shown in Figure 32-8. The two ends of
the armature are connected to the two in-
sulated halves of the split ring. As the coil rotates, a given brush is always
connected to that part of the coil moving in a particular direction through

l,/\/\/\/\/\/\ Fig. 32-9 Direct current from a

l t single coil.

the field, so that one of the brushes is always the positive terminal of the
generator and the other brush is always the negative terminal. The current
from an armature with a single turn is not constant but is pulsating, as
shown in Figure 32-9. The wave form is essentially a sine wave with the
negative half cycles reversed.

In modern d-c generators the armature consists of many coils con-
nected in series, and the commutator contains many segments. Figure
32-10 shows the current from a generator containing two coils. The small
variations in the current are referred to as commutator ripple.

A simple generator coil rotated in an unkndwn magnetic field may be
used o measure the magnetic induction, using Equation (32-5), if the
dimensions of the coil and the speed of rotation are known, and the emf
generated by the rotation of the coil is measured.
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Fig. 32-10 Direct current from a d-c generator having a commutator with many
segments. The dotted lines show the current from the two pairs of segments, while the
solid line shows the current from such a generator. Note that the current is not constant
but fluctuates about some average value shown as a dashed horizontal line.

32-6 Self-Inductance

The law of electromagnetic induction states that an emf is induced in any
circuit in which the magnetic flux is changing. The manner in which the
change in the fagnetic flux is produced does not matter; the changes may
be induced by external currents or magnets, or by changes in the circuit
itself. The coil of a motor is caused to rotate by current passing through
the armature, and as a result of the rotation of the armature, the flux
through the coil is changed and a back emf is developed. When current is
sent through a coil, a magnetic field is established through it, and any
changes in the current generate changes in the magnetic flux through the
coil. These changes in flux induce an emf in the coil, which, according to

- Lenz’s law, must be in such a direction as to oppose the change in current.

The emf induced in the coil is proportional to the rate of change of current
in it, or, in the form of an equation,

di
= —1—. (32-6)
£ L dl

The constant of proportionality I represents a property of the coil which
depends upon its dimensions and its geometrical shape; L is called the self-

h . Fig. 32-11 Schematic repfesenta—
) . tion of an inductor.

inductance of the coil. The minus éigﬂ is used to eipress fohe fact that the
emf induced in a coil by a change in current is opposite to the direction of
the change. In the mks system the unit of inductance is the henry, after

" Joseph Henry. Thus a coil has an inductance of 1 henry if an emf of 1 volt

is induced in the coil when the current through it is changing at the rate of
1 amp/sec. A device having inductance is called an inductor and is repre-
sented schematically in Figure 32-11. -
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Another interpretation of the self-inductance L of a circuit may be
obtained by comparing Equations (32-4) and (32-6), yielding

di d@
L e V —
from which Li = N®,
so that L= @ (32-7)

The quantity N® is called the fluz linkage of the circuit, hence the self-
inductance L is the flux linkage per unit current of a circuit.

Let us determine the self-inductance of a uniformly wound toroid of
N turns, mean length s, and cross-sectional area 4. The magnetic field
intensity within the toroid is uniform and given by

L

S

(30-5)

When a toroid is in vacuum, the magnetic induction within the toroid is
given by the equation

1olNT
3
S

B:

and the flux of magnetic induction within the toroid is

= ,uoN’l:A .
s
Since L= A»E, : (32-7)
)
2
we get L= plNA (32-8)
: 5

Thus the self-inductance of a toroid in air is a property of the geometry
of the toroid, just as the capacitance of a capacitor is a property of its
geometry. Any conducting element in an electrical circuit has the property
of inductance. The conductors which connect the various parts of an
electric circuit also generate a magnetic field when current passes through
them. The inductance associated with the leads is often called stray in-
ductance or distributed inductance.
~ From Equation (32- 8) we see that uy may be expressed in terms of the
umt of inductance as

henry

up = 4r X 1077 o _ (32-9)
m

and, indeed, these are the units in which o is most commonly expressed.
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32-7 Inductive Transients

