o
NG
o
—
=
o
I
X
L
O
Z
)
)
:

Page 1 of 52

At e ablanmmaa




T

Page 2 of 52

FOURTH EDITION

MICROELECTRONIC
CIRCUITS

Adel S. Sedra

University of Toronto

Kenneth C. Smith

University of Toronto and Hong Kong
University of Science and Technology

New York Oxford
OXFORD UNIVERSITY PRESS
1998




Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogota Bombay Buencs Aires

Calcutta Cape Town Dar es Salaam Delhi Florence Hong Kong
Istanbul Karachi Kuala Lumpur Madras Madrid Melboumne

Mexico City Nairobi Paris Singapore Taipet Tokyo Toronto Warsaw

and associated companies in

Berlin  Ibadan

Copyright © 1998, 1991, 1987, 1982 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.,
198 Madison Avenue, New York, New York, 10016
hitp://www.oup-usa.org

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior permission of Oxford University Press.

Staff

Senior Acquiring Editor: Bill Zobrist
Editorial/Production/Design Manager: Elyse Dubin
Assistant Acquiring Editor: Krysia Bebick
Production Coordinator: John Bauco

Editorial Assistant: Jasmine Urmeneta
Composition: York Graphic Services

Production Services: York Production Services
Director of Marketing: Scont Burns

Assistant Sales Manager: Marcy Levine
Advertising Manager: David Walker

Copywriter: Leigh Ann Florek

Cover Design: Ed Berg Designs

Cover Art Direction: Linda Roppolo
Manufacturing Director: Ben Lee

Manufacturing Controlter: Robin Meredith-Clement

Library of Congress Cataloging-in-Publication Data

Sedra, Adel S,
Microelectronic circuits / Adel 8. Sedra, Kenneth C., Smith, — 4th ed.
p. cm. — (Oxford series in electrical and computer engineering)

Includes bibliographical references and index.
ISBN (-19-511663-1
1. Electronic circuits. 2. TIutegrated circuits, I. Smith,
Kenneth Carless. [. Title. IF. Series,
TK7867.539 1997
621.381—dc21 97-11254
CIP

98 7 6 5 43

Printed in the United States of America on acid-free paper
Cover TMustration: The chip shown is the ADXL-50 surface-micromachined accelerometer. For the first time, sensor
and signal conditioning are combined on 2 single monolithic chip. In its earliest application, it was a key factor in

the improved reliability and reduced cost of modern automotive airbag systems. Photo reprinted with permission of
Analog Devices, Inc.

Page 3 of 52



Page 4 of 52



Page 5 of 52



Chapter 3

£
32
A3

3.4
35
3.6
3.7
3.8
39
310

Chapter 4

Page 6 of 52

4.1
42
43
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16

DETAILED TABLE OF CONTENTS

Diopes 122

Introduction 122
The Ideal Diode 123
Terminal Characteristics of Junction Diodes 131
Physical Operation of Diodes 137
3.3.1 Basic Semiconductor Concepts 138
3.3.2 The pn Junction Under Open-Circuit Conditions 143
3.33 The pn Junction Under Reverse-Bias Conditions 146
3.3.4 The pn Junction in the Breakdown Region 149
3.3.5 The pn Junction Under Forward-Bias Conditions 151
3.3.6 Summary 155
Analysis of Diode Circuits 155
The Small-Signal Model and Its Application 163
Operation in the Reverse Breakdown Region—Zener Diodes 172
Rectifier Circuits 179
Limiting and Clamping Circuits 191
Special Diode Types 196
The SPICE Diode Model and Simulation Examples 199
Summary 206
Bibliography 206
Problems 207

BrroLAr Juncrion TraNsIsTORS (BITs) 221

Introduction 221

Physical Structure and Modes of Operation 222
Operation of the npn Transistor in the Active Mode 223
The pnp Transistor 232

Circuit Symbols and Conventions 234

Graphical Representation of Transistor Characteristics 238
Analysis of Transistor Circuits at DC 241

The Transistor as an Amplifier 253

Small-Signal Equivalent Circuit Models 259

Graphical Analysis 272

Biasing the BIT for Discrete-Circuit Design 276

Basic Single-Stage BIT Amplifier Configurations 282
The Transistor as a Switch—Cutoff and Saturation 295

A General Large-Signal Model for the BJT: The Ebers-Moll (EM) Model 303

The Basic BJT Logic Inverter 310

XV

Complete Static Characteristics, Internal Capacitances, and Second-Order Effects 315

The SPICE BIT Model and Simulation Examples 326
Summary 331

Bibliography 332

Problems 333



Page 7 of 52



Chapter 7

g |
7.2
T4

74

1.5
7.6
17
7.8
7.9

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Chapter 9

Page 8 of 52

A
a
9.3

DETAILED TABLE OF CONTENTS xvii

FrEQUENCY RESPONSE 583

Introduction 583

s-Domain Analysis: Poles, Zeros, and Bode Plots 584

The Amplifier Transfer Function 590

Low-Frequency Response of the Common-Source and Common-Emitter
Amplifiers 602

High-Frequency Response of the Common-Source and Common-Emitter
Amplifiers 610

The Common-Base, Common-Gate, and Cascode Configurations 619
Frequency Response of the Emitter and Source Followers 626

The Common-Collector Common-Emitter Cascade 630

Frequency Response of the Differential Amplifier 635

SPICE Simulation Examples 645

Summary 649

Bibliography 650

Problems 650

FEEDBACK 667

Introduction 667

The General Feedback Structure 668

Some Properties of Negative Feedback 670
The Four Basic Feedback Topologies 675

The Series-Shunt Feedback Amplifier 679
The Series-Series Feedback Amplifier 688
The Shunt-Shunt and the Shunt-Series Feedback Amplifiers 696
Determining the Loop Gain 708

The Stability Problem 713

Effect of Feedback on the Amplifier Poles 713
Stability Study Using Bode Plots 725
Frequency Compensation 729

SPICE Simulation Examples 735

Summary 740

Bibliography 740

Problems 741

OuTPUT STAGES AND POWER AMPLIFIERS 751

Introduction 757

Classification of Output Stages 752
Class A Output Stage 753

Class B Output Stage 758




Page 9 of 52



11.10
11.11
11.12

Chapter 12

12.1
12.2
12.3
124
12.5

12.6
12.7
12.8
12.9
12.10

DETAILED TABLE OF CONTENTS

Switched-Capacitor Filters 941
Tuned Amplifiers 946

SPICE Simulation Examples 959
Summary 965

Bibliography 966

Problems 967

Si1GNAL GENERATORS AND WAVEFORM-SHAPING Circuits 973

Introduction 973

Basic Principles of Sinusoidal Oscillators 974

Op Amp-RC Oscillator Circuits 980

LC and Crystal Oscillators 988

Bistable Multivibrators 994

Generation of Square and Triangular Waveforms Using Astable
Multivibrators 1002

Generation of a Standardized Pulse—The Monostable Multivibrator 1007
Integrated-Circuit Timers 1009

Nonlinear Waveform-Shaping Circuits 1014

Precision Rectifier Circuits 1018

SPICE Simulation Examples 1026

Summary 1030

Bibliography 1030

Problems 1031

PART IIl DIGITAL CIRCUITS 1040

Chapter 13

13.1

13.2
13.3
13.4
135
13.6
13.7
13.8
13.9

Page 10 of 52

MOS DiGitaL Circuits 1042

Introduction 1042
Digital Circuit Design: An Overview 1043
13.1.1 Digital IC Technologies and Logic-Circuit Families 1043
13.1.2 Logic-Circuit Characterization 1045
13.1.3 Styles for Digital System Design 1048
13.1.4 Design Abstraction and Computer Aids 1048
Design and Performance Analysis of the CMOS Inverter 1049
CMOS Logic-Gate Circuits 1058
Pseudo-NMOS Logic Circuits 1070
Pass-Transistor Logic Circuits 1080
Dynamic Logic Circuits 1090
Latches and Flip-Flops 1097
Multivibrator Circuits 1106
Semiconductor Memories: Types and Architectures 1113

Xix




XX DETAILED TABLE OF CONTENTS

13.10 Random-Access Memory (RAM) Cells 1116
13.11 Sense Amplifiers and Address Decoders 1125
13.11.1 The Sense Amplifier 7125
13.11.2 The Row-Address Decoder 7131
13.11.3  The Column-Address Decoder 1133
13.12 Read-Only Memory (ROM) 1133
13.13 SPICE Simulation Example 1140
Summary 1144
Bibliography 1146
Problems 1146

Chapter 14 BIroLAR AND ADVANCED-TECHNOLOGY DiGITAL Circurts 1158

Introduction 1158
14.1 Dynamic Operation of the BJT Switch 17159
14.2 Early Forms of BJT Digital Circuits 1163
14.3 Transistor-Transistor Logic (TTL or T°L) 1167
14.4 Characteristics of Standard TTL 1180
14.5 TTL Families with Improved Performance 1187
14.6 Emitter-Coupled Logic (ECL) 1195
14.7 BiCMOS Digital Circuits 1211
14.8 Gallium-Arsenide Digital Circuits 1216
14.9 SPICE Simulation Example 1224

Summary 1230

Bibliography 1231

Problems 1232

APPENDIXES

A VLSI FaBricarioN TecHNoLOGY A-1

Two-PorT NETWORK PARAMETERS B-/

AN InTRODUCTION TO SPICE  C-J

InpuT FiLES FOR THE SPICE ExamrLes D-1

Some UseruL NETWORK THEOREMS E-1

SINGLE-TiME-CONsTANT Circurts  F-1

DETERMINING THE PARAMETER VALUES OF THE HYBRID-77 BIT Model G-1
STANDARD RESISTANCE VALUES AND UNiT PrREFIXES H-1

ANSWERS TO SELECTED PROBLEMS [-1

“rEraTEETAw

INpEX  IN-1

Page 11 of 52



/\ / CHAPTER T

Introduction to Electronics

Introduction 1.6 Frequency Response of
1.1 Signals Amplifiers
1.2 Frequency Spectrum of Signals 1.7 The Digital Logic Inverter
1.3 Analog and Digital Signals Summary
14 Amplifiers Bibliography
1.5 Circuit Models for Amplifiers Problems
INTRODUCTION

The subject of this book is modern electronics, a field that has come to be known as
microelectronics. Microelectronics refers to the integrated-circuit (IC) technology that at
the time of this writing is capable of producing circuits that contain millions of components
in a small piece of silicon (known as a silicon chip) whose area is in the order of 100
mm?. One such microelectronic circuit, for example, is a complete digital computer, which
accordingly is known as a microcomputer or, more generally, a microprocessor.

