5/28/2024

Assumptions:

1. Turbulent flow regime

2. Fluid properties

https://ntrs.nasa.gov/api/citations/19660024205/downloads/19660024205.pdf

0.0054+0.396/R dP=f L rho/2 v^2/D

Schiller

https://energy-models.com/pipe-sizing-charts-tables

Darcy-Weisbach eqn

Fluid: diesel at 60 de specific gravity dyn viscosity ft^2/s 4.31E-05

total flow rate, gpm 11.5 max duty cycle 50% total fuel per 12 hrs gal 4100 3 Number of hoses hose flow rate, gpm 3.8 P max psi 155

	Part	ID , in.	Length (ft)	L/D	velocity, ft/s	Re (vD/nu)	f	dP (psi)	total P (psi)	Notes
Α	filter	2.00			0.39	1.52E+03	0.049	3.59		dP approximation per FAS
	manifold to reel	2.00	10.00	60.00	0.39	1.52E+03	0.049	0.00		
	manifold	4.00	30.00	90.00	0.10	7.58E+02	0.060	0.00		
	manifold welded tee	2.00		45.00	0.39	1.52E+03	0.049	0.00		
	elbow	2.00		45.00	0.39	1.52E+03	0.049	0.00		
	elbow	2.00		45.00	0.39	1.52E+03	0.049	0.00		
	hose	1.00	200	2400.00	1.57	3.03E+03	0.041	1.43	5.04	
В	filter	2.00			0.39	1.52E+03	0.049	3.59		dP approximation per FAS
	manifold to hose	1.00	6.00	72.00	1.57	3.03E+03	0.041	0.04		
	elbow	0.50		45.00	6.26	6.06E+03	0.034	0.36		
	hose	0.38	200	6400.00	11.14	8.08E+03	0.032	150.57	154.56	i

88.0

5/28/2024

J. Rodgers

	Typical	Large	Superfrac
Peak Fuel Consumption (gal) per 12 hr.	750	0 12000	24000
Avg Flow Rate (gpm)	1	0 17	33
Avg. Duty Cycle	909	6 90%	90%
Total flow rate required (gpm)	1	2 19	37
Avg. Duty Cycle	509	6 50%	50%
Total flow rate required (gpm)	2	1 33	67

per information from FAS
assumed start-up and shut-down time required, max duty cycle achievable
comfortable duty cycle for nominal operations

Flow Calculations 5/28/2024

	1	0.75	0.5	0.38	
	Velocity (1 inch	Velocity (3/4 inch	Velocity (1/2 inch	Velocity (3/8"	Recommended
Flow Rate (gpm)	hose, ft/s)	hose, ft/s)	hose, ft/s)	hose, ft/s)	Max (m/s)
0	0.0	0.0	0.0	0.0	23
1	0.4	0.7	1.6	2.8	23
2	8.0	1.5	3.3	5.7	23
3	1.2	2.2	4.9	8.5	23
4	1.6	2.9	6.5	11.3	23
5	2.0	3.6	8.2	14.1	23
6	2.5	4.4	9.8	17.0	23
7	2.9	5.1	11.4	19.8	23
8	3.3	5.8	13.1	22.6	23
9	3.7	6.5	14.7	25.5	23
10	4.1	7.3	16.3	28.3	23
11	4.5	8.0	18.0	31.1	23
12	4.9	8.7	19.6	33.9	23
13	5.3	9.4	21.2	36.8	23
14	5.7	10.2	22.9	39.6	23
15	6.1	10.9	24.5	42.4	23
16	6.5	11.6	26.1	45.3	23
17	6.9	12.3	27.8	48.1	23
18	7.4	13.1	29.4	50.9	23
19	7.8	13.8	31.0	53.7	23
20	8.2	14.5	32.7	56.6	23
21	8.6	15.3	34.3	59.4	23
22	9.0	16.0	35.9	62.2	23
23	9.4	16.7	37.6	65.1	23
24	9.8	17.4	39.2	67.9	23

5/28/2024

Hose Size (in)	1	0.38
Hose length (ft)	200	700
Hose volume (gal)	8.2	4.1

Flow Calculations 45440 J. Rodgers

	туркас	Laige	Supernac	
Peak Fuel Consumption (gal) per 12 hr.	7500	12000	24000	
Avg Flow Rate (gpm)	=C6/12/60	=D6/12/60	=E6/12/60	
Avg. Duty Cycle	0.9	=C8	=C8	
Total flow rate required (gpm)	=C7/C8	=D7/D8	=E7/E8	
Avg. Duty Cycle	0.5	=C10	=D10	
Total flow rate required (gpm)	=C7/C10	=D7/D10	=E7/E10	

per information from F_ℓ assumed start-up and

comfortable duty cycle

45440

45440

 Hose Size (in)
 1
 0.38

 Hose length (ft)
 200
 700

Hose volume (gal) $=PI()/4*C4^2*C5*12/231 =PI()/4*D4^2*D5*12/231$