Let us consider the simple circuit of Figure 32-12 in which an inductor L
and a resistor R are connected in series to a battery B. Initially the switch
Sis open. We may analyze the behavior of the circuit by applying Kirch-
hoff’s laws (Section 27-8) to the circuit at any instant after the switch is
closed. Tet us suppose that at a particular time ¢ the current in the circuit

= 4L
E=-L4

-

Fig. 32-12 '
di | (4
) dt B

is in the clockwise direction, as shown in the figure, and that the current
is increasing so that the direction of the rate of change of current is in the
same direction as the current itself. Starting at the point @ and applying
Kirchhoff’s laws by moving a probe charge around the circuit in the direc-
tion of the current, we find

de
L= —4R - 32-10
| 0 iR+ V=0, ( )
where V is the emf of the battery, and —L (di/dt) is the back emf in the
inductor.
Equation (32-10) is a differential equation whose solution is given by
14 B

{ = = (1—e Lt), | (32-11)
We may verify this solution by differentiation of Equation (32-11) and

substitution into Equation (32-10).
@i _VER,-
dt RL

E,
L= (32-12)

Substituting for ¢ and for di/dt from Equations (32-11) and (32-12) into
. Equation (32-10), we find

—L;—fe(—R/L)t.— V 4 Ve EDE L 7 - 0,

establishing the correctness of the solution.
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The current in the circuit is zero at the instant the switch is closed, and
Ly gradually increases to a maximum value which is determined only by the
o magnitude of the resistance and the emf of the cell, as shown in Figure
32-13. Initially, the rate of change of current is very large, and the emf
induced in the inductor limits the flow of current. At the instant the switch
is closed, the emf of the inductor is equal and opposite to the emf of the

t

Fig. 32-13 Growth of current in a circuit containing inductance and resistance.

s battery, so that the current is zero. When the current reaches a steady
\ ‘ . " value and is no longer changing, there is no induced emf, and the current
i is determined by Ohm’s law. At a time ¢t = L/R, called the time constant
of the circuit, the current has reached to within 1/¢ of its maximum value.

, - 6 o—

| 000

Fig. 32-14 A spark-gap G placed
across the terminals of an inductor.

B
I .

A The curve describing the current as a function of time is called a transient,
4 for it describes the current shortly after the switch is closed rather than the
i steady-state current that is established after a long interval of time.

In the process of establishing a current in the circuit, a magnetic field
is established in the inductor. If the switch is suddenly opened after the
current has reached a steady value, an emf will be induced in the inductor

T b
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whose value will depend upon the rate of change of current. The more
quickly the current is interrupted, the greater will be the induced emf. If
a spark gap is placed across the terminals of the inductor, as shown in
Figure 32-14, a spark may pass between the terminals of the spark gap when
the switch is opened, because of the large induced emf in the inductor.
The energy of the magnetic field is then dissipated into the heat, sound,
and radiant energy generated at the spark gap. The emf generated upon
opening a circuit containing inductance is often called a switching transient,
and is responsible for the large arcs which are often observed when electrical
switches are opened.

32-8 Energy Stored in an Inductor

Let us calculate the energy of an inductor when there is a steady-state
current [ init, During the transient interval when the current is changing
from zero to the maximum value 7, the emf of the inductor is given by

de
= —L=. 32-6
& L 7 (32-6)

An amount of power & is expended by an external source of electrical
energy to establish this current. The applied potential difference is opposite
to the direction of the induced emf so that

dv,
F# = —E0=1Li—
i=Lio
The work d)* done by an outside agency in driving current through the
inductor against the induced emf in a time d¢ is

ar =eda-1a,
dt

or
W = Lidi.

Integrating between the limits of 1 = Oand ¢ = I , the final current through
the inductor, we have, _
- .
f Lidi,”
]

yielding W =3iLI? ( (32-13)

W

Il

for the energy of an inductor. When L is in henrys and [ is in amperes,
W is in joules. :

When the current in a circuit builds up from zero to a value I, energy
is supplied to the magnetic field, its value being LLI% As long as the
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current remains constant, no additional energy is supplied to the magnetic
field. In the circuit of Figure 32-12, all of the energy supplied during the
steady state is transformed into heat. When the current decreases from
I to zero, the magnetic field also decreases to zero; the energy that was
stored in the magnetic field is returned to the circuit.