In this book we shall study electronic devices that can be used singly (in the design of
discrete circuits) or as components of an integrated-circuit (IC) chip. We shall study the
design and analysis of interconnections of these devices, which form discrete and integrated
circuits of varying complexity and perform a wide variety of functions. We shall also learn
about available IC chips and their application in the design of electronic systems.

The purpose of this first chapter is to introduce some basic concepts and terminology.
In particular, we shall learn about signals and about one of the most important signal-
processing functions electronic circuits are designed to perform, namely, signal amplifica-
tion. We shall then look at models for linear amplifiers. These models will be employed in
subsequent chapters in the design and analysis of actual amplifier circuits.

Whereas the amplifier is the basic element of analog circuits, the logic inverter plays
this role in digital circuits. We shall therefore take a preliminary look at the digital inverter,
its circuit function, and important characteristics.

e
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2 INTRODUCTION TO ELECTRONICS

In addition to motivating the study of electronics, this chapter serves as a bridge be-
tween the study of linear circuits and that of the subject of this book: the design and analysis
of electronic circuits.

1.1 SIGNALS

Page 13 of 52

Signals contain information about a variety of things and activities in our physical world.
Examples abound: Information about the weather is contained in signals that represent the
air temperature, pressure, wind speed, etc. The voice of a radio announcer reading the news
into a microphone provides an acoustic signal that contains information about world affairs.
To monitor the status of a nuclear reactor, instruments are used to measure a multitude of
relevant parameters, each instrument producing a signal.

To extract required information from a set of signals, the observer (be it a human or a
machine) invariably needs to process the signals in some predetermined manner. This signal
processing is usually most conveniently performed by electronic systems. For this to be
possible, however, the signal must first be converted into an electric signal, that is, a voltage
or a current. This process is accomplished by devices known as transducers. A variety of
transducers exist, each suitable for one of the various forms of physical signals. For instance,
the sound waves generated by a human can be converted into electric signals using a mi-
crophone, which is in effect a pressure transducer. It is not our purpose here to study
transducers; rather, we shall assume that the signals of interest already exist in the electrical
domain and represent them by one of the two equivalent forms shown in Fig. 1.1. In Fig.
1.1(a) the signal is represented by a voltage source v,(f) having a source resistance R,. In
the alternate representation of Fig. 1.1(b) the signal is represented by a current source
i;(2) having a source resistance R,. Although the two representations are equivalent, that in
Fig. 1.1(a) (known as the Thévenin form) is preferred when R; is low. The representation
of Fig. 1.1(b) (known as the Norton form) is preferred when R; is high.

Fig. 1.1 Two alternative
representations of a signal
source: (a) the Thévenin
form, and (b) the Norton
form.

(a) (b)

From the discussion above, it should be apparent that a signal is a time-varying quantity
that can be represented by a graph such as that shown in Fig 1.2. In fact, the information
content of the signal is represented by the changes in its magnitude as time progresses; that
is, the information is contained in the “wiggles” in the signal waveform. In general, such
waveforms are difficult to characterize mathematically. Tn other words, it is not easy to
describe succinctly an arbitrary looking waveform such as that of Fig. 1.2. Of course, such
a description is of great importance for the purpose of designing appropriate signal-
processing circuits that perform desired functions on the given signal.
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Fig. 1.2 An arbitrary voltage signal v,(1).
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An extremely uscful characterization of a signal, and for that matter of any arbitrary function
of time, is in terms of its frequency spectrum. Such a description of signals is obtained
through the mathematical tools of Fourier series and Fourier transform.! We are not
interested at this point in the details of these transformations; suffice it to say that they
provide the means for representing a voltage signal v(f) or a current signal i.(f) as the sum
of sine-wave signals of different frequencies and amplitudes. This makes the sine wave a
very important signal in the analysis, design, and testing of electronic circuits. Therefore,
we shall briefly review the properties of the sinusoid.
Figure 1.3 shows a sine-wave voltage signal v,(1),

vy(f) = V, sin wt (L.1)

where V, denotes the peak value or amplitude in volts and w denotes the angular frequency
in radians per second; that is, @ = 27f rad/s, where f is the frequency in hertz, f = I/T
Hz, and T is the period in seconds.

U, A

T Fig. 1.3 Sine-wave voltage
Va signal of amplitude V, and
¥ / » frequency f = 1/T Hz. The
\/ , angular frequency @ = 277f
rad/s.

! The reader who kas not yet studied these topics should not be alarmed. No detailed application of this
material will be made until Chapter 7. Nevertheless, a general understanding of Section 1.2 should be very helpful
when studying early parts of this book.

<

~
{




4 INTRODUCTION TO ELECTRONICS

The sine-wave signal is completely characterized by its peak value V,, its frequency o,
and its phase with respect to an arbitrary reference time. In this case the time origin has
been chosen so that the phase angle is 0. It should be mentioned that it is common to
express the amplitude of a sine-wave signal in terms of its root-mean-square (rms) value,
which is equal to the peak value divided by V2. Thus the rms value of the sinusoid Uy ()
of Fig. 1.3 is V,/\V/2. For instance, when we speak of the wall power supply in our homes
as being 120 V, we mean that it has a sinc waveform of 120V2 volts peak value.

Returning now to the representation of signals as the sum of sinusoids, we note that
the Fourier series is utilized to accomplish this task for the special case when the signal is
a periodic function of time. On the other hand, the Fourier transform is more general and
can be used to obtain the frequency spectrum of a signal whose waveform is an arbitrary
function of time.

The Fourier series allows us to express a given periodic function of time as the sum
of an infinite number of sinusoids whose frequencies are harmonically related. For instance,
the symmelrical square-wave signal in Fig. 1.4 can be expressed as

4v . : 5
v(f) = ;(sm wpt + % sin3wor +  sin Swgt + -+ (1.2)
where V is the amplitude of the square wave and wg = 27/T (T is the period of the square
wave) is called the fundamental frequency. Note that because the amplitudes of the har-
monics progressively decrease, the infinite series can be truncated, with the truncated series
providing an approximation to the square waveform.

U A

f__T_"‘

T¥

Fig. 1.4 A symmetrical
square-wave signal of
amplitude V.

The sinusoidal components in the series of Eq. (1.2) constitute the frequency spectrum
of the square-wave signal. Such a spectrum can be graphically represented as in Fig, 1.5,
where the horizontal axis represents the angular frequency w in radians per second.

The Fourier transform can be applied to a nonperiodic function of time, such as that
depicted in Fig. 1.2, and provides its frequency spectrum as a continuous function of fre-
quency, as indicated in Fig. 1.6. Unlike the case of periodic signals, where the spectrum
consists of discrete frequencies (at wg and its harmonics), the spectrum of a nonperiodic
signal contains in general all possible frequencies. Nevertheless, the essential parts of the
spectra of practical signals are usually confined to relatively short segments of the frequency
(w) axis—an observation that is very useful in the processing of such signals. For instance,
the spectrum of audible sounds such as speech and music extends from about 20 Hz to
about 20 kHz—a frequency range known as the audio band. Here we should note that

Page 15 of 52
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Fig. 1.5 The frequency spectrum (also known as the line spectrum) of the periodic square wave
of Fig. 1.4.

although some musical tones have frequencies above 20 kHz, the human car is incapable
of hearing frequencies that are much above 20 kHz.

We conclude this section by noting that a signal can be represented either by the manner
in which its waveform varies with time, as for the voltage signal v,(z) shown in Fig. 1.2,
or in terms of its frequency spectrum, as in Fig. 1.6. The two alternative representations are
known as the time-domain representation and the frequency-domain representation, respec-
tively. The frequency-domain representation of u,(r) will be denoted by the symbol V,(w).

P
Lot

Fig. 1.6 The frequency
spectrum of an arbitrary

waveform such as that in
Fig. 1.2

R

® (rad/sr)

Frequency spectrum V, (w) in volts

(=]

Exercises
1.7 Find the frequencies f and w of a sine-wave signal with a period of 1 ms.