‘We can use the equation for the energy of an inductor to determine
the energy per unit volume # y in a magnetic field by considering an induc-
tor in the form of a toroid. Its magnetic field is confined entirely to the
volume within the toroid. The inductance of a toroid is given by

_ p.oN ZA

S

L (32-8)
hence the energy stored in the magnetic field of the toroid is, from Equation
(32-13),
. 1 2 A
=1l
2 s
The magnetic field intensity within the toroid is given by
H = NT (30-5)
s
Substituting for N from Equation (30-5) into the above equation for the
energy of the toroid, we have '

W = %,uonAS.

The volume within the toroid is given by the product of its cross-sectional
area A by its mean circumference s. Thus the energy per unit volume ¥ 'y
of the magnetic field is given by

Wy = tuH? = 1BH. (32-14)

Notice that our procedure for finding the energy stored in the magnetic
field has been very similar to the calculation by which we found the energy
per unit volume stored in the electric field. In the case of the magnetic
field, we utilized the energy in the field of a toroid, while in the electric field
we utilized the energy in the field of a capacitor. Recalling that result
from Equation (25-5), we may. write the energy per unit volume ¥’y in

the electromagnetic field-as =~ - Y
Wy = 3(eB® + uH?). ) (32-15a)
This formula may be r y ritten as ’ .
- ¥y = 1(DE 4 BH). (32-15b)

In the mks system of units, the energy density # '+ in the electromagnetic
field is in joules per cubic meter when the electric field is expressed in volts
per meter and the magnetic field intensity is expressed in amperes per meter,
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TABLE 32-1 PRINCIPAL EQUATIONS IN MKS AND GAUSSIAN UNITS

Equation MKS Gaussian
(32-2) AP = BAA Same form as mks Flux change -
(82-3) = — a2 £ = — 1d® Electromagnetic
dt ¢ dt induction
(32-4) & =—N i E = — N d® N-turn coil
dt c di
(32-6) &= —L% Same form as mks Inductance #”
(32-8) I — wolN24 L — 4TN2A Toroid or long b
s . sc? solenoid
(32-13) W = $LI* Same form ag mks ‘Energy ,
] .
) _ H®* BH Energy density *
- =41 2 =1 = Zm =
(32-14) Wy = guH iBH | W'v i {0 vacuum
32-15b) | ¥y = HDE + BH) . | Wy = é-l— (DE + BH) | Energy density
T .

TABLE 32-2 CONVERSION FACTORS RELATING MKS AND GAUSSIAN UNITS

Quantity Symbol MKS Unit Gaussian Unit
Flux P 1 weber = 108 maxwells (emu)
. :
Inductance L 1 henr, = ————gtathenr esu.
y 9% 101 y (esu)
108,
Pole P 1 weber = unit pole (emu)
: T
M.agnetllc H. |1 LU 1 AP | 4 X 10~% oersted (emu)
intensity weber m
Mggnetl? B 1 weber/m? - = 10¢ gausses v (emu)
induction
. 4 —4
Elfactrlc' B n nt L volb | 10 §tatv01ﬁ =10 dyne (esu)
intensity coul m 3  cm 3 steoul
Elee'tric D 1 coul/m? — 3 % 105 statcoul/em? (esu)
displacement .. .

Page 78 of 81




Page 79 of 81

T

L

PR

608 ELECTROMAGNETIC INDUCTION

Problems

32-1. The magnetic flux in a coil having 40 turns changes steadily from
zero to 20,000 maxwells in 2 sec. Find the induced emf in the coil. '

32-2. The magnetic flux through a coil of 125 turns is changed at a constant
rate from zero to 0.40 weber in 2.5 sec. Determine the emf induced in this coil.

82-3. A circular coil of 50 turns and radius 15 cm lies in the -y plane. The
magnetic induction is changed in 0.001 sec at a constant rate from zero to a
value whose & component is 0.3 weber/m?, whose component is 0.4 weber/m?,
and whose #z component is 0.5 weber/m?. Find the emf induced in the coil.

32-4. A wire 50 cm long is at rest along the z axis. A large magnet generating
a uniform field directed along the +y direction of 0.2 weber/m? is moved in the
+2 direction with a speed of 30 m/sec. Find the magnitude and the direction
of the emf induced in the wire. :

32-5. A wire 75 em long is moved in the y direction at a speed of 25 m/sec,
50 that the wire is always parallel to the = axis. The magnetic field has com-
ponents B, = 0.2 weber/m? B, = —0.3 weber/m?, and B, = 0.4 weber/m?2.
Find the emf induced in the wire.

32-6. A short solenoid, connected to a galvanometer, stands on one end
upon a table. The north pole of a long bar magnet is brought down from above
into the solenoid. Apply Lensz’s law to find if the direction of the current in-

uced in the solenoid is clockwise or counterclockwise, as viewed from above.
b32i7v/A rectangular coil of wire having 10 turns with dimensions of 20 cm
by 80 em s rotating at constant speed of 600 rpm in a magnetic field in which
the magnetic induction is 600 gausses. The axis of rotation is perpendicular to
the field. Find the maximum value of the emf produced.

32-8. Part of a closed circuit consists of a straight wire 1.5m long moving
at a speed of 2 m/sec perpendicular to a magnetic field of 10,000~ gausses. (a)
What is the emf induced in the circuit?- (b) What is the force on the wire when
the induced current is 5 amp?

32-9. A coil of 300 concentrated turns and an area of 800 cm? is lying flat
on & horizontal table. When the coil is turned over through 180° in 0.10 sec,
the average induced emf is 0.024 volt. What is the vertical component of the
magnetic intensity of the earth’s magnetic field? . .

32-10. A rectangular coil 12 em by 25 ¢m and containing 15 turns is rotating
at a constant speed of 1,800 rpm in a magnetic field in which the magnetic
induction is 0.15 weber/m? The axis of rotation is perpendicular to the field.
(a) Determine the maximum emf induced in this coil. (b) If the zero of time is
taken at the point where the coil is paralle] to the magnetic induction, find the
emf in the coil when it has rotated by 53°.

32-11. When the current in & coil is changed at a constant rate of 5 amp/sec,
the emf induced in the coil is 0.25 volt. Determine the self-indudtance of the coil.

32-12. Derive a formula for the self-inductance of a long solenoid. Assume
that the field is uniform everywhere within the solenoid.

32-13. What is the self-inductance of a solenoid 50 cm long and 5 em in
diameter, wound with 400 turns of wire?
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32-14. What is the self-inductance of a toroid of mean circumference 25 cm,
wound with 500 turns of wire, if the cross-sectional area of each turn is 2 cm??
39-15. Aninductor has an inductance of 0.01 henry and an internal resistance
of 5 ohms. The inductor is connected to the terminals of a battery having an
emf of 12 volts. What will be the current in the circuit (a) in 0.001 sec? (b) In
0.01 sec? (c) In 0.1 see? (d) Determine the time constant of this circuit.
 32-16. An inductor of inductance 0.1 henry is connected in series with a
50-ohm resistor. This series combination is connected across the terminals of
a 100-volt battery. What will be the energy stored in the magnetic field of the
inductor when the current reaches a steady value?
32-17. Solve Equation (32-10) by separating the variables so that it becomes

de

R
= =t
v L
P
R

and integrating to obtain Equation (32-11). Evaluate the constant of integra-
tion, letting 7 = 0 when ¢ = 0. ' ‘

32.18. Suppose that a switching arrangement igs used in the circuit of
Figure 32-12 so that the battery is removed from the circuit and a connecting
wire is substituted in its place. (a) Show that Equation (32-10) becomes

L@—i—iR:O.
dt ,

(b) Solve this equation for the current as a function of the time. Evaluate the
constant of integration letting 1 = I whent = 0. (c) Plot a graph of this equation
and compare it with the graph of Figure 32-13.

32-19. Referring to the toroid of Problem 32-14, calculate (a) the energy
in the magnetic field when the current is 10 amp and (b) the energy per unit
volume of this field. '

Oy .

4 g

#
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