AnS. f = 1000 Hz; = 27 X 107 rad/s

| -
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6 INTRODUCTION TO ELECTRONICS

1.2 What is the period 7' of sine waveforms characterized by frequencies of (a) f = 60 Hz? (b) f=
1073 Hz? (c) f= 1 MHz?

Ans. 16.7 ms; 1000 s; 1 ps

1.3 When the square-wave signal of Fig. 1.4, whose Fourier series is given in Eq. (1.2), is applied to a resistor,
T

the total power dissipated may be calculated directly using the relationship P = 1/T | (v*/R) dt, or indirectly

@’ by summing the contribution of each of the harmonic components, that is, P = P + Py + Ps + -+, which

may be found directly from rms values. Verify that the two approaches are equivalent. What fraction of the

energy of a square wave is in its fundamental? In its first five harmonics? In its first seven? First nine? In what

. number of harmonics is 90% of the energy? (Note that in counting harmonics, the fundamental at wy is the
. first, the one at 2wy is the second, etc.)

Ans. 0.81; 0.93; 0.95: 0.96: 3

0

1.3 ANALOG AND DIGITAL SIGNALS
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The voltage signal depicted in Fig. 1.2 is called an analog signal. The name derives from
the fact that such a signal is analogous to the physical signal that it represents. The mag-
nitude of an analog signal can take on any value; that is, the amplitude of an analog signal
exhibits a continuous variation over its range of activity. The vast majority of signals in the
world around us are analog. Electronic circuits that process such signals are known as
analog circuits. A variety of analog circuits will be studied in this book.

An alternative form of signal representation is that of a sequence of numbers, each
number representing the signal magnitude at an instant of time. The resulting signal is called
a digital signal. To see how a signal can be represented in this form—that is, how signals
can be converted from analog to digital form—consider Fig. 1.7(a). Here the curve repre-
sents a voltage signal, identical to that in Fig. 1.2. At equal intervals along the time axis
we have marked the time instants £y, #;, >, and so on. At each of these time instants the
magnitude of the signal is measured, a process known as sampling. Figure 1.7(b) shows a
representation of the signal of Fig. 1.7(a) in terms of its samples. The signal of Fig. 1.7(b)
is defined only at the sampling instants; it no longer is a continuous function of time, but
rather, it is a discrete-time signal. However, since the magnitude of each sample can take
any value in a continuous range, the signal in Fig. 1.7(b) is still an analog signal.

Now if we represent the magnitude of each of the signal samples in Fig. 1.7(b) by a
number having a finite number of digits, then the signal amplitude will no longer be con-
tinuous; rather, it is said to be quantized, discretized, or digitized. The resulting digital
signal then is simply a sequence of numbers that represent the magnitudes of the successive
signal samples.

The choice of number system to represent the signal samples affects the type of digital
signal produced and has a profound effect on the complexity of the digital circuits required
to process the signals. It turns out that the binary number system results in the simplest
possible digital signals and circuits. In a binary system. each digit in the number takes on
one of only two possible values, denoted 0 and 1. Correspondingly, the digital signals in
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u(1) Ar

ptytyty -+ -

(a)
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Fig. 1.7 Sampling the continuous-time analog signal in (a) results in the discrete-time signal

in (b).

binary systems need have only two voltage levels, which can be labeled low and high.
As an example, in some of the digital circuits studied in this book, the levels are 0 V and
+5 V. Figure 1.8 shows the time variation of such a digital signal. Observe that the wave-

form is a pulse train with 0 V representing a 0 signal, or logic 0, and +5 V representing
logic 1.

v(r) A
+5
0 | L | e
Logic values —=— | 0 | | 0 1 0 0 Time, t

Fig. 1.8 Variation of a particular binary digital signal with time.
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If we use N binary digits (bits) to represent each sample of the analog signal, then the
digitized sample value can be expressed as

D = bo2° + b2' + b2 + 0 + by 2N (1.3)

where by, by, . . ., by, denote the N bits and have values of 0 or 1. Here bit by is the
least significant bit (LSB), and bit by, is the most significant bit (MSB). Conventionally,
this binary number is written as by—1by— . . . bg. We observe that such a representation
quantizes the analog sample into one of 2 levels. Obviously the greater the number of bits
(i.e., the larger the &), the closer the digital word D approximates the magnitude of the
analog sample. That is, increasing the number of bits reduces the guantization error and
increases the resolution of the analog-to-digital conversion. This improvement is, however,
usually obtained at the expense of more complex and hence more costly circuit implemen-
tations. It is not our purpose here to delve into this topic any deeper; we merely want the
reader to appreciate the nature of analog and digital signals. Nevertheless, it is an opportune
time to introduce a very important circuit building block of modern electronic systems: the
analog-to-digital converter (A/D or ADC) shown in block form in Fig. 1.9. The ADC
accepts at its input the samples of an analog signal and provides for each input sample the
corresponding N-bit digital representation (according to Eq. 1.3) at its N output terminals.
Thus although the voltage at the input might be, say, 6.51 V, at each of the output terminals
(say, at the ith terminal), the voltage will be either low (0 V) or high (5 V) if b; is supposed
to be 0 or 1, respectively. We shall study the ADC and its dual circuit the digital-te-analog
converter (D/A or DAC) in Chapter 10.

Fig. 1.9 Block-diagram
representation of the analog-
to-digital converter (ADC).

Digital
output

Once the signal is in digital form, it can be processed using digital circuits. Of course
digital circuits can deal also with signals that do not have an analog origin such as the
signals that represent the various instructions of a digital computer.

Since digital circuits deal exclusively with binary signals, their design is simpler than
that of analog circuits. Furthermore, digital systems can be designed using a relatively few
different kinds of digital circuit blocks. However, a large number (e.g.. hundreds of thou-
sands or even millions) of each of these blocks are usually needed. Thus the design of
digital circuits poses its own set of challenges to the designer, but provides reliable and
economic implementations of a great variety of signal processing functions, some of which
are not possible with analog circuits. At the present time, more and more of the signal
processing functions are being performed digitally. Examples around us abound: from the
digital watch and the calculator to digital audio systems and, very soon, digital television.
Moreover, some longstanding analog systems such as the telephone communication system
are now almost entirely digital. And we should not forget the most important of all digital
systems, the digital computer.
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The basic building blocks of digital systems are logic circuits and memory circuits. We
shall study both in this book, beginning in Section 1.7 with the most fundamental digital
circuit, the digital logic inverter.

One final remark: Although the digital processing of signals is at present all-pervasive,
there remain many signal processing functions that are best performed by analog circuits.
Indeed, many electronic systems include both analog and digital parts. It follows that a good
electronics engineer must be proficient in the design of both analog and digital circuits.
Such is the aim of this book.

N A RIS S R e TR PN TN

Exercise

——— e

S R R S S s =R T

1.4 Consider a 4-bit digital word D = b3b,b by (see Eq. 1.3) used to represent an analog signal v, that varies
between OV and +15 V.

(a) Give D corresponding to y4 = 0V, 1 V,2V,and 15V.

(b) What change in v, causes a change from 0 to 1 in: (i) by, (1) by, (iii) by, and (iv) bs?

)! e

(c) If y4 = 5.2 V. what do you expect D to be? What is the resulting error in representation?

Ans. (a) 0000, 0001, 0010, 1111; (b) +1V, +2V, +4V, +8V; (c) 0101, —4%

T ——— — e e X e e

1.4 AMPLIFIERS

In this section, we shall introduce a fundamental signal-processing function that is employed
in some form in almost every electronic system, namely, signal amplification.

Signal Amplification

From a conceptual point of view the simplest signal-processing task is that of signal am-
plification. The need for amplification arises because transducers provide signals that are
said to be “weak,” that is, in the microvolt (V) or millivolt (mV) range and possessing
little energy. Such signals are too small for reliable processing, and processing is much
easier if the signal magnitude is made larger. The functional block that accomplishes this
task is the signal amplifier.

It is appropriate at this point to discuss the need for linearity in amplifiers. When
amplifying a signal, care must be exercised so that the information contained in the signal
is not changed and no new information is introduced. Thus when feeding the signal shown
in Fig. 1.2 to an amplifier, we want the output signal of the amplifier to be an exact replica
of that at the input, except of course for having larger magnitude. In other words, the
“wiggles” in the output waveform must be identical to those in the input waveform. Any
change in waveform is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal waveform is characterized by the
relationship

v,(1) = Aui(1) (14)

\
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INTRODUCTION
In this chapter, we study the design of an important building block of communications and
instrumentation systems, the electronic filter. Filter design is one of the very few areas of
engineering for which a complete design theory exists, starting from specification and ending
with a circuit realization. A detailed study of filter design requires an entire book, and
indeed such textbooks exist. In the limited space available here, we shall concentrate on a
selection of topics that provide an introduction to the subject as well as a useful arsenal of
filter circuits and design methods.

The oldest technology for realizing filters makes use of inductors and capacitors, and
the resulting circuits are called passive LC filters. Such filters work well at high frequen-
cies; however, in low-frequency applications (dc to 100 kHz) the required inductors are
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large and physically bulky, and their characteristics are quite nonideal. Furthermore, such
inductors are impossible to fabricate in monolithic form and are incompatible with any of
the modern techniques for assembling electronic systems. Therefore, there has been consid-
erable interest in finding filter realizations that do not require inductors. Of the various
possible types of inducterless filters, we shall study active-RC filters and switched-
capacitor filters.

Active-RC filters utilize op amps together with resistors and capacitors and are fabri-
cated using discrete, hybrid thick-film, or hybrid thin-film technology. However, for large-
volume production, such technologies do not yield the economies achieved by monolithic
fabrication. At the present time. the most viable approach for realizing fully integrated
monolithic filters is the switched-capacitor technigue.

The last topic studied in this chapter is the tuned amplifier commonly employed in the
design of radio and TV receivers. Although tuned amplifiers are in effect bandpass filters,
they are studied separately because their design is based on somewhat different techniques.

11.1 FILTER TRANSMISSION, TYPES, AND SPECIFICATION
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The filters we are about to study are linear circuits that can be represented by the general
two-port network shown in Fig. 11.1. The filter transfer function 7'(s) is the ratio of the
output voltage V,(s) to the input voltage V(s),

%(9

9= e

(1.1
The filter transmission is found by evaluating 7(s) for physical frequencies, s = jw, and
can be expressed in terms of its magnitude and phase as
T(jw) = |T(jw) e/ (11.2)
The magnitude of transmission is often expressed in decibels in terms of the gain function
G(w) = 20 log|T(jw)|, dB (11.3)
or, alternatively, in terms of the attenuation function
Alw) = —20log|T(jw)|, dB (11.4)

A filter shapes the frequency spectrum of the input signal, |V;(jw). according to the
magnitude of the transfer function |7(jw)|, thus providing an output V,(jw) with a spectrum

[V.(jw)| = |T(w)| |Vi(jw)] (11.5)

Also, the phase characteristics of the signal are modified as it passes through the filter
according to the filter phase function d(w).

Fig. 11.1  The filters
studied in this chapter are
linear circuits represented by
the general two-port network
shown. The filter transfer
function T(s) = V,(s)/'Vi(s).
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We are specifically interested here in filters that perform a frequency-selection func-
tion: passing signals whose frequency spectrum lies within a specified range, and stopping
signals whose frequency spectrum falls outside this range. Such a filter has ideally a fre-
quency band (or bands) over which the magnitude of transmission is unity (the filter pass-
band) and a frequency band (or bands) over which the transmission is zero (the filter
stopband). Figurz 11.2 depicts the ideal transmission characteristics of the four major filter
types: low-pass (LP) in Fig. 11.2(a), high-pass (HP) in Fig. 11.2(b), bandpass (BP) in Fig.
11.2(c), and bandstop (BS) or band-reject in Fig. 11.2(d). These idealized characteristics,
by virtue of their vertical edges, are known as brick-wall type responses.

Filter Specification

The filter design process begins with the filter user specifying the transmission character-
istics required of the filter. Such a specification cannot be of the form shown in Fig. 11.2
because physical circuits cannot realize these idealized characteristics. Figure 11.3 shows
realistic specifications for the transmission characteristics of a low-pass filter. Obserye that
since a physical circuit cannot provide constant transmission at all passband frequencies,
the specifications allow for deviation of the passband transmission from the ideal 0 dB, but
places an upper bound, Ay, (dB), on this deviation. Depending on the application, A,
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Fig. 11.2 Tdeal transmission characteristics of the four major filter types: (a) low-pass
(LP). (b) high-pass (HP), (c) bandpass (BP), and (d) bandstop (BS).
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Fig. 11.3  Specification of the transmission characteristics of a low-pass filter. The magnitude
response of a filter that just meets specifications is also shown.

typically ranges from 0.05 to 3 dB. Also, since a physical circuit cannot provide zero trans-
mission at all stopband frequencies, the specifications in Fig. 11.3 allow for some trans-
mission over the stopband. However, the specifications require the stopband signals to be
attenuated by at least A,;, (dB) relative to the passband signals. Depending on the filter
application, A,,;, can range from 20 to 100 dB.

Since the transmission of a physical circuit cannot change abruptly at the edge of the
passband, the specifications of Fig. 11.3 provide for a band of frequencies over which the
attenuation increases from near 0 dB to A;,. This transition band extends from the pass-
band edge w), to the stopband edge w,. The ratio w,/w,, is usually used as a measure of the
sharpness of the low-pass filter response and is called the selectivity factor. Finally, observe
that for convenience the passband transmission is specified to be 0dB. The final filter,
however, can be given a passband gain, if desired, without changing its selectivity
characleristics.

To summarize, the transmission of a low-pass filter is specified by four parameters:

1. the passband edge, w,;

2. the maximum allowed variation in passband transmission, A«

3. the stopband edge, w,; and

4. the minimum required stopband attenuation, A ;.
The more tightly one specifies a filter—that is, lower A, higher A, and/or a selectivity
ratio oz/w, closer to unity—the closer the response of the resulting filter to the ideal.

However, the resulting filter circuit must be of higher order and thus more complex and
expensive.

—»
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In addition to specifying the magnitude of transmission, there are applications in which
the phase response of the filter is also of interest. The filter design problem, however, is
considerably complicated when both magnitude and phase are specified.

Once the filier specifications have been decided upon, the next step in the design is to
find a transfer function whose magnitude meets the specification. To meet specification, the
magnitude respanse curve must lie in the unshaded area in Fig. 11.3. The curve shown in
the figure is for a filter that just meets specifications. Observe that for this particular filter,
the magnitude response ripples throughout the passband with the ripple peaks being all
equal. Since the peak ripple is equal to Ay, it is usual to refer to Ap.. as the passband
ripple and to w,, as the ripple bandwidth. The particular filter response shown ripples also
in the stopband, again with the ripple peaks all equal and of such a value that the minimum
stopband attenuation achieved is equal to the specified value, Ap;,. Thus this particular
response is said to be equiripple in both the passband and the stopband.

The process of obtaining a transfer function that meets given specifications is known
as filter approximation. Filter approximation is usually performed using computer pro-
grams (Snelgrove, 1982; Ouslis and Sedra, 1995) or filter design tables (Zverev, 1967). In
simpler cases, filter approximation can be performed using closed-form expressions, as will
be seen in Section 11.3.

Finally, Fig. 11.4 shows transmission specifications for a bandpass filter and the re-
sponse of a filter that meets these specifications. For this example we have chosen an
approximation function that does not ripple in the passband; rather, the transmission de-
creases monotonically on both sides of the center frequency, attaining the maximum allow-
able deviation at the two edges of the passband.
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Fig. 11.4  Transmission specifications for a bandpass filter. The magnitude response of a filter
that just meets specifications is also shown. Note that this particular filter has a monotonically
decreasing transmission in the passband on both sides of the peak frequency.
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Exercises

11.1 Find approximate values of attenuation corresponding to filter transmissions of: 1, 099, 0.9, 0.8, 0.7,
0.5, 0.1, 0.

Ans. 0,0.1, 1, 2,3, 6, 20, « (dB).

11.2 If the magnitude of passband transmission is to remain constant to within +5%, and if the stopband
transmission is to be no greater than 1% of the passband transmission, find Ay, and A,ip.

. Ans. 09dB; 40 dB.

"
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The filter transfer function 7(s) can be written as the ratio of two polynomials as

aMsM + ay— sM 4+ ag
SN t bN-l SN_l o i b[)

T(s) = (11.6)
The degree of the denominator, N, is the filter order. For the filter circuit to be stable, the
degree of the numerator must be less than or equal to that of the denominator; M = N. The
numerator and denominator coefficients, aq, ay, ..., ay and bg, by, ..., by—y, are real
numbers. The polynomials in the numerator and denominator can be factored, and 7(s) can
be expressed in the form

am (s — 2)6 — 22) - (s — zm)

T(s) = (11.7)

= ps—pa) (s — pw)
The numerator roots, zj. 23, . . . » 2y are the transfer-function zeros, or transmission zeros:
and the denominator roots, py. pa, . . . » pa» are the transfer-function poles, or the natural

modes'. Each transmission zero or pole can be either a real or a complex number. Complex
zeros and poles, however, must occur in conjugate pairs. Thus, if —1 + j2 happens to be
a zero, then —1 — j2 also must be a zero.

Since in the filter stopband the transmission is required to be zero or small, the filter
transmission zeros are usually placed on the jo axis at stopband frequencies. This indeed
is the case for the filter whose transmission function is sketched in Fig. 11.3. This particular
filter can be seen to have infinite attenuation (zero transmission) at two stopband frequen-
cies: wy; and wyy. The filier then must have transmission zeros at s = -jo, and 5 =
+jwy. However, since complex zeros occur in conjugate pairs, there must also be trans-
mission zeros at § = —jwy and s = —jwp. Thus the numerator polynomial of this filter
will have the factors (s + jwu)s — jou)s + jop)s — jop), which can be written
as (% + wh)(s> + wh). For § = jw (physical frequencies) the numerator becomes
(—w® + of)(—w* + wh), which indeed is zero at = wy and © = wp.

! Throughout this chapter we use the names poles and natural modes interchangeably,
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Fig. 11.5 Pole-zero
pattern for the low-pass filter
whose transmission is
sketched in Fig. 11.3. This
filter is of fifth order

W = 3).

Continuing with the example in Fig. 11.3, we observe that the transmission decreases
toward —c as w approaches . Thus the filter must have one or more transmission zeros
at s = . In general, the number of transmission zeros at s = = is the difference between
the degree of the numerator polynomial, M, and the degree of the denominator polynaomial,
N, of the transfer function in Eq. (11.6). This is because as s approaches o, T(s) approaches

aM/sN A

M and thus is said to have N — M zeros at s = .

For a filter circuit to be stable, all its poles must lie in the left half of the s-plane, and

X poles
O zeros

(6]

i plane

L
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Fig. 11.6 Pole—zero
pattern for the bandpass
filter whose transmission
function is shown in Fig,
11.4. This filter is of sixth
order (N = 6).
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thus py. ps. ..., py must all have negative real parts. Figure 11.5 shows typical pole and
zero locations for the low-pass filter whose transmission function is depicted in Fig. 11.3.
We have assumed that this filter is of fifth order (N = 5). It has two pairs of complex
conjugate poles and one real-axis pole, for a total of five poles. All the poles lie in the
vicinity of the passband, which is what gives the filter its high transmission at passband
frequencies. The five transmission zeros are at s = *jw;, s = Zjwp, and s = %, Thus
the transfer function for this filter is of the form {

as (52 + oh)s® + wh)

T =
) S5+b4.§‘4+b3S3+b2S2+b|S+b0

(11.8)

As another example, consider the bandpass filter whose magnitude response is shown
in Fig. 11.4. This filter has transmission zeros at s = *jw; and § = =jwp. It also has
one or more zeros at s = 0 and one or more zeros at s = % (because the attenuation
decreases toward —o¢ as w approaches 0 and %). Assuming that only one zero exists at each
of s = 0 and s = oo, the filter must be of sixth order, and its transfer function takes the
form

2
ass(s® + oh)s® + op)

TR=F v md + o 5

(11.9)

A typical pole—zero plot for such a filter is shown in Fig. 11.6.
As a third and final example, consider the low-pass filter whose transmission function
is depicted in Fig. 11.7(a). We observe that in this case there are no finite values of w at

AlT|, dB '
Ajw
Five O at
X poles
O zeros
x [ %
X
0 o
X |
X
- —a,
(a) (b)

Fig. 11.7 (a) Transmission characteristics of a fifth-order low-pass filter having all transmission
zeros at infinity. (b) Pole—zero pattern for the filter in (a).

J
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which the attenuation is infinite (zero ransmission). Thus it is possible that all the trans-
mission zeros of this filter are at s = . If this is the case, the filter transfer function takes
the form

am
sY 4 by sV 4 -+ by

T(s) = (11.10)
Such a filter is known as an all-pole filter. Typical pole—zero locations for a fifth-order
all-pole low-pass filter are shown in Fig. 11.7(b).

Almost all of the filters studied in this chapter have all of their transmission zeros on
the jw-axis, in the filter stopband(s), including® @ = 0 and w = %, Also, to obtain high
selectivity, all the natural modes will be complex conjugate (except for the case of odd-
order filters where one natural mode must be on the real axis). Finally we note that the
more selective the required filter response is, the higher its order must be, and the closer
its natural modes are to the jw axis.

Exercises

i
¢ and is unity

11.3 A second-order filter has its poles at s = —(1/2) + j(\/§/2). The transmission is zero at w = 2 rad/s

Ans. I(s) =

© 11.4 A fourth-order filter has zero transmission at @ = 0, @ = 2 rad/s, and w = <, The natural modes are
| —0.1 + jo.8 and —0.1 * j1.2. Find 7(s).

Ans. 7(s) =

~ 11.5 Find the transfer function 7(s) of a third-order all-pole low-pass filter whose poles are at a radial distance
5 of 1rad/s from the origin and whose complex poles are at 30° angles from the jo-axis. The dc gain is unity.
i Show that |T(jw)| = I/V'] + «®. Find wsyp and the attenuation at @ = 3 rad/s. 8

Ans. T(s) = s + 1)(s?

RS

at de (w = 0). Find the transfer function.

O o I
457 + 5+ 1

az sts* + 4)
(s + 0.25 + 0.65)(s% + 025 + 1.45)

+ s+ 1); 1 rad/s; 28.6 dB.

- —

TR TSI SO

A S S TR
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In this section, we present two functions that are frequently used in approximating the
transmission characteristics of low-pass filters. These functions have the advantage that
closed-form expressions are available for their parameters. Thus one can use them in filter
design without the need for computers or filter design tables. Their utility, however, is
limited to relatively simple applications.

% Obviously, a low-pass filter should rtof have a transmission zero at @ = 0, and, similarly, a high-pass filter
should not have a transmission zero at @ = =,
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Although in this section we discuss the design of low-pass filters only, the approxi-
mation functions presentsd can be applied to the design of other filter types through the use
of frequency transformations (see Sedra and Brackett, 1978).

The Butterworth Filter

Figure 11.8 shows a sketch of the magnitude response of a Butterworth® filter. This filter
exhibits a monotonically decreasing transmission with all the transmission zeros at @ = %,
making it an all-pole filter. The magnitude function for an Nth-order Butterworth filter with
a passband edge w,, is given by

IT(jw)| = AL

At w = wp,

1
T(j B —— 11.12

Fig. 11.8 The magnitude response of a Butterworth filter.

? The Butterworth filter approximation is named after S. Butterworth, a British engineer who in 1930 was
among the first to employ it.

i
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Thus the parameter € determines the maximum variation in passband transmission, A ,x.
according to

Amax = 20logV1 + P (11.13)
Conversely, given A,.x, the value of € can be determined from »
€ = V1040 — ] (11.14)

Observe that in the Butterworth response the maximum deviation in passband transmission
(from the ideal value of unity) occurs at the passband edge only. It can be shown that the
first 2N — 1 derivatives of |T| relative to  are zero at @ = 0 (see Van Valkenburg, 1980).
This property makes the Butterworth response very flat near @ = 0 and gives the response
the name maximally flat response. The degree of passband flatness increases as the order
N is increased, as can be seen from Fig. 11.9. This figure indicates also that, as should be
expected, as the order N is increased the filter response approaches the ideal brick-wall type
response.

At the edge of the stopband, w = w, the attenuation of the Butterworth filter is given
by

Alws) = —201log [1/V1 + e (a),/w,,)m ]

10log[l + € (w,/wp)*™ (11.15)

This equation can be used to determine the filter order required, which is the lowest integer
value of N that yields A(w,) = Ay

The natural modes of an Nth-order Butterworth filter can be determined from the graph-
ical construction shown in Fig. 11.10(a). Observe that the natural modes lie on a circle of
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Fig. 11.10 Graphical construction for determining the poles of a Butterworth filter of order V.
All the poles lie in the left half of the s-plane on a circle of radius wy = w,(1/€)""™, where € is the
passband deviation parameter (¢ = V 105/ —1):  (a) the general case, (b) N = 2,

() N=3, (d) N =4
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radius w,, (1/6)""" and are spaced by equal angles of @/N, with the first mode at an angle
7/2N from the +jw-axis. Since the natural modes all have equal radial distance from the
origin they all have the same frequency wg = w, (1/€)'"™. Figs. 11.10(b), (c), and (d) show
the natural modes of Butterworth filters of order N = 2, 3, and 4, respectively. Once the
N natural modes py, pa, ..., py are found the transfer function can be written as

K ol
T(s) = 11.16
& (s =pi)s = pa) -~ (s — py) e

where K is a constant equal to the required dc gain of the filter.
To summarize, to find a Butterworth transfer function that meets transmission specifi-
cations of the form in Fig. 11.3 we perform the following procedure:

1. Determine € from Eq. (11.14).

2. Use Eq. (11.15) to determine the required filter order as the lowest integer value of
N that results in A(w;) = Agin

3. Use Fig. 11.10(a) to determine the AV natural modes.
4. Use Eq. (11.16) to determine 7(s).

EXAMPLE 11.1

Find the Butterworth transfer function that meets the following low-pass filter specifications:
fp = 10kHz, Ay, = 1dB, f; = 15kHz, Ay, = 25 dB, de gain = 1.

Substituting A, = 1dB into Eg. (11.14) yields € = 0.5088. Equation (11.15) is then
used to determine the filter order by trying various values for N. We find that N = 8 yields
Alwy) = 223 dB and N = 9 gives 25.8 dB. We thus select N = 9.

Figure 11.11 shows the graphical construction for determining the poles. The pales all
have the same frequency wy = o, (/"N = 20 X 10 X 103 (1/0.5088)'? = 6773 x
104 rad/s. The first pole p; is given by

P1 = wo(—cos 80° + jsin 80°) = wy (—0.1736 + j0.9848)

Combining p, with its complex conjugate py yields the factor (s> + s 0.3472 wy + w§) in
the denominator of the transfer function. The same can be done for the other complex poles,
and the complete transfer function is obtained using Eq. (11.16),

9
pH
(s + wo)(s? + 51.8794 wy + @f)s? + 51.5321 wy + of) (L7
l .

X
(s + swg + Wf)(s® + 503472 wy + w3)

I(s) =




.
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Ajo

Fig. 11.11 Poles of the
S ninth-order Butterworth filter
o of Example 11.1.

The Chebyshev Filter

Figure 11.12 shows representative transmission functions for Chebyshev* filters of even and
odd order. The Chebyshev filter exhibits an equiripple response in the passband and a
monotonically decreasing transmission in the stopband. While the odd-order filter has
|7(0)| = 1, the even-order filter exhibits its maximum magnitude deviation at w = 0. In
both cases the total number of passband maxima and minima equals the order of the filter,
N. All the transmission zeros of the Chebyshev filter are at @ = o, making it an all-pole
filter. !

The magnitude of the transfer function of an Nth-order Chebyshev filter with a passband
edge (ripple bandwidth) w,, is given by

1

T(jw)| = for w = w, (11.18)
7 V1 + € cos’[N cos " (wlw,)] d

and

1
[T(jw)| = for w = @ (11.19)
| V1 + € cosh’[N cosh™ (w/w,)] 4

At the passband edge, @ = w,, the magnitude function is given by
1

T(jw,)| = ——
| (pr)l m

4 Named after the Russian mathematician P. L. Chebyshev, who in 1899 used these functions in studying J
the construction of steam engines, l
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(a) (b)
Fig. 11,12 Sketches of the transmission characteristics of representative even- and odd-order
Chebysheyv filters.

Thus, the parameter € determines the passband ripple according to
Amax = 101og(l + €?) (11.20)
Conversely, given A .y, the value of €is determined from

€ = V1040 ] (11.21)

The attenuation achieved by the Chebyshev filter at the stopband edge (@ = w,) is
found using Eq. (11.19) as

A(w,) = 101og[l + € cosh’(N cosh (a,/w,))] {11.22)

With the aid of a calculator this equation can be used to determine the order N required to
obtain a specified Ay, by finding the lowest integer value of N that yields A(w,) = A in.
‘ As in the case of the Butterworth filter, increasing the order N of the Chebyshev filter
causes its magnitude function to approach the ideal brick-wall low-pass response.

The poles of the Chebyshev filter are given by

=, . R Y Lo ol
Pr = —wp sin ¥ B sinh Nsmh =

(11.23)
X 2k — 1o j (|
+ jop cos( N 5) cosh(ﬁ sinh IE) k=125

- Page 35 of 52



—

11.3 BUTTERWORTH AND CHEBYSHEV FILTERS 899

Finally, the transfer function of the Chebyshev filter can be written as
K w,’,‘"
€2V (s — pi)s — p2) - (s — pw)

1(s) = (11.24)
where K is the dc gain that the filter is required to have.

To summarize, given low-pass transmission specifications of the type shown in Fig.
11.3, the transfer function of a Chebysheyv filter that meets these specifications can be found
as follows:

1. Determine € from Eg. (11.21).

2. Use Eq. (11.22) to determine the order required.
3. Determine the poles using Eq. (11.23).

4. Determine the transfer function using Eq. (11.24).

The Chebyshev filter provides a more efficient approximation than the Butterworth
filter. Thus, for the same order and the same A, the Chebyshey filter provides greater
stopband attenuation than the Butterworth filter. Alternatively, to meet identical specifica-
tions, one requires a lower order for the Chebyshev than for the Butterworth filter. This
point will be illustrated by the following example.

EXAMPLE 11.2

Find the Chebyshev transfer function that meets the same low-pass filter specifications given
in Example 11.1; namely, j, = 10 KHz, Apax = 1dB, f; = 15KHZ, Ayin = 25dB, dc
gain = 1.

Substituting Amay = 1 dB into Eq. (11.21) yields € = 0.5088. By trying various values for
N in Eq. (11.22) we find that N = 4 yields A(w;) = 21.6 dB and N = 5 provides 29.9 dB.
We thus select N = 5. Recall that we required a ninth-order Butterworth filter to meet the
same specifications in Example 11.1.

The poles are obtained by substituting in Eq. (11.23) as

P ps = w, (—0.0895 £ j0.9901)
P2 Py = w, (—0.2342 £ j0.6119)
pPs = wp (—0.2895)
The transfer function is obtained by substituting these values in Eq. (11.24) as
o

8.1408 (s + 0.2895 w,)(s* + 504684 w, + 04293 w}) (11.25)
: .

X 2 2
52 + 50.1789 w, + 0.9883 0}

T(s) =

where w, = 27 X 10 radss.
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Exercises

D11.6 Determine the order ¥ of a Butterworth filter for which A, = 1 dB, wylw, = 1.5, and Ay, =
30 dB. What is the actual value of minimum stopband attenuation realized? If Ay, is to be exactly 30 dB, to
what value can A, be reduced?

Ans. N = 11: Ay, = 32.87 dB; 0.54 dB

11.7 Find the natural modes and the transfer function of a Butterworth filter with w, = 1 rad/s, Apay
3dB(e = 1), and N = 3.

Ans. —0.5 + V32 and —=1;T(s) = s + D> + 5 + 1)

11.8 Observe that Eq. (11.18) can be used to find the frequencies in the passband at which |7] is at its peaks
and at its valleys. (The peaks are reached when the cos?[ | term is zero, and the valleys correspond to the 1a
cos’[ ] term equal to unity.) Find these frequencies for a fifth-order filter.

Ans. Peaks at @ = 0, 0.59 w,, and 0.95 w,,; the valleys at @ = 0.31 w, and 0.81 w),

D11.9 Find the attenuation provided at @ = 2w, by a seventh-order Chebyshev filter with a 0.5-dB passband
ripple. If the passband ripple is allowed to increase to 1 dB, by how much does the stopband attenuation ﬁ
increase?

Ans. 64.9dB; 3.3 dB

D11.10 It is required to desizn a low-pass filter having f, = 1kHz, Ayax = 1dB, f; = 1.5kHz, Ay, =
50dB. (a) Find the required order of Chebyshev filter. What is the excess stopband attenuation ob-

tained? (b) Repeat for a Butterworth filter.

Ans. (a) N=8,5dB. (b) N = 16, 0.5dB

11.4 FIRST-ORDER AND SECOND-ORDER FILTER FUNCTIONS

In this section, we shall study the simplest filter transfer functions, those of first and second
order. These functions are useful in their own right in the design of simple filters. First-
and second-order filters can also be cascaded to realize a high-order filter. Cascade design
is in fact one of the most popular methods for the design of active filters (those utilizing
op amps and RC circuits). Because the filter poles occur in complex-conjugate pairs, 2 high-
order transfer function 7(s) is factored into the product of second-order functions. If I(s) is
odd, there will also be a first-order function in the factorization. Each of the second-order
functions (and the first-order function in the case 7(s) is odd) is then realized using one of
the op amp-RC circuits that will be studied in this chapter, and the resulting blocks are
placed in cascade. If the output of each block is taken at the output terminal of an op amp
where the impedance level is low (ideally zero), cascading does not change the transfer
functions of the individual blocks. Thus the overall transfer function of the cascade is simply
the product of the transfer functions of the individual blocks, which is the original 7(s).

L
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First-Order Filters

The general first-order transfer function is given by

_as + agp

T(s) = (11.26)

s + wy

This bilinear transfer function characterizes a first-order filter with a natural mode at
§ = —wq, a transmission zero at s = —ag/ay, and a high-frequency gain that approaches
ay. The numerator coefficients, ag and a,. determine the type of filter (e.g., low-pass, high-
pass, etc.). Some special cases together with passive (RC) and active (op amp—RC) real-
izations are shown in Fig. 11.13. Note that the active realizations provide considerably more
versatility over their passive counterparts; in many cases the gain can be set to a desired
value, and some transfer-function parameters can be adjusted without affecting others. The
output impedance of the active circuit is also very low, making cascading possible. The op
amp, however, limits the high-frequency operation of the active circuits.

Another important special case of the first-order filter function is the all-pass filter
shown in Fig. 11.14. Here the transmission zero and the natural mode are symmetrically
located relative to the jw-axis. (They are said to display mirror-image symmetry with respect
to the jw-axis.) Observe that although the transmission of the all-pass filter is (ideally)
constant at all frequencies, its phase shows frequency selectivity. All-pass filters are used
as phase shifters and in systems that require phase shaping (e.g., in the design of circuits
called delay equalizers, which cause the overall time delay of a transmission system to be
constant with frequency).

Exercises

D11.11 Using B; = 10 kQ, design the op amp—RC circuit of Fig. 11.13(b) to realize a high-pass filter with
a corner frequency of 10* rad/s and a high-frequency gain of 10.

Ans. R, = 100kQ and € = 0.01 uF i |

D11.12 Design the op amp—RC circuit of Fig. 11.14 to realize an all-pass filter with a 90° phase shift at
10* rad/s. Select suitable component values.

Ans. Possible choice: R = R; = Ry = 10k}, C = 0.1 puF.

Second-Order Filter Functions I

The general second-order or biquadratic filter transfer function is usually expressed in the
standard form

a2s2 + a5 + ap

I(s) = (11.27)

T 82+ (wplQ) s + @}
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where wg and @ determine the natural modes (poles) according to

@ .
pLp2 = —Z—QO + jwe V1 — (1/40%) (11.28)

We are usually interested in the case of complex-conjugate natural modes, obtained for
Q > 0.5. Figure 11.15 shows the location of the pair of complex-conjugate poles in the
s-plane. Observe that the radial distance of the natural modes (from the origin) is equal to
wy, which is known as the pole frequency. The parameter O determines the distance of the
poles from the jw-axis; the higher the value of Q, the closer the poles are to the Jjw-axis,
and the more selective the filter response becomes. An infinite value for Q locates the poles
on the jo-axis and can yield sustained oscillations in the circuit realization. A negative value
of Q implies that the poles are in the right half of the s-plane, which certainly produces
oscillations. The parameter O is called the pole quality factor, or simply, pole-Q.

The transmission zeros of the second-order filter are determined by the numerator co-
efficients, ag, a1, and a,. It follows that the numerator coefficients determine the type of
second-order filter function (i.e., LP, HP, etc.). Seven special cases of interest are illustrated
in Fig. 11.16. For each case we give the transfer function, the s-plane locations of the
transfer function singularities, and the magnitude response. Circuit realizations for the var-
ious second-order filter functions will be given in subsequent sections.

All seven special second-order filters have a pair of complex-conjugate natural modes
characterized by a frequency wg and a Q factor, Q.

In the low-pass (LP) case, shown in Fig. 11.16(a), the two transmission zcros are at
s = «. The magnitude response can exhibit a peak with the details indicated. It can be
shown that the peak occurs only for 0 > 1/\/2. The response obtained for Q@ = 1/V2 is
the Butterworth, or maximally flat, response,

The high-pass (HP) function shown in Fig. 11.16(b) has both of its transmission zeros
at s = 0 (dc). The magnitude response shows a peak for Q > 1/\/5, with the details of
the response as indicated. Observe the duality between the LP and HP responses.

Next consider the bandpass filter function shown in Fig. 11.16(c). Here, one transmis-
sion zero is at s = 0 (dc), and the other is at s = %, The magnitude response peaks at
@ = ay. Thus the center frequency of the bandpass filter is equal to the pole frequency
wg. The selectivity of the second-order bandpass filter is vsually measured by its 3-dB

Ja A
|
| \w; | s plane
| Fig. 11.15 Definition of
' the parameters wy and Q of
! . a pair of complex conjugate
| 0 o poles.
fe——
' _“‘y.)
' (2
{
X

Page 41 of 52



‘suorouny Suneyy Jopro-puodas  91°L1 “Sid

ton — wolm — pe———
™ “ c//_—/AU\ 0m)
(]
2 TN : o
o [ _ _ o | Om
tm _ _ _ lm o = =
L EN _ | g _ = , I ures >u—w~_ﬂu¢¢8=ou
o g e T T e B, B i |2 | s B
£ 2m | _ | Pn 90" \ _ ~3+mala.,+mu
¢ \ = (%),
| | | — Tm ‘lm AN | =T = ()L
CazAD'D) — + e MR TS \
X
_ w0 ssed
ﬁciw\@_s S N an,N Y _.h_ 3\.4 An—mV pueg AUv
= —
|| X
[ ot |
| | o | W —
| — ured fouanbory-ydry
< |
“ “ 0 = n@/ _ Yoo 4 Hm §4 .8
=¥
| “ | :.V/ “ n.nNE ()L
[ /I /m_A (dH)
i vl SSeJ-URTH (a)
of
m O XtWeay 0 NA
oz |
Tm | O
0 Ncla = ured op
- |
Gia 0 _ 1o+ 254
oy 0 L = O
_Na\ Q_ :«.v/ _
p dD
L] % 1 00 i X sseq-Mo'] (E)
(0]

SOUURNSULS dUB[J-S

(8)7 pue 2dAy, Iy

&

Page 42 of 52



(panunuos) gyt Sy

A3

v = wed Kouabay-ySiy

Om
..mﬂ Zp = med op
z
0m = “m
. wa + .m S48
i Aﬂv + ("0 — .m:é\/ s @ =)
< xew 4
" — rh
-zl ol
(NdH)
U2ION ssed-iStH (7)
_ “p = ureS Aouanbary-ySiy
0
0 ) oz X mm o = uwd op
kg FP N ’
W, [ =Y
I i 0 — ety _Nw_ o e | om = “m
oz O il | 0
ot [ < - T 1 O B A R
b= = T A i
T »=(s
mﬁ_ma_ e c3// I @+ Tt
< _ X
el (NdT)
‘ _&_ -4 D10\ SSEJ-m0T (9)
oY
.
0 _ X
_ oz |
c_a | t = ured Louanbayy-ydiy
2 e AIY“ = ured ap
- (7
% 0 / _ wa + dﬂ ok Nm. e
L | |-
[n| _ /v_R
Yo1N (p)
vzl oY

906

Page 43 of 52




(ponunuod) gp-p| Si4

AR

||||| 87—

A3

Ab

—_————)
Qi
3

i
i

(=

Om

~

~.

Oy

™

&———-—.—

of

\J

@v)
ssed-1lV (3)

907

-

Page 44 of 52



908 FILTERS AND TUNED AMPLIFIERS

bandwidth. This is the difference between the two frequencies w; and w; at which the
magnitude response is 3 dB below its maximum value (at w;). Tt can be shown that

w1, w; = weV1 + (1/40%) + -2 (11.29)
20
Thus
BW = wy — wy = wglQ (11.30)

Observe that as Q increases, the bandwidth decreases and the bandpass filter becomes more
selective.

If the transmission zeros are located on the jew-axis, at the complex conjugate locations
+ jw,, then the magnitude response exhibits zero transmission at @ = w,,. Thus a notch in
the magnitude response occurs at @ = w,, and w, is known as the notch frequency. Thice
cases of the second-order notch filter are possible: the regular notch, obtained when w, =
wg (Fig. 11.16d); the low-pass notch, obtained when w, > @ (Fig. 11.16¢); and the high-
pass notch, obtained when w, < wq (Fig. 11.16f). The reader is urged to verify the response
details given in these figures (a rather tedious task, though!). Observe that in all notch cases,
the transmission at dc and at s = = is finite. This is so because there are no transmission
zeros at either s = Q or s = o,

The last special case of interest is the all-pass filter whose characteristics are illustrated
in Fig. 11.16(g). Here the two transmission zeros are in the right half of the s-plane, at the
mirror-image locations of the poles. (This is the case for all-pass functions of any order.)
The magnitude response of the all-pass function is constant over all frequencies; the flat
gain, as it is called, is in our case equal to |ap|. The frequency selectivity of the all-pass
function is in its phase response.

S S o i ety

Exercises

11.13 For a maximally flat second-order low-pass filter (Q = 1/V2) show that at ® = a the magnitude
response is 3 dB below the value at dc. f

11.14 Give the transfer function of a second-order bandpass filter with a center frequency of 10° rad/s, a ‘
center-frequency gain of 10, and a 3-dB bandwidth of 10% rad/s.

10%s
Ans. T(s) = T ¥ 1055 100 .
11.15 (a) For the second-order notch function with w, = @, show that in arder for the attenuation to be
greater than A dB over a frequency band BW,, the value of O is given by
@o
Q= —————
BW, V10 =1

(Hint: First, show that any two frequencies, w; and s, at which |7] is the same, are related by w @, =
©3.) (b) Use the result of (a) to show that the 3-dB bandwidth is w,/Q. as indicated in Fig. 11.16(d). g

e
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11.5 THE SECOND-ORDER LCR RESONATOR 909

11.16 Consider a low-pass notch with wy = 1rad/s, Q = 10, w, = 1.2 rad/s, and a dc gain of unity. Find
the frequency and magnitude of the transmission peak. Also find the high-frequency transmission.

Ans. 0.986 rad/s: 3.17;: 0.69 E

NR— - 3 T o L E

11.5 THE SECOND-ORDER LCR RESONATOR

In this section we shall study the second-order LCR resonator shown in Fig. 11.17(a). The
use of this resonator to derive circuit realizations for the various second-order filter functions
will be demonstrated. Also, it will be shown in the next section that replacing the inductor
L by a simulated inductance obtained using an op amp—RC circuit results in an op amp-
RC resonator. The latter forms the basis of an important class of active-RC filters to be
studied in the next section.

The Resonator Natural Modes

The natural modes of the parallel resonance circuit of Fig. 11.17(a) can be determined by
applying an excitation that does not change the natural structure of the circuit. Two possible
ways of exciting the circuit are shown in Figs. 11.17(b) and (c). In Fig. 11.17(b) the res-
onator is excited with a current source / connected in parallel. Since as far as the natural

T 1
R C L j_ '
@  3r =mcid v,
i iy T
(a) (b)
X L

ik

(c)

Fig. 11.17 (a) The second-order parallel LCR resonator. (b) and (¢) Two ways for exciting the
resonator of (a) without changing its natural structure. The resonator poles are the poles of V,/I and
VIV,
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910 FILTERS AND TUNED AMPLIFIERS

response of a circuit is concerned, an independent ideal current source is equivalent to an
open circuit, the excitation of Fig. 11.17(b) does not alter the natural structure of the res-
onator. Thus the circuit in Fig. 11.17(b) can be used to determine the natural modes of the
resonator by simply finding the poles of any response function. We can for instance take
the voltage V, across the resonator as the response and thus obtain the response function
Vol = Z, where Z is the impedance of the parallel resonance circuit. It is obviously more
convenient, however, to work in terms of the admittance Y;: thus

1 1

Y (/D) + sC + (/R)
sIC
s + s(1/CR) + (1/LC)

~|s<

(11.31)

Equating the denominator to the standard form s + s (wo/Q) + wd leads to

wg = 1/LC (11.32)
and

wo/Q = 1/CR (11.33)
Thus,

wo = 1/VLC (11.34)

Q = wpCR (11.35)

These expressions should be familiar to the reader from earlier studies of parallel resonance
circuits in introductory courses on circnit theory,

An alternative way of exciting the parallel LCR resonator for the purpose of determining
its natural modes is shown in Fig. 11.17(c). Here, node x of inductor L has been disconnected
from ground and connected to an ideal voltage source V;. Now, since as far as the natural
response of a circuit is concerned, an ideal independent voltage source is equivalent to a
short circuit, the excitation of Fig. 11.17(c) does not alter the natural structure of the res-
onator. Thus we can use the circuit in Fig. 11.17(c) to determine the natural modes of the
resonator, These are the poles of any response function. For instance, we can select V, as
the response variable and find the transfer function V,/V. The reader can easily verify that
this will lead to the natural modes determined above.

In a design problem, we will be given wq and Q and will be asked to determine L, C,
and R. Equations (11.34) and (11.35) are two equations in the three unknowns. The one
available degree of freedom can be utilized to set the impedance level of the circuit to a
value that results in practical component values.

Realization of Transmission Zeros

Having selected the component values of the LCR resonator so as to realize a given pair
of complex-conjugate natural modes, we now consider the use of the resonator to realize a
desired filter type (e.g., LP, HP, etc.). Specifically, we wish to find out where to inject the
input voltage signal V; so that the transfer function V,/V; is the desired one. Toward that
end, note that in the resonator circuit in Fig. 11.17(a) any of the nodes labeled x, y, or z
can be disconnected from ground and connected to V; without altering the circuit’s natural
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modes. When this is done the circuit takes the form of a voltage divider, as shown in Fig.
11.18(a). Thus the transfer function realized is

o) Zas)

T(s) = S
Vil9)  Zy(s) + Zy(s)

(11.36)
We observe that the transmission zeros are the values of s at which Zx(s) is zero, provided
that Z(s) is not simultaneously zero, and the values of s at which Z(s) is infinite, provided
that Zy(s) is not simultaneously infinite. This statement makes physical sense: The output
will be zero either when Z,(s) behaves as a short circuit or when Z(s) behaves as an open
circuit. If there is a value of 5 at which both Z; and Z, are zero, then V,/V; will be finite
and no transmission zero is obtained. Similarly, if there is a value of s at which both Z,
and Z, are infinite, then V,/V; will be finite and no transmission zero is realized.

Realization of the Low-Pass Function

Using the scheme outlined above we see that to realize a low-pass function, node x is
disconnected from ground and connected to V;, as shown in Fig. 11.18(b). The transmission
zeros of this circuit will be at the value of s for which the series impedance becomes infinite
(sL becomes infinite at s = ) and the value of s at which the shunt impedance becomes
zero (1/[sC + (1/R)] becomes zero at s = ). Thus this circuit has two transmission zeros
ats = %, as an LP is supposed to. The transfer function can be written either by inspection
or by using the voltage-divider rule. Following the latter approach, we obtain

10 = . TR gy JE 1/sL
TN LY % K4 B (SD+ st UR)
VLC (11.37)

st + s(1/CR) + (/LC)

Realization of the High-Pass Function

To realize the second-order high-pass function, node y is disconnected from ground and
connected to V, as shown in Fig. 11.18(c). Here the series capacitor introduces a transmis-
sion zero at s = 0 (dc), and the shunt inductor introduces another transmission zero at
s = 0 (dc). Thus, by inspection, the transfer function may be written as

) an 52

TP s/ + 0h

T(s) = (11.38)

=<

where wy and Q are the natural mode parameters given by Egs. (11.34) and (11.35) and
ay is the high-frequency transmission. The value of @, can be determined from the circuit
by observing that as s approaches =, the capacitor approaches a shert circuit and V, ap-
proaches V;, resulting in @, = 1.

Realization of the Bandpass Function

The bandpass function is realized by disconnecting node z from ground and connecting it
to V;, as shown in Fig. 11.18(d). Here the series impedance is resistive, and thus does not
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Fig. 11.18 Realization of various second-order filter v, L, R :: v,
functions using the LCR resonator of Fig. 11.17(b): 9
(a) general structure, (b) LP, (c) HP, (d) BP, -
{e) notch at wy, (f) general notch, (g) LPN ’ Q
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introduce any transmission zeros. These are obtained as follows: One zero at s = 0 is
realized by the shunt inductor, and one zero at s = < is realized by the shunt capacitor. At
the center-frequency @, the parallel LC tuned circuit exhibits an infinite impedance, and
thus no current flows in the circuit. It follows that at @ = wy, V, = V.. In other words, the
center-frequency gain of the bandpass filter is unity. Its transfer function can be obtained
as follows:

Y o IR
Yo+ ¥, + Yo (/R + (UsD) + sC

s (I/CR) =
s* + s(/CR) + (1/LC)

T(s)

Realization of the Notch Functions

To obtain a pair of transmission zeros on the jw-axis we use a parallel resonance circuit in
the series arm, as shown in Fig. 11.18(e). Observe that this circuit is obtained by discon-
necting both nodes x and y from ground and connecting them together to V;. The impedance
of the LC circuit becomes infinite at @ = wy = 1/VLC, thus causing zero transmission at
this frequency. The shunt impedance is resistive and thus does not introduce transmission
zeros. It follows that the circuit in Fig. 11.18(e) will realize the notch transfer function

TO) s + w(z)
5) = a
262 + s (wp/0) + w(z)

(11.40)

The value of the high-frequency gain @, can be found from the circuit to be unity.

To obtain a notch filter realization in which the notch frequency w,, is arbitrarily placed
relative ta g, we adopt a variation on the above scheme. We still use a parallel LC circuit
in the series branch, as shown in Fig. 11.18(f) where L, and C; are selected so that

LiCi = llo? (11.41)

Thus the L,C) tank circuit will introduce a pair of transmission zeros at +jw,, provided
that the L,C, tank is not resonant at w,. Apart from this restriction, the values of L, and
C, must be selected so as to ensure that the natural modes have not been altered; thus

6 +iG 2 (11.42)
L, =L (11.43)

In other words, when V; is replaced by a short circuit, the circuit should reduce to the !
original LCR resonator. Another way of thinking about the circuit of Fig. 11.18(f) is that
it is obtained from the original LCR resonator by lifting part of L and part of C off ground
and connecting them to V. 1
It should be noted that in the circuit of Fig. 11.18(f), L, does not introduce a zero at
s = 0 because at s = 0, the L,C; circuit also has a zero. In fact, at s = 0 the circuit
reduces to an inductive voltage divider with the dc transmission being L,/(L; + L;). Sim- |
ilar comments can be made about C, and the fact that it does not introduce a zero at
s =«
The LPN and HPN filter realizations are special cases of the general notch circuit of
Fig. 11.18(f). Specifically, for the LPN,

W, = g,

[~ == —— N
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thus
LiCy < (L{Ly)(Cy + C3)

This condition can be satisfied with L, eliminated (i.e., L, = % and L; = L), resulting in
the LPN circuit in Fig. 11.18(g). The transfer function can be written by inspection as

v, s+ w2
) =— =a; z (11.44)

Vi + 5 (wo/Q) + f

where w2 = 1/LCy, @§ = V/L(IC; + C,), wo/Q = 1/CR, and a; is the high-frequency gain.
From the circuit we see that as s — ¢, the circuit reduces to that in Fig. 11.18(h), for which

B _. B
i G+0
Thus
a = e (11.45)
AN ‘

To obtain an HPN realization we start with the circuit of Fig. 11.18(f) and use the fact
that w, < wg to obtain

L.Cy > (Ly/IL,)(Cy + C3)

which can be satisfied while selecting C; = 0 (i.e., C; = C). Thus we obtain the reduced
circuit shown in Fig. 11.18(i). Observe that as s — ¢, V, approaches V; and thus the high-
frequency gain is unity. Thus, the transfer function can be expressed as

v, s? + (/L,C)

=22 — 11.46
10 = = Fsaicn + AL /IL,) C e

Realization of the All-Pass Function
The all-pass transfer function

s — s (wo/Q) + w%

T8 = FF el + u

(11.47)

can be wrilten as

5§ 2 (wp/Q)
§2 4 s (wo/Q) + 0}

T(s) = 1 — (11.48)
The second term on the right-hand side is a bandpass function with a center-frequency gain
of 2. We already have a bandpass circuit (Fig. 11.18d) but with a center-frequency gain of
unity. We shall therefore attempt an all-pass realization with a flat gain of 0.5, that is,

s (wg/Q0)
52 + s (wo/Q) + wd

T(s) = 0.5 —

This function can be realized using a voltage divider with a transmission ratio of 0.5 together
with the bandpass circuit of Fig. 11.18(d). To effect the subtraction, the output of the all-
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=

Fig. 11.19 Realization of

+ =
Vi CD ——o V,o0—e the SeCOnd-or_der a]ln-pass
transfer function using a

< | voltage divider and an LCR
b= N C T L resonator.

pass circuit is taken between the output terminal of the voltage divider and that of the
bandpass filter, as shown in Fig. 11.19. Unfortunately this circuit has the disadvantage of
lacking a common ground terminal between the input and the output. An op amp—RC
realization of the all-pass function will be presented in the next section.

10 kQ.

Exercises

11.17 Use the circuit of Fig. 11.18(b) to realize a second-order low-pass function of the maximally flat type
with a 3-dB frequency of 100 kHz.

Ans. Selecting R = 1k(), we obtain C = 1125 pF and L = 2.25 mH.
11.18 Use the circuit of Fig. 11.18(e) to design a notch filter to eliminate a bothersome power-supply hum

at a 60-Hz frequency. The filter is to have a 3-dB bandwidth of 10 Hz (i.e., the attenuation is greater than
3 dB over a 10-Hz band around the 60-Hz center frequency; see Exercise 11.15 and Fig. 11.16d). Use R =

Ans. C = 1.6 uF and L = 4.42 H (Note the large inductor required. This is the reason passive filters are not
practical in low-frequency applications.)

L=
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In this section. we study a family of op amp—RC circuits that realize the various second-
order filter functions. The circuits are based on an op amp—RC resonator obtained by re-
placing the inductor L in the LCR resonator with an op amp—RC circuit that has an inductive
input impedance.

The Antoniou Inductance-Simulation Circuit

Over the years, many op amp—RC circuits have been proposed for simulating the operation
of an inductor. Of these, cne circuit invented by A. Antoniou (see Antoniou, 1969) has
proved to be the “best.” By “best” we mean that the operation of the circuit is very tolerant
to the nonideal properties of the op amps, in particular their finite gain and bandwidth.
Figure 11.20(a) shows the Antoniou inductance simulation circuit. If the circuit is fed at its

—38





